1
|
Gandra RM, Ramos LS, Cruz LPS, Souza LOP, Branquinha MH, Santos ALS. Candida parapsilosis: Heterogeneous and strain-specific expression of secreted aspartic proteases (Sapp1 and Sapp2). Med Mycol 2024; 62:myae066. [PMID: 38918050 DOI: 10.1093/mmy/myae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/28/2024] [Accepted: 06/24/2024] [Indexed: 06/27/2024] Open
Abstract
The increasing prevalence of Candida parapsilosis as a causative agent of fungal infections underscores the need to comprehensively understand its virulence factors. Secreted aspartic proteases (Saps) play a significant role in adhesion events, promoting biofilm formation, causing tissue damage and evading the host's immune response. In C. parapsilosis, three Saps have been identified: Sapp1, Sapp2 and Sapp3. The present study investigates the production dynamics of Sapp1 and Sapp2 across 10 clinical isolates of C. parapsilosis using various approaches. Each fungal isolate demonstrated the capability to utilize bovine serum albumin (BSA) as the sole nitrogen source, as evidenced by its degradation in a cell-free culture medium, forming low molecular mass polypeptides. Interestingly, the degradation of different proteinaceous substrates, such as BSA, human serum albumin (HSA), gelatin and hemoglobin, was typically isolate-dependent. Notably, higher proteolysis of HSA compared to BSA, gelatin and hemoglobin was observed. A quantitative assay revealed that the cleavage of a peptide fluorogenic substrate (cathepsin D) was isolate-specific, ranging from 44.15 to 270.61 fluorescence arbitrary units (FAU), with a mean proteolysis of 150.7 FAU. The presence of both Sapp1 and Sapp2 antigens on the cell surface of these fungal isolates was confirmed through immunological detection employing specific anti-Sapp1 and anti-Sapp2 antibodies. The surface levels of Sapp1 were consistently higher, up to fourfold, compared to Sapp2. Similarly, higher levels of Sapp1 than Sapp2 were detected in fungal secretions. This study provides insights into the dynamic expression and regulation of Sapps in C. parapsilosis, highlighting a known virulence factor that is considered a potential target for drug development against this increasingly prominent pathogen.
Collapse
Affiliation(s)
- Rafael M Gandra
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Lívia S Ramos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Lucas P S Cruz
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Lucieri O P Souza
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Marta H Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Rede Micologia RJ - Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| | - André L S Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Rede Micologia RJ - Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Kulshrestha A, Gupta P. Secreted aspartyl proteases family: a perspective review on the regulation of fungal pathogenesis. Future Microbiol 2023; 18:295-309. [PMID: 37097060 DOI: 10.2217/fmb-2022-0143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Secreted aspartyl proteases (SAPs) are important enzymes for fungal pathogenicity, playing a significant role in infection and survival. This article provides insight into how SAPs facilitate the transformation of yeast cells into hyphae and engage in biofilm formation, invasion and degradation of host cells and proteins. SAPs and their isoenzymes are prevalent during fungal infections, making them a potential target for antifungal and antibiofilm therapies. By targeting SAPs, critical stages of fungal pathogenesis such as adhesion, hyphal development, biofilm formation, host invasion and immune evasion can potentially be disrupted. Developing therapies that target SAPs could provide an effective treatment option for a wide range of fungal infections.
Collapse
Affiliation(s)
- Anmol Kulshrestha
- Department of Biotechnology, National Institute of Technology, Raipur, 492010, India
| | - Pratima Gupta
- Department of Biotechnology, National Institute of Technology, Raipur, 492010, India
| |
Collapse
|
3
|
Kalimuthu S, Alshanta OA, Krishnamoorthy AL, Pudipeddi A, Solomon AP, McLean W, Leung YY, Ramage G, Neelakantan P. Small molecule based anti-virulence approaches against Candida albicans infections. Crit Rev Microbiol 2022; 48:743-769. [PMID: 35232325 DOI: 10.1080/1040841x.2021.2025337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fungi are considered "silent killers" due to the difficulty of, and delays in diagnosis of infections and lack of effective antifungals. This challenge is compounded by the fact that being eukaryotes, fungi share several similarities with human cellular targets, creating obstacles to drug discovery. Candida albicans, a ubiquitous microbe in the human body is well-known for its role as an opportunistic pathogen in immunosuppressed people. Significantly, C. albicans is resistant to all the three classes of antifungals that are currently clinically available. Over the past few years, a paradigm shift has been recommended in the management of C. albicans infections, wherein anti-virulence strategies are considered an alternative to the discovery of new antimycotics. Small molecules, with a molecular weight <900 Daltons, can easily permeate the cell membrane and modulate the signal transduction pathways to elicit desired virulence inhibitory actions against pathogens. This review dissects in-depth, the discoveries that have been made with small-molecule anti-virulence approaches to tackle C. albicans infections.
