1
|
Tsinopoulou VR, Bacopoulou F, Fidani S, Christoforidis A. Genetic determinants of age at menarche: does the LIN28B gene play a role? A narrative review. Hormones (Athens) 2025; 24:167-177. [PMID: 39227549 DOI: 10.1007/s42000-024-00594-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/05/2024] [Indexed: 09/05/2024]
Abstract
Menarche, the first menstrual period marking the onset of female reproduction, is a milestone of female puberty. The timing of menarche determines the timing of later phases of pubertal maturation in girls and has major implications for health later in life, including behavioral and psychosocial disorders during adolescence and fertility problems and increased risk for certain diseases in adulthood. Over the last few decades, a continuous decline in age at menarche has been noted, with environmental factors contributing to this change in the timing of menarche. However, a genetic component of age at menarche and pubertal onset has been strongly suggested by studies in families and twins wherein up to approximately 80% of the variance in puberty onset can be explained by heritability. Gene association studies have revealed several genetic loci involved in age at menarche, among which LIN28B has emerged as a key regulator of female growth and puberty. LIN28B, a human homolog of Lin28 of C. elegans, is a known RNA-binding protein that regulates let-7 microRNA biogenesis. Genome-wide association studies have identified the association of polymorphisms in the LIN28B gene with age at menarche in several population cohorts worldwide. In this paper, we review the genetic factors contributing to age of menarche, with particular focus on the identified polymorphisms in LIN28B gene.
Collapse
Affiliation(s)
- Vasiliki Rengina Tsinopoulou
- 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University General Hospital AHEPA, Stilponos Kyriakidi 1, Thessaloniki, 54636, Greece.
| | - Flora Bacopoulou
- Center for Adolescent Medicine and UNESCO Chair in Adolescent Health Care, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | - Styliani Fidani
- 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University General Hospital AHEPA, Stilponos Kyriakidi 1, Thessaloniki, 54636, Greece
- Laboratory of Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios Christoforidis
- 1st Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Ippokratio General Hospital, Thessaloniki, Greece
| |
Collapse
|
2
|
Garcia-Rodriguez P, Hidalgo L, Rodriguez-Milla MA, Somovilla-Crespo B, Garcia-Castro J. LIN28 upregulation in primary human T cells impaired CAR T antitumoral activity. Front Immunol 2024; 15:1462796. [PMID: 39478867 PMCID: PMC11521810 DOI: 10.3389/fimmu.2024.1462796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
LIN28, a highly conserved RNA-binding protein that acts as a posttranscriptional modulator, plays a vital role in the regulation of T-cell development, reprogramming, and immune activity in infectious diseases and T-cell-based immunotherapies. LIN28 inhibit the expression of let-7 miRNAs, the most prevalent family of miRNAs in lymphocytes. Recently it has been suggested that let-7 enhances murine anti-tumor immune responses. Here, we investigated the impact of LIN28 upregulation on human T cell functions, focusing on its influence on CAR T cell therapy. LIN28 lentiviral transduction of human T cells led to a stable expression of LIN28 that significantly downregulated the let-7 miRNA family without affecting cell viability or expansion potential. LIN28 overexpression maintained human T cell phenotype markers and functionality but impaired the antitumoral cytotoxicity of NKG2D-CAR T cells both in vitro and in vivo. These findings highlight the intricate relationship between LIN28/let-7 axis and human T cell functionality, including in CAR T cell therapy.
Collapse
Affiliation(s)
- Patricia Garcia-Rodriguez
- Cellular Biotechnology Unit, Instituto de Salud Carlos III, Madrid, Spain
- Universidad Nacional de Educación a (UNED), Madrid, Spain
| | - Laura Hidalgo
- Cellular Biotechnology Unit, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Javier Garcia-Castro
- Cellular Biotechnology Unit, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación de Enfermedades Raras (IIER) & Departamento de Desarrollo de Medicamentos de Terapias Avanzadas (DDMTA), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Zhou S, Xue J, Yang Q, Zang W, Chen Y, Zhao Y, Gao X. Clinical significance of LIN28A gene polymorphisms and expression in pan-cancer: a meta-analysis and bioinformatic analysis. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-10. [PMID: 39154245 DOI: 10.1080/15257770.2024.2393316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 07/17/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Several studies have reported the relationship between LIN28A gene polymorphisms (rs3811463 T > C and rs34787247 G > A) and cancer susceptibility, but the results are inconsistent and need further clarification. The current study aimed to evaluate their relationship and also to explore the relationship between LIN28A gene expression and immune infiltration, tumor stage, survival prognosis, and drug sensitivity in pan-cancer. The meta-analysis and data mining were completed by STATA software and the GSCA platform, respectively. The meta-analysis showed that the rs3811463 polymorphism was not associated with cancer susceptibility, while the rs34787247 polymorphism was associated with cancer susceptibility in the Chinese population [AA vs. GG: Odd Ratio (OR)=1.98, 95% Confidence Interval (CI)=1.35-2.89, PZ<0.001; GA vs. GG: OR = 1.17, 95%CI= 1.01-1.36, PZ=0.04; (AA + GA) vs. GG: OR = 1.24, 95%CI = 1.07-1.43, PZ=0.004; AA vs. (GA + GG): OR = 1.90, 95%CI = 1.30- 2.78, PZ=0.001; A vs. G: OR = 1.27, 95%CI = 1.12-1.44, PZ<0.001]. LIN28A gene expression was associated not only with immune infiltration, pathological stage, and survival prognosis of certain cancers, but also with sensitivity to multiple anticancer drugs, such as cisplatin, pazopanib, olaparib, and selumetinib. In conclusion, the current study suggested that the rs34787247 G > A polymorphism might be used as a cancer risk marker in the Chinese population, and LIN28A might serve as a prognostic marker and therapeutic target for certain cancers.
