1
|
Sullivan R, Becker JA, Zadoks RN, Venturini C, Esteves AIS, Benedict S, Fornarino DL, Andrews H, Okoh GR, Bhardwaj V, Sistrom M, Westman ME, Phuoc NN, Samsing F. Vibrio harveyi plasmids as drivers of virulence in barramundi (Lates calcarifer). PLoS One 2025; 20:e0319450. [PMID: 40388447 PMCID: PMC12088062 DOI: 10.1371/journal.pone.0319450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/21/2025] [Indexed: 05/21/2025] Open
Abstract
Vibrio species are an emerging public and animal health risk in marine environments and the opportunistic bacterial pathogen Vibrio harveyi is a major disease risk for tropical aquaculture. Current understanding of virulence in V. harveyi is limited by strain-specific variability and complex host-pathogen dynamics. This study sought to integrate genomic investigation, phenotypic characterisation and in vivo challenge trials in barramundi (Lates calcarifer) to increase our understanding of V. harveyi virulence. We identified two hypervirulent isolates, Vh-14 and Vh-15 that caused 100% mortality in fish within 48 hours, and that were phenotypically and genotypically distinct from other V. harveyi isolates. Virulent isolates contained multiple plasmids, including a 105,412 bp conjugative plasmid with type III secretion system genes originally identified in Yersinia pestis. The emergence of this hypervirulent plasmid-mediated patho-variant poses a potential threat to the sustainable production of marine finfish in Southeast Asia, the Mediterranean and Australia. In addition, we observed an effect of temperature on phenotypic indicators of virulence with an increase in activity at 28°C and 34°C compared to 22°C. This suggests that temperature fluctuations associated with climate change may act as a stressor on bacteria, increasing virulence gene secretion and host adaptation. Our results utilising a myriad of technologies and tools, highlights the importance of a holistic view to virulence characterisation.
Collapse
Affiliation(s)
- Roisin Sullivan
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, New South Wales, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, New South Wales, Australia
| | - Joy A. Becker
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, New South Wales, Australia
| | - Ruth N. Zadoks
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, New South Wales, Australia
| | - Carola Venturini
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, New South Wales, Australia
- Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Ana I. S. Esteves
- Elizabeth Macarthur Agricultural Institute, New South Wales Department of Primary Industries and Environment, Menangle, New South Wales, Australia
| | - Suresh Benedict
- Berrimah Veterinary Laboratory, Department of Agriculture and Fisheries, Northern Territory Government, Berrimah, Northern Territory, Australia
| | - Dani L. Fornarino
- Berrimah Veterinary Laboratory, Department of Agriculture and Fisheries, Northern Territory Government, Berrimah, Northern Territory, Australia
| | - Hannah Andrews
- Berrimah Veterinary Laboratory, Department of Agriculture and Fisheries, Northern Territory Government, Berrimah, Northern Territory, Australia
| | - God’spower R. Okoh
- Berrimah Veterinary Laboratory, Department of Agriculture and Fisheries, Northern Territory Government, Berrimah, Northern Territory, Australia
| | - Vidya Bhardwaj
- Berrimah Veterinary Laboratory, Department of Agriculture and Fisheries, Northern Territory Government, Berrimah, Northern Territory, Australia
| | - Mark Sistrom
- Berrimah Veterinary Laboratory, Department of Agriculture and Fisheries, Northern Territory Government, Berrimah, Northern Territory, Australia
| | - Mark E. Westman
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, New South Wales, Australia
- Elizabeth Macarthur Agricultural Institute, New South Wales Department of Primary Industries and Environment, Menangle, New South Wales, Australia
| | - Nguyen Ngoc Phuoc
- Faculty of Fisheries, University of Agriculture and Forestry, Hue University, Hue City, Vietnam
| | - Francisca Samsing
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, New South Wales, Australia
| |
Collapse
|
2
|
Seabaugh JA, Anderson DM. Pathogenicity and virulence of Yersinia. Virulence 2024; 15:2316439. [PMID: 38389313 PMCID: PMC10896167 DOI: 10.1080/21505594.2024.2316439] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
The genus Yersinia includes human, animal, insect, and plant pathogens as well as many symbionts and harmless bacteria. Within this genus are Yersinia enterocolitica and the Yersinia pseudotuberculosis complex, with four human pathogenic species that are highly related at the genomic level including the causative agent of plague, Yersinia pestis. Extensive laboratory, field work, and clinical research have been conducted to understand the underlying pathogenesis and zoonotic transmission of these pathogens. There are presently more than 500 whole genome sequences from which an evolutionary footprint can be developed that details shared and unique virulence properties. Whereas the virulence of Y. pestis now seems in apparent homoeostasis within its flea transmission cycle, substantial evolutionary changes that affect transmission and disease severity continue to ndergo apparent selective pressure within the other Yersiniae that cause intestinal diseases. In this review, we will summarize the present understanding of the virulence and pathogenesis of Yersinia, highlighting shared mechanisms of virulence and the differences that determine the infection niche and disease severity.
Collapse
Affiliation(s)
- Jarett A. Seabaugh
- Department of Veterinary Pathobiology, University of Missouri, Columbia, USA
| | - Deborah M. Anderson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, USA
| |
Collapse
|
3
|
Zhang W, Huang C, Chen Z, Song D, Zhang Y, Yang S, Wang N, Jian J, Pang H. Vibrio alginolyticus Reprograms CIK Cell Metabolism via T3SS Effector VopS to Promote Host Cell Ferroptosis. Animals (Basel) 2024; 14:3250. [PMID: 39595303 PMCID: PMC11591379 DOI: 10.3390/ani14223250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Vibrio alginolyticus is a Gram-negative pathogen of both marine animals and humans, resulting in significant losses for the aquaculture industry. Emerging evidence indicates that V. alginolyticus manipulates cell death for its pathogenicity, but the underlying molecular mechanisms remain unclear. Here, a gene designated vopS in V. alginolyticus HY9901 was identified, which was predicted to encode the T3SS effector protein. To determine whether VopS contributes to the pathogenesis of V. alginolyticus, the ΔvopS mutant strain was constructed and phenotypically characterized. The deletion of VopS not only reduced the ability to secrete extracellular proteases and virulence but also affected the expression of the T3SS genes. Furthermore, VopS was cytotoxic and induced apoptosis, as confirmed by elevated LDH and the activation of caspase-3. Metabolomic analysis revealed considerable metabolomic disruptions upon V. alginolyticus infection. The VopS effector induced host cell ferroptosis by promoting the synthesis of adrenic acid, depleting cellular glutathione, and subsequently increasing the accumulation of ferrous (Fe2+). Taken together, our findings provide that the VopS effector is an essential virulence factor of V. alginolyticus, which can lead to ferroptosis.
