1
|
Sasivimolrattana T, Gunawan A, Wattanathavorn W, Pholpong C, Chaiwongkot A, Bhattarakosol P, Bhattarakosol P. Upregulation of HPV16E1 and E7 expression and FOXO3a mRNA downregulation in high-grade cervical neoplasia. PeerJ 2024; 12:e18601. [PMID: 39655333 PMCID: PMC11627083 DOI: 10.7717/peerj.18601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024] Open
Abstract
Background Cervical cancer remains a significant global health concern, ranking as the fourth most prevalent cancer among women worldwide. Human papillomaviruses (HPV) transcribe many genes that might be responsible for cervical cancer development. This study aims to investigate the correlation between the expression of HPV16 early genes and the mRNA expression of human FOXO3a, a tumor suppressor gene, in association with various stages of cervical precancerous lesions. Methods Eighty-five positive HPV16 DNA cervical swab samples were recruited and categorized based on cytology stages, i.e., negative for intraepithelial lesion or malignancy (NILM), atypical squamous cells of undetermined significance (ASC-US), low-grade squamous intraepithelial lesion (LSIL), atypical squamous cell cannot exclude HSIL (ASC-H), high-grade squamous intraepithelial lesion (HSIL). RT-qPCR was performed to amplify HPV16E1, E4, E6, E6*I, E7, and human FOXO3a mRNA expression in all samples. The relative expression of those genes was calculated using GAPDH as a control. Detection of FOXO3a mRNA expression in the cervical cancer cell line by RT-qPCR and meta-analysis of FOXO3a expression using the RNA-Seq dataset by GEPIA2 were analyzed to support the conclusions. Results Among the cervical samples, HPV16E1 and E7 were significantly increased expression correlating to disease severity. HPV16E4 mRNA expression was 100% detected in all LSIL samples, with a significant increase observed from normal to LSIL stages. Conversely, FOXO3a mRNA expression decreased with disease severity, and the lowest expression was observed in HSIL/squamous cell carcinoma (SCC) samples. In addition, similar results of FOXO3a downregulation were also found in the cervical cancer cell line and RNA-Seq dataset of cervical cancer samples. Conclusion HPV16 early mRNA levels, including E1 and E7, increase during cancer progression, and downregulation of FOXO3a mRNA is a characteristic of cervical cancer cells and HSIL/SCC. Additionally, HPV16E4 mRNA expression was consistently detected in all LSIL samples, suggesting the presence of active viral replication. These findings might lead to further investigation into the interplay between HPV gene expression and host cell factors for targeted therapeutic strategies in cervical cancer management.
Collapse
Affiliation(s)
- Thanayod Sasivimolrattana
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Aileen Gunawan
- Department of Biomedicine, School of Life Sciences, Indonesia International Institute for Life Sciences, Jakarta, Indonesia
| | - Warattaya Wattanathavorn
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chavis Pholpong
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Arkom Chaiwongkot
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pattarasinee Bhattarakosol
- Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Parvapan Bhattarakosol
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Pucci G, Savoca G, Iacoviello G, Russo G, Forte GI, Cavalieri V. Curcumin's Radioprotective Effects on Zebrafish Embryos. Antioxidants (Basel) 2024; 13:1281. [PMID: 39594423 PMCID: PMC11590968 DOI: 10.3390/antiox13111281] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024] Open
Abstract
Radiation modifiers are largely studied for their contribution to enlarging the treatment window. Curcumin is already known for its antioxidant properties; however, its role as a radioprotector in preclinical studies is affected by the well-known low absorption and bioavailability of curcumin. In this study, curcumin's radioprotection ability has been evaluated in zebrafish larvae, by taking advantage of quantifying curcumin absorption and evaluating its fluorescence in transparent embryos. A curcumin range of 1-10 μM was tested to select the non-toxic concentrations to be used for a pre-treatment of photon beam irradiation using a 2-15 Gy range of doses. The post-treatment analysis within 120 h post-fertilization (hpf) included an assessment of mortality and malformation rates and behavioral and gene expression analysis. A total of 2.5 and 5 μM of curcumin pre-treatment showed a radioprotective role, significantly reducing the frequency of embryo malformations and damaged entities. This sparing effect disappeared using 15 Gy, showing the radiation effect's prevalence. Gene expression analysis reconducted this radioprotective ability for antioxidant gene network activation. The curcumin-induced activation of the antioxidant gene network promoted radioprotection in zebrafish.
Collapse
Affiliation(s)
- Gaia Pucci
- Institute of Bioimaging and Complex Biological Systems (IBSBC)—National Research Council (CNR), Cefalù Secondary Site, C/da Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; (G.P.); (G.R.)
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), University of Palermo, Viale delle Scienze Bld. 16, 90128 Palermo, Italy
| | - Gaetano Savoca
- Radiation Oncology Unit, ARNAS-Civico Hospital, 90100 Palermo, Italy; (G.S.); (G.I.)
| | - Giuseppina Iacoviello
- Radiation Oncology Unit, ARNAS-Civico Hospital, 90100 Palermo, Italy; (G.S.); (G.I.)
| | - Giorgio Russo
- Institute of Bioimaging and Complex Biological Systems (IBSBC)—National Research Council (CNR), Cefalù Secondary Site, C/da Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; (G.P.); (G.R.)
| | - Giusi I. Forte
- Institute of Bioimaging and Complex Biological Systems (IBSBC)—National Research Council (CNR), Cefalù Secondary Site, C/da Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; (G.P.); (G.R.)
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), University of Palermo, Viale delle Scienze Bld. 16, 90128 Palermo, Italy
| | - Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), University of Palermo, Viale delle Scienze Bld. 16, 90128 Palermo, Italy
- Zebrafish Laboratory, Advanced Technologies Network (ATeN) Center, University of Palermo, Viale delle Scienze Bld. 16, 90128 Palermo, Italy
| |
Collapse
|
3
|
de Mello JE, Teixeira FC, Dos Santos A, Luduvico K, Soares de Aguiar MS, Domingues WB, Campos VF, Tavares RG, Schneider A, Stefanello FM, Spanevello RM. Treatment with Blackberry Extract and Metformin in Sporadic Alzheimer's Disease Model: Impact on Memory, Inflammation, Redox Status, Phosphorylated Tau Protein and Insulin Signaling. Mol Neurobiol 2024; 61:7814-7829. [PMID: 38430352 DOI: 10.1007/s12035-024-04062-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 02/20/2024] [Indexed: 03/03/2024]
Abstract
Natural products offer promising potential for the development of new therapies for Alzheimer's disease (AD). Blackberry fruits are rich in phytochemical compounds capable of modulating pathways involved in neuroprotection. Additionally, drug repurposing and repositioning could also accelerate the development of news treatments for AD. In light of the reduced brain glucose metabolism in AD, an alternative approach has been the use of the drug metformin. Thus, the aim of this study was to evaluate the effect of treatment with blackberry extract in a model of AD induced by streptozotocin (STZ) and compare it with metformin treatment. Male rats were divided into groups: I - Control; II - STZ; III - STZ + blackberry extract (100 mg/kg); IV - STZ + blackberry extract (200 mg/kg) and V - STZ + metformin (150 mg/kg). The animals received intracerebroventricular injection of STZ or buffer. Seven days after the surgical procedure, the animals were treated orally with blackberry extract or metformin for 21 days. Blackberry extract and metformin prevented the memory impairment induced by STZ. In animals of group II, an increase in acetylcholinesterase activity, phosphorylated tau protein, IL-6, oxidative damage, and gene expression of GSK-3β and Nrf2 was observed in the hippocampus. STZ induced a decrease in IL-10 levels and down-regulated the gene expression of Akt1, IRS-1 and FOXO3a. Blackberry extract and metformin prevented the alterations in acetylcholinesterase activity, IL-6, GSK3β, Nrf2, and oxidative damage. In conclusion, blackberry extract exhibits multi-target actions in a model of AD, suggesting new therapeutic potentials for this neurodegenerative disease.
Collapse
Affiliation(s)
- Julia Eisenhardt de Mello
- Programa de Pós‑Graduação em Bioquímica e Bioprospecção, Universidade Federal de Pelotas, Campus Universitário Capão do Leão S/N, Pelotas, RS, CEP 96010‑900, Brazil
| | - Fernanda Cardoso Teixeira
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, CEP 90050-170, Brazil
| | - Alessandra Dos Santos
- Programa de Pós‑Graduação em Bioquímica e Bioprospecção, Universidade Federal de Pelotas, Campus Universitário Capão do Leão S/N, Pelotas, RS, CEP 96010‑900, Brazil
| | - Karina Luduvico
- Programa de Pós‑Graduação em Bioquímica e Bioprospecção, Universidade Federal de Pelotas, Campus Universitário Capão do Leão S/N, Pelotas, RS, CEP 96010‑900, Brazil
| | - Mayara Sandrielly Soares de Aguiar
- Programa de Pós‑Graduação em Bioquímica e Bioprospecção, Universidade Federal de Pelotas, Campus Universitário Capão do Leão S/N, Pelotas, RS, CEP 96010‑900, Brazil
| | - William Borges Domingues
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal de Pelotas, Campus Universitário Capão do Leão, S/N, Pelotas, RS, CEP 96010‑900, Brazil
| | - Vinicius Farias Campos
- Programa de Pós‑Graduação em Bioquímica e Bioprospecção, Universidade Federal de Pelotas, Campus Universitário Capão do Leão S/N, Pelotas, RS, CEP 96010‑900, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal de Pelotas, Campus Universitário Capão do Leão, S/N, Pelotas, RS, CEP 96010‑900, Brazil
| | - Rejane Giacomelli Tavares
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal de Pelotas, Campus Universitário Capão Do Leão S/N, Pelotas, RS, CEP 96010‑900, Brazil
| | - Augusto Schneider
- Programa de Pós‑Graduação em Bioquímica e Bioprospecção, Universidade Federal de Pelotas, Campus Universitário Capão do Leão S/N, Pelotas, RS, CEP 96010‑900, Brazil
- Programa de Pós-Graduação em Nutrição e Alimentos, Universidade Federal de Pelotas, Campus Porto, Rua Gomes Carneiro 1, Pelotas, RS, CEP 96010‑610, Brazil
| | - Francieli Moro Stefanello
- Programa de Pós‑Graduação em Bioquímica e Bioprospecção, Universidade Federal de Pelotas, Campus Universitário Capão do Leão S/N, Pelotas, RS, CEP 96010‑900, Brazil
| | - Roselia Maria Spanevello
- Programa de Pós‑Graduação em Bioquímica e Bioprospecção, Universidade Federal de Pelotas, Campus Universitário Capão do Leão S/N, Pelotas, RS, CEP 96010‑900, Brazil.
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos/Bioquímica, Laboratório de Neuroquímica, Inflamação e Câncer, Prédio 29, Universidade Federal de Pelotas, Campus Capão do Leão, S/N, CEP 9601090, Caixa Postal 354, Pelotas, RS, Brazil.
| |
Collapse
|
4
|
Elmorsy EA, Youssef ME, Abdel-Hamed MR, Amer MM, Elghandour SR, Alkhamiss AS, Mohamed NB, Khodeir MM, Elsisi HA, Alsaeed TS, Kamal MM, Ellethy AT, Elesawy BH, Saber S. Activation of AMPK/SIRT1/FOXO3a signaling by BMS-477118 (saxagliptin) mitigates chronic colitis in rats: uncovering new anti-inflammatory and antifibrotic roles. Front Pharmacol 2024; 15:1456058. [PMID: 39359253 PMCID: PMC11445602 DOI: 10.3389/fphar.2024.1456058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
Ulcerative colitis (UC) is a debilitating chronic disease marked by persistent inflammation and intestinal fibrosis. Despite the availability of various treatments, many patients fail to achieve long-term remission, underscoring a significant unmet therapeutic need. BMS-477118, a reversible inhibitor of dipeptidyl peptidase 4 (DPP4), has demonstrated anti-inflammatory properties in preclinical and clinical studies with minimal adverse effects compared to other antidiabetic agents. However, the potential benefits of BMS-477118 in chronic UC have not yet been explored. In this study, we aimed to investigate the effects of BMS-477118 in rats subjected to chronic dextran sodium sulfate (DSS) administration. Our findings indicate that BMS-477118 activates the interconnected positive feedback loop involving AMPK, SIRT1, and FOXO3a, improving histological appearance in injured rat colons. BMS-477118 also reduced fibrotic changes associated with the chronic nature of the animal model, alleviated macroscopic damage and disease severity, and improved the colon weight-to-length ratio. Additionally, BMS-477118 prevented DSS-induced weight loss and enhanced tight junction proteins. These effects, in conjunction with reduced oxidative stress and its potential anti-inflammatory, antiapoptotic, and autophagy-inducing properties, fostered prolonged survival in rats with chronic UC. To conclude, BMS-477118 has the potential to activate the AMPK/SIRT1/FOXO3a signaling pathway in inflamed colons. These results suggest that the AMPK/SIRT1/FOXO3a pathway could be a new therapeutic target for UC. Further research is mandatory to explore the therapeutic possibilities of this pathway. Additionally, continued studies on the therapeutic potential of BMS-477118 and other DPP4 inhibitors are promising for creating new treatments for various conditions, including UC in diabetic patients.
Collapse
Affiliation(s)
- Elsayed A. Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Mahmoud E. Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Mohamed R. Abdel-Hamed
- Department of Anatomy, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Maha M. Amer
- Department of Anatomy, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sahar R. Elghandour
- Department of Anatomy and Histology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Abdullah S. Alkhamiss
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Nahla B. Mohamed
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Mostafa M. Khodeir
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hossam A. Elsisi
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraidah, Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Thamir Saad Alsaeed
- Department of Biology and Immunology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Manal M. Kamal
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Physiology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Abousree T. Ellethy
- Department of Oral and Medical Basic Sciences, Biochemistry Division, College of Dentistry, Qassim University, Buraidah, Saudi Arabia
| | - Basem H. Elesawy
- Department of Pathology, College of Medicine, Taif University, Taif, Saudi Arabia
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
5
|
Cao W, Zhao B, Gui L, Sun X, Zhang Z, Huang L. The role and mechanism of action of miR‑92a in endothelial cell autophagy. Mol Med Rep 2024; 30:172. [PMID: 39054957 PMCID: PMC11304162 DOI: 10.3892/mmr.2024.13296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
Although microRNAs (miRNAs/miRs) serve a significant role in the autophagy of vascular endothelial cells (ECs), the effect of miR‑92a on the autophagy of ECs is currently unclear. Therefore, the present study aimed to investigate the impact of miR‑92a on autophagy in ECs and the underlying molecular processes that control this biological activity. Firstly, an autophagy model of EA.hy926 cells was generated via treatment with the autophagy inducer rapamycin (rapa‑EA.hy926 cells). The expression levels of miR‑92a were then detected by reverse transcription‑quantitative PCR, and the effect of miR‑92a expression on the autophagic activity of rapa‑EA.hy926 cells was studied by overexpressing or inhibiting miR‑92a. The level of autophagy was evaluated by western blot analysis, immunofluorescence staining and transmission electron microscopy. Dual‑luciferase reporter assays were used to confirm the interaction between miR‑92a and FOXO3. The results demonstrated that the expression levels of miR‑92a were decreased in the rapa‑EA.hy926 cell autophagy model. Furthermore, overexpression and inhibition of miR‑92a revealed that upregulation of miR‑92a in these cells inhibited autophagy, whereas miR‑92a knockdown promoted it. It was also confirmed that miR‑92a directly bound to the 3'‑untranslated region of the autophagy‑related gene FOXO3 and reduced its expression. In conclusion, the present study suggested that miR‑92a inhibits autophagy activity in EA.hy926 cells by targeting FOXO3.