Collapse
Affiliation(s)
- Surui Zhou
- School of Pharmacy, Yancheng Teachers' University, Yancheng, China
| | - Jinyin Xue
- School of Pharmacy, Yancheng Teachers' University, Yancheng, China
| | - Qijun Yang
- School of Pharmacy, Yancheng Teachers' University, Yancheng, China
| | - Wenjing Zang
- School of Pharmacy, Yancheng Teachers' University, Yancheng, China
| | - Yi Chen
- School of Pharmacy, Yancheng Teachers' University, Yancheng, China
| | - Yining Zhao
- School of Pharmacy, Yancheng Teachers' University, Yancheng, China
| | - Xueren Gao
- School of Pharmacy, Yancheng Teachers' University, Yancheng, China
| |
Collapse
|
4
|
Xu M, Pang M, Wang C, An N, Chen R, Bai Y, He J, Wang C, Qi Y. MiR-92a-3p Knockdown Attenuates Transforming Growth Factor-β1-induced Tubulointerstitial Fibrosis by Targeting LIN28A-mediated EMT Pathway. JOURNAL OF PHYSIOLOGICAL INVESTIGATION 2024; 67:198-206. [PMID: 39148295 DOI: 10.4103/ejpi.ejpi-d-24-00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/11/2024] [Indexed: 08/17/2024]
Abstract
ABSTRACT The role of microRNAs in regulating tubulointerstitial fibrosis, a key feature of progressive chronic kidney disease, is of significant importance. LIN28A has been reported to attenuate renal fibrosis in obstructive nephropathy. Here, our objective was to investigate the precise biological function of the miR-92a-3p/LIN28A axis in tubulointerstitial fibrosis. The human renal proximal tubular epithelial (HK-2) cell line was exposed to transforming growth factor (TGF)-β1, establishing an in vitro model mimicking tubulointerstitial fibrosis. Luciferase reporter assay was utilized to investigate the relationship between miR-92a-3p and LIN28A. Cell transfection techniques were employed to modify the expression of miR-92a-3p and LIN28A. An in vivo model of tubulointerstitial fibrosis was created by inducing unilateral ureteral obstruction (UUO) in C57BL/6N mice. Our initial observations showed that TGF-β1 treatment of HK-2 cells and the UUO mice model led to an increase in miR-92a-3p expression and a decrease in LIN28A expression. We confirmed that miR-92a-3p directly targeted LIN28A in HK-2 cells. In TGF-β1-stimulated HK-2 cells, knocking down miR-92a-3p notably reduced the levels of alpha smooth muscle actin and vimentin and concurrently enhanced the expression of E-cadherin. These changes were counteracted upon transfection with si-LIN28A. Thus, directing interventions toward miR-92a-3p holds the potential to emerge as a viable therapeutic approach for addressing tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Mingzhi Xu
- Blood Purification Center, Hainan General Hospital, Hai-nan Affiliated Hospital of Hainan Medical University, Haikou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Liu D, Song C, Lv C, Zhang A. BONE MARROW MESENCHYMAL STROMAL CELL-DERIVED EXOSOMAL NRF2 AMELIORATES CEREBRAL ISCHEMIA-REPERFUSION INJURY BY TRANSCRIPTIONALLY ACTIVATING LIN28A. Shock 2024; 62:85-94. [PMID: 38661181 DOI: 10.1097/shk.0000000000002348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
ABSTRACT Background: Cerebral ischemia-reperfusion (I/R) injury (CIRI) have severe consequences on brain function, and the exciting evidence has revealed protective role of acyl-CoA synthetase long chain family member 4 (Lin28a) against cerebral ischemia-reperfusion injury. The present work aims to reveal its molecular mechanism in regulating CIRI, with the hope of providing a therapeutic method for cerebral I/R injury. We hypothesized that the exosomal nuclear factor erythroid 2-related factor 2 (NRF2) derived from bone marrow mesenchymal stromal cells could transcriptionally activate Lin28a and thereby alleviate cerebral ischemia-reperfusion injury. This hypothesis was validated in the present work. Methods: Middle cerebral artery occlusion (MCAO) model was established using C57BL/6J mice, and the neurological deficit, infarct volume, and brain water content were assessed to evaluate neuron injury. Human glioblastoma cells (A172) were subjected to oxygen-glucose deprivation and reoxygenation (OGD/R) treatment to mimic a cerebral I/R injury cell model. Exosome isolation reagent was used to isolate exosomes from cell supernatant of bone marrow mesenchymal stromal cells through sequential centrifugation and filtration steps. mRNA expression level of Lin28a was detected by quantitative real-time polymerase chain reaction. Protein expression was analyzed by western blotting assay. TUNEL cell apoptosis detection kit was used to analyze cell apoptosis in brain tissues. Enzyme-linked immunosorbent assays and commercial kits were used to detect levels of inflammatory markers and oxidative stress markers. Ferrous Iron Colorimetric Assay Kit and Fe 2+ colorimetric assay kit were used to analyze Fe 2+ level. The association of Lin28a and NRF2 was identified by chromatin immunoprecipitation assay and dual-luciferase reporter assay. Results: The treatment of MCAO substantially augmented infarct volume in mice, impaired neurological function, and elevated brain water content. Lin28a was lowly expressed in brain tissues of mice with CIRI, and its overexpression protected against cerebral I/R injury of MCAO mice. Moreover, Lin28a overexpression protected A172 cells against OGD/R treatment-induced injury. Additionally, NRF2 transcriptionally activated Lin28a in A172 cells. Bone marrow mesenchymal stromal cell-derived exosomes increased Lin28a expression in a NRF2-dependent manner. Bone marrow mesenchymal stromal cell-derived exosomal NRF2 improved OGD/R-induced A172 cell injury by inducing Lin28a production. Conclusion: Bone marrow mesenchymal stromal cell-derived exosomal NRF2 improved CIRI by transcriptionally activating Lin28a.