Collapse
Affiliation(s)
- Weijie Zhang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (W.Z.); (C.H.); (Z.C.); (D.S.); (Y.Z.); (S.Y.); (J.J.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang 524025, China
| | - Chao Huang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (W.Z.); (C.H.); (Z.C.); (D.S.); (Y.Z.); (S.Y.); (J.J.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang 524025, China
| | - Zhihang Chen
- Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (W.Z.); (C.H.); (Z.C.); (D.S.); (Y.Z.); (S.Y.); (J.J.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang 524025, China
| | - Dawei Song
- Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (W.Z.); (C.H.); (Z.C.); (D.S.); (Y.Z.); (S.Y.); (J.J.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang 524025, China
| | - Yujia Zhang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (W.Z.); (C.H.); (Z.C.); (D.S.); (Y.Z.); (S.Y.); (J.J.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang 524025, China
| | - Shuai Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (W.Z.); (C.H.); (Z.C.); (D.S.); (Y.Z.); (S.Y.); (J.J.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang 524025, China
| | - Na Wang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China;
| | - Jichang Jian
- Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (W.Z.); (C.H.); (Z.C.); (D.S.); (Y.Z.); (S.Y.); (J.J.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang 524025, China
| | - Huanying Pang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (W.Z.); (C.H.); (Z.C.); (D.S.); (Y.Z.); (S.Y.); (J.J.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang 524025, China
| |
Collapse
|
4
|
Farag SI, Francis MK, Gurung JM, Wai SN, Stenlund H, Francis MS, Nadeem A. Macrophage innate immune responses delineate between defective translocon assemblies produced by Yersinia pseudotuberculosis YopD mutants. Virulence 2023; 14:2249790. [PMID: 37621095 PMCID: PMC10461508 DOI: 10.1080/21505594.2023.2249790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 06/11/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
Translocon pores formed in the eukaryotic cell membrane by a type III secretion system facilitate the translocation of immune-modulatory effector proteins into the host cell interior. The YopB and YopD proteins produced and secreted by pathogenic Yersinia spp. harboring a virulence plasmid-encoded type III secretion system perform this pore-forming translocator function. We had previously characterized in vitro T3SS function and in vivo pathogenicity of a number of strains encoding sited-directed point mutations in yopD. This resulted in the classification of mutants into three different classes based upon the severity of the phenotypic defects. To investigate the molecular and functional basis for these defects, we explored the effectiveness of RAW 264.7 cell line to respond to infection by representative YopD mutants of all three classes. Signature cytokine profiles could separate the different YopD mutants into distinct categories. The activation and suppression of certain cytokines that function as central innate immune response modulators correlated well with the ability of mutant bacteria to alter anti-phagocytosis and programmed cell death pathways. These analyses demonstrated that sub-optimal translocon pores impact the extent and magnitude of host cell responsiveness, and this limits the capacity of pathogenic Yersinia spp. to fortify against attack by both early and late arms of the host innate immune response.
Collapse
Affiliation(s)
- Salah I. Farag
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Monika K. Francis
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Jyoti M. Gurung
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Sun Nyunt Wai
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Hans Stenlund
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, Umeå, Sweden
- Swedish Metabolomics Centre (SMC), Umeå, Sweden
| | - Matthew S. Francis
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Aftab Nadeem
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| |
Collapse
|
5
|
Manyi-Loh CE, Lues R. A South African Perspective on the Microbiological and Chemical Quality of Meat: Plausible Public Health Implications. Microorganisms 2023; 11:2484. [PMID: 37894142 PMCID: PMC10608972 DOI: 10.3390/microorganisms11102484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/06/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Meat comprises proteins, fats, vitamins, and trace elements, essential nutrients for the growth and development of the body. The increased demand for meat necessitates the use of antibiotics in intensive farming to sustain and raise productivity. However, the high water activity, the neutral pH, and the high protein content of meat create a favourable milieu for the growth and the persistence of bacteria. Meat serves as a portal for the spread of foodborne diseases. This occurs because of contamination. This review presents information on animal farming in South Africa, the microbial and chemical contamination of meat, and the consequential effects on public health. In South Africa, the sales of meat can be operated both formally and informally. Meat becomes exposed to contamination with different categories of microbes, originating from varying sources during preparation, processing, packaging, storage, and serving to consumers. Apparently, meat harbours diverse pathogenic microorganisms and antibiotic residues alongside the occurrence of drug resistance in zoonotic pathogens, due to the improper use of antibiotics during farming. Different findings obtained across the country showed variations in prevalence of bacteria and multidrug-resistant bacteria studied, which could be explained by the differences in the manufacturer practices, handling processes from producers to consumers, and the success of the hygienic measures employed during production. Furthermore, variation in the socioeconomic and political factors and differences in bacterial strains, geographical area, time, climatic factors, etc. could be responsible for the discrepancy in the level of antibiotic resistance between the provinces. Bacteria identified in meat including Escherichia coli, Listeria monocytogenes, Staphylococcus aureus, Campylobacter spp., Salmonella spp., etc. are incriminated as pathogenic agents causing serious infections in human and their drug-resistant counterparts can cause prolonged infection plus long hospital stays, increased mortality and morbidity as well as huge socioeconomic burden and even death. Therefore, uncooked meat or improperly cooked meat consumed by the population serves as a risk to human health.
Collapse
Affiliation(s)
- Christy E. Manyi-Loh
- Centre of Applied Food Sustainability and Biotechnology, Central University of Technology, Bloemfontein 9301, South Africa;
| | | |
Collapse
|
6
|
Gurung JM, Amer AAA, Chen S, Diepold A, Francis MS. Type III secretion by Yersinia pseudotuberculosis is reliant upon an authentic N-terminal YscX secretor domain. Mol Microbiol 2022; 117:886-906. [PMID: 35043994 PMCID: PMC9303273 DOI: 10.1111/mmi.14880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 11/29/2022]
Abstract
YscX was discovered as an essential part of the Yersinia type III secretion system about 20 years ago. It is required for substrate secretion and is exported itself. Despite this central role, its precise function and mode of action remains unknown. In order to address this knowledge gap, this present study refocused attention on YscX to build on the recent advances in the understanding of YscX function. Our experiments identified a N-terminal secretion domain in YscX promoting its secretion, with the first five codons constituting a minimal signal capable of promoting secretion of the signalless β-lactamase reporter. Replacing the extreme YscX N-terminus with known secretion signals of other Ysc-Yop substrates revealed that the YscX N-terminal segment contains non-redundant information needed for YscX function. Further, both in cis deletion of the YscX N-terminus in the virulence plasmid and ectopic expression of epitope tagged YscX variants again lead to stable YscX production but not type III secretion of Yop effector proteins. Mislocalisation of the needle components, SctI and SctF, accompanied this general defect in Yops secretion. Hence, a coupling exists between YscX secretion permissiveness and the assembly of an operational secretion system.
Collapse
Affiliation(s)
- Jyoti M Gurung
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Ayad A A Amer
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Shiyun Chen
- Wuhan Institute of Virology, The Chinese Academy of Sciences, Wuhan, China
| | - Andreas Diepold
- Max Planck Institute for Terrestrial Microbiology, Department of Ecophysiology, Marburg, Germany
| | - Matthew S Francis
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| |
Collapse
|
7
|
LcrQ Coordinates with the YopD-LcrH Complex To Repress lcrF Expression and Control Type III Secretion by Yersinia pseudotuberculosis. mBio 2021; 12:e0145721. [PMID: 34154409 PMCID: PMC8262909 DOI: 10.1128/mbio.01457-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Human-pathogenic Yersinia species employ a plasmid-encoded type III secretion system (T3SS) to negate immune cell function during infection. A critical element in this process is the coordinated regulation of T3SS gene expression, which involves both transcriptional and posttranscriptional mechanisms. LcrQ is one of the earliest identified negative regulators of Yersinia T3SS, but its regulatory mechanism is still unclear. In a previous study, we showed that LcrQ antagonizes the activation role played by the master transcriptional regulator LcrF. In this study, we confirm that LcrQ directly interacts with LcrH, the chaperone of YopD, to facilitate the negative regulatory role of the YopD-LcrH complex in repressing lcrF expression at the posttranscriptional level. Negative regulation is strictly dependent on the YopD-LcrH complex, more so than on LcrQ. The YopD-LcrH complex helps to retain cytoplasmic levels of LcrQ to facilitate the negative regulatory effect. Interestingly, RNase E and its associated protein RhlB participate in this negative regulatory loop through a direct interaction with LcrH and LcrQ. Hence, we present a negative regulatory loop that physically connects LcrQ to the posttranscriptional regulation of LcrF, and this mechanism incorporates RNase E involved in mRNA decay.