Collapse
Affiliation(s)
- Weili Cao
- Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Boxin Zhao
- Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Lin Gui
- Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xueyuan Sun
- Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Zhiyong Zhang
- Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Lijuan Huang
- Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
6
|
Wang X, Li H, Qu D. Dihydromyricetin protects sevoflurane-induced mitochondrial dysfunction in HT22 hippocampal cells. Clin Exp Pharmacol Physiol 2024; 51:e13912. [PMID: 39103220 DOI: 10.1111/1440-1681.13912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/20/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024]
Abstract
Sevoflurane (Sev) is a commonly used inhalation anaesthetic that has been shown to cause hippocampus dysfunction through multiple underlying molecular processes, including mitochondrial malfunction, oxidative stress and inflammation. Dihydromyricetin (DHM) is a 2,3-dihydroflavonoid with various biological properties, such as anti-inflammation and anti-oxidative stress. The purpose of this study was to investigate the effect of DHM on Sev-induced neuronal dysfunction. HT22 cells were incubated with 10, 20 and 30 μM of DHM for 24 h, and then stimulated with 4% Sev for 6 h. The effects and mechanism of DHM on inflammation, oxidative stress and mitochondrial dysfunction were explored in Sev-induced HT22 cells by Cell Counting Kit-8, flow cytometry, enzyme-linked immunosorbent assay, reverse transcription-quantitative polymerase chain reaction, colorimetric detections, detection of the level of reactive oxygen species (ROS), mitochondrial ROS and mitochondrial membrane potential (MMP), immunofluorescence and western blotting. Our results showed that DHM increased Sev-induced cell viability of HT22 cells. Pretreatment with DHM attenuated apoptosis, inflammation, oxidative stress and mitochondrial dysfunction in Sev-elicited HT22 cells by remedying the abnormality of the indicators involved in these progresses, including apoptosis rate, the cleaved-caspase 3 expression, as well as the level of tumour necrosis factor α, interleukin (IL)-1β, IL-6, malondialdehyde, superoxide dismutase, catalase, ROS, mitochondrial ROS and MMP. Mechanically, pretreatment with DHM restored the Sev-induced the expression of SIRT1/FOXO3a pathway in HT22 cells. Blocking of SIRT1 counteracted the mitigatory effect of DHM on apoptosis, inflammation, oxidative stress and mitochondrial dysfunction in Sev-elicited HT22 cells. Collectively, pretreatment with DHM improved inflammation, oxidative stress and mitochondrial dysfunction via SIRT1/FOXO3a pathway in Sev-induced HT22 cells.
Collapse
Affiliation(s)
- Xinyan Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Haoyi Li
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dongchao Qu
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
7
|
Khin M, Davis LJ, Lantvit DD, Orjala J, Burdette JE. Aulosirazole Stimulates FOXO3a Nuclear Translocation to Regulate Apoptosis and Cell-Cycle Progression in High-Grade Serous Ovarian Cancer (HGSOC) Cells. Mol Pharmacol 2024; 106:145-154. [PMID: 39079718 PMCID: PMC11331498 DOI: 10.1124/molpharm.124.000921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/01/2024] [Indexed: 08/18/2024] Open
Abstract
Ovarian cancer, the fifth leading cause of cancer-related mortality in women, is the most lethal gynecological malignancy globally. Within various ovarian cancer subtypes, high-grade serous ovarian cancer is the most prevalent and there is frequent emergence of chemoresistance. Aulosirazole, an isothiazolonaphthoquinone alkaloid, isolated from the cyanobacterium Nostoc sp. UIC 10771, demonstrated cytotoxic activity against OVCAR3 cells (IC50 = 301 ± 80 nM). Using immunocytochemistry, OVCAR3 cells treated with aulosirazole demonstrated increased concentrations of phosphorylated protein kinase B and phosphorylated c-Jun N-terminal kinase with subsequent accumulation of forkhead box O3a (FOXO3a) in the nucleus. The combination of aulosirazole with protein kinase B inhibitors resulted in the most nuclear accumulation of FOXO3a aulosirazole-induced apoptosis based on cleavage of poly(ADP-ribose) polymerase, annexin V staining, and induction of caspase 3/7 activity in OVCAR3, OVCAR5, and OVCAR8. The expression of downstream targets of FOXO3a, including B-cell lymphoma 2 (BCL2) and p53-upregulator modulator of apoptosis, increased following aulosirazole treatment. Aulosirazole upregulated the FOXO3a target, cyclin-dependent kinase inhibitor 1, and increased cell-cycle arrest in the G0/G1 phase. The downregulation of FOXO3a by short hairpin RNA (shRNA) reduced the cytotoxicity after aulosirazole treatment by 3-fold IC50 (949 ± 16 nM) and eliminated its ability to regulate downstream targets of FOXO3a. These findings underscore FOXO3a as a critical mediator of aulosirazole-induced cytotoxicity. Additionally, aulosirazole was able to decrease migration and invasion while increasing cell death in 3D tumor spheroids. However, in vivo OVCAR8 tumor burden was not reduced by aulosirazole using an intraperitoneal tumor model. Given the mechanism of action of aulosirazole, this class of alkaloids represents promising lead compounds to develop treatments against FOXO3a-downregulated cancers. SIGNIFICANCE STATEMENT: Aulosirazole, an isothiazolonaphthoquinone alkaloid, exhibits potent cytotoxic effects against high-grade serous ovarian cancer by promoting forkhead box O3a (FOXO3a) nuclear accumulation and modulating downstream targets. These findings highlight the potential of aulosirazole as a promising therapeutic intervention for cancers characterized by FOXO3a downregulation.
Collapse
Affiliation(s)
- Manead Khin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois (M.K., D.D.L., J.O., J.E.B.); and Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina (L.J.D.)
| | - Lydia J Davis
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois (M.K., D.D.L., J.O., J.E.B.); and Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina (L.J.D.)
| | - Daniel D Lantvit
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois (M.K., D.D.L., J.O., J.E.B.); and Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina (L.J.D.)
| | - Jimmy Orjala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois (M.K., D.D.L., J.O., J.E.B.); and Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina (L.J.D.)
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois (M.K., D.D.L., J.O., J.E.B.); and Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina (L.J.D.)
| |
Collapse
|
8
|
Zamanian MY, Alsaab HO, Golmohammadi M, Yumashev A, Jabba AM, Abid MK, Joshi A, Alawadi AH, Jafer NS, Kianifar F, Obakiro SB. NF-κB pathway as a molecular target for curcumin in diabetes mellitus treatment: Focusing on oxidative stress and inflammation. Cell Biochem Funct 2024; 42:e4030. [PMID: 38720663 DOI: 10.1002/cbf.4030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/05/2024] [Accepted: 04/25/2024] [Indexed: 08/03/2024]
Abstract
Diabetes mellitus (DM) is a collection of metabolic disorder that is characterized by chronic hyperglycemia. Recent studies have demonstrated the crucial involvement of oxidative stress (OS) and inflammatory reactions in the development of DM. Curcumin (CUR), a natural compound derived from turmeric, exerts beneficial effects on diabetes mellitus through its interaction with the nuclear factor kappa B (NF-κB) pathway. Research indicates that CUR targets inflammatory mediators in diabetes, including tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6), by modulating the NF-κB signaling pathway. By reducing the expression of these inflammatory factors, CUR demonstrates protective effects in DM by improving pancreatic β-cells function, normalizing inflammatory cytokines, reducing OS and enhancing insulin sensitivity. The findings reveal that CUR administration effectively lowered blood glucose elevation, reinstated diminished serum insulin levels, and enhanced body weight in Streptozotocin -induced diabetic rats. CUR exerts its beneficial effects in management of diabetic complications through regulation of signaling pathways, such as calcium-calmodulin (CaM)-dependent protein kinase II (CaMKII), peroxisome proliferator-activated receptor gamma (PPAR-γ), NF-κB, and transforming growth factor β1 (TGFB1). Moreover, CUR reversed the heightened expression of inflammatory cytokines (TNF-α, Interleukin-1 beta (IL-1β), IL-6) and chemokines like MCP-1 in diabetic specimens, vindicating its anti-inflammatory potency in counteracting hyperglycemia-induced alterations. CUR diminishes OS, avert structural kidney damage linked to diabetic nephropathy, and suppress NF-κB activity. Furthermore, CUR exhibited a protective effect against diabetic cardiomyopathy, lung injury, and diabetic gastroparesis. Conclusively, the study posits that CUR could potentially offer therapeutic benefits in relieving diabetic complications through its influence on the NF-κB pathway.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Department of Physiology, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Abeer Mhussan Jabba
- Colleges of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammed Kadhem Abid
- Department of Anesthesia, College of Health & Medical Technology, Al-Ayen University, Nasiriyah, Iraq
| | - Abhishek Joshi
- Department of Liberal Arts School of Liberal Arts, Uttaranchal University, Dehradun, India
| | - Ahmed Hussien Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Noor S Jafer
- Department of Medical Laboratory Technologies, Al Rafidain University College, Bagdad, Iraq
| | - Farzaneh Kianifar
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samuel Baker Obakiro
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, Busitema University, Mbale, Uganda
| |
Collapse
|
9
|
Chen ZW, Dong ZB, Xiang HT, Chen SS, Yu WM, Liang C. Helicobacter pylori CagA protein induces gastric cancer stem cell-like properties through the Akt/FOXO3a axis. J Cell Biochem 2024; 125:e30527. [PMID: 38332574 DOI: 10.1002/jcb.30527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/24/2023] [Accepted: 01/04/2024] [Indexed: 02/10/2024]
Abstract
The presence of Helicobacter pylori (H. pylori) infection poses a substantial risk for the development of gastric adenocarcinoma. The primary mechanism through which H. pylori exerts its bacterial virulence is the cytotoxin CagA. This cytotoxin has the potential to induce inter-epithelial mesenchymal transition, proliferation, metastasis, and the acquisition of stem cell-like properties in gastric cancer (GC) cells infected with CagA-positive H. pylori. Cancer stem cells (CSCs) represent a distinct population of cells capable of self-renewal and generating heterogeneous tumor cells. Despite evidence showing that CagA can induce CSCs-like characteristics in GC cells, the precise mechanism through which CagA triggers the development of GC stem cells (GCSCs) remains uncertain. This study reveals that CagA-positive GC cells infected with H. pylori exhibit CSCs-like properties, such as heightened expression of CD44, a specific surface marker for CSCs, and increased ability to form tumor spheroids. Furthermore, we have observed that H. pylori activates the PI3K/Akt signaling pathway in a CagA-dependent manner, and our findings suggest that this activation is associated with the CSCs-like characteristics induced by H. pylori. The cytotoxin CagA, which is released during H. pylori infection, triggers the activation of the PI3K/Akt signaling pathway in a CagA-dependent manner. Additionally, CagA inhibits the transcription of FOXO3a and relocates it from the nucleus to the cytoplasm by activating the PI3K/Akt pathway. Furthermore, the regulatory function of the Akt/FOXO3a axis in the transformation of GC cells into a stemness state was successfully demonstrated.
Collapse
Affiliation(s)
- Zheng-Wei Chen
- Department of General Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Zhe-Bin Dong
- Department of General Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Han-Ting Xiang
- Department of General Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Sang-Sang Chen
- Department of General Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Wei-Ming Yu
- Department of General Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Chao Liang
- Department of General Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| |
Collapse
|
10
|
Manoharan S, Prajapati K, Perumal E. Natural bioactive compounds and FOXO3a in cancer therapeutics: An update. Fitoterapia 2024; 173:105807. [PMID: 38168566 DOI: 10.1016/j.fitote.2023.105807] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/14/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
Forkhead box protein 3a (FOXO3a) is a transcription factor that regulates various downstream targets upon its activation, leading to the upregulation of tumor suppressor and apoptotic pathways. Hence, targeting FOXO3a is an emerging strategy for cancer prevention and treatment. Recently, Natural Bioactive Compounds (NBCs) have been used in drug discovery for treating various disorders including cancer. Notably, several NBCs have been shown as potent FOXO3a activators. NBCs upregulate FOXO3a expressions through PI3K/Akt, MEK/ERK, AMPK, and IκB signaling pathways. FOXO3a promotes its anticancer effects by upregulating the levels of its downstream targets, including Bim, FasL, and Bax, leading to apoptosis. This review focuses on the dysregulation of FOXO3a in carcinogenesis and explores the potent FOXO3a activating NBCs for cancer prevention and treatment. Additionally, the review evaluates the safety and efficacy of NBCs. Looking ahead, NBCs are anticipated to become a cost-effective, potent, and safer therapeutic option for cancer, making them a focal point of research in the field of cancer prevention and treatment.
Collapse
Affiliation(s)
- Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Kunjkumar Prajapati
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India.
| |
Collapse
|
11
|
Wang D, Zhang Z, Li X, He L. RNA binding protein PUM2 promotes IL-1β-induced apoptosis of chondrocytes via regulating FOXO3 expression. Heliyon 2024; 10:e25080. [PMID: 38356524 PMCID: PMC10865267 DOI: 10.1016/j.heliyon.2024.e25080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/16/2024] Open
Abstract
Objective RNA-binding proteins (RBPs) have been recently proven to be involved in the pathogenesis of several diseases. However, few studies elaborated RBPs in regulating osteoarthritis. This study aims to define the function and mechanism of RBPs-PUM2 in chondrocyte apoptosis during osteoarthritis. Methods Cartilage tissue samples and human juvenile chondrocyte cell line C28/I2 were collected for further study. PUM2 expression in the human tissues and cells was determined using qRT-PCR. Chondrocyte viability and apoptosis were determined by MTT and flow cytometry. ROS generation was determined by flow cytometry. The regulation of PUM2 on FOXO3 translation was evaluated by RNA immunoprecipitation, RNA pull-down, and Luciferase gene reporter analysis. Results PUM2 is upregulated in both cartilage tissue of osteoarthritis patients and IL-1β-stimulated chondrocytes. PUM2 overexpression reduces cell viability and promotes cell apoptosis and ROS generation of chondrocytes. PUM2 silencing increases cell viability and ameliorates cell apoptosis as well as ROS generation in chondrocytes induced by IL-1β. PUM2 inhibits FOXO3 expression via binding its mRNA 3'-UTR. PUM2 forms a signaling axis with FOXO3 in IL-1β induced chondrocyte damage. Conclusion PUM2 is upregulated in cartilage tissue of osteoarthritis and positively regulates chondrocytes apoptosis through controlling FOXO3 protein expression.