Collapse
Affiliation(s)
- Dongwen Liu
- Department of Neurology, Shandong Provincial Qixia City People's Hospital, Yantai City, China
| | | | | | | |
Collapse
|
6
|
Zhang M, Zhang D, Wang Q, Lin G. Construction of a prognostic model for breast cancer based on moonlighting genes. Hum Mol Genet 2024; 33:1023-1035. [PMID: 38491801 DOI: 10.1093/hmg/ddae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/08/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024] Open
Abstract
Breast cancer (BRCA) is a highly heterogeneous disease, with significant differences in prognosis among patients. Existing biomarkers and prognostic models have limited ability to predict BRCA prognosis. Moonlighting genes regulate tumor progression and are associated with cancer prognosis. This study aimed to construct a moonlighting gene-based prognostic model for BRCA. We obtained differentially expressed genes (DEGs) in BRCA from The Cancer Genome Atlas and intersected them with moonlighting genes from MoonProt to acquire differential moonlighting genes. GO and KEGG results showed main enrichment of these genes in the response of BRCA cells to environmental stimuli and pentose phosphate pathway. Based on moonlighting genes, we conducted drug prediction and validated results through cellular experiments. After ABCB1 knockdown, viability and proliferation of BRCA cells were significantly enhanced. Based on differential moonlighting genes, BRCA was divided into three subgroups, among which cluster2 had the highest survival rate and immunophenoscore and relatively low tumor mutation burden. TP53 had the highest mutation frequency in cluster2 and cluster3, while PIK3CA had a higher mutation frequency in cluster1, with the majority being missense mutations. Subsequently, we established an 11-gene prognostic model in the training set based on DEGs among subgroups using univariate Cox regression, LASSO regression, and multivariable Cox regression analyses. Model prognostic performance was verified in GEO, METABRIC and ICGC validation sets. In summary, this study obtained three BRCA moonlighting gene-related subtypes and constructed an 11-gene prognostic model. The 11-gene BRCA prognostic model has good predictive performance, guiding BRCA prognosis for clinical doctors.
Collapse
Affiliation(s)
- Ming Zhang
- Department of the Thyroid and Breast Surgery, Longyan First Hospital Affiliated to Fujian Medical University, No. 105 Jiuyi North Road, Xinluo District, Longyan City, FJ 364000, China
| | - Dejie Zhang
- Department of the Thyroid and Breast Surgery, Longyan First Hospital Affiliated to Fujian Medical University, No. 105 Jiuyi North Road, Xinluo District, Longyan City, FJ 364000, China
| | - Qicai Wang
- Department of the Thyroid and Breast Surgery, Longyan First Hospital Affiliated to Fujian Medical University, No. 105 Jiuyi North Road, Xinluo District, Longyan City, FJ 364000, China
| | - Guoliang Lin
- Department of the Thyroid and Breast Surgery, Longyan First Hospital Affiliated to Fujian Medical University, No. 105 Jiuyi North Road, Xinluo District, Longyan City, FJ 364000, China
| |
Collapse
|
7
|
Raja R, Sundararaj R, Kandasamy R. Identification of small molecule inhibitors against Lin28/let-7 to suppress tumor progression and its alleviation role in LIN28-dependent glucose metabolism. Med Oncol 2024; 41:118. [PMID: 38630184 DOI: 10.1007/s12032-024-02350-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/04/2024] [Indexed: 04/19/2024]
Abstract
The reciprocal suppression of an RNA-binding protein LIN28 (human abnormal cell lineage 28) and miRNA Let-7 (Lethal 7) is considered to have a prime role in hepatocellular carcinoma (HCC). Though targeting this inhibition interaction is effective for therapeutics, it causes other unfavorable effects on glucose metabolism and increased insulin resistance. Hence, this study aims to identify small molecules targeting Lin28/let-7 interaction along with additional potency to improve insulin sensitivity. Of 22,14,996 small molecules screened by high throughput virtual screening, 6 molecules, namely 41354, 1558, 12437, 23837, 15710, and 8319 were able to block the LIN28 interaction with let-7 and increase the insulin sensitivity via interacting with PPARγ (peroxisome proliferator-activated receptors γ). MM-GBSA (Molecular Mechanics-Generalized Born Surface Area) analysis is used to re-score the binding affinity of docked complexes. Upon further analysis, it is also seen that these molecules have superior ADME (Absorption, Distribution, Metabolism, and Excretion) properties and form stable complexes with the targets for a significant period in a biologically simulated environment (Molecular Dynamics simulation) for 100 ns. From our results, we hypothesize that these identified 6 small molecules can be potential candidates for HCC treatment and the glucose metabolic disorder caused by the HCC treatment.