Collapse
|
8
|
Ii AN, Lin SC, Lepene B, Zhou W, Kehn-Hall K, van Hoek ML. Use of magnetic nanotrap particles in capturing Yersinia pestis virulence factors, nucleic acids and bacteria. J Nanobiotechnology 2021; 19:186. [PMID: 34154629 PMCID: PMC8215484 DOI: 10.1186/s12951-021-00859-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/09/2021] [Indexed: 11/24/2022] Open
Abstract
Background Many pathogens, including Yersinia pestis, cannot be consistently and reliably cultured from blood. New approaches are needed to facilitate the detection of proteins, nucleic acid and microorganisms in whole blood samples to improve downstream assay performance. Detection of biomarkers in whole blood is difficult due to the presence of host proteins that obscure standard detection mechanisms. Nanotrap® particles are micron-sized hydrogel structures containing a dye molecule as the affinity bait and used to detect host biomarkers, viral nucleic acids and proteins as well as some bacterial markers. Nanotraps have been shown to bind and enrich a wide variety of biomarkers and viruses in clinically relevant matrices such as urine and plasma. Our objective was to characterize the binding ability of Nanotrap particle type CN3080 to Y. pestis bacteria, bacterial proteins and nucleic acids from whole human blood in order to potentially improve detection and diagnosis. Results CN3080 Nanotraps bind tightly to Yersinia bacteria, even after washing, and we were able to visualize the co-localized Nanotraps and bacteria by electron microscopy. These magnetic hydrogel Nanotraps were able to bind Yersinia DNA, supporting the utility of Nanotraps for enhancing nucleic acid-based detection methods. Nanotraps were capable of increasing Y. pestis nucleic acid yield by fourfold from whole human blood compared to standard nucleic acid extraction. Interestingly, we found CN3080 Nanotraps to have a high affinity for multiple components of the Yersinia type III secretion system (T3SS), including chaperone proteins, Yop effector proteins and virulence factor protein LcrV (V). Using Nanotraps as a rapid upstream sample-prep tool, we were able to detect LcrV in human blood by western blotting with minimal blood interference in contrast to direct western blotting of blood samples in which LcrV was obscured. We were able to computationally model the interaction of LcrV with the CN3080 Nanotrap dye and found that it had a low delta-G, suggesting high affinity. Importantly, Nanotraps were also able to enhance detection of secreted Yersinia proteins by mass spectrometry. Conclusion Upstream use of magnetic CN3080 Nanotrap particles may improve the downstream workflow though binding and enrichment of biomarkers and speed of processing. Utilization of Nanotrap particles can improve detection of Yersinia pestis proteins and nucleic acid from whole human blood and contribute to downstream assays and diagnostics including molecular methods such as sequencing and PCR and protein-based methods. Graphic Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00859-8.
Collapse
Affiliation(s)
- Alexandra N Ii
- School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Shih-Chao Lin
- School of Systems Biology, George Mason University, Manassas, VA, 20110, USA.,College of Life Sciences, National Taiwan Ocean University, 2 Pei-Ning Rd, Keelung, 202301, Taiwan
| | - Benjamin Lepene
- Ceres Nanosciences, 9460 Innovation Drive, Manassas, VA, 20110, USA
| | - Weidong Zhou
- Center for Applied Proteomics and Personalized Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Kylene Kehn-Hall
- School of Systems Biology, George Mason University, Manassas, VA, 20110, USA.,Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Monique L van Hoek
- School of Systems Biology, George Mason University, Manassas, VA, 20110, USA.
| |
Collapse
|
9
|
Horna G, Ruiz J. Type 3 secretion system as an anti-Pseudomonal target. Microb Pathog 2021; 155:104907. [PMID: 33930424 DOI: 10.1016/j.micpath.2021.104907] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
Type 3 secretion systems (T3SSs) are a series of mechanisms involved in bacterial pathogenesis. While Pseudomonas aeruginosa only possess one T3SS, it plays a key role in the virulence of P. aeruginosa virulence. This finding suggests that T3SS impairment may be an alternative for antimicrobial agents, allowing P. aeruginosa infections to be directly combated avoiding antimicrobial pressure on this and other microorganisms. To date, different approaches have been proposed, including T3SS inhibition, vaccination strategies, development of anti-T3SS antibodies and gene silencing.
Collapse
Affiliation(s)
- Gertrudis Horna
- Universidad Catolica Los Angeles de Chimbote, Instituto de Investigación, Chimbote, Peru
| | - Joaquim Ruiz
- Laboratorio de Microbiología Molecular y Genómica Bacteriana, Universidad Científica del Sur, Lima, Peru.
| |
Collapse
|
10
|
Wimmi S, Balinovic A, Jeckel H, Selinger L, Lampaki D, Eisemann E, Meuskens I, Linke D, Drescher K, Endesfelder U, Diepold A. Dynamic relocalization of cytosolic type III secretion system components prevents premature protein secretion at low external pH. Nat Commun 2021; 12:1625. [PMID: 33712575 PMCID: PMC7954860 DOI: 10.1038/s41467-021-21863-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 02/12/2021] [Indexed: 01/31/2023] Open
Abstract
Many bacterial pathogens use a type III secretion system (T3SS) to manipulate host cells. Protein secretion by the T3SS injectisome is activated upon contact to any host cell, and it has been unclear how premature secretion is prevented during infection. Here we report that in the gastrointestinal pathogens Yersinia enterocolitica and Shigella flexneri, cytosolic injectisome components are temporarily released from the proximal interface of the injectisome at low external pH, preventing protein secretion in acidic environments, such as the stomach. We show that in Yersinia enterocolitica, low external pH is detected in the periplasm and leads to a partial dissociation of the inner membrane injectisome component SctD, which in turn causes the dissociation of the cytosolic T3SS components. This effect is reversed upon restoration of neutral pH, allowing a fast activation of the T3SS at the native target regions within the host. These findings indicate that the cytosolic components form an adaptive regulatory interface, which regulates T3SS activity in response to environmental conditions.
Collapse
Affiliation(s)
- Stephan Wimmi
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Alexander Balinovic
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Physics, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Hannah Jeckel
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, Marburg, Germany
| | - Lisa Selinger
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Dimitrios Lampaki
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Max-Planck-Institut für Immunbiologie und Epigenetik, Freiburg, Germany
| | - Emma Eisemann
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- James Madison University, Harrisonburg, VA, USA
| | - Ina Meuskens
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Dirk Linke
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Knut Drescher
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, Marburg, Germany
| | - Ulrike Endesfelder
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Physics, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Andreas Diepold
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, Marburg, Germany.
| |
Collapse
|
11
|
Paulson AR, O’Callaghan M, Zhang XX, Rainey PB, Hurst MRH. In vivo transcriptome analysis provides insights into host-dependent expression of virulence factors by Yersinia entomophaga MH96, during infection of Galleria mellonella. G3 (BETHESDA, MD.) 2021; 11:jkaa024. [PMID: 33561230 PMCID: PMC7849909 DOI: 10.1093/g3journal/jkaa024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/19/2020] [Indexed: 12/31/2022]
Abstract
The function of microbes can be inferred from knowledge of genes specifically expressed in natural environments. Here, we report the in vivo transcriptome of the entomopathogenic bacterium Yersinia entomophaga MH96, captured during initial, septicemic, and pre-cadaveric stages of intrahemocoelic infection in Galleria mellonella. A total of 1285 genes were significantly upregulated by MH96 during infection; 829 genes responded to in vivo conditions during at least one stage of infection, 289 responded during two stages of infection, and 167 transcripts responded throughout all three stages of infection compared to in vitro conditions at equivalent cell densities. Genes upregulated during the earliest infection stage included components of the insecticidal toxin complex Yen-TC (chi1, chi2, and yenC1), genes for rearrangement hotspot element containing protein yenC3, cytolethal distending toxin cdtAB, and vegetative insecticidal toxin vip2. Genes more highly expressed throughout the infection cycle included the putative heat-stable enterotoxin yenT and three adhesins (usher-chaperone fimbria, filamentous hemagglutinin, and an AidA-like secreted adhesin). Clustering and functional enrichment of gene expression data also revealed expression of genes encoding type III and VI secretion system-associated effectors. Together these data provide insight into the pathobiology of MH96 and serve as an important resource supporting efforts to identify novel insecticidal agents.