Collapse
Affiliation(s)
| | - Om Alkhir Alshanta
- Glasgow Endodontology Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow, UK
| | - Akshaya Lakshmi Krishnamoorthy
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.,Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Akhila Pudipeddi
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - William McLean
- Glasgow Endodontology Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow, UK
| | - Yiu Yan Leung
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Gordon Ramage
- Glasgow Endodontology Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow, UK
| | | |
Collapse
|
4
|
Alshanta OA, Albashaireh K, McKloud E, Delaney C, Kean R, McLean W, Ramage G. Candida albicans and Enterococcus faecalis biofilm frenemies: When the relationship sours. Biofilm 2022; 4:100072. [PMID: 35313556 PMCID: PMC8933684 DOI: 10.1016/j.bioflm.2022.100072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 12/19/2022] Open
Affiliation(s)
- Om Alkhir Alshanta
- Glasgow Endodontology and Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow, United Kingdom
| | - Khawlah Albashaireh
- Glasgow Endodontology and Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow, United Kingdom
| | - Emily McKloud
- Glasgow Endodontology and Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow, United Kingdom
| | - Christopher Delaney
- Glasgow Endodontology and Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow, United Kingdom
| | - Ryan Kean
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - William McLean
- Glasgow Endodontology and Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow, United Kingdom
| | - Gordon Ramage
- Glasgow Endodontology and Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow, United Kingdom
- Corresponding author.
| |
Collapse
|
5
|
Havranek B, Islam SM. An in silico approach for identification of novel inhibitors as potential therapeutics targeting COVID-19 main protease. J Biomol Struct Dyn 2021; 39:4304-4315. [PMID: 32544024 PMCID: PMC7309303 DOI: 10.1080/07391102.2020.1776158] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 05/25/2020] [Indexed: 01/08/2023]
Abstract
Respiratory disease caused by a novel coronavirus, COVID-19, has been labeled a pandemic by the World Health Organization. Very little is known about the infection mechanism for this virus. More importantly, there are no drugs or vaccines that can cure or prevent a person from getting COVID-19. In this study, the binding affinity of 2692 protease inhibitor compounds that are known in the protein data bank, are calculated against the main protease of the novel coronavirus with docking and molecular dynamics (MD). Both the docking and MD methods predict the macrocyclic tissue factor-factor VIIa (PubChem ID: 118098670) inhibitor to bind strongly with the main protease with a binding affinity of -10.6 and -10.0 kcal/mol, respectively. The TF-FVIIa inhibitors are known to prevent the coagulation of blood and have antiviral activity as shown in the case of SARS coronavirus. Two more inhibitors, phenyltriazolinones (PubChem ID: 104161460) and allosteric HCV NS5B polymerase thumb pocket 2 (PubChem ID: 163632044) have shown antiviral activity and also have high affinity towards the main protease of COVID-19. Furthermore, these inhibitors interact with the catalytic dyad in the active site of the COVID-19 main protease that is especially important in viral replication. The calculated theoretical dissociation constants of the proposed COVID-19 inhibitors are found to be very similar to the experimental dissociation constant values of similar protease-inhibitor systems.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Brandon Havranek
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Shahidul M. Islam
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
6
|
Feng W, Yang J, Ma Y, Xi Z, Zhao X, Zhao X, Zhao M. The effects of secreted aspartyl proteinase inhibitor ritonavir on azoles-resistant strains of Candida albicans as well as regulatory role of SAP2 and ERG11. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:667-680. [PMID: 33951330 PMCID: PMC8342201 DOI: 10.1002/iid3.415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/16/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Candida albicans, the main human fungal pathogen, can cause fungal infection and seriously affect people's health and life. This study aimed to investigate the effects of ritonavir (RIT) on C. albicans and the correlation between SAP2 as well as ERG11 and drug resistance. RESULTS Secreted aspartyl proteinases (Saps) activities and pathogenicity of C. albicans with different drug resistance were measured. M27-A4 broth microdilution method was used to analyze the drug sensitivity of RIT combined with fluconazole (FCA) on C. albicans. After that, SAP2 and ERG11 mutations were examined by polymerase chain reaction (PCR) and sequencing, and quantitative real-time PCR was utilized to determine the expression of the two genes. By analyzing pz values, the Saps activity of cross-resistant strains was the highest, followed by voriconazole (VRC)-resistant strains, FCA-resistant strains, itraconazole (ITR)-resistant strains, and sensitive strains. The pathogenicity of C. albicans in descending order was as follows: cross-resistant strains, VRC-resistant strains, ITR-resistant strains, FCA-resistant strains, and sensitive strains. With the increase of RIT concentrations, the Saps activity was gradually inhibited. Drug sensitivity results showed that there was no synergistic effect between RIT and FCA. Additionally, no gene mutation sites were found in SAP2 sequencing, and 17 synonymous mutations and 6 missense mutations occurred in ERG11 sequencing. Finally, the expression of SAP2 and ERG11 was significantly higher in the resistant strains compared with the sensitive strains, and there was a positive liner correlation between SAP2 and ERG11 messenger RNA expression (r = .6655, p < .001). CONCLUSION These findings may help to improve our understanding of azole-resistant mechanisms of C. albicans and provide a novel direction for clinical therapeutics of C. albicans infection.