Collapse
Affiliation(s)
- Rachanaa Raja
- Centre for Excellence in Nanobio Translational Research, Department of Pharmaceutical Technology, University College of Engineering, Anna University (BIT Campus), Tiruchirappalli, Tamil Nadu, India
| | - Rajamanikandan Sundararaj
- Centre for Drug Discovery, Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - Ruckmani Kandasamy
- Centre for Excellence in Nanobio Translational Research, Department of Pharmaceutical Technology, University College of Engineering, Anna University (BIT Campus), Tiruchirappalli, Tamil Nadu, India.
| |
Collapse
|
8
|
Stafa K, Rella A, Eagle W, Dong K, Morris K, Layman D, Corallo K, Trivero J, Maidhof R, Goyarts E, Pernodet N. miR-146a is a critical target associated with multiple biological pathways of skin aging. Front Physiol 2024; 15:1291344. [PMID: 38487265 PMCID: PMC10937357 DOI: 10.3389/fphys.2024.1291344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/19/2024] [Indexed: 03/17/2024] Open
Abstract
Introduction: The skin is the largest organ of the human body and fulfills protective, immune, and metabolic functions. Skin function and barrier integrity are actively regulated through circadian rhythm-associated genes and epigenetic mechanisms including DNA methylation/demethylation, histone acetylation/deacetylation, and microRNAs. MicroRNA-146a-5p (miR-146a) has been associated with immune activation and skin inflammation; however, the role of miR-146a in regulating skin aging is an open question. This study investigated the role of miR-146a in fibroblasts obtained from different donors in the context of aging, and a potential association of this miRNA with circadian rhythm. Methods: Normal human dermal fibroblasts (NHDFs) from 19y, 27y, 40y, and 62y old donors were used to analyze for miR-146a expression. Expression of miR-146a was downregulated with the hsa-mirVana miR-146a inhibitor, and upregulated with an extract from Adansonia digitata. Effects on markers of skin aging, including cell proliferation, production of Collagen-1 and inflammatory cytokines were assessed. Results: We show that the expression of miR-146a decreases with age in dermal fibroblasts and inhibition of miR-146a in 19y and 62y old NHDFs induced significant changes in essential clock genes indicating an association with circadian rhythm control. Furthermore, downregulation of miR-146a results in a reduction of cellular proliferation, Collagen-1 production, as well as an increase in DNA damage and pro-inflammatory markers. Activation of miR-146a with the Adansonia digitata extract reduced the deleterious effects seen during miR-146a inhibition and increased miR-146a transport through exosome transfer. Conclusion: miR-146a interacts with multiple biological pathways related to skin aging, including circadian rhythm machinery, cell-to-cell communication, cell damage repair, cell proliferation, and collagen production and represents a promising target to fight skin aging. Adansonia digitata extract can promote miR-146a expression and therefore support skin cells' health.