Collapse
Affiliation(s)
- Amber R Paulson
- Forage Science, AgResearch Ltd., Lincoln 8140, New Zealand
- New Zealand Institute for Advanced Study, Massey University, Auckland 0745, New Zealand
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | | | - Xue-Xian Zhang
- School of Natural and Computational Sciences, Massey University, Auckland 0745, New Zealand
| | - Paul B Rainey
- New Zealand Institute for Advanced Study, Massey University, Auckland 0745, New Zealand
- Laboratoire de Génétique de l’Evolution CBI, ESPCI Paris, Université PSL, CNRS, Paris 75005, France
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Mark R H Hurst
- Forage Science, AgResearch Ltd., Lincoln 8140, New Zealand
| |
Collapse
|
12
|
Palace SG, Vitseva O, Proulx MK, Freedman JE, Goguen JD, Koupenova M. Yersinia pestis escapes entrapment in thrombi by targeting platelet function. J Thromb Haemost 2020; 18:3236-3248. [PMID: 33470041 PMCID: PMC8040536 DOI: 10.1111/jth.15065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/15/2020] [Accepted: 07/24/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Platelets are classically recognized for their role in hemostasis and thrombosis. Recent work has demonstrated that platelets can also execute a variety of immune functions. The dual prothrombotic and immunological roles of platelets suggest that they may pose a barrier to the replication or dissemination of extracellular bacteria. However, some bloodborne pathogens, such as the plague bacterium Yersinia pestis, routinely achieve high vascular titers that are necessary for pathogen transmission. OBJECTIVES It is not currently known how or if pathogens circumvent platelet barriers to bacterial dissemination and replication. We sought to determine whether extracellular bloodborne bacterial pathogens actively interfere with platelet function, using Y pestis as a model system. METHODS The interactions and morphological changes of human platelets with various genetically modified Y pestis strains were examined using aggregation assays, immunofluorescence, and scanning electron microscopy. RESULTS Yersinia pestis directly destabilized platelet thrombi, preventing bacterial entrapment in fibrin/platelet clots. This activity was dependent on two well-characterized bacterial virulence factors: the Y pestis plasminogen activator Pla, which stimulates host-mediated fibrinolysis, and the bacterial type III secretion system (T3SS), which delivers bacterial proteins into the cytoplasm of targeted host cells to reduce or prevent effective immunological responses. Platelets intoxicated by the Y pestis T3SS were unable to respond to prothrombotic stimuli, and T3SS expression decreased the formation of neutrophil extracellular traps in platelet thrombi. CONCLUSIONS These findings are the first demonstration of a bacterial pathogen using its T3SS and an endogenous protease to manipulate platelet function and to escape entrapment in platelet thrombi.
Collapse
Affiliation(s)
- Samantha G. Palace
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Olga Vitseva
- Department of Medicine, Division of Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Megan K. Proulx
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jane E. Freedman
- Department of Medicine, Division of Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jon D. Goguen
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Milka Koupenova
- Department of Medicine, Division of Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
13
|
Uğurlu Ö, Barlas FB, Evran S, Timur S. The cell-penetrating YopM protein-functionalized quantum dot-plasmid DNA conjugate as a novel gene delivery vector. Plasmid 2020; 110:102513. [PMID: 32502501 DOI: 10.1016/j.plasmid.2020.102513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023]
Abstract
Non-viral gene delivery systems have great potential for safe and efficient gene therapy, while inefficient cellular and nuclear uptake remain as the major hurdles. Novel approaches are needed to enhance the transfection efficiency of non-viral vectors. In accordance with this need, the objective of this study was to construct a non-viral vector that could achieve gene delivery without using additional lipid-based transfection agent. We aimed to impart self-delivery property to a non-viral vector by using the cell and nucleus penetrating properties of YopM proteins from the three Yersinia spp. (Y. pestis, Y. enterocolotica and Y. pseudotuberculosis). Plasmid DNA (pDNA) encoding green fluorescent protein (GFP) was labeled with quantum dots (QDs) via peptide-nucleic acid (PNA) recognition site. Recombinant YopM protein was then attached to the conjugate via a second PNA recognition site. The YopM ̶ QDs ̶ pDNA conjugate was transfected into HeLa cells without using additional transfection reagent. All three conjugates produced GFP fluorescence, indicating that the plasmid was successfully delivered to the nucleus. As control, naked pDNA was transfected into the cells by using a commercial transfection reagent. The Y. pseudotuberculosis YopM-functionalized conjugate achieved the highest GFP expression, compared to other two YopM proteins and the transfection reagent. To the best of our knowledge, YopM protein was used for the first time in a non-viral gene delivery vector.
Collapse
Affiliation(s)
- Özge Uğurlu
- Department of Biochemistry, Faculty of Science, Ege University, 35100, Bornov, Izmir, Turkey
| | - Fırat Barış Barlas
- Department of Biochemistry, Faculty of Science, Ege University, 35100, Bornov, Izmir, Turkey
| | - Serap Evran
- Department of Biochemistry, Faculty of Science, Ege University, 35100, Bornov, Izmir, Turkey.
| | - Suna Timur
- Department of Biochemistry, Faculty of Science, Ege University, 35100, Bornov, Izmir, Turkey; Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, 35100, Bornova, Izmir, Turkey
| |
Collapse
|
14
|
Zhou S, Tu X, Pang H, Hoare R, Monaghan SJ, Luo J, Jian J. A T3SS Regulator Mutant of Vibrio alginolyticus Affects Antibiotic Susceptibilities and Provides Significant Protection to Danio rerio as a Live Attenuated Vaccine. Front Cell Infect Microbiol 2020; 10:183. [PMID: 32411620 PMCID: PMC7198820 DOI: 10.3389/fcimb.2020.00183] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/06/2020] [Indexed: 11/13/2022] Open
Abstract
Vibrio alginolyticus is a major cause of Vibriosis in farmed marine aquatic animals and has caused large economic losses to the Asian aquaculture industry in recent years. Therefore, it is necessary to control V. alginolyticus effectively. The virulence mechanism of V. alginolyticus, the Type III secretion system (T3SS), is closely related to its pathogenicity. In this study, the T3SS gene tyeA was cloned from V. alginolyticus wild-type strain HY9901 and the results showed that the deduced amino acid sequence of V. alginolyticus tyeA shared 75–83% homology with other Vibrio spp. The mutant strain HY9901ΔtyeA was constructed by Overlap-PCR and homologous recombination techniques. The HY9901ΔtyeA mutant exhibited an attenuated swarming phenotype and an ~40-fold reduction in virulence to zebrafish. However, the HY9901ΔtyeA mutant showed no difference in growth, biofilm formation and ECPase activity. Antibiotic susceptibility test was observed that wild and mutant strains were extremely susceptible to Amikacin, Minocycline, Gentamicin, Cefperazone; and resistant to oxacillin, clindamycin, ceftazidime. In contrast wild strains are sensitive to tetracycline, chloramphenicol, kanamycin, doxycycline, while mutant strains are resistant to them. qRT-PCR was employed to analyze the transcription levels of T3SS-related genes, the results showed that compared with HY9901 wild type, ΔtyeA had increased expression of vscL, vscK, vscO, vopS, vopN, vscN, and hop. Following vaccination with the mutant strain, zebrafish had significantly higher survival than controls following infection with the wild-type HY9901 (71.2% relative percent survival; RPS). Analysis of immune gene expression by qPCR showed that vaccination with HY9901ΔtyeA increased the expression of IgM, IL-1β, IL-6, and TNF-α in zebrafish. This study provides evidence of protective efficacy of a live attenuated vaccine targeting the T3SS of V. alginolyticus which may be facilitated by up-regulated pro-inflammatory and immunoglobulin-related genes.