Collapse
Affiliation(s)
- Du Wang
- Department of Orthopedics, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - ZhiLi Zhang
- Department of Surgery, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Xili Li
- Department of Radiology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Ling He
- Department of Orthopedics, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Wang S, Sun Y, Yao L, Xing Y, Yang H, Ma Q. The Role of microRNA-23a-3p in the Progression of Human Aging Process by Targeting FOXO3a. Mol Biotechnol 2024; 66:277-287. [PMID: 37087718 PMCID: PMC10803409 DOI: 10.1007/s12033-023-00746-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/02/2023] [Indexed: 04/24/2023]
Abstract
Aging results in deterioration of body functions and, ultimately, death. miRNAs contribute to the regulation of aging. The aim of this study was to explore the contribution of miRNAs to aging and senescence-related changes in gene expression. The expression changes of miRNAs in the blood of people and animal samples collected from different age subjects were examined using Affymetrix miRNA 4.0 microarray and qRT-PCR. MTT assay and flow cytometry were used to examine the effect of miR-23a on cell functions in WI-38 cells. The expression levels of 48 miRNAs, including miR-23a, miR-21, and miR-100, in the blood samples were higher in the middle-aged group than in the young or elderly group. Animal studies further suggested that the expression of miR-23a increased with age. In addition, upregulation of miR-23a dramatically suppressed the cell proliferation and arrested the WI-38 cell cycle in vitro. FOXO3a has been identified as a target gene of miR-23a. MiR-23a downregulated the expression of FOXO3a in WI-38 cells. MiRNAs have different expression levels in different age groups. miR-23a could suppress cell proliferation and arrest the cell cycle in WI-38 cells, which elucidated the mechanism through which miR-23a exerts pivotal role in WI-38 cells by targeting FOXO3a.
Collapse
Affiliation(s)
- Shan Wang
- Department of Geriatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Ying Sun
- Department of Geriatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Lan Yao
- Department of Geriatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yunli Xing
- Department of Geriatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Huayu Yang
- Department of Geriatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Qing Ma
- Department of Geriatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
13
|
Shen M, Li K, Wang L, Feng L, Zhang X, Zhang H, Zhou H, Pei G. ZIP4 upregulation aggravates nucleus pulposus cell degradation by promoting inflammation and oxidative stress by mediating the HDAC4-FoxO3a axis. Aging (Albany NY) 2024; 16:685-700. [PMID: 38217540 PMCID: PMC10817398 DOI: 10.18632/aging.205412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/18/2023] [Indexed: 01/15/2024]
Abstract
BACKGROUND Extracellular matrix metabolism dysregulation in nucleus pulposus (NP) cells represents a crucial pathophysiological feature of intervertebral disc degeneration (IDD). Our study elucidates the role and mechanism of Testis expressed 11 (TEX11, also called ZIP4) extracellular matrix degradation in the NP. MATERIALS AND METHODS Interleukin-1β (IL-1β) and H2O2 were used to treat NP cells to establish an IDD cell model. Normal NP tissues and NP tissues from IDD patients were harvested. ZIP4 mRNA and protein profiles in NP cells and tissues were examined. Enzyme-linked immunosorbent assay (ELISA) confirmed the profiles of TNF-α, IL-6, MDA, and SOD in NP cells. The alterations of reactive oxygen species (ROS), lactate dehydrogenase (LDH), COX2, iNOS, MMP-3, MMP-13, collagen II, aggrecan, FoxO3a, histone deacetylase 4 (HDAC4), Sirt1 and NF-κB levels in NP cells were determined using different assays. RESULTS The ZIP4 profile increased in the NP tissues of IDD patients and IL-1β- or H2O2-treated NP cells. ZIP4 upregulation bolstered inflammation and oxidative stress in NP cells undergoing IL-1β treatment and exacerbated their extracellular matrix degradation, whereas ZIP4 knockdown produced the opposite outcome. Mechanistically, ZIP4 upregulated HDAC4 and enhanced NF-κB phosphorylation while repressing Sirt1 and FoxO3a phosphorylation levels. HDAC4 knockdown or Sirt1 promotion attenuated the effects mediated by ZIP4 overexpression in NP cells. CONCLUSIONS ZIP4 upregulation aggravates the extracellular matrix (ECM) degradation of NP cells by mediating inflammation and oxidative stress through the HDAC4-FoxO3a axis.
Collapse
Affiliation(s)
- Mingkui Shen
- Intervertebral Disc Center, Third Hospital of Henan Province, Zhengzhou 450006, Henan, China
| | - Kuankuan Li
- Intervertebral Disc Center, Third Hospital of Henan Province, Zhengzhou 450006, Henan, China
| | - Lulu Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Li Feng
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xinyu Zhang
- Intervertebral Disc Center, Third Hospital of Henan Province, Zhengzhou 450006, Henan, China
| | - Haoping Zhang
- Intervertebral Disc Center, Third Hospital of Henan Province, Zhengzhou 450006, Henan, China
| | - Honggang Zhou
- Intervertebral Disc Center, Third Hospital of Henan Province, Zhengzhou 450006, Henan, China
| | - Guoxian Pei
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
14
|
Yoshioka Y, Oishi S, Onoda K, Shibata K, Miyoshi N. Diosgenin prevents dexamethasone-induced myotube atrophy in C2C12 cells. Arch Biochem Biophys 2023; 747:109759. [PMID: 37722527 DOI: 10.1016/j.abb.2023.109759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Several pathophysiological abnormalities, including a sedentary lifestyle, chronic diseases, and oxidative stress, can contribute to muscle atrophy triggered by an imbalance in muscle protein synthesis and degradation. Resolving muscle atrophy is a critical issue as it can reduce the quality of life. Here, one of the promising functional food factors, diosgenin (a steroidal sapogenin) showed strong preventive activities against dexamethasone (Dex)-induced muscle atrophy, as determined by the expression levels and morphology of the myosin heavy chain in C2C12 myotubes. Diosgenin inhibited protein expressions of Dex-induced skeletal muscle-specific ubiquitin ligase, including muscle RING finger 1 (MuRF1) and casitas B-lineage lymphoma protooncogene b (Cbl-b) but not atrogin-1. Diosgenin ameliorated Dex-induced declines of Akt phosphorylation at Ser473 and FoxO3a phosphorylation at Ser253, which probably at least partially contributed to the suppression of MuRF1, Cbl-b, and atrogin-1 gene expression. Additionally, diosgenin inhibited Dex-induced nuclear translocation of the glucocorticoid receptor (GR), diosgenin therefore may competitively inhibit the interaction between Dex and GR. These findings suggest that diosgenin is an effective functional food for preventing glucocorticoid-induced skeletal muscle atrophy.
Collapse
Affiliation(s)
- Yasukiyo Yoshioka
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Shiori Oishi
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Keita Onoda
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Katsumi Shibata
- Faculty of Clinical Nutrition and Dietetics, Konan Women's University, Kobe, Hyogo, 685-0001, Japan
| | - Noriyuki Miyoshi
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan.
| |
Collapse
|
15
|
Chang PR, Liou JW, Chen PY, Gao WY, Wu CL, Wu MJ, Yen JH. The Neuroprotective Effects of Flavonoid Fisetin against Corticosterone-Induced Cell Death through Modulation of ERK, p38, and PI3K/Akt/FOXO3a-Dependent Pathways in PC12 Cells. Pharmaceutics 2023; 15:2376. [PMID: 37896136 PMCID: PMC10610442 DOI: 10.3390/pharmaceutics15102376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
The overactive hypothalamic-pituitary-adrenal (HPA) axis is believed to trigger the overproduction of corticosterone, leading to neurotoxicity in the brain. Fisetin is a flavonoid commonly found in fruits and vegetables. It has been suggested to possess various biological activities, including antioxidant, anti-inflammatory, and neuroprotective effects. This study aims to explore the potential neuroprotective properties of fisetin against corticosterone-induced cell death and its underlying molecular mechanism in PC12 cells. Our results indicate that fisetin, at concentrations ranging from 5 to 40 μM, significantly protected PC12 cells against corticosterone-induced cell death. Fisetin effectively reduced the corticosterone-mediated generation of reactive oxygen species (ROS) in PC12 cells. Fisetin treatments also showed potential in inhibiting the corticosterone-induced apoptosis of PC12 cells. Moreover, inhibitors targeting MAPK/ERK kinase 1/2 (MEK1/2), p38 MAPK, and phosphatidylinositol 3-kinase (PI3K) were found to significantly block the increase in cell viability induced by fisetin in corticosterone-treated cells. Consistently, fisetin enhanced the phosphorylation levels of ERK, p38, Akt, and c-AMP response element-binding protein (CREB) in PC12 cells. Additionally, it was found that the diminished levels of p-CREB and p-ERK by corticosterone can be restored by fisetin treatment. Furthermore, the investigation of crosstalk between ERK and CREB revealed that p-CREB activation by fisetin occurred through the ERK-independent pathway. Moreover, we demonstrated that fisetin effectively counteracted the corticosterone-induced nuclear accumulation of FOXO3a, an apoptosis-triggering transcription factor, and concurrently promoted FOXO3a phosphorylation and its subsequent cytoplasmic localization through the PI3K/Akt pathway. In conclusion, our findings indicate that fisetin exerts its neuroprotective effect against corticosterone-induced cell death by modulating ERK, p38, and the PI3K/Akt/FOXO3a-dependent pathways in PC12 cells. Fisetin emerges as a promising phytochemical for neuroprotection.
Collapse
Affiliation(s)
- Pei-Rong Chang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970374, Taiwan; (P.-R.C.); (P.-Y.C.)
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 970374, Taiwan;
| | - Je-Wen Liou
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 970374, Taiwan;
| | - Pei-Yi Chen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970374, Taiwan; (P.-R.C.); (P.-Y.C.)
- Laboratory of Medical Genetics, Genetic Counseling Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970374, Taiwan;
| | - Wan-Yun Gao
- Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan;
| | - Chia-Ling Wu
- Laboratory of Medical Genetics, Genetic Counseling Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970374, Taiwan;
| | - Ming-Jiuan Wu
- Department of Biotechnology, Chia-Nan University of Pharmacy and Science, Tainan 717301, Taiwan;
| | - Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970374, Taiwan; (P.-R.C.); (P.-Y.C.)
- Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan;
| |
Collapse
|
16
|
Orellana AM, Mazucanti CH, Dos Anjos LP, de Sá Lima L, Kawamoto EM, Scavone C. Klotho increases antioxidant defenses in astrocytes and ubiquitin-proteasome activity in neurons. Sci Rep 2023; 13:15080. [PMID: 37699938 PMCID: PMC10497516 DOI: 10.1038/s41598-023-41166-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/23/2023] [Indexed: 09/14/2023] Open
Abstract
Klotho is an antiaging protein, and its levels decline with age and chronic stress. The exogenous administration of Klotho can enhance cognitive performance in mice and negatively modulate the Insulin/IGF1/PI3K/AKT pathway in terms of metabolism. In humans, insulin sensitivity is a hallmark of healthy longevity. Therefore, this study aimed to determine if exogenous Klotho, when added to neuronal and astrocytic cell cultures, could reduce the phosphorylation levels of certain insulin signaling effectors and enhance antioxidant strategies in these cells. Primary cell cultures of cortical astrocytes and neurons from mice were exposed to 1 nM Klotho for 24 h, with or without glucose. Klotho decreased pAKT and mTOR levels. However, in astrocytes, Klotho increased FOXO-3a activity and catalase levels, shielding them from intermediate oxidative stress. In neurons, Klotho did not alter FOXO-3 phosphorylation levels but increased proteasome activity, maintaining lower levels of PFKFB3. This study offers new insights into the roles of Klotho in regulating energy metabolism and the redox state in the brain.
Collapse
Affiliation(s)
- Ana Maria Orellana
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences ICB-1, University of São Paulo, Avenida Professor Lineu Prestes, 1524, São Paulo, São Paulo, 05508-900, Brazil
| | - Caio Henrique Mazucanti
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences ICB-1, University of São Paulo, Avenida Professor Lineu Prestes, 1524, São Paulo, São Paulo, 05508-900, Brazil
- Laboratory of Clinical Investigation, Diabetes Section, National Institute on Aging (NIH/NIA), Baltimore, MD, USA
| | - Leticia Pavan Dos Anjos
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences ICB-1, University of São Paulo, Avenida Professor Lineu Prestes, 1524, São Paulo, São Paulo, 05508-900, Brazil
| | - Larissa de Sá Lima
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences ICB-1, University of São Paulo, Avenida Professor Lineu Prestes, 1524, São Paulo, São Paulo, 05508-900, Brazil
| | - Elisa Mitiko Kawamoto
- Laboratory of Molecular and Functional Neurobiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Cristoforo Scavone
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences ICB-1, University of São Paulo, Avenida Professor Lineu Prestes, 1524, São Paulo, São Paulo, 05508-900, Brazil.
| |
Collapse
|
17
|
Ruperti F, Becher I, Stokkermans A, Wang L, Marschlich N, Potel C, Maus E, Stein F, Drotleff B, Schippers K, Nickel M, Prevedel R, Musser JM, Savitski MM, Arendt D. Molecular profiling of sponge deflation reveals an ancient relaxant-inflammatory response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.02.551666. [PMID: 37577507 PMCID: PMC10418225 DOI: 10.1101/2023.08.02.551666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
A hallmark of animals is the coordination of whole-body movement. Neurons and muscles are central to this, yet coordinated movements also exist in sponges that lack these cell types. Sponges are sessile animals with a complex canal system for filter-feeding. They undergo whole-body movements resembling "contractions" that lead to canal closure and water expulsion. Here, we combine 3D optical coherence microscopy, pharmacology, and functional proteomics to elucidate anatomy, molecular physiology, and control of these movements. We find them driven by the relaxation of actomyosin stress fibers in epithelial canal cells, which leads to whole-body deflation via collapse of the incurrent and expansion of the excurrent system, controlled by an Akt/NO/PKG/A pathway. A concomitant increase in reactive oxygen species and secretion of proteinases and cytokines indicate an inflammation-like state reminiscent of vascular endothelial cells experiencing oscillatory shear stress. This suggests an ancient relaxant-inflammatory response of perturbed fluid-carrying systems in animals.