Collapse
Affiliation(s)
- Wenli Feng
- The Department of Dermatovenereology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing Yang
- The Department of Dermatovenereology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yan Ma
- The Department of Dermatovenereology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhiqin Xi
- The Department of Dermatovenereology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoqin Zhao
- The Department of Dermatovenereology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoxia Zhao
- The Department of Dermatovenereology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Min Zhao
- The Department of Dermatovenereology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
7
|
Granato MQ, Sousa IS, Rosa TLSA, Gonçalves DS, Seabra SH, Alviano DS, Pessolani MCV, Santos ALS, Kneipp LF. Aspartic peptidase of Phialophora verrucosa as target of HIV peptidase inhibitors: blockage of its enzymatic activity and interference with fungal growth and macrophage interaction. J Enzyme Inhib Med Chem 2020; 35:629-638. [PMID: 32037904 PMCID: PMC7034032 DOI: 10.1080/14756366.2020.1724994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/20/2022] Open
Abstract
Phialophora verrucosa causes several fungal human diseases, mainly chromoblastomycosis, which is extremely difficult to treat. Several studies have shown that human immunodeficiency virus peptidase inhibitors (HIV-PIs) are attractive candidates for antifungal therapies. This work focused on studying the action of HIV-PIs on peptidase activity secreted by P. verrucosa and their effects on fungal proliferation and macrophage interaction. We detected a peptidase activity from P. verrucosa able to cleave albumin, sensitive to pepstatin A and HIV-PIs, especially lopinavir, ritonavir and amprenavir, showing for the first time that this fungus secretes aspartic-type peptidase. Furthermore, lopinavir, ritonavir and nelfinavir reduced the fungal growth, causing remarkable ultrastructural alterations. Lopinavir and ritonavir also affected the conidia-macrophage adhesion and macrophage killing. Interestingly, P. verrucosa had its growth inhibited by ritonavir combined with either itraconazole or ketoconazole. Collectively, our results support the antifungal action of HIV-PIs and their relevance as a possible alternative therapy for fungal infections.
Collapse
Affiliation(s)
- Marcela Q. Granato
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos (LTBBF), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Ingrid S. Sousa
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos (LTBBF), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | | | - Diego S. Gonçalves
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Instituto de Microbiologia Paulo de Góes (IMPPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Bioquímica, Instituto de Química, UFRJ, Rio de Janeiro, Brazil
| | - Sergio H. Seabra
- Laboratório de Tecnologia em Cultura de Células, Centro Universitário Estadual da Zona Oeste (UEZO), Rio de Janeiro, Brazil
| | - Daniela S. Alviano
- Laboratório de Estrutura de Microrganismos, IMPPG, UFRJ, Rio de Janeiro, Brazil
| | | | - André L. S. Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Instituto de Microbiologia Paulo de Góes (IMPPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Bioquímica, Instituto de Química, UFRJ, Rio de Janeiro, Brazil
| | - Lucimar F. Kneipp
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos (LTBBF), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Brilhante RSN, Silva JAT, Araújo GDS, Pereira VS, Gotay WJP, Oliveira JSD, Guedes GMDM, Pereira-Neto WA, Castelo-Branco DDSCM, Cordeiro RDA, Sidrim JJC, Rocha MFG. Darunavir inhibits Cryptococcus neoformans/ Cryptococcus gattii species complex growth and increases the susceptibility of biofilms to antifungal drugs. J Med Microbiol 2020; 69:830-837. [PMID: 32459616 DOI: 10.1099/jmm.0.001194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Cryptococcus species are pathogens commonly associated with cases of meningoencephalitis in individuals who are immunosuppressed due to AIDS.Aim. The aim was to evaluate the effects of the antiretroviral darunavir alone or associated with fluconazole, 5-flucytosine and amphotericin B against planktonic cells and biofilms of Cryptococcus species.Methodology. Susceptibility testing of darunavir and the common antifungals against 12 members of the Cryptococcus neoformans/Cryptococcus gattii species complex was evaluated by broth microdilution. The interaction between darunavir and antifungals against planktonic cells was tested by a checkerboard assay. The effects of darunavir against biofilm metabolic activity and biomass were evaluated by the XTT reduction assay and crystal violet staining, respectively.Results. Darunavir combined with amphotericin B showed a synergistic interaction against planktonic cells. No antagonistic interaction was observed between darunavir and the antifungals used. All Cryptococcus species strains were strong biofilm producers. Darunavir alone reduced biofilm metabolic activity and biomass when added during and after biofilm formation (P<0.05). The combination of darunavir with antifungals caused a significant reduction in biofilm metabolic activity and biomass when compared to darunavir alone (P<0.05).Conclusion. Darunavir presents antifungal activity against planktonic cells of Cryptococcus species and synergism with amphotericin B. In addition, darunavir led to reduced biofilm formation and showed activity against mature biofilms of Cryptococcus species. Activity of the antifungals against mature biofilms was enhanced in the presence of darunavir.