Collapse
Affiliation(s)
- Shihui Zhou
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, China.,Fisheries College, Guangdong Ocean University, Zhanjiang, China.,Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China.,Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China.,Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xueting Tu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, China.,Fisheries College, Guangdong Ocean University, Zhanjiang, China.,Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China.,Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China.,Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Huanying Pang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, China.,Fisheries College, Guangdong Ocean University, Zhanjiang, China.,Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China.,Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China.,Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Rowena Hoare
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Sean J Monaghan
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Jiajun Luo
- Fisheries College, Guangdong Ocean University, Zhanjiang, China.,Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China.,Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China
| | - Jichan Jian
- Fisheries College, Guangdong Ocean University, Zhanjiang, China.,Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China.,Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China.,Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
15
|
Redundant and Cooperative Roles for Yersinia pestis Yop Effectors in the Inhibition of Human Neutrophil Exocytic Responses Revealed by Gain-of-Function Approach. Infect Immun 2020; 88:IAI.00909-19. [PMID: 31871100 DOI: 10.1128/iai.00909-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Yersinia pestis causes a rapid, lethal disease referred to as plague. Y. pestis actively inhibits the innate immune system to generate a noninflammatory environment during early stages of infection to promote colonization. The ability of Y. pestis to create this early noninflammatory environment is in part due to the action of seven Yop effector proteins that are directly injected into host cells via a type 3 secretion system (T3SS). While each Yop effector interacts with specific host proteins to inhibit their function, several Yop effectors either target the same host protein or inhibit converging signaling pathways, leading to functional redundancy. Previous work established that Y. pestis uses the T3SS to inhibit neutrophil respiratory burst, phagocytosis, and release of inflammatory cytokines. Here, we show that Y. pestis also inhibits release of granules in a T3SS-dependent manner. Moreover, using a gain-of-function approach, we discovered previously hidden contributions of YpkA and YopJ to inhibition and that cooperative actions by multiple Yop effectors are required to effectively inhibit degranulation. Independent from degranulation, we also show that multiple Yop effectors can inhibit synthesis of leukotriene B4 (LTB4), a potent lipid mediator released by neutrophils early during infection to promote inflammation. Together, inhibition of these two arms of the neutrophil response likely contributes to the noninflammatory environment needed for Y. pestis colonization and proliferation.
Collapse
|
16
|
Molecular Mechanisms That Define Redox Balance Function in Pathogen-Host Interactions-Is There a Role for Dietary Bioactive Polyphenols? Int J Mol Sci 2019; 20:ijms20246222. [PMID: 31835548 PMCID: PMC6940965 DOI: 10.3390/ijms20246222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 01/01/2023] Open
Abstract
To ensure a functional immune system, the mammalian host must detect and respond to the presence of pathogenic bacteria during infection. This is accomplished in part by generating reactive oxygen species (ROS) that target invading bacteria; a process that is facilitated by NADPH oxidase upregulation. Thus, bacterial pathogens must overcome the oxidative burst produced by the host innate immune cells in order to survive and proliferate. In this way, pathogenic bacteria develop virulence, which is related to the affinity to secrete effector proteins against host ROS in order to facilitate microbial survival in the host cell. These effectors scavenge the host generated ROS directly, or alternatively, manipulate host cell signaling mechanisms designed to benefit pathogen survival. The redox-balance of the host is important for the regulation of cell signaling activities that include mitogen-activated protein kinase (MAPK), p21-activated kinase (PAK), phosphatidylinositol 3-kinase (PI3K)/Akt, and nuclear factor κB (NF-κB) pathways. An understanding of the function of pathogenic effectors to divert host cell signaling is important to ascertain the mechanisms underlying pathogen virulence and the eventual host–pathogen relationship. Herein, we examine the effectors produced by the microbial secretion system, placing emphasis on how they target molecular signaling mechanisms involved in a host immune response. Moreover, we discuss the potential impact of bioactive polyphenols in modulating these molecular interactions that will ultimately influence pathogen virulence.
Collapse
|
17
|
Zhuang Q, Dai F, Zhao X, Shao Y, Guo M, Lv Z, Li C, Zhang W. Cloning and characterization of the virulence factor Hop from Vibrio splendidus. Microb Pathog 2019; 139:103900. [PMID: 31790795 DOI: 10.1016/j.micpath.2019.103900] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/11/2019] [Accepted: 11/28/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Vibrio splendidus is an aquaculture pathogen that can cause skin ulcer syndrome (SUS) in Apostichopus japonicus. HopPmaJ is a type III system effector (T3SE) that has been reported to be an important virulence factor. In this study, a gene named hop, which encodes HopPmaJ in V. splendidus was cloned and its cytotoxicity to coelomocytes and its effects on the expression of immune-related genes in A. japonicus were characterized. METHODS Real time reverse transcription PCR (RT-PCR) was used to determine the expression of the hop gene under various conditions. To obtain the purified Hop, hop gene was conditionally expressed in Escherichia coli BL21(DE3) and was purified by GST tag. The cytotoxicity of Hop to coelomocyte was determined using MTT method, and the effect of Hop on the expression of immune-related genes was determined using real time RT-PCR. RESULTS The deduced amino acid sequence of Hop from V. splendidus shared 84%-96% homology with those of Hops from other Vibrio spp. The expression of hop gene was induced not only by host-pathogen contact but also by high cell density. Purified recombinant Hop (rHop) showed cytotoxicity to the coelomocyte of A. japonicus. The cell viability decreased to approximately 42%, 26%, 32%, 30% and 20%, when 30, 50, 60, 80 and 100 μL of purified rHop was added, respectively. After being injected with rHop, the expression levels of immune-related genes that encode complement component (C1q) and caspase were significantly increased, and the production of reactive oxygen species were also increased in A. japonicus. CONCLUSION Our results indicated that Hop not only contributed to the cytotoxicity to coelomocyte, but also caused immune response in A. japonicus.