Collapse
Affiliation(s)
- Fabian Ruperti
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Collaboration for joint Ph.D. degree between EMBL and Heidelberg University, Faculty of Biosciences 69117 Heidelberg, Germany
| | - Isabelle Becher
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | - Ling Wang
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Nick Marschlich
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| | - Clement Potel
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Emanuel Maus
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Frank Stein
- Proteomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Bernhard Drotleff
- Metabolomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Klaske Schippers
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Michael Nickel
- Bionic Consulting Dr. Michael Nickel, 71686 Remseck am Neckar, Germany
| | - Robert Prevedel
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Jacob M Musser
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Mikhail M Savitski
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Proteomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
18
|
Lebiedziński F, Lisowska KA. Impact of Vitamin D on Immunopathology of Hashimoto's Thyroiditis: From Theory to Practice. Nutrients 2023; 15:3174. [PMID: 37513592 PMCID: PMC10385100 DOI: 10.3390/nu15143174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Hashimoto's thyroiditis (HT) is a common autoimmune disease affecting the thyroid gland, characterized by lymphocytic infiltration, damage to thyroid cells, and hypothyroidism, and often requires lifetime treatment with levothyroxine. The disease has a complex etiology, with genetic and environmental factors contributing to its development. Vitamin D deficiency has been linked to a higher prevalence of thyroid autoimmunity in certain populations, including children, adolescents, and obese individuals. Moreover, vitamin D supplementation has shown promise in reducing antithyroid antibody levels, improving thyroid function, and improving other markers of autoimmunity, such as cytokines, e.g., IP10, TNF-α, and IL-10, and the ratio of T-cell subsets, such as Th17 and Tr1. Studies suggest that by impacting various immunological mechanisms, vitamin D may help control autoimmunity and improve thyroid function and, potentially, clinical outcomes of HT patients. The article discusses the potential impact of vitamin D on various immune pathways in HT. Overall, current evidence supports the potential role of vitamin D in the prevention and management of HT, although further studies are needed to fully understand its mechanisms of action and potential therapeutic benefits.
Collapse
Affiliation(s)
- Filip Lebiedziński
- Department of Physiopathology, Medical University of Gdańsk, 80-211 Gdansk, Poland
| | | |
Collapse
|
19
|
Bhattacharyya P, Biswas A, Biswas SC. Brain-enriched miR-128: Reduced in exosomes from Parkinson's patient plasma, improves synaptic integrity, and prevents 6-OHDA mediated neuronal apoptosis. Front Cell Neurosci 2023; 16:1037903. [PMID: 36713778 PMCID: PMC9879011 DOI: 10.3389/fncel.2022.1037903] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder associated with the death of mid-brain dopaminergic neurons. Unfortunately, no effective cure or diagnostic biomarkers for PD are available yet. To address this, the present study focuses on brain-enriched small non-coding regulatory RNAs called microRNAs (miRNAs) that are released into the circulation packaged inside small extracellular vesicles called exosomes. We collected blood samples from PD patients and isolated exosomes from the plasma. qPCR-based detection revealed a particular neuron-enriched miR-128 to be significantly decreased in the patient-derived exosomes. Interestingly, a concomitant decreased expression of miR-128 was observed in the cellular models of PD. Fluorescent live cell imaging and flow-cytometry revealed that over-expression of miR-128 can prevent 6-OHDA-mediated mitochondrial superoxide production and induction of neuronal death respectively. This neuroprotective effect was found to be induced by miR-128-mediated inhibition of FoxO3a activation, a transcription factor involved in apoptosis. miR-128 over-expression also resulted in down-regulation of pro-apoptotic FoxO3a targets- FasL and PUMA, at both transcript and protein levels. Further downstream, miR-128 over-expression inhibited activation of caspases-8, -9 and -3, preventing both the intrinsic and extrinsic pathways of apoptosis. Additionally, over expression of miR-128 prevented down-regulation of synaptic proteins- Synaptophysin and PSD-95 and attenuated neurite shortening, thereby maintaining overall neuronal integrity. Thus, our study depicts the intracellular role of miR-128 in neuronal apoptosis and neurodegeneration and its implications as a biomarker being detectable in the circulating exosomes of PD patient blood. Thus, characterization of such exosomal brain-enriched miRNAs hold promise for effective detection and diagnosis of PD.
Collapse
Affiliation(s)
- Pallabi Bhattacharyya
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Atanu Biswas
- Department of Neurology, Bangur Institute of Neurosciences, Kolkata, India
| | - Subhas C. Biswas
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India,*Correspondence: Subhas C. Biswas, ;
| |
Collapse
|
20
|
Role of FOXO3a Transcription Factor in the Regulation of Liver Oxidative Injury. Antioxidants (Basel) 2022; 11:antiox11122478. [PMID: 36552685 PMCID: PMC9774119 DOI: 10.3390/antiox11122478] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Oxidative stress has been identified as a key mechanism in liver damage caused by various chemicals. The transcription factor FOXO3a has emerged as a critical regulator of redox imbalance. Multiple post-translational changes and epigenetic processes closely regulate the activity of FOXO3a, resulting in synergistic or competing impacts on its subcellular localization, stability, protein-protein interactions, DNA binding affinity, and transcriptional programs. Depending on the chemical nature and subcellular context, the oxidative-stress-mediated activation of FOXO3a can induce multiple transcriptional programs that play crucial roles in oxidative injury to the liver by chemicals. Here, we mainly review the role of FOXO3a in coordinating programs of genes that are essential for cellular homeostasis, with an emphasis on exploring the regulatory mechanisms and potential application of FOXO3a as a therapeutic target to prevent and treat liver oxidative injury.
Collapse
|
21
|
Hargadon KM, Goodloe TB, Lloyd ND. Oncogenic functions of the FOXC2 transcription factor: a hallmarks of cancer perspective. Cancer Metastasis Rev 2022; 41:833-852. [PMID: 35701636 DOI: 10.1007/s10555-022-10045-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/06/2022] [Indexed: 01/25/2023]
Abstract
Epigenetic regulation of gene expression is a fundamental determinant of molecular and cellular function, and epigenetic reprogramming in the context of cancer has emerged as one of the key enabling characteristics associated with acquisition of the core hallmarks of this disease. As such, there has been renewed interest in studying the role of transcription factors as epigenetic regulators of gene expression in cancer. In this review, we discuss the current state of knowledge surrounding the oncogenic functions of FOXC2, a transcription factor that frequently becomes dysregulated in a variety of cancer types. In addition to highlighting the clinical impact of aberrant FOXC2 activity in cancer, we discuss mechanisms by which this transcription factor becomes dysregulated in both tumor and tumor-associated cells, placing particular emphasis on the ways in which FOXC2 promotes key hallmarks of cancer progression. Finally, we bring attention to important issues related to the oncogenic dysregulation of FOXC2 that must be addressed going forward in order to improve our understanding of FOXC2-mediated cancer progression and to guide prognostic and therapeutic applications of this knowledge in clinical settings.
Collapse
Affiliation(s)
- Kristian M Hargadon
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, 23943, USA.
| | - Travis B Goodloe
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, 23943, USA
| | - Nathaniel D Lloyd
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, 23943, USA
| |
Collapse
|
22
|
Kang TH, Kang KS, Lee SI. Deoxynivalenol Induces Apoptosis via FOXO3a-Signaling Pathway in Small-Intestinal Cells in Pig. TOXICS 2022; 10:toxics10090535. [PMID: 36136500 PMCID: PMC9503759 DOI: 10.3390/toxics10090535] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 05/12/2023]
Abstract
Deoxynivalenol (DON) is a mycotoxin that is found in feed ingredients derived from grains such as corn and wheat. Consumption of DON-contaminated feed has been shown to cause damage to the intestine, kidneys, and liver. However, the molecular mechanism by which DON exerts its effect in the small intestine is not completely understood. As a result, we profiled gene expression in intestinal epithelial cells treated with DON and examined the molecular function in vitro. We hypothesized that DON could induce apoptosis via the FOXO3a-signaling pathway in intestinal epithelial cells based on these findings. DON induced the apoptosis and the translocation of FOXO3a into the nucleus. Moreover, the inhibiting of FOXO3a alleviated the apoptosis and expression of apoptosis-related genes (TRAL, BCL-6, CASP8, and CASP3). ERK1/2 inhibitor treatment suppressed the translocation of FOXO3a into the nucleus. Our discovery suggests that DON induces apoptosis in intestinal epithelial cells through the FOXO3a-signaling pathway.
Collapse
Affiliation(s)
- Tae Hong Kang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju-si 37224, Korea
| | - Kyung Soo Kang
- Department of Bio Life Sciences, Shingu College, Seongnam-si 13174, Korea
| | - Sang In Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju-si 37224, Korea
- Correspondence: ; Tel.: +82-010-4183-5831
| |
Collapse
|
23
|
Firnau MB, Brieger A. CK2 and the Hallmarks of Cancer. Biomedicines 2022; 10:1987. [PMID: 36009534 PMCID: PMC9405757 DOI: 10.3390/biomedicines10081987] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer is a leading cause of death worldwide. Casein kinase 2 (CK2) is commonly dysregulated in cancer, impacting diverse molecular pathways. CK2 is a highly conserved serine/threonine kinase, constitutively active and ubiquitously expressed in eukaryotes. With over 500 known substrates and being estimated to be responsible for up to 10% of the human phosphoproteome, it is of significant importance. A broad spectrum of diverse types of cancer cells has been already shown to rely on disturbed CK2 levels for their survival. The hallmarks of cancer provide a rationale for understanding cancer's common traits. They constitute the maintenance of proliferative signaling, evasion of growth suppressors, resisting cell death, enabling of replicative immortality, induction of angiogenesis, the activation of invasion and metastasis, as well as avoidance of immune destruction and dysregulation of cellular energetics. In this work, we have compiled evidence from the literature suggesting that CK2 modulates all hallmarks of cancer, thereby promoting oncogenesis and operating as a cancer driver by creating a cellular environment favorable to neoplasia.
Collapse
Affiliation(s)
| | - Angela Brieger
- Department of Internal Medicine I, Biomedical Research Laboratory, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
24
|
Stukan I, Gryzik M, Hoser G, Want A, Grabowska-Pyrzewicz W, Zdioruk M, Napiórkowska M, Cieślak M, Królewska-Golińska K, Nawrot B, Basak G, Wojda U. Novel Dicarboximide BK124.1 Breaks Multidrug Resistance and Shows Anticancer Efficacy in Chronic Myeloid Leukemia Preclinical Models and Patients' CD34 +/CD38 - Leukemia Stem Cells. Cancers (Basel) 2022; 14:cancers14153641. [PMID: 35892900 PMCID: PMC9332833 DOI: 10.3390/cancers14153641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Chemotherapy is a first line treatment in many cancer types, but the constant exposition to chemotherapeutics often leads to therapy resistance. An example is chronic myeloid leukemia that, due to the use of tyrosine kinase inhibitors such as imatinib, remains manageable, however incurable. Overall, 20–25% of imatinib responders develop secondary resistance, and among them, 20–40% is due to mechanisms such as expression of P-glycoprotein (MDR1) or leukemia stem cells’ mechanisms of survival and cancer regrowth. This study provides the first evidence from animal and cellular models that this resistance can be overcome with the novel dicarboximide BK124.1. The compound causes no visible toxicity in mice, and has proper pharmacokinetics for therapeutic applications. It was efficient against both multidrug resistant CML blasts and CD34+/CD38− leukemia stem cells coming from CML patients. Future development of BK124.1 could offer curative treatment of CML and of other cancers resistant or intolerant to current chemotherapy. Abstract The search is ongoing for new anticancer therapeutics that would overcome resistance to chemotherapy. This includes chronic myeloid leukemia, particularly suitable for the studies of novel anticancer compounds due to its homogenous and well-known genetic background. Here we show anticancer efficacy of novel dicarboximide denoted BK124.1 (C31H37ClN2O4) in a mouse CML xenograft model and in vitro in two types of chemoresistant CML cells: MDR1 blasts and in CD34+ patients’ stem cells (N = 8) using immunoblotting and flow cytometry. Intraperitoneal administration of BK124.1 showed anti-CML efficacy in the xenograft mouse model (N = 6) comparable to the commonly used imatinib and hydroxyurea. In K562 blasts, BK124.1 decreased the protein levels of BCR-ABL1 kinase and its downstream effectors, resulting in G2/M cell cycle arrest and apoptosis associated with FOXO3a/p21waf1/cip1 upregulation in the nucleus. Additionally, BK124.1 evoked massive apoptosis in multidrug resistant K562-MDR1 cells (IC50 = 2.16 μM), in CD34+ cells from CML patients (IC50 = 1.5 µM), and in the CD34+/CD38− subpopulation consisting of rare, drug-resistant cancer initiating stem cells. Given the advantages of BK124.1 as a potential chemotherapeutic and its unique ability to overcome BCR-ABL1 dependent and independent multidrug resistance mechanisms, future development of BK124.1 could offer a cure for CML and other cancers resistant to present drugs.
Collapse
Affiliation(s)
- Iga Stukan
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (I.S.); (M.G.); (G.H.); (A.W.); (W.G.-P.); (M.Z.)
| | - Marek Gryzik
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (I.S.); (M.G.); (G.H.); (A.W.); (W.G.-P.); (M.Z.)
| | - Grażyna Hoser
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (I.S.); (M.G.); (G.H.); (A.W.); (W.G.-P.); (M.Z.)
- Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Andrew Want
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (I.S.); (M.G.); (G.H.); (A.W.); (W.G.-P.); (M.Z.)
| | - Wioleta Grabowska-Pyrzewicz
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (I.S.); (M.G.); (G.H.); (A.W.); (W.G.-P.); (M.Z.)
| | - Mikolaj Zdioruk
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (I.S.); (M.G.); (G.H.); (A.W.); (W.G.-P.); (M.Z.)
| | - Mariola Napiórkowska
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Marcin Cieślak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Lodz, Poland; (M.C.); (K.K.-G.); (B.N.)
| | - Karolina Królewska-Golińska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Lodz, Poland; (M.C.); (K.K.-G.); (B.N.)
| | - Barbara Nawrot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Lodz, Poland; (M.C.); (K.K.-G.); (B.N.)
| | - Grzegorz Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Urszula Wojda
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (I.S.); (M.G.); (G.H.); (A.W.); (W.G.-P.); (M.Z.)