Collapse
Affiliation(s)
- Klodjan Stafa
- Research and Development, The Estée Lauder Companies, Melville, NY, United States
| | - Antonella Rella
- Research and Development, The Estée Lauder Companies, Melville, NY, United States
| | - Whitby Eagle
- Research and Development, The Estée Lauder Companies, Melville, NY, United States
| | - Kelly Dong
- Research and Development, The Estée Lauder Companies, Melville, NY, United States
| | - Kelsey Morris
- Research and Development, The Estée Lauder Companies, Melville, NY, United States
| | - Dawn Layman
- Research and Development, The Estée Lauder Companies, Melville, NY, United States
| | - Krystle Corallo
- Research and Development, The Estée Lauder Companies, Melville, NY, United States
| | - Jacqueline Trivero
- Research and Development, The Estée Lauder Companies, Melville, NY, United States
| | - Robert Maidhof
- Research and Development, The Estée Lauder Companies, Melville, NY, United States
| | - Earl Goyarts
- Research and Development, The Estée Lauder Companies, Melville, NY, United States
| | - Nadine Pernodet
- Research and Development, The Estée Lauder Companies, Melville, NY, United States
- Estée Lauder Research Laboratories, Melville, NY, United States
| |
Collapse
|
9
|
Chen LL, Li YQ, Kang ZH, Zhang X, Gu SY, Wang N, Shen XY. Blocking the interaction between circTNRC18 and LIN28A promotes trophoblast epithelial-mesenchymal transformation and alleviates preeclampsia. Mol Cell Endocrinol 2024; 579:112073. [PMID: 37774938 DOI: 10.1016/j.mce.2023.112073] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
Defects in migration and invasion caused by dysregulation of trophoblastic epithelial-mesenchymal transformation (EMT) play a vital role in preeclampsia (PE). We have previously shown that circTNRC18 inhibits the migration and EMT of trophoblasts; however, its role in PE remains unknown. Herein, we demonstrate that circTNRC18 interacts with an RNA-binding protein, lin-28 homolog A (LIN28A), and this interaction is enhanced in PE placental tissue. LIN28A overexpression suppresses circTNRC18-mediated inhibition of trophoblast migration, invasion, and EMT, whereas LIN28A knockdown promotes them. The intracellular distribution of LIN28A is regulated by circTNRC18, where it promotes the expression of insulin-like growth factor II by stabilizing its mRNA. circTNRC18 also promotes complex formation between GATA-binding factor 1 (GATA1) and sine oculis homeobox 1 (SIX1) by inhibiting LIN28A-GATA1 interaction. GATA1-SIX1 promotes transcription of grainyhead-like protein 2 homolog and circTNRC18-mediated regulation of cell migration and invasion. Moreover, blocking circTNRC18-LIN28A interaction with antisense nucleotides alleviates PE in a mouse model of reduced uterine perfusion pressure. Thus, targeting the circTNRC18-LIN28A regulatory axis may be a novel PE treatment method.
Collapse
Affiliation(s)
- Li-Li Chen
- Department of Obstetrics, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, PR China.
| | - Ya-Qin Li
- Department of Obstetrics, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, PR China.
| | - Zhi-Hui Kang
- Department of Obstetrics, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, PR China.
| | - Xuan Zhang
- Department of Obstetrics, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, PR China.
| | - Su-Yan Gu
- Department of Obstetrics, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, PR China.
| | - Na Wang
- Department of Obstetrics, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, PR China.
| | - Xue-Yan Shen
- Department of Obstetrics, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, PR China.
| |
Collapse
|
10
|
Carter JA, Matta B, Battaglia J, Somerville C, Harris BD, LaPan M, Atwal GS, Barnes BJ. Identification of pan-cancer/testis genes and validation of therapeutic targeting in triple-negative breast cancer: Lin28a-based and Siglece-based vaccination induces antitumor immunity and inhibits metastasis. J Immunother Cancer 2023; 11:e007935. [PMID: 38135347 DOI: 10.1136/jitc-2023-007935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Cancer-testis (CT) genes are targets for tumor antigen-specific immunotherapy given that their expression is normally restricted to the immune-privileged testis in healthy individuals with aberrant expression in tumor tissues. While they represent targetable germ tissue antigens and play important functional roles in tumorigenesis, there is currently no standardized approach for identifying clinically relevant CT genes. Optimized algorithms and validated methods for accurate prediction of reliable CT antigens (CTAs) with high immunogenicity are also lacking. METHODS Sequencing data from the Genotype-Tissue Expression (GTEx) and The Genomic Data Commons (GDC) databases was used for the development of a bioinformatic pipeline to identify CT exclusive genes. A CT germness score was calculated based on the number of CT genes expressed within a tumor type and their degree of expression. The impact of tumor germness on clinical outcome was evaluated using healthy GTEx and GDC tumor samples. We then used a triple-negative breast cancer mouse model to develop and test an algorithm that predicts epitope immunogenicity based on the identification of germline sequences with strong major histocompatibility complex class I (MHCI) and MHCII binding affinities. Germline sequences for CT genes were synthesized as long synthetic peptide vaccines and tested in the 4T1 triple-negative model of invasive breast cancer with Poly(I:C) adjuvant. Vaccine immunogenicity was determined by flow cytometric analysis of in vitro and in vivo T-cell responses. Primary tumor growth and lung metastasis was evaluated by histopathology, flow cytometry and colony formation assay. RESULTS We developed a new bioinformatic pipeline to reliably identify CT exclusive genes as immunogenic targets for immunotherapy. We identified CT genes that are exclusively expressed within the testis, lack detectable thymic expression, and are significantly expressed in multiple tumor types. High tumor germness correlated with tumor progression but not with tumor mutation burden, supporting CTAs as appealing targets in low mutation burden tumors. Importantly, tumor germness also correlated with markers of antitumor immunity. Vaccination of 4T1 tumor-bearing mice with Siglece and Lin28a antigens resulted in increased T-cell antitumor immunity and reduced primary tumor growth and lung metastases. CONCLUSION Our results present a novel strategy for the identification of highly immunogenic CTAs for the development of targeted vaccines that induce antitumor immunity and inhibit metastasis.