Collapse
Affiliation(s)
- Qiuting Zhuang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Fa Dai
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Xuelin Zhao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Yina Shao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Ming Guo
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Zhimeng Lv
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China
| | - Weiwei Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
18
|
Milne-Davies B, Helbig C, Wimmi S, Cheng DWC, Paczia N, Diepold A. Life After Secretion- Yersinia enterocolitica Rapidly Toggles Effector Secretion and Can Resume Cell Division in Response to Changing External Conditions. Front Microbiol 2019; 10:2128. [PMID: 31572334 PMCID: PMC6753693 DOI: 10.3389/fmicb.2019.02128] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/29/2019] [Indexed: 12/12/2022] Open
Abstract
Many pathogenic bacteria use the type III secretion system (T3SS) injectisome to manipulate host cells by injecting virulence-promoting effector proteins into the host cytosol. The T3SS is activated upon host cell contact, and its activation is accompanied by an arrest of cell division; hence, many species maintain a T3SS-inactive sibling population to propagate efficiently within the host. The enteric pathogen Yersinia enterocolitica utilizes the T3SS to prevent phagocytosis and inhibit inflammatory responses. Unlike other species, almost all Y. enterocolitica are T3SS-positive at 37°C, which raises the question, how these bacteria are able to propagate within the host, that is, when and how they stop secretion and restart cell division after a burst of secretion. Using a fast and quantitative in vitro secretion assay, we have examined the initiation and termination of type III secretion. We found that effector secretion begins immediately once the activating signal is present, and instantly stops when this signal is removed. Following effector secretion, the bacteria resume division within minutes after being introduced to a non-secreting environment, and the same bacteria are able to re-initiate effector secretion at later time points. Our results indicate that Y. enterocolitica use their type III secretion system to promote their individual survival when necessary, and are able to quickly switch their behavior toward replication afterwards, possibly gaining an advantage during infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Andreas Diepold
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
19
|
Bohn E, Sonnabend M, Klein K, Autenrieth IB. Bacterial adhesion and host cell factors leading to effector protein injection by type III secretion system. Int J Med Microbiol 2019; 309:344-350. [DOI: 10.1016/j.ijmm.2019.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/02/2019] [Accepted: 05/31/2019] [Indexed: 01/14/2023] Open
|
20
|
Francis MS, Auerbuch V. Editorial: The Pathogenic Yersiniae-Advances in the Understanding of Physiology and Virulence, Second Edition. Front Cell Infect Microbiol 2019; 9:119. [PMID: 31058103 PMCID: PMC6482262 DOI: 10.3389/fcimb.2019.00119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/03/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Matthew S Francis
- Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Victoria Auerbuch
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
21
|
Characterization of Pyrin Dephosphorylation and Inflammasome Activation in Macrophages as Triggered by the Yersinia Effectors YopE and YopT. Infect Immun 2019; 87:IAI.00822-18. [PMID: 30602502 DOI: 10.1128/iai.00822-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 12/14/2018] [Indexed: 01/24/2023] Open
Abstract
Pathogenic Yersinia species deliver Yop effector proteins through a type III secretion system into host cells. Among these effectors, YopE and YopT are Rho-modifying toxins, which function to modulate host cell physiology and evade immune responses. YopE is a GTPase-activating protein (GAP) while YopT is a protease, and they inhibit RhoA by different modes of action. Modifications to RhoA are sensed by pyrin, which, once activated, assembles a caspase-1 inflammasome, which generates cytokines such as interleukin-1β (IL-1β) and cell death by pyroptosis. In Yersinia-infected macrophages, YopE or YopT triggers inflammasome assembly only in the absence of another effector, YopM, which counteracts pyrin by keeping it inactive. The glucosyltransferase TcdB from Clostridium difficile, a well-studied RhoA-inactivating toxin, triggers activation of murine pyrin by dephosphorylation of Ser205 and Ser241. To determine if YopE or YopT triggers pyrin dephosphorylation, we infected lipopolysaccharide (LPS)-primed murine macrophages with ΔyopM Yersinia pseudotuberculosis strains expressing wild-type (wt) or YopE mutant variants or YopT. By immunoblotting pyrin after infection, we observed that wt YopE triggered dephosphorylation of Ser205 and inflammasome activation. Pyrin dephosphorylation was reduced if a YopE variant had a defect in stability or RhoA specificity but not membrane localization. We also observed that wt YopT triggered pyrin dephosphorylation but more slowly than YopE, suggesting that YopE is dominant in this process. Our findings provide evidence that RhoA-modifying toxins trigger activation of pyrin by a conserved dephosphorylation mechanism. In addition, by characterization of YopE and YopT, we show that different features of effectors, such as RhoA specificity, affect the efficiency of pyrin dephosphorylation.
Collapse
|
22
|
Bamyaci S, Nordfelth R, Forsberg Å. Identification of specific sequence motif of YopN of Yersinia pseudotuberculosis required for systemic infection. Virulence 2018; 10:10-25. [PMID: 30488778 PMCID: PMC6298760 DOI: 10.1080/21505594.2018.1551709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Type III secretion systems (T3SSs) are tightly regulated key virulence mechanisms shared by many Gram-negative pathogens. YopN, one of the substrates, is also crucial in regulation of expression, secretion and activation of the T3SS of pathogenic Yersinia species. Interestingly, YopN itself is also targeted into host cells but so far no activity or direct role for YopN inside host cells has been described. Recently, we were able show that the central region of YopN is required for efficient translocation of YopH and YopE into host cells. This was also shown to impact the ability of Yersinia to block phagocytosis. One difficulty in studying YopN is to generate mutants that are not impaired in regulation of the T3SS. In this study we extended our previous work and were able to generate specific mutants within the central region of YopN. These mutants were predicted to be crucial for formation of a putative coiled-coil domain (CCD). Similar to the previously described deletion mutant of the central region, these mutants were all impaired in translocation of YopE and YopH. Interestingly, these YopN variants were not translocated into host cells. Importantly, when these mutants were introduced in cis on the virulence plasmid, they retained full regulatory function of T3SS expression and secretion. This allowed us to evaluate one of the mutants, yopNGAGA, in the systemic mouse infection model. Using in vivo imaging technology we could verify that the mutant was also attenuated in vivo and highly impaired to establish systemic infection.
Collapse
Affiliation(s)
- Sarp Bamyaci
- a Department of Molecular Biology, Umeå Centre for Microbial Research UCMR , Umeå University , Umeå , Sweden.,b Department of Molecular Biology, Laboratory for Molecular Infection Medicine MIMS , Umeå University , Umeå , Sweden
| | - Roland Nordfelth
- a Department of Molecular Biology, Umeå Centre for Microbial Research UCMR , Umeå University , Umeå , Sweden.,b Department of Molecular Biology, Laboratory for Molecular Infection Medicine MIMS , Umeå University , Umeå , Sweden
| | - Åke Forsberg
- a Department of Molecular Biology, Umeå Centre for Microbial Research UCMR , Umeå University , Umeå , Sweden.,b Department of Molecular Biology, Laboratory for Molecular Infection Medicine MIMS , Umeå University , Umeå , Sweden
| |
Collapse
|
23
|
Dhroso A, Eidson S, Korkin D. Genome-wide prediction of bacterial effector candidates across six secretion system types using a feature-based statistical framework. Sci Rep 2018; 8:17209. [PMID: 30464223 PMCID: PMC6249201 DOI: 10.1038/s41598-018-33874-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 10/06/2018] [Indexed: 01/12/2023] Open
Abstract
Gram-negative bacteria are responsible for hundreds of millions infections worldwide, including the emerging hospital-acquired infections and neglected tropical diseases in the third-world countries. Finding a fast and cheap way to understand the molecular mechanisms behind the bacterial infections is critical for efficient diagnostics and treatment. An important step towards understanding these mechanisms is the discovery of bacterial effectors, the proteins secreted into the host through one of the six common secretion system types. Unfortunately, current prediction methods are designed to specifically target one of three secretion systems, and no accurate "secretion system-agnostic" method is available. Here, we present PREFFECTOR, a computational feature-based approach to discover effector candidates in Gram-negative bacteria, without prior knowledge on bacterial secretion system(s) or cryptic secretion signals. Our approach was first evaluated using several assessment protocols on a manually curated, balanced dataset of experimentally determined effectors across all six secretion systems, as well as non-effector proteins. The evaluation revealed high accuracy of the top performing classifiers in PREFFECTOR, with the small false positive discovery rate across all six secretion systems. Our method was also applied to six bacteria that had limited knowledge on virulence factors or secreted effectors. PREFFECTOR web-server is freely available at: http://korkinlab.org/preffector .
Collapse
Affiliation(s)
- Andi Dhroso
- Department of Computer Science, and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Samantha Eidson
- Mathematics and Computer Science Department, Fontbonne University, St. Louis, MO, USA
| | - Dmitry Korkin
- Department of Computer Science, and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, USA.
| |
Collapse
|
24
|
Sharma V, Verma S, Seranova E, Sarkar S, Kumar D. Selective Autophagy and Xenophagy in Infection and Disease. Front Cell Dev Biol 2018; 6:147. [PMID: 30483501 PMCID: PMC6243101 DOI: 10.3389/fcell.2018.00147] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/10/2018] [Indexed: 12/29/2022] Open
Abstract
Autophagy, a cellular homeostatic process, which ensures cellular survival under various stress conditions, has catapulted to the forefront of innate defense mechanisms during intracellular infections. The ability of autophagy to tag and target intracellular pathogens toward lysosomal degradation is central to this key defense function. However, studies involving the role and regulation of autophagy during intracellular infections largely tend to ignore the housekeeping function of autophagy. A growing number of evidences now suggest that the housekeeping function of autophagy, rather than the direct pathogen degradation function, may play a decisive role to determine the outcome of infection and immunological balance. We discuss herein the studies that establish the homeostatic and anti-inflammatory function of autophagy, as well as role of bacterial effectors in modulating and coopting these functions. Given that the core autophagy machinery remains largely the same across diverse cargos, how selectivity plays out during intracellular infection remains intriguing. We explore here, the contrasting role of autophagy adaptors being both selective as well as pleotropic in functions and discuss whether E3 ligases could bring in the specificity to cargo selectivity.