- Correspondence: ; Tel.: +48-22-5892-578
| |
Collapse
|
25
|
Greenwood EK, Angelova DM, Büchner HMI, Brown DR. The AICD fragment of APP initiates a FoxO3a mediated response via FANCD2. Mol Cell Neurosci 2022; 122:103760. [PMID: 35901928 DOI: 10.1016/j.mcn.2022.103760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/11/2022] [Accepted: 07/21/2022] [Indexed: 11/18/2022] Open
Abstract
The amyloid precursor protein (APP) is a cell surface protein of uncertain function that is notable for being the parent protein of beta-amyloid. Research around this protein has focussed heavily on the link to Alzheimer's disease and neurodegeneration. However, there is increasing evidence that APP may be linked to neuronal loss through mechanisms independent of beta-amyloid. FoxO3a is a transcription factor associated with neuronal longevity and apoptosis. In neurons, FoxO3a is associated with cell death through pathways that include BIM, a BCL-2 family member. In this study we have shown that APP overexpression increased the cellular levels and activity of FoxO3a. This increased expression and activity is not a result of decreased phosphorylation but is more likely a result of increased nuclear stability due to increased levels of FANCD2, a binding partner of FoxO3a. The changes caused by APP overexpression were shown to be due to the AICD fragment of APP possibly directly inducing transcription increase in FANCD2. These findings strengthen the link between APP metabolism and FoxO3a neuronal activity. This link may be crucial in better understanding the cellular role of APP and its link to neurodegeneration and aging.
Collapse
Affiliation(s)
| | | | | | - David R Brown
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
26
|
Mathivanan S, Chunchagatta Lakshman PK, Singh M, Giridharan S, Sathish K, Hurakadli MA, Bharatham K, Kamariah N. Structure of a 14-3-3ε:FOXO3a pS253 Phosphopeptide Complex Reveals 14-3-3 Isoform-Specific Binding of Forkhead Box Class O Transcription Factor (FOXO) Phosphoproteins. ACS OMEGA 2022; 7:24344-24352. [PMID: 35874228 PMCID: PMC9301721 DOI: 10.1021/acsomega.2c01700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The transcriptional activity of Forkhead Box O3 (FOXO3a) is inactivated by AKT-mediated phosphorylation on Serine 253 (S253), which enables FOXO3a binding to 14-3-3. Phosphorylated FOXO3a binding to 14-3-3 facilitates the nuclear exclusion of FOXO3a, causing cancer cell proliferation. The FOXO3a/14-3-3 interaction has, therefore, emerged as an important therapeutic target. Here, we report a comprehensive analysis using fluorescence polarization, isothermal titration calorimetry, small-angle X-ray scattering, X-ray crystallography, and molecular dynamics simulations to gain molecular-level insights into the interaction of FOXO3apS253 phosphopeptide with 14-3-3ε. A high-resolution structure of the fluorophore-labeled FOXO3apS253:14-3-3ε complex revealed a distinct mode of interaction compared to other 14-3-3 phosphopeptide complexes. FOXO3apS253 phosphopeptide showed significant structural difference in the positions of the -3 and -4 Arg residues relative to pSer, compared to that of a similar phosphopeptide, FOXO1pS256 bound to 14-3-3σ. Moreover, molecular dynamics studies show that the significant structural changes and molecular interactions noticed in the crystal structure of FOXO3apS253:14-3-3ε are preserved over the course of the simulation. Thus, this study reveals structural differences between the binding to 14-3-3 isoforms of FOXO1pS256 versus FOXO3apS253, providing a framework for the rational design of isoform-specific FOXO/14-3-3 protein-protein interaction inhibitors for therapy.
Collapse
|
27
|
Wang T, Zhang Z, Xie M, Li S, Zhang J, Zhou J. Apigenin Attenuates Mesoporous Silica Nanoparticles-Induced Nephrotoxicity by Activating FOXO3a. Biol Trace Elem Res 2022; 200:2793-2806. [PMID: 34448149 DOI: 10.1007/s12011-021-02871-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/04/2021] [Indexed: 11/30/2022]
Abstract
Mesoporous silica nanoparticles (MSNs) are widely used in many biomedical applications and clinical fields. However, the applications of MSNs are limited by their severe toxicity. Apigenin (AG) has demonstrated pharmacological effects with low toxicity. The aim of this study was to clarify the role of AG in the progression of MSNs-induced renal injury. BALB/c mice and NRK-52E cells were exposed to MSNs with or without AG. AG protected mice and NRK-52E cells from the MSNs-induced pathological variations in renal tissues and decreased cell viability. AG significantly reduced the levels of serum blood urea nitrogen (BUN) and serum creatinine (Scr), upregulated the levels of superoxide dismutase (SOD), glutathione (GSH) and catalase (CAT), and improved the pathological changes of the kidney in MSNs-treated mice. The protective effects of AG were associated with its ability to increase the levels of antioxidants, reduce the accumulation of ROS, and inhibit the expression of the inflammatory mediators (TNF-α, IL-6). In addition, AG treatment upregulated the activity of FOXO3a, increased the level of IkBα, and reduced the nuclear translocation of NF-κB, which ultimately alleviated MSNs-induced inflammation. Nuclear FOXO3a translocation also triggered antioxidant gene transcription and protected nephrocyte from oxidative damage. However, knockdown of FOXO3a significantly blocked the protective effects of AG. These findings suggested that AG could be a promising therapeutic strategy for MSNs-induced nephrotoxicity, and this protective effect might be related to the suppression of oxidative stress and inflammation via the FOXO3a/NF-κB pathway.
Collapse
Affiliation(s)
- Tianyang Wang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, People's Republic of China
| | - Ziwen Zhang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, People's Republic of China
| | - Minjuan Xie
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, People's Republic of China
| | - Saifeng Li
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, People's Republic of China
| | - Jian Zhang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, People's Republic of China
| | - Jie Zhou
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, People's Republic of China.
| |
Collapse
|
28
|
Stagni F, Bartesaghi R. The Challenging Pathway of Treatment for Neurogenesis Impairment in Down Syndrome: Achievements and Perspectives. Front Cell Neurosci 2022; 16:903729. [PMID: 35634470 PMCID: PMC9130961 DOI: 10.3389/fncel.2022.903729] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022] Open
Abstract
Down syndrome (DS), also known as trisomy 21, is a genetic disorder caused by triplication of Chromosome 21. Gene triplication may compromise different body functions but invariably impairs intellectual abilities starting from infancy. Moreover, after the fourth decade of life people with DS are likely to develop Alzheimer’s disease. Neurogenesis impairment during fetal life stages and dendritic pathology emerging in early infancy are thought to be key determinants of alterations in brain functioning in DS. Although the progressive improvement in medical care has led to a notable increase in life expectancy for people with DS, there are currently no treatments for intellectual disability. Increasing evidence in mouse models of DS reveals that pharmacological interventions in the embryonic and neonatal periods may greatly benefit brain development and cognitive performance. The most striking results have been obtained with pharmacotherapies during embryonic life stages, indicating that it is possible to pharmacologically rescue the severe neurodevelopmental defects linked to the trisomic condition. These findings provide hope that similar benefits may be possible for people with DS. This review summarizes current knowledge regarding (i) the scope and timeline of neurogenesis (and dendritic) alterations in DS, in order to delineate suitable windows for treatment; (ii) the role of triplicated genes that are most likely to be the key determinants of these alterations, in order to highlight possible therapeutic targets; and (iii) prenatal and neonatal treatments that have proved to be effective in mouse models, in order to rationalize the choice of treatment for human application. Based on this body of evidence we will discuss prospects and challenges for fetal therapy in individuals with DS as a potential means of drastically counteracting the deleterious effects of gene triplication.
Collapse
Affiliation(s)
- Fiorenza Stagni
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- *Correspondence: Renata Bartesaghi,
| |
Collapse
|
29
|
Selenium Effects on Oxidative Stress-Induced Calcium Signaling Pathways in Parkinson’s Disease. Indian J Clin Biochem 2022; 37:257-266. [DOI: 10.1007/s12291-022-01031-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/02/2022] [Indexed: 02/07/2023]
|
30
|
Li X, Yin Y, Li W, Li S, Zhang D, Liu Z. Omarigliptin alleviates cognitive dysfunction in Streptozotocin-induced diabetic mouse. Bioengineered 2022; 13:9387-9396. [PMID: 35389830 PMCID: PMC9161942 DOI: 10.1080/21655979.2022.2055699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Increasing epidemiological evidence supports the strong association between diabetes mellitus (DM) and cognitive dysfunction. Omarigliptin is a long-acting dipeptidyl peptidase 4 (DPP-4) inhibitor for the treatment of diabetes. However, the effect of Omarigliptin in diabetes-associated cognitive dysfunction has not been reported. In this study, we established an in vivo diabetic mice model through streptozotocin (STZ) treatment and investigated the therapeutic effect of Omarigliptin in diabetic mice. The results show that administration with Omarigliptin reduced the food and water intake of STZ-induced diabetic mice, accompanied by decreased blood glucose levels and increased serum insulin levels. The Y-Maze test demonstrated that Omarigliptin ameliorated cognitive dysfunction in STZ-induced diabetic mice. Omarigliptin presented a protective role in the brain, as shown by the decreased reactive oxygen species (ROS) level, increased NAD+/NADH ratio, adenosine triphosphate (ATP) level, and ATP synthase activity in the hippocampus. Omarigliptin induced the increased expression level of mitochondrial inner membrane protein sirtuin 3 (SIRT3) and regulated its substrates, including forkhead box O3a (FOXO3a) and superoxide dismutase 2 (SOD2). Furthermore, knockdown of SIRT3 abolished the protective effects of Omarigliptin on mitochondrial dysfunction and cognitive dysfunction in STZ-induced diabetic mice. Taken together, these findings suggest that Omarigliptin improved insulin sensitivity and cognitive function in STZ-induced diabetic mice. Mechanistically, SIRT3 expression is required for the effect of Omarigliptin. This study provided preclinical evidence that Omarigliptin has the neuroprotective effect to improve diabetes-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Xiaoyan Li
- Department of Endocrinology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Ying Yin
- Department of Endocrinology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Wenfeng Li
- Department of Endocrinology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Shanshan Li
- Department of Endocrinology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Dandan Zhang
- Department of Endocrinology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Zehong Liu
- Department of Endocrinology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| |
Collapse
|
31
|
Kortam MA, Alawady AS, Hamid Sadik NA, Fathy N. Fenofibrate mitigates testosterone induced benign prostatic hyperplasia via regulation of Akt/FOXO3a pathway and modulation of apoptosis and proliferation in rats. Arch Biochem Biophys 2022; 723:109237. [DOI: 10.1016/j.abb.2022.109237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/25/2022] [Accepted: 04/11/2022] [Indexed: 12/22/2022]
|
32
|
Yue M, Xiao L, Yan R, Li X, Yang W. Pyroptosis in neurodegenerative diseases: What lies beneath the tip of the iceberg? Int Rev Immunol 2022:1-16. [PMID: 35312447 DOI: 10.1080/08830185.2022.2052064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Neurodegenerative diseases gradually receive attention with a rapidly aging global population. The hallmark of them is a progressive neuronal loss in the brain or peripheral nervous system due to complex reasons ranging from protein aggregation, immune dysregulation to abnormal cell death. The death style of nerve cell is no longer restricted to apoptosis, autophagy and necrosis as confirmed before. With the successive discoveries of the gasdermin (GSDM) protein family and key caspase molecules in the past several decades, pyroptosis emerges as a novel kind of programmed cell death. A substantial body of evidence has recognized the close connection between pyroptosis and the occurrence and development of neurodegenerative diseases. In this review, we summarize molecular mechanisms of pyroptosis, evidences for pyroptosis involvement in neurodegenerative diseases and finally we hope to provide a novel angle for clinical decision-making.
Collapse
Affiliation(s)
- Mengli Yue
- Department of Immunology, College of Basic Medical Sciences, JiLin University, Changchun City, Jilin Province, China
| | - Li Xiao
- Department of Immunology, College of Basic Medical Sciences, JiLin University, Changchun City, Jilin Province, China
| | - Rui Yan
- Department of Immunology, College of Basic Medical Sciences, JiLin University, Changchun City, Jilin Province, China
| | - Xinyi Li
- Department of Immunology, College of Basic Medical Sciences, JiLin University, Changchun City, Jilin Province, China
| | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, JiLin University, Changchun City, Jilin Province, China
| |
Collapse
|
33
|
Lee SY, Lee CM, Ma B, Kamle S, Elias JA, Zhou Y, Lee CG. Targeting Chitinase 1 and Chitinase 3-Like 1 as Novel Therapeutic Strategy of Pulmonary Fibrosis. Front Pharmacol 2022; 13:826471. [PMID: 35370755 PMCID: PMC8969576 DOI: 10.3389/fphar.2022.826471] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/18/2022] [Indexed: 11/21/2022] Open
Abstract
Chitinase 1 (CHIT1) and chitinase 3-like-1 (CHI3L1), two representative members of 18-Glycosyl hydrolases family, are significantly implicated in the pathogenesis of various human diseases characterized by inflammation and remodeling. Notably, dysregulated expression of CHIT1 and CHI3L1 was noted in the patients with pulmonary fibrosis and their levels were inversely correlated with clinical outcome of the patients. CHIT1 and CHI3L1, mainly expressed in alveolar macrophages, regulate profibrotic macrophage activation, fibroblast proliferation and myofibroblast transformation, and TGF-β signaling and effector function. Although the mechanism or the pathways that CHIT1 and CHI3L1 use to regulate pulmonary fibrosis have not been fully understood yet, these studies identify CHIT1 and CHI3L1 as significant modulators of fibroproliferative responses leading to persistent and progressive pulmonary fibrosis. These studies suggest a possibility that CHIT1 and CHI3L1 could be reasonable therapeutic targets to intervene or reverse established pulmonary fibrosis. In this review, we will discuss specific roles and regulatory mechanisms of CHIT1 and CHI3L1 in profibrotic cell and tissue responses as novel therapeutic targets of pulmonary fibrosis.