Collapse
Affiliation(s)
- Raimunda Sâmia Nogueira Brilhante
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - José Alexandre Telmos Silva
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Géssica Dos Santos Araújo
- Postgraduate Program in Veterinary Sciences, College of Veterinary, State University of Ceará. Av. Dr. Silas Munguba, 1700, Campus do Itaperi, CEP: 60714-903, Fortaleza, Ceará, Brazil
| | - Vandbergue Santos Pereira
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Wilker Jose Perez Gotay
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Jonathas Sales de Oliveira
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Glaucia Morgana de Melo Guedes
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Waldemiro Aquino Pereira-Neto
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Débora de Souza Collares Maia Castelo-Branco
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Rossana de Aguiar Cordeiro
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - José Júlio Costa Sidrim
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Marcos Fábio Gadelha Rocha
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| |
Collapse
|
9
|
Rebello KM, Andrade-Neto VV, Gomes CRB, de Souza MVN, Branquinha MH, Santos ALS, Torres-Santos EC, d'Avila-Levy CM. Miltefosine-Lopinavir Combination Therapy Against Leishmania infantum Infection: In vitro and in vivo Approaches. Front Cell Infect Microbiol 2019; 9:229. [PMID: 31316919 PMCID: PMC6611157 DOI: 10.3389/fcimb.2019.00229] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
Concurrently, leishmaniasis and AIDS are global public health issues and the overlap between these diseases adds additional treats to the management of co-infected patients. Lopinavir (LPV) has a well characterized anti-HIV and leishmanicidal action, and to analyze its combined action with miltefosine (MFS) could help to envisage strategies to the management of co-infected patients. Here, we evaluate the interaction between LPV and MFS against Leishmania infantum infection by in vitro and in vivo approaches. The effect of the compounds alone or in association was assessed for 72 h in mouse peritoneal macrophages infected with L. infantum by the determination of the IC50s and FICIs. Subsequently, mice were orally treated twice daily during 5 days with the compounds alone or in association and evaluated after 30 days. The in vitro assays revealed an IC50 of 0.24 μM and 9.89 μM of MFS and LPV, respectively, and an additive effect of the compounds (FICI 1.28). The in vivo assays revealed that LPV alone reduced the parasite load in the spleen and liver by 52 and 40%, respectively. The combined treatment of infected BALB/c mice revealed that the compounds alone required at least two times higher doses than when administered in association to virtually eliminate the parasite. Mice plasma biochemical parameters assessed revealed that the combined therapy did not present any relevant hepatotoxicity. In conclusion, the association of MFS with LPV allowed a reduction in each compound concentration to achieve the same outcome in the treatment of visceral leishmaniasis. Although a pronounced synergistic effect was not evidenced, it does not discard that such combination could be useful in humans co-infected with HIV and Leishmania parasites.
Collapse
Affiliation(s)
- Karina M Rebello
- Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Valter V Andrade-Neto
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Claudia Regina B Gomes
- Laboratório de Síntese de Substâncias no Combate a Doenças Tropicais, Farmanguinhos, FIOCRUZ, Rio de Janeiro, Brazil
| | - Marcos Vinícius N de Souza
- Laboratório de Síntese de Substâncias no Combate a Doenças Tropicais, Farmanguinhos, FIOCRUZ, Rio de Janeiro, Brazil
| | - Marta H Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Instituto de Microbiologia Paulo de Góes, UFRJ, Rio de Janeiro, Brazil
| | - André L S Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Instituto de Microbiologia Paulo de Góes, UFRJ, Rio de Janeiro, Brazil
| | | | - Claudia M d'Avila-Levy
- Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Castilho VVS, Gonçalves KCS, Rebello KM, Baptista LPR, Sangenito LS, Santos HLC, Branquinha MH, Santos ALS, Menna-Barreto RFS, Guimarães AC, d'Avila-Levy CM. Docking simulation between HIV peptidase inhibitors and Trypanosoma cruzi aspartyl peptidase. BMC Res Notes 2018; 11:825. [PMID: 30463602 PMCID: PMC6249910 DOI: 10.1186/s13104-018-3927-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/09/2018] [Indexed: 01/06/2023] Open
Abstract
Objective The low investment in research, diagnosis and treatment are factors that contribute to the continuity of Chagas’ disease as a neglected tropical diseases (NTDs). In this context, the repositioning of drugs represents a useful strategy, in the search for new chemotherapeutic approaches for NTDs. HIV aspartic peptidase inhibitors (HIV IPs) are good candidates for drug repurposing. Here, we modeled the three dimensional structure of an aspartyl peptidase of Trypanosoma cruzi, the causative agent of Chagas’ disease, aligned it to the HIV aspartyl peptidase and performed docking binding assays with the HIV PIs. Results The 3D structure confirmed the presence of acid aspartic residues, which are critical to enzyme activity. The docking experiment revealed that HIV IPs bind to the active site of the enzyme, being ritonavir and lopinavir the ones with greater affinity. Benznidazole presented the worst binding affinity, this drug is currently used in Chagas’ disease treatment and was included as negative control. These results together with previous data on the trypanocidal effect of the HIV PIs support the hypothesis that a T. cruzi aspartyl peptidase can be the intracellular target of these inhibitors. However, the direct demonstration of the inhibition of T. cruzi aspartyl peptidase activity by HIV PIs is still a goal to be persuaded. Electronic supplementary material The online version of this article (10.1186/s13104-018-3927-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vanessa V S Castilho