Collapse
Affiliation(s)
- Vartika Sharma
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Surbhi Verma
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Elena Seranova
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Sovan Sarkar
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Dhiraj Kumar
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
25
|
Gain-of-Function Analysis Reveals Important Virulence Roles for the Yersinia pestis Type III Secretion System Effectors YopJ, YopT, and YpkA. Infect Immun 2018; 86:IAI.00318-18. [PMID: 29891548 DOI: 10.1128/iai.00318-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/07/2018] [Indexed: 02/06/2023] Open
Abstract
Virulence of Yersinia pestis in mammals requires the type III secretion system, which delivers seven effector proteins into the cytoplasm of host cells to undermine immune responses. All seven of these effectors are conserved across Y. pestis strains, but three, YopJ, YopT, and YpkA, are apparently dispensable for virulence. Some degree of functional redundancy between effector proteins would explain both observations. Here, we use a combinatorial genetic approach to define the minimal subset of effectors required for full virulence in mice following subcutaneous infection. We found that a Y. pestis strain lacking YopJ, YopT, and YpkA is attenuated for virulence in mice and that addition of any one of these effectors to this strain increases lethality significantly. YopJ, YopT, and YpkA likely contribute to virulence via distinct mechanisms. YopJ is uniquely able to cause macrophage cell death in vitro and to suppress accumulation of inflammatory cells to foci of bacterial growth in deep tissue, whereas YopT and YpkA cannot. The synthetic phenotypes that emerge when YopJ, YopT, and YpkA are removed in combination provide evidence that each effector enhances Y. pestis virulence and that YopT and YpkA act through a mechanism distinct from that of YopJ.
Collapse
|
26
|
Pang H, Qiu M, Zhao J, Hoare R, Monaghan SJ, Song D, Chang Y, Jian J. Construction of a Vibrio alginolyticus hopPmaJ (hop) mutant and evaluation of its potential as a live attenuated vaccine in orange-spotted grouper (Epinephelus coioides). FISH & SHELLFISH IMMUNOLOGY 2018; 76:93-100. [PMID: 29427720 DOI: 10.1016/j.fsi.2018.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/31/2018] [Accepted: 02/06/2018] [Indexed: 06/08/2023]
Abstract
Vibrio alginolyticus, a bacterial pathogen in fish and humans, expresses a type III secretion system (T3SS) that is critical for pathogen virulence and disease development. However, little is known about the associated effectors (T3SEs) and their physiological role. In this study, the T3SE gene hopPmaJ (hop) was cloned from V. alginolyticus wild-type strain HY9901 and the mutant strain HY9901Δhop was constructed by the in-frame deletion method. The results showed that the deduced amino acid sequence of V. alginolyticus HopPmaJ shared 78-98% homology with other Vibrio spp. In addition, the HY9901Δhop mutant showed an attenuated swarming phenotype and a 2600-fold decrease in the virulence to grouper. However, the HY9901Δhop mutant showed no difference in morphology, growth, biofilm formation and ECPase activity. Finally, grouper vaccinated via intraperitoneal (IP) injection with HY9901Δhop induced a high antibody titer with a relative percent survival (RPS) value of 84% after challenging with the wild-type HY9901. Real-time PCR assays showed that vaccination with HY9901Δhop enhanced the expression of immune-related genes, including MHC-Iα, MHC-IIα, IgM, and IL-1β after vaccination, indicating that it is able to induce humoral and cell-mediated immune response in grouper. These results demonstrate that the HY9901Δhop mutant could be used as an effective live vaccine to combat V. alginolyticus in grouper.
Collapse
Affiliation(s)
- Huanying Pang
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524025, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524025, China
| | - Mingsheng Qiu
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Jingmin Zhao
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Rowena Hoare
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - Sean J Monaghan
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - Dawei Song
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524025, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524025, China
| | - Yunsheng Chang
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524025, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524025, China
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524025, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524025, China.
| |
Collapse
|
27
|
Pinaud L, Sansonetti PJ, Phalipon A. Host Cell Targeting by Enteropathogenic Bacteria T3SS Effectors. Trends Microbiol 2018; 26:266-283. [DOI: 10.1016/j.tim.2018.01.010] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/29/2018] [Accepted: 01/29/2018] [Indexed: 12/23/2022]
|
28
|
Heine W, Beckstette M, Heroven AK, Thiemann S, Heise U, Nuss AM, Pisano F, Strowig T, Dersch P. Loss of CNFY toxin-induced inflammation drives Yersinia pseudotuberculosis into persistency. PLoS Pathog 2018; 14:e1006858. [PMID: 29390040 PMCID: PMC5811047 DOI: 10.1371/journal.ppat.1006858] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 02/13/2018] [Accepted: 01/05/2018] [Indexed: 12/16/2022] Open
Abstract
Gastrointestinal infections caused by enteric yersiniae can become persistent and complicated by relapsing enteritis and severe autoimmune disorders. To establish a persistent infection, the bacteria have to cope with hostile surroundings when they transmigrate through the intestinal epithelium and colonize underlying gut-associated lymphatic tissues. How the bacteria gain a foothold in the face of host immune responses is poorly understood. Here, we show that the CNFY toxin, which enhances translocation of the antiphagocytic Yop effectors, induces inflammatory responses. This results in extensive tissue destruction, alteration of the intestinal microbiota and bacterial clearance. Suppression of CNFY function, however, increases interferon-γ-mediated responses, comprising non-inflammatory antimicrobial activities and tolerogenesis. This process is accompanied by a preterm reprogramming of the pathogen's transcriptional response towards persistence, which gives the bacteria a fitness edge against host responses and facilitates establishment of a commensal-type life style.
Collapse
Affiliation(s)
- Wiebke Heine
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Beckstette
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ann Kathrin Heroven
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sophie Thiemann
- Group Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ulrike Heise
- Group Mouse Pathology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Aaron Mischa Nuss
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Fabio Pisano
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Till Strowig
- Group Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
29
|
Synthetic Cyclic Peptomers as Type III Secretion System Inhibitors. Antimicrob Agents Chemother 2017; 61:AAC.00060-17. [PMID: 28652236 DOI: 10.1128/aac.00060-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/10/2017] [Indexed: 12/12/2022] Open
Abstract
Antibiotic-resistant bacteria are an emerging threat to global public health. New classes of antibiotics and tools for antimicrobial discovery are urgently needed. Type III secretion systems (T3SS), which are required by dozens of Gram-negative bacteria for virulence but largely absent from nonpathogenic bacteria, are promising virulence blocker targets. The ability of mammalian cells to recognize the presence of a functional T3SS and trigger NF-κB activation provides a rapid and sensitive method for identifying chemical inhibitors of T3SS activity. In this study, we generated a HEK293 stable cell line expressing green fluorescent protein (GFP) driven by a promoter containing NF-κB enhancer elements to serve as a readout of T3SS function. We identified a family of synthetic cyclic peptide-peptoid hybrid molecules (peptomers) that exhibited dose-dependent inhibition of T3SS effector secretion in Yersinia pseudotuberculosis and Pseudomonas aeruginosa without affecting bacterial growth or motility. Among these inhibitors, EpD-3'N, EpD-1,2N, EpD-1,3'N, EpD-1,2,3'N, and EpD-1,2,4'N exhibited strong inhibitory effects on translocation of the Yersinia YopM effector protein into mammalian cells (>40% translocation inhibition at 7.5 μM) and showed no toxicity to mammalian cells at 240 μM. In addition, EpD-3'N and EpD-1,2,4'N reduced the rounding of HeLa cells caused by the activity of Yersinia effector proteins that target the actin cytoskeleton. In summary, we have discovered a family of novel cyclic peptomers that inhibit the injectisome T3SS but not the flagellar T3SS.