Collapse
Affiliation(s)
- Suh-Young Lee
- Molecular Microbiology and Immunology, Brown University, 185 Meeting St., Providence, RI, United States
- Devision of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Chang-Min Lee
- Molecular Microbiology and Immunology, Brown University, 185 Meeting St., Providence, RI, United States
| | - Bing Ma
- Molecular Microbiology and Immunology, Brown University, 185 Meeting St., Providence, RI, United States
| | - Suchitra Kamle
- Molecular Microbiology and Immunology, Brown University, 185 Meeting St., Providence, RI, United States
| | - Jack A. Elias
- Molecular Microbiology and Immunology, Brown University, 185 Meeting St., Providence, RI, United States
| | - Yang Zhou
- Molecular Microbiology and Immunology, Brown University, 185 Meeting St., Providence, RI, United States
| | - Chun Geun Lee
- Molecular Microbiology and Immunology, Brown University, 185 Meeting St., Providence, RI, United States
| |
Collapse
|
34
|
Wang X, He R, Geng L, Yuan J, Fan H. Ginsenoside Rg3 Alleviates Cisplatin Resistance of Gastric Cancer Cells Through Inhibiting SOX2 and the PI3K/Akt/mTOR Signaling Axis by Up-Regulating miR-429. Front Genet 2022; 13:823182. [PMID: 35309116 PMCID: PMC8927288 DOI: 10.3389/fgene.2022.823182] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/26/2022] [Indexed: 12/11/2022] Open
Abstract
Platinum-based cytotoxic chemotherapy is considered the standard treatment for advanced gastric cancer (GC). However, cisplatin chemoresistance often occurs with the mechanisms being not well clarified, which results in the cancer recurrence and poor survival. Ginsenoside Rg3, isolated from the Chinese Herb Panax Ginseng, is recognized as an anti-cancer agent. Herein, we aimed to reveal whether Ginsenoside Rg3 alleviates cisplatin resistance and sensitizes GC cells to cisplatin-induced apoptosis, and draw out the underlying molecular mechanism in cisplatin-resistant GC cells. The lower expression of miR-429 was found in AGSR-CDDP cells; it was also in association with cisplatin-resistance in GC cells and expression of which was restored following Ginsenoside Rg3 treatment. We also demonstrated that miR-429 made a contribution toward chemosensitivity in GC cells partly through SOX2 regulation. SOX2 was found to contribute to developing platinum resistance and was an authentic target for miR-429 in AGSR-CDDP cells. Importantly, enforced expression of SOX2 with a pcDNA3-SOX2 construct lacking the 3′-UTR miRNA binding site diminished the cytotoxic effects of miR-429 in AGSR-CDDP cells. We demonstrated that Ginsenoside Rg3 enhanced chemosensitivity in AGSR-CDDP GC cells, at least in part, through up-regulating miR-429, thereby targeting SOX2 and modulating downstream PI3K/AKT/mTOR signaling. Ginsenoside Rg3 was also found to regulate apoptosis-related genes via miR-429 in cisplatin-resistant GC cells. Ginsenoside Rg3 treatment significantly suppressed the migration rate of AGSR-CDDP GC cells, while following transfection with anti-miR-429, the anti-migratory effects of Ginsenoside Rg3 was partially abolished. This data suggested that Ginsenoside Rg3 may impede the chemoresistance and migration of GC cells mainly mediated through miR-429. We concluded that miR-429-regulated SOX2 expression was one of the main mechanisms by which Ginsenoside Rg3 dramatically promoted its anticancer effects on cisplatin-resistant GC cells. We also underscored a supporting model in which miR-429 adjusted PI3K/AKT/mTOR signaling by regulating SOX2 in cisplatin-resistant GC cells.
Collapse
|
35
|
Zhang H, Yan L. Solasonine relieves sevoflurane-induced neurotoxicity via activating the AMP-activated protein kinase/FoxO3a pathway. Hum Exp Toxicol 2022; 41:9603271211069984. [PMID: 35350913 DOI: 10.1177/09603271211069984] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Solasonine (SS), the main active ingredient of Solanumnigrum L, has been reported to boast extensive anti-tumor, anti-oxidant, and anti-inflammatory properties. This study is committed to exploring whether solasonine can alleviate neurotoxicity resulting from sevoflurane. MATERIALS AND METHODS The mouse hippocampal neuron cell line HT22 was treated with sevoflurane and/or solasonine of different doses. The proliferation, inflammation, oxidative stress response, and apoptosis of HT22 cells were examined. The AMP-activated protein kinase (AMPK)/FoxO3a signaling pathway was ascertained through Western blot and cellular immunofluorescence. In in-vivo experiments, Morris water maze figured out the changes in learning and memory abilities of mice treated with 8 mg/kg solasonine and exposed to SEV. RESULTS Sevoflurane induced apoptosis and hampered proliferation in HT22 cells. It also aggravated the release of inflammatory factors and oxidative stress mediators. Solasonine weakened neuron damage mediated by sevoflurane in a concentration-dependent pattern. Mechanically, sevoflurane clogged AMPK/FoxO3a signaling pathway activation, which was strengthened by solasonine. AMPK inhibition greatly influenced solasonine's protective effect on HT22 cells. Invivo, solasonine prominently ameliorated learning and memory disorders and nerve damage in mice exposed to sevoflurane. CONCLUSIONS Solasonine alleviates sevoflurane-induced neurotoxicity through activating the AMPK/FoxO3a signaling pathway.
Collapse
Affiliation(s)
- Huifang Zhang
- Department of Anesthesiology, The Third Hospital of Changsha, Changsha, Hunan, China
| | - Lei Yan
- Department of Anesthesiology, 159426People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| |
Collapse
|
36
|
Mehedintu C, Frincu F, Carp-Veliscu A, Barac R, Badiu DC, Zgura A, Cirstoiu M, Bratila E, Plotogea M. A Warning Call for Fertility Preservation Methods for Women Undergoing Gonadotoxic Cancer Treatment. Medicina (B Aires) 2021; 57:medicina57121340. [PMID: 34946285 PMCID: PMC8709408 DOI: 10.3390/medicina57121340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 11/30/2022] Open
Abstract
Malignant hematological conditions have recognized an increased incidence and require aggressive treatments. Targeted chemotherapy, accompanied or not by radiotherapy, raises the chance of defeating the disease, yet cancer protocols often associate long-term gonadal consequences, for instance, diminished or damaged ovarian reserve. The negative effect is directly proportional to the types, doses, time of administration of chemotherapy, and irradiation. Additionally, follicle damage depends on characteristics of the disease and patient, such as age, concomitant diseases, previous gynecological conditions, and ovarian reserve. Patients should be adequately informed when proceeding to gonadotoxic therapies; hence, fertility preservation should be eventually regarded as a first-intention procedure. This procedure is most beneficial when performed before the onset of cancer treatment, with the recommendation for embryos or oocytes’ cryopreservation. If not feasible or acceptable, several options can be available during or after the cancer treatment. Although not approved by medical practice, promising results after in vitro studies increase the chances of future patients to protect their fertility. This review aims to emphasize the mechanism of action and impact of chemotherapy, especially the one proven to be gonadotoxic, upon ovarian reserve and future fertility. Reduced fertility or infertility, as long-term consequences of chemotherapy and, particularly, following bone marrow transplantation, is often associated with a negative impact of recovery, social and personal life, as well as highly decreased quality of life.
Collapse
Affiliation(s)
- Claudia Mehedintu
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.M.); (F.F.); (A.C.-V.), (R.B.); (A.Z.); (M.C.); (E.B.)
- Department of Obstetrics and Gynecology, “Nicolae Malaxa” Clinical Hospital, 022441 Bucharest, Romania;
| | - Francesca Frincu
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.M.); (F.F.); (A.C.-V.), (R.B.); (A.Z.); (M.C.); (E.B.)
- Department of Obstetrics and Gynecology, “Nicolae Malaxa” Clinical Hospital, 022441 Bucharest, Romania;
| | - Andreea Carp-Veliscu
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.M.); (F.F.); (A.C.-V.), (R.B.); (A.Z.); (M.C.); (E.B.)
| | - Ramona Barac
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.M.); (F.F.); (A.C.-V.), (R.B.); (A.Z.); (M.C.); (E.B.)
| | - Dumitru-Cristinel Badiu
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.M.); (F.F.); (A.C.-V.), (R.B.); (A.Z.); (M.C.); (E.B.)
- Correspondence: ; Tel.: +40-723226346
| | - Anca Zgura
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.M.); (F.F.); (A.C.-V.), (R.B.); (A.Z.); (M.C.); (E.B.)
| | - Monica Cirstoiu
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.M.); (F.F.); (A.C.-V.), (R.B.); (A.Z.); (M.C.); (E.B.)
| | - Elvira Bratila
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.M.); (F.F.); (A.C.-V.), (R.B.); (A.Z.); (M.C.); (E.B.)
| | - Mihaela Plotogea
- Department of Obstetrics and Gynecology, “Nicolae Malaxa” Clinical Hospital, 022441 Bucharest, Romania;
| |
Collapse
|
37
|
Shi Y, Zhao L, Zhang Y, Qin Q, Cong H, Guo Z. Homocysteine promotes cardiac fibrosis by regulating the Akt/FoxO3 pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1732. [PMID: 35071426 PMCID: PMC8743705 DOI: 10.21037/atm-21-5602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/10/2021] [Indexed: 12/19/2022]
Abstract
Background Evaluated plasma homocysteine (Hcy) is an independent risk factor for cardiac fibrosis which is a common feature of cardiovascular disease, although the mechanisms are still unclear. This study aims to explore the mechanism of Hcy-induced cardiac fibrosis. Methods The mRNA and protein levels of Forkhead box O3 (FoxO3) and differentiation markers were detected in primary cardiac fibroblasts (CFs) after 300 µM Hcy treatment. Scratch and transwell migration assay were used to determine the effect of Hcy on proliferation and migration in CFs. The protein levels involved in the fibrotic processes in mice fed with high methionine diet (HMD) for 4 or 8 weeks were investigated by western blot. CFs were infected with FoxO3 recombinant adenovirus to explore the potential role of FoxO3 in Hcy-induced cardiac dysfunction. Results Hcy treatment significantly promoted the differentiation, proliferation and migration of CFs, while FoxO3 activity were decreased in CFs. In HMD hearts, the protein levels of TIMP1, Fibronectin and α-SMA were increased after 4 or 8 weeks, but the FoxO3 activity was decreased. Moreover, the HMD hearts had a higher level of Bcl2 but lower of Bax and LC3II protein. In addition, FoxO3 overexpression attenuates Hcy-induced dysfunction in CFs. Conclusions Hcy promotes myofibroblast activation and resistance to autophagy and apoptosis in CFs, and eventually results in cardiac fibrosis by regulating the Akt/FoxO3 pathway. Thus, FoxO3 is a promising therapeutic target to prevent cardiac remodeling.
Collapse
Affiliation(s)
- Ying Shi
- Tianjin Institute of Cardiovascular Disease, Tianjin Chest Hospital, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease (Tianjin Medical University), Ministry of Education, Tianjin, China
| | - Lili Zhao
- Tianjin Institute of Cardiovascular Disease, Tianjin Chest Hospital, Tianjin, China
| | - Yifei Zhang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China
| | - Qin Qin
- Tianjin Institute of Cardiovascular Disease, Tianjin Chest Hospital, Tianjin, China
| | - Hongliang Cong
- Tianjin Institute of Cardiovascular Disease, Tianjin Chest Hospital, Tianjin, China
| | - Zhigang Guo
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin, China
| |
Collapse
|
38
|
Hypoxia Tolerant Species: The Wisdom of Nature Translated into Targets for Stroke Therapy. Int J Mol Sci 2021; 22:ijms222011131. [PMID: 34681788 PMCID: PMC8537001 DOI: 10.3390/ijms222011131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
Human neurons rapidly die after ischemia and current therapies for stroke management are limited to restoration of blood flow to prevent further brain damage. Thrombolytics and mechanical thrombectomy are the available reperfusion treatments, but most of the patients remain untreated. Neuroprotective therapies focused on treating the pathogenic cascade of the disease have widely failed. However, many animal species demonstrate that neurons can survive the lack of oxygen for extended periods of time. Here, we reviewed the physiological and molecular pathways inherent to tolerant species that have been described to contribute to hypoxia tolerance. Among them, Foxo3 and Eif5A were reported to mediate anoxic survival in Drosophila and Caenorhabditis elegans, respectively, and those results were confirmed in experimental models of stroke. In humans however, the multiple mechanisms involved in brain cell death after a stroke causes translation difficulties to arise making necessary a timely and coordinated control of the pathological changes. We propose here that, if we were able to plagiarize such natural hypoxia tolerance through drugs combined in a pharmacological cocktail it would open new therapeutic opportunities for stroke and likely, for other hypoxic conditions.
Collapse
|
39
|
Yu H, Huang Y, Ge Y, Hong X, Lin X, Tang K, Wang Q, Yang Y, Sun W, Huang Y, Luo H. Selenite-induced ROS/AMPK/FoxO3a/GABARAPL-1 signaling pathway modulates autophagy that antagonize apoptosis in colorectal cancer cells. Discov Oncol 2021; 12:35. [PMID: 35201430 PMCID: PMC8777540 DOI: 10.1007/s12672-021-00427-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/26/2021] [Indexed: 01/14/2023] Open
Abstract
Previous studies have shown that selenium possessed chemotherapeutic effect against multiple malignant cancers, inducing diverse stress responses including apoptosis and autophagy. Selenite was previously shown to induce apoptosis and autophagy in colorectal cancer cells. However, the relationship between selenite-induced apoptosis and autophagy was not fully understood. Our results revealed a pro-survival role of selenite-induced autophagy against apoptosis in colorectal cancer cells. Real-time PCR array of autophagy-related genes showed that GABARAPL-1 was significantly upregulated in colorectal cancer cells, which was confirmed by western blot and immunofluorescence results. Knockdown of GABARAPL-1 significantly inhibited selenite-induced autophagy and enhanced apoptosis. Furthermore, we found that selenite-induced upregulation of GABARAPL-1 was caused by upregulated p-AMPK and FoxO3a level. Their interaction was correlated with involved in regulation of GABARAPL-1. We observed that activation and inhibition of AMPK influenced both autophagy and apoptosis level via FoxO3a/ GABARAPL-1 signaling, implying the pro-survival role of autophagy against apoptosis. Importantly, we corroborated these findings in a colorectal cancer xenograft animal model with immunohistochemistry and western blot results. Collectively, these results show that sodium selenite could induce ROS/AMPK/FoxO3a/GABARAPL-1-mediated autophagy and downregulate apoptosis in both colorectal cancer cells and colon xenograft model. These findings help to explore sodium selenite as a potential anti-cancer drug in clinical practices.