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Keyla C S Gonçalves
- Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Karina M Rebello
- Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Luiz P R Baptista
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Leandro S Sangenito
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Helena L C Santos
- Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marta H Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André L S Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rubem F S Menna-Barreto
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Ana C Guimarães
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Claudia M d'Avila-Levy
- Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil. .,de Duve Institute, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
11
|
Rebello KM, Andrade-Neto VV, Zuma AA, Motta MCM, Gomes CRB, de Souza MVN, Atella GC, Branquinha MH, Santos ALS, Torres-Santos EC, d'Avila-Levy CM. Lopinavir, an HIV-1 peptidase inhibitor, induces alteration on the lipid metabolism of Leishmania amazonensis promastigotes. Parasitology 2018; 145:1304-1310. [PMID: 29806577 PMCID: PMC6137378 DOI: 10.1017/s0031182018000823] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 12/11/2022]
Abstract
The anti-leishmania effects of HIV peptidase inhibitors (PIs) have been widely reported; however, the biochemical target and mode of action are still a matter of controversy in Leishmania parasites. Considering the possibility that HIV-PIs induce lipid accumulation in Leishmania amazonensis, we analysed the effects of lopinavir on the lipid metabolism of L. amazonensis promastigotes. To this end, parasites were treated with lopinavir at different concentrations and analysed by fluorescence microscopy and spectrofluorimetry, using a fluorescent lipophilic marker. Then, the cellular ultrastructure of treated and control parasites was analysed by transmission electron microscopy (TEM), and the lipid composition was investigated by thin-layer chromatography (TLC). Finally, the sterol content was assayed by gas chromatography-mass spectrometry (GC/MS). TEM analysis revealed an increased number of lipid inclusions in lopinavir-treated cells, which was accompanied by an increase in the lipophilic content, in a dose-dependent manner. TLC and GC-MS analysis revealed a marked increase of cholesterol-esters and cholesterol. In conclusion, lopinavir-induced lipid accumulation and affected lipid composition in L. amazonensis in a concentration-response manner. These data contribute to a better understanding of the possible mechanisms of action of this HIV-PI in L. amazonensis promastigotes. The concerted action of lopinavir on this and other cellular processes, such as the direct inhibition of an aspartyl peptidase, may be responsible for the arrested development of the parasite.
Collapse
Affiliation(s)
- Karina M Rebello
- Laboratório de Estudos Integrados em Protozoologia,Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ),Rio de Janeiro,Brazil
| | - Valter V Andrade-Neto
- Laboratório de Bioquímica de Tripanosomatídeos,Instituto Oswaldo Cruz, FIOCRUZ,Rio de Janeiro,Brazil
| | - Aline A Zuma
- Laboratório de Ultraestrutura Celular Hertha Meyer,Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ),Rio de Janeiro,Brazil
| | - Maria Cristina M Motta
- Laboratório de Ultraestrutura Celular Hertha Meyer,Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ),Rio de Janeiro,Brazil
| | | | | | | | - Marta H Branquinha
- Laboratório de Investigação de Peptidases,Instituto de Microbiologia Paulo de Góes, UFRJ,Rio de Janeiro,Brazil
| | - André L S Santos
- Laboratório de Investigação de Peptidases,Instituto de Microbiologia Paulo de Góes, UFRJ,Rio de Janeiro,Brazil
| | | | - Claudia M d'Avila-Levy
- Laboratório de Estudos Integrados em Protozoologia,Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ),Rio de Janeiro,Brazil
| |
Collapse
|
12
|
Goulart LS, Souza WWRD, Vieira CA, Lima JSD, Olinda RAD, Araújo CD. Oral colonization by Candida species in HIV-positive patients: association and antifungal susceptibility study. ACTA ACUST UNITED AC 2018; 16:eAO4224. [PMID: 30088546 PMCID: PMC6080703 DOI: 10.1590/s1679-45082018ao4224] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/25/2018] [Indexed: 01/12/2023]
Abstract
Objective To investigate antifungal susceptibility and factors associated with oral colonization by Candida species in HIV-positive patients. Methods A prospective study based on convenience sampling of subjects recruited from a pool of confirmed HIV-positive individuals seen at a specialty outpatient service in Rondonópolis, Mato Grosso, Brazil). Oral swabs were collected from 197 patients. Candida species were identified by standard microbiological techniques (phenotypic and molecular methods). Antifungal susceptibility was investigated using the broth microdilution method. Results A total of 101 (51.3%) patients were Candida spp carriers. Candida albicans was the most prevalent species (80%). Patients aged 45 to 59 years (Prevalence ratios: 1.90; 95%CI: 1.57-6.31) and 60 years or older (Prevalence ratios: 4.43; 95%CI: 1.57-34.18) were at higher risk of oral colonization by Candida species. Resistance to fluconazole and ketoconazole, or to itraconazole, corresponded to 1% and 4%, respectively. Conclusion Age (45 years or older) was the only factor associated with oral colonization by Candida . Low rates of antifungal resistance to azoles were detected in yeast isolates obtained from HIV-positive patients. Findings of this study may contribute to proper therapeutic selection for oral candidiasis in HIV-positive patients.