Collapse
Affiliation(s)
- Jason A Carter
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
- Stony Brook University, Stony Brook, New York, USA
- Department of Surgery, University of Washington, Seattle, WA, USA
| | - Bharati Matta
- Northwell Health Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Jenna Battaglia
- Northwell Health Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Carter Somerville
- Northwell Health Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Benjamin D Harris
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
- Lyell Immunopharma, South San Francisco, CA, USA
| | - Margaret LaPan
- Northwell Health Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Gurinder S Atwal
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
- Regeneron Pharmaceuticals Inc, Tarrytown, NY, USA
| | - Betsy J Barnes
- Northwell Health Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Departments of Pediatrics and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| |
Collapse
|
11
|
Yu DQ, Yu SP, Wu J, Lan LN, Mao BX. LIN28A attenuates high glucose-induced retinal pigmented epithelium injury through activating SIRT1-dependent autophagy. Int J Ophthalmol 2023; 16:1465-1474. [PMID: 37724283 PMCID: PMC10475635 DOI: 10.18240/ijo.2023.09.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/03/2023] [Indexed: 09/20/2023] Open
Abstract
AIM To evaluate the effects of LIN28A (human) on high glucose-induced retinal pigmented epithelium (RPE) cell injury and its possible mechanism. METHODS Diabetic retinopathy model was generated following 48h of exposure to 30 mmol/L high glucose (HG) in ARPE-19 cells. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot tested the expression of the corresponding genes and proteins. Cell viability as well as apoptosis was determined through cell counting kit-8 (CCK-8) and flow cytometry assays. Immunofluorescence assay was adopted to evaluate autophagy activity. Caspase 3 activity, oxidative stress markers, and cytokines were appraised adopting their commercial kits, respectively. Finally, ARPE-19 cells were preincubated with EX527, a Sirtuin 1 (SIRT1) inhibitor, prior to HG stimulation to validate the regulatory mechanism. RESULTS LIN28A was downregulated in HG-challenged ARPE-19 cells. LIN28A overexpression greatly inhibited HG-induced ARPE-19 cell viability loss, apoptosis, oxidative damage as well as inflammatory response. Meanwhile, the repressed autophagy and SIRT1 in ARPE-19 cells challenged with HG were elevated after LIN28A overexpression. In addition, treatment of EX527 greatly inhibited the activated autophagy following LIN28A overexpression and partly abolished the protective role of LIN28A against HG-elicited apoptosis, oxidative damage as well as inflammation in ARPE-19 cells. CONCLUSION LIN28A exerts a protective role against HG-elicited RPE oxidative damage, inflammation, as well as apoptosis via regulating SIRT1/autophagy.
Collapse
Affiliation(s)
- Dan-Qing Yu
- Department of Endocrinology, Affiliated Lishui Hospital of Zhejiang University, Lishui 323000, Zhejiang Province, China
| | - Song-Ping Yu
- Department of Ophthalmology, Affiliated Lishui Hospital of Zhejiang University, Lishui 323000, Zhejiang Province, China
| | - Jing Wu
- Department of Ophthalmology, Affiliated Lishui Hospital of Zhejiang University, Lishui 323000, Zhejiang Province, China
| | - Li-Na Lan
- Department of Ophthalmology, Affiliated Lishui Hospital of Zhejiang University, Lishui 323000, Zhejiang Province, China
| | - Bang-Xun Mao
- Department of Ophthalmology, Affiliated Lishui Hospital of Zhejiang University, Lishui 323000, Zhejiang Province, China
| |
Collapse
|
12
|
de Albuquerque Dias R, Balbinot KM, da Silva Kataoka MS, de Melo Alves Júnior S, de Jesus Viana Pinheiro J. Expression of stem cell markers SALL4, LIN28A, and KLF4 in ameloblastoma. Diagn Pathol 2023; 18:92. [PMID: 37559082 PMCID: PMC10413759 DOI: 10.1186/s13000-023-01379-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Ameloblastoma (AME) is a benign odontogenic tumour of epithelial origin characterised by slow but aggressive growth, infiltration, and recurrence; it is capable of reaching large dimensions and invading adjacent structures. Stem cell research has proven to be significant in the sphere of tumour biology through these cells' possible involvement in the aetiopathogenesis of this tumour. METHODS Immunohistochemistry was performed on AME, dentigerous cyst (DC), and dental follicle (DF) samples, and indirect immunofluorescence was performed on the AME-hTERT cell line to determine the expression of SALL4, LIN28A, and KLF4. RESULTS Expression of proteins related to cellular pluripotency was higher in AME cells than in DC and DF cells. The analysis revealed that the proteins in question were mainly expressed in the parenchyma of AME tissue samples and were detected in the nuclei of AME-hTERT cells. CONCLUSIONS Stem cells may be related to the origin and progression of AME.