Collapse
Affiliation(s)
- Hailing Yu
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, No.52 of Meihua Dong Road, Xiangzhou District, Zhuhai, Guangdong Province, China
| | - Yin Huang
- Department of Cardiology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Yanming Ge
- Department of Pharmacy, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Xiaopeng Hong
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Xi Lin
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, No.52 of Meihua Dong Road, Xiangzhou District, Zhuhai, Guangdong Province, China
| | - Kexin Tang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, No.52 of Meihua Dong Road, Xiangzhou District, Zhuhai, Guangdong Province, China
| | - Qiang Wang
- The Green Aerotechnics Research Institute of Chongqing Jiaotong University, Chongqing, China
| | - Yang Yang
- Institute of Basic Medical Sciences, Peking Union Medical College, Beijing, China
| | - Weiming Sun
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, No.52 of Meihua Dong Road, Xiangzhou District, Zhuhai, Guangdong Province, China
| | - Yongquan Huang
- Department of Ultrasound, The Fifth Affiliated Hospital, Sun Yat-Sen University, No.52 of Meihua Dong Road, Xiangzhou District, Zhuhai, Guangdong Province, China.
| | - Hui Luo
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, No.52 of Meihua Dong Road, Xiangzhou District, Zhuhai, Guangdong Province, China.
| |
Collapse
|
40
|
Perrone MG, Ruggiero A, Centonze A, Carrieri A, Ferorelli S, Scilimati A. Diffuse Intrinsic Pontine Glioma (DIPG): Breakthrough and Clinical Perspective. Curr Med Chem 2021; 28:3287-3317. [PMID: 32767913 DOI: 10.2174/0929867327666200806110206] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/16/2020] [Accepted: 07/23/2020] [Indexed: 11/22/2022]
Abstract
Diffuse intrinsic pontine glioma (DIPG) mainly affects children with a median age of 6-7 years old. It accounts for 10% of all pediatric tumors. Unfortunately, DIPG has a poor prognosis, and the median survival is generally less than 16-24 months independently from the treatment received. Up to now, children with DIPG are treated with focal radiotherapy alone or in combination with antitumor agents. In the last decade, ONC201 known as dopamine receptor antagonist was uncovered, by a high throughput screening of public libraries of compounds, to be endowed with cytotoxic activity against several cancer cell lines. Efforts were made to identify the real ONC201 target, responsible for its antiproliferative effect. The hypothesized targets were the Tumor necrosis factor-Related Apoptosis-Inducing Ligand stimulation (TRAIL), two oncogenic kinases (ERK/AKT system) that target the same tumor-suppressor gene (FOXO3a), dopamine receptors (DRD2 and DRD3 subtypes) and finally the mitochondrial Caseynolitic Protease P (ClpP). ONC201 structure-activity relationship is extensively discussed in this review, together with other two classes of compounds, namely ADEPs and D9, already known for their antibiotic activity but noteworthy to be discussed and studied as potential "leads" for the development of new drugs to be used in the treatment of DIPG. In this review, a detailed and critical description of ONC201, ADEPs, and D9 pro-apoptotic activity is made, with particular attention to the specific interactions established with its targets that also are intimately described. Pubmed published patents and clinical trial reports of the last ten years were used as the bibliographic source.
Collapse
Affiliation(s)
- Maria Grazia Perrone
- Department of Pharmacy and Pharmaceutical Sciences, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | - Antonio Ruggiero
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Antonella Centonze
- Department of Pharmacy and Pharmaceutical Sciences, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | - Antonio Carrieri
- Department of Pharmacy and Pharmaceutical Sciences, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | - Savina Ferorelli
- Department of Pharmacy and Pharmaceutical Sciences, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | - Antonio Scilimati
- Department of Pharmacy and Pharmaceutical Sciences, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
41
|
Guo D, Guo C, Fang L, Sang T, Wang Y, Wu K, Guo C, Wang Y, Pan H, Chen R, Wang X. Qizhen capsule inhibits colorectal cancer by inducing NAG-1/GDF15 expression that mediated via MAPK/ERK activation. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113964. [PMID: 33640439 DOI: 10.1016/j.jep.2021.113964] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/14/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qizhen capsule (QZC) is a traditional Chinese medicine (TCM) preparation that has been widely used in clinical practice and exerts promising therapeutic effects against breast, lung, and gastric cancers. However, studies have not reported whether QZC inhibits colorectal cancer (CRC) development and progression. Meanwhile, the underlying molecular mechanisms of its anticancer activity have not been studied. AIM OF THE STUDY To investigate the anticancer effects of QZC on CRC and the possible underlying molecular mechanisms of QZC in vitro and in vivo. MATERIALS AND METHODS The MTT assay and flow cytometry were used to determine the viability and apoptosis of HCT116 and HT-29 cancer cells. A xenograft nude mouse model was used to study the antitumor effects of QZC in vivo. Western blotting was performed to determine the expression of key proteins responsible for the molecular mechanisms elicited by QZC. Immunofluorescence staining was performed to detect the expression of nonsteroidal anti-inflammatory drug (NSAID)-activated gene-1 or growth differentiation factor-15 (NAG-1/GDF15). Small interfering RNAs (siRNAs) were used to silence NAG-1/GDF15 in cells. RESULTS In this study, QZC significantly reduced the viability of HCT116 and HT-29 cells and induced apoptosis in dose- and time-dependent manners, but displayed much less toxicity toward normal cells. QZC-induced apoptosis in HCT116 cells was accompanied by the deregulation of the expression of the Bcl-2, Bax, PARP, caspase-3, and caspase-9 proteins. Furthermore, QZC induced NAG-1/GDF15 expression in HCT116 cells, while silencing of NAG-1/GDF15 attenuated QZC-induced apoptosis and cell death. Next, QZC increased the phosphorylation of mTOR, AMPK, p38, and MAPK/ERK in HCT116 cells. We then demonstrated that QZC-induced apoptosis and NAG-1/GDF15 upregulation were mediated by MAPK/ERK activation. Moreover, QZC significantly inhibited HCT116 xenograft tumor growth in nude mice, which was accompanied by NAG/GDF15 upregulation and MAPK/ERK activation. QZC also prevented 5-FU-induced weight loss or cachexia in tumor-bearing mice. The expression of Ki67 and PCNA was suppressed, while cleaved caspase-3 level and TUNEL staining were increased in the tumor sections from QZC-treated mice compared to the control. CONCLUSION QZC is a novel anticancer agent for CRC that targets NAG-1/GDF15 via the MAPK/ERK signaling pathway.
Collapse
Affiliation(s)
- Dandan Guo
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Chengjie Guo
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Liu Fang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Tingting Sang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Yujie Wang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Kaikai Wu
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Cuiling Guo
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Ying Wang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Haitao Pan
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Rong Chen
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Xingya Wang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China.
| |
Collapse
|
42
|
Zangouei AS, Moghbeli M. MicroRNAs as the critical regulators of cisplatin resistance in gastric tumor cells. Genes Environ 2021; 43:21. [PMID: 34099061 PMCID: PMC8182944 DOI: 10.1186/s41021-021-00192-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Combined chemotherapeutic treatment is the method of choice for advanced and metastatic gastric tumors. However, resistance to chemotherapeutic agents is one of the main challenges for the efficient gastric cancer (GC) treatment. Cisplatin (CDDP) is used as an important regimen of chemotherapy for GC which induces cytotoxicity by interfering with DNA replication in cancer cells and inducing their apoptosis. Majority of patients experience cisplatin-resistance which is correlated with tumor metastasis and relapse. Moreover, prolonged and high-dose cisplatin administrations cause serious side effects such as nephrotoxicity, ototoxicity, and anemia. Since, there is a high rate of recurrence after CDDP treatment in GC patients; it is required to clarify the molecular mechanisms associated with CDDP resistance to introduce novel therapeutic methods. There are various cell and molecular processes associated with multidrug resistance (MDR) including drug efflux, detoxification, DNA repair ability, apoptosis alteration, signaling pathways, and epithelial-mesenchymal transition (EMT). MicroRNAs are a class of endogenous non-coding RNAs involved in chemo resistance of GC cells through regulation of all of the MDR mechanisms. In present review we have summarized all of the miRNAs associated with cisplatin resistance based on their target genes and molecular mechanisms in gastric tumor cells. This review paves the way of introducing a miRNA-based panel of prognostic markers to improve the efficacy of chemotherapy and clinical outcomes in GC patients. It was observed that miRNAs are mainly involved in cisplatin response of gastric tumor cells via regulation of signaling pathways, autophagy, and apoptosis.
Collapse
Affiliation(s)
- Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
43
|
Liu BY, Li L, Liu GL, Ding W, Chang WG, Xu T, Ji XY, Zheng XX, Zhang J, Wang JX. Baicalein attenuates cardiac hypertrophy in mice via suppressing oxidative stress and activating autophagy in cardiomyocytes. Acta Pharmacol Sin 2021; 42:701-714. [PMID: 32796955 PMCID: PMC8115069 DOI: 10.1038/s41401-020-0496-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022] Open
Abstract
Baicalein is a natural flavonoid extracted from the root of Scutellaria baicalensis that exhibits a variety of pharmacological activities. In this study, we investigated the molecular mechanisms underlying the protective effect of baicalein against cardiac hypertrophy in vivo and in vitro. Cardiac hypertrophy was induced in mice by injection of isoproterenol (ISO, 30 mg·kg-1·d-1) for 15 days. The mice received caudal vein injection of baicalein (25 mg/kg) on 3rd, 6th, 9th, 12th, and 15th days. We showed that baicalein administration significantly attenuated ISO-induced cardiac hypertrophy and restored cardiac function. The protective effect of baicalein against cardiac hypertrophy was also observed in neonatal rat cardiomyocytes treated with ISO (10 μM). In cardiomyocytes, ISO treatment markedly increased reactive oxygen species (ROS) and inhibited autophagy, which were greatly alleviated by pretreatment with baicalein (30 μM). We found that baicalein pretreatment increased the expression of catalase and the mitophagy receptor FUN14 domain containing 1 (FUNDC1) to clear ROS and promote autophagy, thus attenuated ISO-induced cardiac hypertrophy. Furthermore, we revealed that baicalein bound to the transcription factor FOXO3a directly, promoting its transcription activity, and transactivated catalase and FUNDC1. In summary, our data provide new evidence for baicalein and FOXO3a in the regulation of ISO-induced cardiac hypertrophy. Baicalein has great potential for the treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Bing-Yan Liu
- School of Basic Medicine, Qingdao University, Qingdao, 266021, China
- Institute for Translational Medicine, Qingdao University, Qingdao, 266011, China
| | - Ling Li
- School of Basic Medicine, Qingdao University, Qingdao, 266021, China
| | - Gao-Li Liu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Wei Ding
- Department of General Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266011, China
| | - Wen-Guang Chang
- Institute for Translational Medicine, Qingdao University, Qingdao, 266011, China
| | - Tao Xu
- Institute for Translational Medicine, Qingdao University, Qingdao, 266011, China
| | - Xiao-Yu Ji
- School of Basic Medicine, Qingdao University, Qingdao, 266021, China
- Institute for Translational Medicine, Qingdao University, Qingdao, 266011, China
| | - Xian-Xin Zheng
- School of Basic Medicine, Qingdao University, Qingdao, 266021, China
- Institute for Translational Medicine, Qingdao University, Qingdao, 266011, China
| | - Jing Zhang
- School of Basic Medicine, Qingdao University, Qingdao, 266021, China
- Institute for Translational Medicine, Qingdao University, Qingdao, 266011, China
| | - Jian-Xun Wang
- School of Basic Medicine, Qingdao University, Qingdao, 266021, China.
- Institute for Translational Medicine, Qingdao University, Qingdao, 266011, China.
| |
Collapse
|
44
|
Huang G, Liu J, Wang Y, Xiang Y. A study of the differential expression profiles of Keshan disease lncRNA/mRNA genes based on RNA-seq. Cardiovasc Diagn Ther 2021; 11:411-421. [PMID: 33968619 DOI: 10.21037/cdt-20-746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background This study aims to analyze the differential expression profiles of lncRNA in Keshan disease (KSD) and to explore the molecular mechanism of the disease occurrence and development. Methods RNA-seq technology was used to construct the lncRNA/mRNA expression library of a KSD group (n=10) and a control group (n=10), and then Cuffdiff software was used to obtain the gene lncRNA/mRNA FPKM value as the expression profile of lncRNA/mRNA. The fold changes between the two sets of samples were calculated to obtain differential lncRNA/mRNA expression profiles, and a bioinformatics analysis of differentially expressed genes was performed. Results A total of 89,905 lncRNAs and 20,315 mRNAs were detected. Statistical analysis revealed that 921 lncRNAs had obvious differential expression, among which 36 were up-regulated and 885 were down-regulated; 2,771 mRNAs presented with obvious differential expression, among which 253 were up-regulated and 2,518 were down-regulated, and cluster analysis indicated that the gene expression trends among the sample groups were consistent. The differentially expressed lncRNAs were tested for target genes, and 117 genes were found to be regulated by differential lncRNAs, which were concentrated in six signaling pathways, among which the apoptosis FoxO signaling pathway ranked first, so the target genes IGF1R and TGFB2 were screened out. Conclusions In this study, RNA-seq technology was used to obtain the differential gene expression profiles of KSD, and bioinformatics analysis was performed to screen out target genes, pointing out the direction for further research into the etiology, pathogenesis and drug treatment targets of KSD.
Collapse
Affiliation(s)
- Guangyong Huang
- Department of Cardiology, Liaocheng People's Hospital of Shandong University, Liaocheng, China
| | - Jingwen Liu
- School of Nursing, Liaocheng Vocational & Technical College, Liaocheng, China
| | - Yuehai Wang
- Department of Cardiology, Liaocheng People's Hospital of Shandong University, Liaocheng, China
| | - Youzhang Xiang
- Shandong Institute for Endemic Disease Control, Jinan, China
| |
Collapse
|
45
|
Zhang H, Tian F, Jiang P, Qian S, Dai X, Ma B, Wang M, Dai H, Sha X, Yang Z, Zhu X, Sun X. Solasonine Suppresses the Proliferation of Acute Monocytic Leukemia Through the Activation of the AMPK/FOXO3A Axis. Front Oncol 2021; 10:614067. [PMID: 33585239 PMCID: PMC7879981 DOI: 10.3389/fonc.2020.614067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/15/2020] [Indexed: 11/28/2022] Open
Abstract
Solasonine, the main active ingredient of Solanum nigrum L., has been reported to exert extensive antitumor activity. However, the antitumor effects in acute monocytic leukemia and the exact mechanisms involved are unknown. In this study, we investigated the role of solasonine on inhibiting the progression of acute monocytic leukemia. Our findings showed that solasonine inhibited the proliferation of acute monocytic leukemic cell lines (THP-1 and MV4-11) in vitro. Solasonine promoted apoptosis and induced cell cycle arrest in the G2/M phase. Analysis of RNA-seq data suggested that solasonine correlated with increased expression of genes in the AMPK/FOXO3A pathway. Inhibition of AMPK with compound C followed by treatment with solasonine showed that solasonine reduced apoptosis, caused less cell cycle arrest, and inactivated the AMPK/FOXO3A axis in THP-1 and MV4-11 cells. Solasonine also inhibited tumor growth by the activation of the AMPK/FOXO3A axis. In conclusion, solasonine inhibited the progress of acute monocytic leukemia in vitro and in vivo and triggered the apoptosis and cell cycle arrest in the G2/M phase by upregulating the AMPK/FOXO3A pathway.