Collapse
|
13
|
Palmeira VF, Goulart FRV, Granato MQ, Alviano DS, Alviano CS, Kneipp LF, Santos ALS. Fonsecaea pedrosoi Sclerotic Cells: Secretion of Aspartic-Type Peptidase and Susceptibility to Peptidase Inhibitors. Front Microbiol 2018; 9:1383. [PMID: 30008700 PMCID: PMC6033999 DOI: 10.3389/fmicb.2018.01383] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/06/2018] [Indexed: 02/05/2023] Open
Abstract
Fonsecaea pedrosoi is a dematiaceous fungus and the main causative agent of chromoblastomycosis that is a chronic disease usually affecting the human skin and subcutaneous tissues, which causes deformations and incapacities, being frequently refractory to available therapies. A typical globe-shaped, multiseptated and pigmented cells, known as sclerotic cells, are found in the lesions of infected individuals. In the present work, we have investigated the production of aspartic-type peptidase in F. pedrosoi sclerotic cells as well as the effect of peptidase inhibitors (PIs) on its enzymatic activity and viability. Our data showed that sclerotic cells are able to secrete pepstatin A-sensible aspartic peptidase when grown under chemically defined conditions. In addition, aspartic PIs (ritonavir, nelfinavir, indinavir, and saquinavir), which are clinically used in the HIV chemotherapy, significantly decreased the fungal peptidase activity, varying from 55 to 99%. Moreover, sclerotic cell-derived aspartic peptidase hydrolyzed human albumin, an important serum protein, as well as laminin, an extracellular matrix component, but not immunoglobulin G and fibronectin. It is well-known that aspartic peptidases play important physiological roles in fungal cells. With this task in mind, the effect of pepstatin A, a classical aspartic peptidase inhibitor, on the F. pedrosoi proliferation was evaluated. Pepstatin A inhibited the fungal viability in both cellular density- and drug-concentration manners. Moreover, HIV-PIs at 10 μM powerfully inhibited the viability (>65%) of F. pedrosoi sclerotic cells. The detection of aspartic peptidase produced by sclerotic cells, the parasitic form of F. pedrosoi, may contribute to reveal new virulence markers and potential targets for chromoblastomycosis therapy.
Collapse
Affiliation(s)
- Vanila F Palmeira
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Estrutura de Microrganismos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fatima R V Goulart
- Laboratório de Estrutura de Microrganismos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcela Q Granato
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Daniela S Alviano
- Laboratório de Estrutura de Microrganismos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Celuta S Alviano
- Laboratório de Estrutura de Microrganismos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucimar F Kneipp
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - André L S Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Agbowuro AA, Huston WM, Gamble AB, Tyndall JDA. Proteases and protease inhibitors in infectious diseases. Med Res Rev 2017; 38:1295-1331. [PMID: 29149530 DOI: 10.1002/med.21475] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/10/2017] [Accepted: 10/17/2017] [Indexed: 12/31/2022]
Abstract
There are numerous proteases of pathogenic organisms that are currently targeted for therapeutic intervention along with many that are seen as potential drug targets. This review discusses the chemical and biological makeup of some key druggable proteases expressed by the five major classes of disease causing agents, namely bacteria, viruses, fungi, eukaryotes, and prions. While a few of these enzymes including HIV protease and HCV NS3-4A protease have been targeted to a clinically useful level, a number are yet to yield any clinical outcomes in terms of antimicrobial therapy. A significant aspect of this review discusses the chemical and pharmacological characteristics of inhibitors of the various proteases discussed. A total of 25 inhibitors have been considered potent and safe enough to be trialed in humans and are at different levels of clinical application. We assess the mechanism of action and clinical performance of the protease inhibitors against infectious agents with their developmental strategies and look to the next frontiers in the use of protease inhibitors as anti-infective agents.
Collapse
Affiliation(s)
| | - Wilhelmina M Huston
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Allan B Gamble
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
15
|
Cordeiro RDA, Serpa R, Mendes PBL, Evangelista AJDJ, Andrade ARC, Franco JDS, Pereira VDS, Alencar LPD, Oliveira JSD, Camargo ZPD, Lima Neto RGD, Castelo-Branco DDSCM, Brilhante RSN, Rocha MFG, Sidrim JJC. The HIV aspartyl protease inhibitor ritonavir impairs planktonic growth, biofilm formation and proteolytic activity in Trichosporon spp. BIOFOULING 2017; 33:640-650. [PMID: 28871863 DOI: 10.1080/08927014.2017.1350947] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
This study evaluated the effect of the protease inhibitor ritonavir (RIT) on Trichosporon asahii and Trichosporon inkin. Susceptibility to RIT was assessed by the broth microdilution assay and the effect of RIT on protease activity was evaluated using azoalbumin as substrate. RIT was tested for its anti-biofilm properties and RIT-treated biofilms were assessed regarding protease activity, ultrastructure and matrix composition. In addition, antifungal susceptibility, surface hydrophobicity and biofilm formation were evaluated after pre-incubation of planktonic cells with RIT for 15 days. RIT (200 μg ml-1) inhibited Trichosporon growth. RIT (100 μg ml-1) also reduced protease activity of planktonic and biofilm cells, decreased cell adhesion and biofilm formation, and altered the structure of the biofilm and the protein composition of the biofilm matrix. Pre-incubation with RIT (100 μg ml-1) increased the susceptibility to amphotericin B, and reduced surface hydrophobicity and cell adhesion. These results highlight the importance of proteases as promising therapeutic targets and reinforce the antifungal potential of protease inhibitors.