Collapse
|
30
|
Pearson JS, Murphy JM. Down the rabbit hole: Is necroptosis truly an innate response to infection? Cell Microbiol 2017; 19. [PMID: 28476074 DOI: 10.1111/cmi.12750] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 12/28/2022]
Abstract
Pathogenic microbes have evolved countless sophisticated mechanisms to subvert host immune responses and cause disease. Understanding evasion strategies employed by pathogens has led to numerous discoveries on specific host cell processes that are critical for controlling infection. Programmed cell death (PCD) is a key host defence to microbial infection, as well as being critical for organ development and cellular homeostasis in multicellular organisms. Much of our current understanding of PCD as a host response to infection has stemmed from the discovery and study of viral inhibitors of apoptosis, and more recently viral inhibition of the newly characterised from of PCD termed necroptosis, the mechanisms of which are still under intense investigation. Many bacterial pathogens also encode inhibitors of PCD, yet these discoveries are relatively more recent and thus the biological significance of such mechanisms is still under debate. In this viewpoint article, we will argue the concept that necroptosis is merely a "back-up" mechanism in the event that apoptosis is inhibited, or whether it is a true host innate response to infection that has evolved in response to a growing arsenal of microbial evasion strategies.
Collapse
Affiliation(s)
- Jaclyn S Pearson
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - James M Murphy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
31
|
Grabowski B, Schmidt MA, Rüter C. Immunomodulatory Yersinia outer proteins (Yops)-useful tools for bacteria and humans alike. Virulence 2017; 8:1124-1147. [PMID: 28296562 DOI: 10.1080/21505594.2017.1303588] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human-pathogenic Yersinia produce plasmid-encoded Yersinia outer proteins (Yops), which are necessary to down-regulate anti-bacterial responses that constrict bacterial survival in the host. These Yops are effectively translocated directly from the bacterial into the target cell cytosol by the type III secretion system (T3SS). Cell-penetrating peptides (CPPs) in contrast are characterized by their ability to autonomously cross cell membranes and to transport cargo - independent of additional translocation systems. The recent discovery of bacterial cell-penetrating effector proteins (CPEs) - with the prototype being the T3SS effector protein YopM - established a new class of autonomously translocating immunomodulatory proteins. CPEs represent a vast source of potential self-delivering, anti-inflammatory therapeutics. In this review, we give an update on the characteristic features of the plasmid-encoded Yops and, based on recent findings, propose the further development of these proteins for potential therapeutic applications as natural or artificial cell-penetrating forms of Yops might be of value as bacteria-derived biologics.
Collapse
Affiliation(s)
- Benjamin Grabowski
- a Institute of Infectiology - Centre for Molecular Biology of Inflammation (ZMBE), University of Münster , Münster , Germany
| | - M Alexander Schmidt
- a Institute of Infectiology - Centre for Molecular Biology of Inflammation (ZMBE), University of Münster , Münster , Germany
| | - Christian Rüter
- a Institute of Infectiology - Centre for Molecular Biology of Inflammation (ZMBE), University of Münster , Münster , Germany
| |
Collapse
|
32
|
Weng Y, Chen F, Liu Y, Zhao Q, Chen R, Pan X, Liu C, Cheng Z, Jin S, Jin Y, Wu W. Pseudomonas aeruginosa Enolase Influences Bacterial Tolerance to Oxidative Stresses and Virulence. Front Microbiol 2016; 7:1999. [PMID: 28018326 PMCID: PMC5156722 DOI: 10.3389/fmicb.2016.01999] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 11/29/2016] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram negative opportunistic pathogenic bacterium, which causes acute and chronic infections. Upon entering the host, bacteria alter global gene expression to adapt to host environment and avoid clearance by the host. Enolase is a glycolytic enzyme involved in carbon metabolism. It is also a component of RNA degradosome, which is involved in RNA processing and gene regulation. Here, we report that enolase is required for the virulence of P. aeruginosa in a murine acute pneumonia model. Mutation of enolase coding gene (eno) increased bacterial susceptibility to neutrophil mediated killing, which is due to reduced tolerance to oxidative stress. Catalases and alkyl hydroperoxide reductases play a major role in protecting the cell from oxidative damages. In the eno mutant, the expression levels of catalases (KatA and KatB) were similar as those in the wild type strain in the presence of H2O2, however, the expression levels of alkyl hydroperoxide reductases (AhpB and AhpC) were significantly reduced. Overexpression of ahpB but not ahpC in the eno mutant fully restored the bacterial resistance to H2O2 as well as neutrophil mediated killing, and partially restored bacterial virulence in the murine acute pneumonia model. Therefore, we have identified a novel role of enolase in the virulence of P. aeruginosa.
Collapse
Affiliation(s)
- Yuding Weng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Fei Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Yiwei Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Ronghao Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Chang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Shouguang Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai UniversityTianjin, China; Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, GainesvilleFL, USA
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| |
Collapse
|
33
|
Miller HK, Schwiesow L, Au-Yeung W, Auerbuch V. Hereditary Hemochromatosis Predisposes Mice to Yersinia pseudotuberculosis Infection Even in the Absence of the Type III Secretion System. Front Cell Infect Microbiol 2016; 6:69. [PMID: 27446816 PMCID: PMC4919332 DOI: 10.3389/fcimb.2016.00069] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/08/2016] [Indexed: 12/18/2022] Open
Abstract
The iron overload disorder hereditary hemochromatosis (HH) predisposes humans to serious disseminated infection with pathogenic Yersinia as well as several other pathogens. Recently, we showed that the iron-sulfur cluster coordinating transcription factor IscR is required for type III secretion in Y. pseudotuberculosis by direct control of the T3SS master regulator LcrF. In E. coli and Yersinia, IscR levels are predicted to be regulated by iron bioavailability, oxygen tension, and oxidative stress, such that iron depletion should lead to increased IscR levels. To investigate how host iron overload influences Y. pseudotuberculosis virulence and the requirement for the Ysc type III secretion system (T3SS), we utilized two distinct murine models of HH: hemojuvelin knockout mice that mimic severe, early-onset HH as well as mice with the HfeC282Y∕C282Y mutation carried by 10% of people of Northern European descent, associated with adult-onset HH. Hjv−∕− and HfeC282Y∕C282Y transgenic mice displayed enhanced colonization of deep tissues by Y. pseudotuberculosis following oral inoculation, recapitulating enhanced susceptibility of humans with HH to disseminated infection with enteropathogenic Yersinia. Importantly, HH mice orally infected with Y. pseudotuberculosis lacking the T3SS-encoding virulence plasmid, pYV, displayed increased deep tissue colonization relative to wildtype mice. Consistent with previous reports using monocytes from HH vs. healthy donors, macrophages isolated from HfeC282Y∕C282Y mice were defective in Yersinia uptake compared to wildtype macrophages, indicating that the anti-phagocytic property of the Yersinia T3SS plays a less important role in HH animals. These data suggest that Yersinia may rely on distinct virulence factors to cause disease in healthy vs. HH hosts.
Collapse
Affiliation(s)
- Halie K Miller
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz Santa Cruz, CA, USA
| | - Leah Schwiesow
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz Santa Cruz, CA, USA
| | - Winnie Au-Yeung
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz Santa Cruz, CA, USA
| | - Victoria Auerbuch
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz Santa Cruz, CA, USA
| |
Collapse
|