Collapse
Affiliation(s)
- Rafaela de Albuquerque Dias
- Laboratory of Pathological Anatomy and Immunohistochemistry, Federal University of Pará, Belém, Pará, Brazil.
| | - Karolyny Martins Balbinot
- Laboratory of Pathological Anatomy and Immunohistochemistry, Federal University of Pará, Belém, Pará, Brazil
| | | | - Sérgio de Melo Alves Júnior
- Laboratory of Pathological Anatomy and Immunohistochemistry, Federal University of Pará, Belém, Pará, Brazil
| | | |
Collapse
|
13
|
Chetta M, Cammarota AL, De Marco M, Bukvic N, Marzullo L, Rosati A. The Continuous Adaptive Challenge Played by Arboviruses: An In Silico Approach to Identify a Possible Interplay between Conserved Viral RNA Sequences and Host RNA Binding Proteins (RBPs). Int J Mol Sci 2023; 24:11051. [PMID: 37446229 DOI: 10.3390/ijms241311051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Climate change and globalization have raised the risk of vector-borne disease (VBD) introduction and spread in various European nations in recent years. In Italy, viruses carried by tropical vectors have been shown to cause viral encephalitis, one of the symptoms of arboviruses, a spectrum of viral disorders spread by arthropods such as mosquitoes and ticks. Arboviruses are currently causing alarm and attention, and the World Health Organization (WHO) has released recommendations to adopt essential measures, particularly during the hot season, to restrict the spreading of the infectious agents among breeding stocks. In this scenario, rapid analysis systems are required, because they can quickly provide information on potential virus-host interactions, the evolution of the infection, and the onset of disabling clinical symptoms, or serious illnesses. Such systems include bioinformatics approaches integrated with molecular evaluation. Viruses have co-evolved different strategies to transcribe their own genetic material, by changing the host's transcriptional machinery, even in short periods of time. The introduction of genetic alterations, particularly in RNA viruses, results in a continuous adaptive fight against the host's immune system. We propose an in silico pipeline method for performing a comprehensive motif analysis (including motif discovery) on entire genome sequences to uncover viral sequences that may interact with host RNA binding proteins (RBPs) by interrogating the database of known RNA binding proteins, which play important roles in RNA metabolism and biological processes. Indeed, viral RNA sequences, able to bind host RBPs, may compete with cellular RNAs, altering important metabolic processes. Our findings suggest that the proposed in silico approach could be a useful and promising tool to investigate the complex and multiform clinical manifestations of viral encephalitis, and possibly identify altered metabolic pathways as targets of pharmacological treatments and innovative therapeutic protocols.
Collapse
Affiliation(s)
- Massimiliano Chetta
- U.O.C. Medical and Laboratory Genetics, A.O.R.N., Cardarelli, 80131 Naples, Italy
| | - Anna Lisa Cammarota
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, 84084 Baronissi, SA, Italy
| | - Margot De Marco
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, 84084 Baronissi, SA, Italy
- FIBROSYS s.r.l. Academic Spin-Off, University of Salerno, 84084 Baronissi, Italy
| | - Nenad Bukvic
- Medical Genetics Section, University Hospital Consortium Corporation Polyclinics of Bari, 70124 Bari, Italy
| | - Liberato Marzullo
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, 84084 Baronissi, SA, Italy
- FIBROSYS s.r.l. Academic Spin-Off, University of Salerno, 84084 Baronissi, Italy
| | - Alessandra Rosati
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, 84084 Baronissi, SA, Italy
- FIBROSYS s.r.l. Academic Spin-Off, University of Salerno, 84084 Baronissi, Italy
| |
Collapse
|
14
|
Varesi A, Campagnoli LIM, Barbieri A, Rossi L, Ricevuti G, Esposito C, Chirumbolo S, Marchesi N, Pascale A. RNA binding proteins in senescence: A potential common linker for age-related diseases? Ageing Res Rev 2023; 88:101958. [PMID: 37211318 DOI: 10.1016/j.arr.2023.101958] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
Aging represents the major risk factor for the onset and/or progression of various disorders including neurodegenerative diseases, metabolic disorders, and bone-related defects. As the average age of the population is predicted to exponentially increase in the coming years, understanding the molecular mechanisms underlying the development of aging-related diseases and the discovery of new therapeutic approaches remain pivotal. Well-reported hallmarks of aging are cellular senescence, genome instability, autophagy impairment, mitochondria dysfunction, dysbiosis, telomere attrition, metabolic dysregulation, epigenetic alterations, low-grade chronic inflammation, stem cell exhaustion, altered cell-to-cell communication and impaired proteostasis. With few exceptions, however, many of the molecular players implicated within these processes as well as their role in disease development remain largely unknown. RNA binding proteins (RBPs) are known to regulate gene expression by dictating at post-transcriptional level the fate of nascent transcripts. Their activity ranges from directing primary mRNA maturation and trafficking to modulation of transcript stability and/or translation. Accumulating evidence has shown that RBPs are emerging as key regulators of aging and aging-related diseases, with the potential to become new diagnostic and therapeutic tools to prevent or delay aging processes. In this review, we summarize the role of RBPs in promoting cellular senescence and we highlight their dysregulation in the pathogenesis and progression of the main aging-related diseases, with the aim of encouraging further investigations that will help to better disclose this novel and captivating molecular scenario.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| | | | - Annalisa Barbieri
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Lorenzo Rossi
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | | | - Ciro Esposito
- Department of Internal Medicine and Therapeutics, University of Pavia, Italy; Nephrology and dialysis unit, ICS S. Maugeri SPA SB Hospital, Pavia, Italy; High School in Geriatrics, University of Pavia, Italy
| | | | - Nicoletta Marchesi
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy.