Collapse
Affiliation(s)
| | - Rosana Serpa
- a Medical Mycology Specialized Center , Federal University of Ceará , Fortaleza , Brazil
| | | | | | | | | | | | | | | | - Zoilo Pires de Camargo
- b Department of Microbiology, Immunology and Parasitology , Federal University of São Paulo , São Paulo , Brazil
| | | | | | | | - Marcos Fabio Gadelha Rocha
- a Medical Mycology Specialized Center , Federal University of Ceará , Fortaleza , Brazil
- d Post Graduate Program in Veterinary Sciences, College of Veterinary Medicine , State University of Ceará , Fortaleza , Brazil
| | | |
Collapse
|
16
|
Travassos LR, Taborda CP. Linear Epitopes of Paracoccidioides brasiliensis and Other Fungal Agents of Human Systemic Mycoses As Vaccine Candidates. Front Immunol 2017; 8:224. [PMID: 28344577 PMCID: PMC5344917 DOI: 10.3389/fimmu.2017.00224] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/16/2017] [Indexed: 12/19/2022] Open
Abstract
Dimorphic fungi are agents of systemic mycoses associated with significant morbidity and frequent lethality in the Americas. Among the pathogenic species are Paracoccidioides brasiliensis and Paracoccidioides lutzii, which predominate in South America; Histoplasma capsulatum, Coccidioides posadasii, and Coccidioides immitis, and the Sporothrix spp. complex are other important pathogens. Associated with dimorphic fungi other important infections are caused by yeast such as Candida spp. and Cryptococcus spp. or mold such as Aspergillus spp., which are also fungal agents of deadly infections. Nowadays, the actual tendency of therapy is the development of a pan-fungal vaccine. This is, however, not easy because of the complexity of eukaryotic cells and the particularities of different species and isolates. Albeit there are several experimental vaccines being studied, we will focus mainly on peptide vaccines or epitopes of T-cell receptors inducing protective fungal responses. These peptides can be carried by antibody inducing β-(1,3)-glucan oligo or polysaccharides, or be mixed with them for administration. The present review discusses the efficacy of linear peptide epitopes in the context of antifungal immunization and vaccine proposition.
Collapse
Affiliation(s)
- Luiz R Travassos
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo , São Paulo , Brazil
| | - Carlos P Taborda
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Laboratory of Medical Mycology IMTSP/LIM53/HCFMUSP, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
Staniszewska M, Bondaryk M, Ochal Z. Susceptibility ofCandida albicansto New Synthetic Sulfone Derivatives. Arch Pharm (Weinheim) 2015; 348:132-43. [DOI: 10.1002/ardp.201400360] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 01/03/2023]
Affiliation(s)
- Monika Staniszewska
- National Institute of Public Health - National Institute of Hygiene; Warsaw Poland
| | - Małgorzata Bondaryk
- National Institute of Public Health - National Institute of Hygiene; Warsaw Poland
| | - Zbigniew Ochal
- Faculty of Chemistry; Warsaw University of Technology; Warsaw Poland
| |
Collapse
|
18
|
|
19
|
Santos LO, Garcia-Gomes AS, Catanho M, Sodre CL, Santos ALS, Branquinha MH, d'Avila-Levy CM. Aspartic peptidases of human pathogenic trypanosomatids: perspectives and trends for chemotherapy. Curr Med Chem 2014; 20:3116-33. [PMID: 23298141 PMCID: PMC3837538 DOI: 10.2174/0929867311320250007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 12/27/2012] [Indexed: 12/13/2022]
Abstract
Aspartic peptidases are proteolytic enzymes present in many organisms like vertebrates, plants, fungi, protozoa and in some retroviruses such as human immunodeficiency virus (HIV). These enzymes are involved in important metabolic processes in microorganisms/virus and play major roles in infectious diseases. Although few studies have been performed in order to identify and characterize aspartic peptidase in trypanosomatids, which include the etiologic agents of leishmaniasis, Chagas’ disease and sleeping sickness, some beneficial properties of aspartic peptidase inhibitors have been described on fundamental biological events of these pathogenic agents. In this context, aspartic peptidase inhibitors (PIs) used in the current chemotherapy against HIV (e.g., amprenavir, indinavir, lopinavir, nelfinavir, ritonavir and saquinavir) were able to inhibit the aspartic peptidase activity produced by different species of Leishmania. Moreover, the treatment of Leishmania promastigotes with HIV PIs induced several perturbations on the parasite homeostasis, including loss of the motility and arrest of proliferation/growth. The HIV PIs also induced an increase in the level of reactive oxygen species and the appearance of irreversible morphological alterations, triggering parasite death pathways such as programed cell death (apoptosis) and uncontrolled autophagy. The blockage of physiological parasite events as well as the induction of death pathways culminated in its incapacity to adhere, survive and escape of phagocytic cells. Collectively, these results support the data showing that parasites treated with HIV PIs have a significant reduction in the ability to cause in vivo infection. Similarly, the treatment of Trypanosoma cruzi cells with pepstatin A showed a significant inhibition on both aspartic peptidase activity and growth as well as promoted several and irreversible morphological changes. These studies indicate that aspartic peptidases can be promising targets in trypanosomatid cells and aspartic proteolytic inhibitors can be benefic chemotherapeutic agents against these human pathogenic microorganisms.