Collapse
Affiliation(s)
- Hong Zhang
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Fang Tian
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Pengjun Jiang
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shushu Qian
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xingbin Dai
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Bangyun Ma
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengya Wang
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Huibo Dai
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaocao Sha
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhongfa Yang
- Institute of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Xuejun Zhu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuemei Sun
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
46
|
Kma L, Baruah TJ. The interplay of ROS and the PI3K/Akt pathway in autophagy regulation. Biotechnol Appl Biochem 2021; 69:248-264. [PMID: 33442914 DOI: 10.1002/bab.2104] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Autophagy causes the breakdown of damaged proteins and organelles to their constituent components. The phosphatidylinositol 3-kinase (PI3K) pathway played an important role in regulating the autophagic response of cells in response to changing reactive oxygen species (ROS) levels. The PI3K α catalytic subunit inhibits autophagy, while its β catalytic subunit promotes autophagy in response to changes in ROS levels. The downstream Akt protein acts against autophagy initiation in response to increases in ROS levels under nutrient-rich conditions. Akt acts by activating a mechanistic target of the rapamycin complex 1 (mTORC1) and by arresting autophagic gene expression. The AMP-activated protein kinase (AMPK) protein counteracts the Akt actions. mTORC1 and mTORC2 inhibit autophagy under moderate ROS levels, but under high ROS levels, mTORC2 can promote cellular senescence via autophagy. Phosphatase and tensin homolog (PTEN) protein are the negative regulators of the PI3K pathway, and it has proautophagic activities. Studies conducted on cells treated with flavonoids and ionizing radiation showed that the moderate increase in ROS levels in the flavonoid-treated groups corresponded with higher PTEN levels and lowered Akt levels leading to a higher occurrence of autophagy. In contrast, higher ROS levels evoked by ionizing radiation caused a lowering of the incidence of autophagy.
Collapse
Affiliation(s)
- Lakhan Kma
- Cancer and Radiation Countermeasures Unit, Department of Biochemistry, North-Eastern Hill University, Shillong, India
| | | |
Collapse
|
47
|
McSweeney KR, Gadanec LK, Qaradakhi T, Gammune TM, Kubatka P, Caprnda M, Fedotova J, Radonak J, Kruzliak P, Zulli A. Imipridone enhances vascular relaxation via FOXO1 pathway. Clin Exp Pharmacol Physiol 2020; 47:1816-1823. [PMID: 32652671 DOI: 10.1111/1440-1681.13377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/05/2020] [Accepted: 07/08/2020] [Indexed: 01/30/2023]
Abstract
Cardiovascular complications are a side effect of cancer therapy, potentially through reduced blood vessel function. ONC201 (TIC10) is currently used in phase 2 clinical trials to treat high-grade gliomas. TIC10 is a phosphatidylinositol 3-kinase (PI3K)/AKT/extracellular signal-regulated kinase (ERK) inhibitor that induces apoptosis via upregulation of TNF-related apoptosis-inducing ligand, which via stimulation of FOXO and death receptor could increase eNOS upregulation. This has the potential to improve vascular function through increased NO bioavailability. Our aim was to investigate the role of TIC10 on vascular function to determine if it would affect the risk of CVD. Excised abdominal aorta from White New Zealand male rabbits were cut into rings. Vessels were incubated with TIC10 and AS1842856 (FOXO1 inhibitor) followed by cumulative doses of acetylcholine (Ach) to assess vessel function. Vessels were then processed for immunohistochemistry. Incubation of blood vessels with TIC10 resulted in enhanced vasodilatory capacity. Combination treatment with the FOXO1 inhibitor and TIC10 resulted in reduced vascular function compared to control. Immunohistochemical analysis indicated a 3-fold increase in death receptor 5 (DR5) expression in the TIC10-treated blood vessels but the addition of the FOXO1 inhibitor downregulated DR5 expression. The expression of DR4 receptor was not significantly increased in the presence of TIC10; however, addition of the FOXO1 inhibitor downregulated expression. TIC10 has the capacity to improve the function of healthy vessels when stimulated with the vasodilator Ach. This highlights its therapeutic potential not only in cancer treatment without cardiovascular side effects, but also as a possible drug to treat established CVD.
Collapse
Affiliation(s)
- Kristen R McSweeney
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Laura K Gadanec
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Tawar Qaradakhi
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | | | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Martin Caprnda
- 1st Department of Internal Medicine, Faculty of Medicine and University Hospital, Bratislava, Slovakia
| | - Julia Fedotova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
- International Research Centre "Biotechnologies of the Third Millennium", ITMO University, St. Petersburg, Russian Federation
- Laboratory of Neuroendocrinology, I.P. Pavlov Institute of Physiology, Academy of Sciences, St. Petersburg, Russian Federation
| | - Jozef Radonak
- 1st Department of Surgery, Faculty of Medicine, Pavol Jozef Safarik University and University Hospital, Kosice, Slovak Republic
| | - Peter Kruzliak
- 2nd Department of Surgery, Faculty of Medicine, Masaryk University and St. Anne´s University Hospital, Brno, Czech Republic
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
48
|
Xu Q, Li Y, Zheng Y, Chen Y, Xu X, Wang M. Clostridium difficile toxin B-induced colonic inflammation is mediated by the FOXO3/PPM1B pathway in fetal human colon epithelial cells. Am J Transl Res 2020; 12:6204-6219. [PMID: 33194024 PMCID: PMC7653611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
Clostridium difficile (C. difficile) toxin B (TcdB) is as an inflammatory enterotoxin that accounts for manifestations of widespread healthcare-associated C. difficile infection, including colonic inflammation. The present work explored the molecular mechanism by which TcdB activates innate immunity and stimulates pro-inflammatory cytokine release. Fetal human colon epithelial cells (FHCs) were treated with recombinant TcdB protein. Cell growth inhibition and apoptosis were measured with Cell Counting Kit-8 and Annexin V-fluorescein isothiocyanate Apoptosis Detection Kit, respectively. Flow cytometry analysis was also performed. Inflammatory cytokine induction was determined with enzykeme-linked immunosorbent assay analyses. Protein expression was assessed by western blot analysis. Gene overexpression and knockdown were performed with lentiviral transduction. Real-time quantitative polymerase chain reaction was used to examine gene expression. Dual-luciferase reporter assays and chromatin immunoprecipitation were implemented to explore transcriptional regulation. Mouse colon tissues were analyzed with hematoxylin and eosin staining. The results show that TcdB-induced cell growth and apoptosis and enhanced expression of interleukin-6 and tumor necrosis factor alpha in FHCs. We identified protein phosphatase magnesium-dependent 1B (PPM1B) as the key mediator promoting the phosphorylation of nuclear factor-κB p65, which accounted for the increase in pro-inflammatory cytokines. The findings demonstrate that PPM1B expression is directly regulated by the AKT/FOXO3 signaling pathway in FHCs. We confirmed the molecular mechanism with in vivo studies using a mouse model infected with C. difficile and treated with a phosphoinositide 3-kinase/AKT signaling inhibitor. In conclusion, TcdB induces inflammation in human colon epithelial cells by regulating the AKT/FOXO3/PPM1B pathway.
Collapse
Affiliation(s)
- Qingqing Xu
- Institute of Antibiotics, Huashan Hospital, Fudan UniversityShanghai 200040, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health and Family Planning CommisionShanghai 200040, China
| | - Ying Li
- Institute of Antibiotics, Huashan Hospital, Fudan UniversityShanghai 200040, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health and Family Planning CommisionShanghai 200040, China
| | - Yuejuan Zheng
- Department of Immunology and Microbiology, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Yijian Chen
- Institute of Antibiotics, Huashan Hospital, Fudan UniversityShanghai 200040, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health and Family Planning CommisionShanghai 200040, China
| | - Xiaogang Xu
- Institute of Antibiotics, Huashan Hospital, Fudan UniversityShanghai 200040, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health and Family Planning CommisionShanghai 200040, China
| | - Minggui Wang
- Institute of Antibiotics, Huashan Hospital, Fudan UniversityShanghai 200040, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health and Family Planning CommisionShanghai 200040, China
| |
Collapse
|
49
|
Wang Z, Liu Y, Liu X, Zhou L, Ma X, Liu J, Wang L, Guo H. Activation of forkhead box O3a by mono(2-ethylhexyl)phthalate and its role in protection against mono(2-ethylhexyl)phthalate-induced oxidative stress and apoptosis in human cardiomyocytes. J Appl Toxicol 2020; 41:618-631. [PMID: 33029813 DOI: 10.1002/jat.4070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
Abstract
Mono(2-ethylhexyl)phthalate (MEHP), the active metabolite of di(2-ethylhexyl)phthalate (DEHP), is known to exert cardiotoxicity. The aim of the present study was to investigate the role of forkhead box O3a (FOXO3a) in MEHP-induced human AC16 cardiomyocyte injuries. MEHP reduced cell viability and mitochondrial membrane potential (ΔΨm), whereas it increased lactate dehydrogenase (LDH) leakage, production of reactive oxygen species (ROS), and apoptosis in cardiomyocytes. The expression of FOXO3a and its target genes, mitochondrial superoxide dismutase (Mn-SOD) and apoptosis repressor with caspase recruitment domain (ARC), increased after MEHP exposure, but the expression of p-FOXO3a protein was decreased. Overexpression of FOXO3a decreased the production of ROS and the apoptosis rate induced by MEHP, and the expression of Mn-SOD and ARC was further increased after MEHP exposure. In contrast, knockdown of FOXO3a resulted in increased ROS production and apoptosis and suppressed the expression of Mn-SOD and ARC in the presence of MEHP. However, overexpression or knockdown of FOXO3a did not affect MEHP-induced loss of ΔΨm. In conclusion, the loss of ΔΨm and apoptosis are involved in MEHP-induced cardiomyocyte toxicity. Activation of FOXO3a defends against MEHP-induced oxidative stress and apoptosis by upregulating the expression of Mn-SOD and ARC in AC16 cardiomyocytes.
Collapse
Affiliation(s)
- Zeze Wang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China.,Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Yi Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Xuehui Liu
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Lixiao Zhou
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Xindi Ma
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Junyao Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Lei Wang
- Department of Medicinal Chemistry, Hebei Medical University, Shijiazhuang, China
| | - Huicai Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China.,Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| |
Collapse
|
50
|
Geraldelli D, Ribeiro MC, Medeiros TC, Comiran PK, Martins KO, Oliveira MF, Oliveira GA, Dekker RFH, Barbosa-Dekker AM, Alegranci P, Queiroz EAIF. Botryosphaeran, a (1 → 3)(1 → 6)-β-D-glucan, reduces tumor development and cachexia syndrome in obese male rats by increasing insulin sensitivity and FOXO3a activity. Int J Biol Macromol 2020; 165:985-994. [PMID: 32991890 DOI: 10.1016/j.ijbiomac.2020.09.168] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/02/2020] [Accepted: 09/20/2020] [Indexed: 12/28/2022]
Abstract
Obesity is an important risk factor in tumor development. Botryosphaeran, a (1 → 3)(1 → 6)-β-D-glucan, produced by the fungus Botryosphaeria rhodina (MAMB-05), is a high molecular mass, water-soluble exopolysaccharide. It consists of a main chain of (1 → 3)-linked β-d-glucose units, with a degree of branching of ~22% at carbon-6 with glucose and gentiobiose residues linked through β-(1 → 6)-bonds, and presents a triple helix conformation. Botryosphaeran presents anticlastogenic, antiproliferative, pro-apoptotic and anti-obesogenic activities. This study evaluated the effects of botryosphaeran on tumor development in obesity and analyzed its mechanism of action. Obesity was induced in male Wistar rats by a high-fat/high-sugar diet. After 9 weeks, rats were divided into two groups: Obese Tumor (OT) and Obese Tumor Botryosphaeran (OTB), and inoculated with 1 × 107 Walker-256 tumor cells, and treatment with botryosphaeran (30 mg/kg b.w./day via gavage for 15 days) commenced. On the 11th week, biological parameters, tumor development, metabolic profile, erythrogram and protein expression were evaluated. Botryosphaeran significantly reduced tumor growth, body-weight loss and cachexia. Furthermore, botryosphaeran decreased mesenteric fat and insulin resistance, corrected macrocytic anemia, and increased Forkhead transcription factor-3a (FOXO3a) activity. Our study demonstrated the potential role of botryosphaeran in the management of cancer in tumor-bearing obese rats by increasing insulin sensitivity and FOXO3a activity.
Collapse
Affiliation(s)
- Danielli Geraldelli
- Núcleo de Pesquisa e Apoio Didático em Saúde (NUPADS), Instituto de Ciências da Saúde, Câmpus Universitário de Sinop, Universidade Federal de Mato Grosso, CEP: 78550-728 Sinop, MT, Brazil
| | - Mariana C Ribeiro
- Núcleo de Pesquisa e Apoio Didático em Saúde (NUPADS), Instituto de Ciências da Saúde, Câmpus Universitário de Sinop, Universidade Federal de Mato Grosso, CEP: 78550-728 Sinop, MT, Brazil
| | - Túlio C Medeiros
- Núcleo de Pesquisa e Apoio Didático em Saúde (NUPADS), Instituto de Ciências da Saúde, Câmpus Universitário de Sinop, Universidade Federal de Mato Grosso, CEP: 78550-728 Sinop, MT, Brazil
| | - Patrícia K Comiran
- Núcleo de Pesquisa e Apoio Didático em Saúde (NUPADS), Instituto de Ciências da Saúde, Câmpus Universitário de Sinop, Universidade Federal de Mato Grosso, CEP: 78550-728 Sinop, MT, Brazil
| | - Kamila O Martins
- Núcleo de Pesquisa e Apoio Didático em Saúde (NUPADS), Instituto de Ciências da Saúde, Câmpus Universitário de Sinop, Universidade Federal de Mato Grosso, CEP: 78550-728 Sinop, MT, Brazil
| | - Matheus F Oliveira
- Núcleo de Pesquisa e Apoio Didático em Saúde (NUPADS), Instituto de Ciências da Saúde, Câmpus Universitário de Sinop, Universidade Federal de Mato Grosso, CEP: 78550-728 Sinop, MT, Brazil
| | - Gabriela A Oliveira
- Núcleo de Pesquisa e Apoio Didático em Saúde (NUPADS), Instituto de Ciências da Saúde, Câmpus Universitário de Sinop, Universidade Federal de Mato Grosso, CEP: 78550-728 Sinop, MT, Brazil
| | - Robert F H Dekker
- Universidade Tecnológica Federal do Paraná, Programa de Pós-Graduação em Engenharia Ambiental, Câmpus Londrina, CEP: 86036-370 Londrina, PR, Brazil
| | - Aneli M Barbosa-Dekker
- Departamento de Química - CCE, Universidade Estadual de Londrina, CEP: 85503-390 Londrina, PR, Brazil
| | - Pâmela Alegranci
- Núcleo de Pesquisa e Apoio Didático em Saúde (NUPADS), Instituto de Ciências da Saúde, Câmpus Universitário de Sinop, Universidade Federal de Mato Grosso, CEP: 78550-728 Sinop, MT, Brazil
| | - Eveline A I F Queiroz
- Núcleo de Pesquisa e Apoio Didático em Saúde (NUPADS), Instituto de Ciências da Saúde, Câmpus Universitário de Sinop, Universidade Federal de Mato Grosso, CEP: 78550-728 Sinop, MT, Brazil.
| |
Collapse
|