| |
Collapse
|
15
|
Carter JA, Matta B, Battaglia J, Somerville C, Harris BD, LaPan M, Atwal GS, Barnes BJ. Identification of pan-cancer/testis genes and validation of therapeutic targeting in triple-negative breast cancer: Lin28a- and Siglece-based vaccination induces anti-tumor immunity and inhibits metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.539617. [PMID: 37214884 PMCID: PMC10197572 DOI: 10.1101/2023.05.09.539617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Background Cancer-testis (CT) genes are targets for tumor antigen-specific immunotherapy given that their expression is normally restricted to the immune-privileged testis in healthy individuals with aberrant expression in tumor tissues. While they represent targetable germ-tissue antigens and play important functional roles in tumorigenesis, there is currently no standardized approach for identifying clinically relevant CT genes. Optimized algorithms and validated methods for accurate prediction of reliable CT antigens with high immunogenicity are also lacking. Methods Sequencing data from the Genotype-Tissue Expression (GTEx) and The Genomic Data Commons (GDC) databases was utilized for the development of a bioinformatic pipeline to identify CT exclusive genes. A CT germness score was calculated based on the number of CT genes expressed within a tumor type and their degree of expression. The impact of tumor germness with clinical outcome was evaluated using healthy GTEx and GDC tumor samples. We then used a triple-negative breast cancer mouse model to develop and test an algorithm that predicts epitope immunogenicity based on the identification of germline sequences with strong MHCI and MHCII binding affinities. Germline sequences for CT genes were synthesized as long synthetic peptide vaccines and tested in the 4T1 triple-negative model of invasive breast cancer with Poly(I:C) adjuvant. Vaccine immunogenicity was determined by flow cytometric analysis of in vitro and in vivo T cell responses. Primary tumor growth and lung metastasis was evaluated by histopathology, flow cytometry and colony formation assay. Results We developed a new bioinformatic pipeline to reliably identify CT exclusive genes as immunogenic targets for immunotherapy. We identified CT genes that are exclusively expressed within the testis, lack detectable thymic expression, and are significantly expressed in multiple tumor types. High tumor germness correlated with tumor progression but not with tumor mutation burden, supporting CT antigens as appealing targets in low mutation burden tumors. Importantly, tumor germness also correlated with markers of anti-tumor immunity. Vaccination of 4T1 tumor bearing mice with Siglece and Lin28a antigens resulted in increased T cell anti-tumor immunity and reduced primary tumor growth and lung metastases. Conclusion Our results present a novel strategy for the identification of highly immunogenic CT antigens for the development of targeted vaccines that induce anti-tumor immunity and inhibit metastasis.
Collapse
|
16
|
Anfimova PA, Pankrasheva LG, Moiseev KY, Shirina ES, Porseva VV, Masliukov PM. Ontogenetic Changes in the Expression of the Lin28 Protein in the Rat Hypothalamic Tuberal Nuclei. Int J Mol Sci 2022; 23:13468. [PMID: 36362250 PMCID: PMC9658212 DOI: 10.3390/ijms232113468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 10/28/2023] Open
Abstract
The hypothalamus is a primary regulator of homeostasis, biological rhythms and adaptation to different environment factors. It also participates in the aging regulation. The expression of neurons containing Lin28 was studied by immunohistochemistry in male rats aged 2, 6, 12, and 24 months in the tuberal region of the rat hypothalamus. We have shown for the first time the presence of Lin28-immunoreactive (IR) neurons in the ventromedial nucleus (VMH) and their absence in the dorsomedial and arcuate nuclei in all studied animals. With aging, the percentage of Lin28-IR neurons increases from 37 ± 4.7 in 2-month-old rat until 76 ± 4.6 in 6-month-old and further decreases to 41 ± 7.3 in 12-month-old rat and 28 ± 5.5 in 24-month-old rats. Many VMH Lin28-IR neurons colocalized components of insulin signaling including mTOR, Raptor, PI3K and Akt. The percentage of Lin28/Akt-IR neurons was maximal in 6-month-old and 1-year-old rats compared to 2-month-old and 2-year-old animals. The proportion of Lin28/PI3K-IR neurons significantly increased from 77 ± 1.2 in 2-month-old rat until 99 ± 0.3 in 24-month-old rats and 96-99% of Lin28-IR neurons colocalized mTOR and mTORC1 component Raptor without statistically significant differences in all studied age groups. Thus, Lin28 expresses only in the VMH neurons of the tuberal nuclei of the hypothalamus and the Lin 28 expression changes during the development together with the components of PI3K-Akt-mTOR signaling.
Collapse
Affiliation(s)
| | | | | | | | | | - Petr M. Masliukov
- Department of Normal Physiology, Yaroslavl State Medical University, ul. Revoliucionnaya 5, 150000 Yaroslavl, Russia
| |
Collapse
|