Collapse
Affiliation(s)
- L O Santos
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz-IOC, Fundação Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
20
|
Kathwate GH, Karuppayil SM. Antifungal properties of the anti-hypertensive drug: Aliskiren. Arch Oral Biol 2013; 58:1109-15. [DOI: 10.1016/j.archoralbio.2013.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 01/31/2013] [Accepted: 02/09/2013] [Indexed: 10/26/2022]
|
21
|
Menon V, Rao M. A low-molecular-mass aspartic protease inhibitor from a novel Penicillium sp.: implications in combating fungal infections. Microbiology (Reading) 2012; 158:1897-1907. [DOI: 10.1099/mic.0.058511-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Vishnu Menon
- Division of Biochemical Sciences, National Chemical Laboratory, Pune 411 008, India
| | - Mala Rao
- Division of Biochemical Sciences, National Chemical Laboratory, Pune 411 008, India
| |
Collapse
|
22
|
Sidrim JJC, Perdigão-Neto LV, Cordeiro RA, Brilhante RSN, Leite JJG, Teixeira CEC, Monteiro AJ, Freitas RMF, Ribeiro JF, Mesquita JRL, Gonçalves MVF, Rocha MFG. Viral protease inhibitors affect the production of virulence factors in Cryptococcus neoformans. Can J Microbiol 2012; 58:932-6. [PMID: 22716223 DOI: 10.1139/w2012-075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of the protease inhibitors saquinavir, darunavir, ritonavir, and indinavir on growth inhibition, protease and phospholipase activities, as well as capsule thickness of Cryptococcus neoformans were investigated. Viral protease inhibitors did not reduce fungal growth when tested in concentrations ranging from 0.001 to 1.000 mg/L. A tendency toward increasing phospholipase activity was observed with the highest tested drug concentration in a strain-specific pattern. However, these drugs reduced protease activity as well as capsule production. Our results confirm a previous finding that antiretroviral drugs affect the production of important virulence factors of C. neoformans.
Collapse
Affiliation(s)
- J J C Sidrim
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Campus do Porangabussu, Fortaleza-CE, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Dos Santos ALS. Protease expression by microorganisms and its relevance to crucial physiological/pathological events. World J Biol Chem 2011; 2:48-58. [PMID: 21537490 PMCID: PMC3083995 DOI: 10.4331/wjbc.v2.i3.48] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 02/21/2011] [Accepted: 02/28/2011] [Indexed: 02/05/2023] Open
Abstract
The treatment of infections caused by fungi and trypanosomatids is difficult due to the eukaryotic nature of these microbial cells, which are similar in several biochemical and genetic aspects to host cells. Aggravating this scenario, very few antifungal and anti-trypanosomatidal agents are in clinical use and, therefore, therapy is limited by drug safety considerations and their narrow spectrum of activity, efficacy and resistance. The search for new bioactive agents against fungi and trypanosomatids has been expanded because progress in biochemistry and molecular biology has led to a better understanding of important and essential pathways in these microorganisms including nutrition, growth, proliferation, signaling, differentiation and death. In this context, proteolytic enzymes produced by these eukaryotic microorganisms are appointed and, in some cases, proven to be excellent targets for searching novel natural and/or synthetic pharmacological compounds, in order to cure or prevent invasive fungal/trypanosomatid diseases. With this task in mind, our research group and others have focused on aspartic-type proteases, since the activity of this class of hydrolytic enzymes is directly implicated in several facets of basic biological processes of both fungal and trypanosomatid cells as well as due to the participation in numerous events of interaction between these microorganisms and host structures. In the present paper, a concise revision of the beneficial effects of aspartic protease inhibitors, with emphasis on the aspartic protease inhibitors used in the anti-human immunodeficiency virus therapy, will be presented and discussed using our experience with the following microbial models: the yeast Candida albicans, the filamentous fungus Fonsecaea pedrosoi and the protozoan trypanosomatid Leishmania amazonensis.
Collapse
Affiliation(s)
- André Luis Souza Dos Santos
- André Luis Souza dos Santos, Laboratory of Multidisciplinary Studies on Microbial Biochemistry, Department of General Microbiology, Institute of Microbiology Prof. Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|