1
|
Chen J, Wang Y, Dai W, Xu X, Ni Q, Yi X, Kang P, Ma J, Wu L, Li C, Li S. Oxidative stress-induced hypermethylation and low expression of ANXA2R: Novel insights into the dysfunction of melanocytes in vitiligo. J Dermatol Sci 2024; 114:115-123. [PMID: 38806323 DOI: 10.1016/j.jdermsci.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/30/2024] [Accepted: 02/27/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Vitiligo is a skin disorder with melanocyte destruction caused by complex interplay between multiple genetic and environmental factors. Recent studies have suggested DNA methylation is involved in the melanocyte damage, but the underlying mechanism remains unknown. OBJECTIVE To explore the abnormal DNA methylation patterns in vitiligo lesional and nonlesional skin, and the mechanism of DNA methylation involved in vitiligo pathogenesis. METHODS Initially, the genome-wide aberrant DNA methylation profiles in lesional and nonlesional skin of vitiligo were detect via Illumina methylation EPIC 850k Beadchip. Subsequently, a comprehensive analysis was conduct to investigate the genomic characteristics of differentially methylated regions (DMRs). Furthermore, the effects of key aberrant methylated genes on cell apoptosis and function of both melanocytes and keratinocytes were further identified and validated by western bloting, ELISA, and immunofluorescence. RESULTS Compared with nonlesional skins, we discovered 79 significantly differentially methylated CpG sites in vitiligo lesions. These DMRs were mainly located in the gene body and the TS1500 region. Annexin A2 receptor (ANXA2R), a crucial gene in cell apoptosis, was hypermethylated in vitiligo lesions. Furthermore, we showed that ANXA2R displayed hypermethylation and low expression levels in both keratinocytes and melanocytes of vitiligo patients, and the hypermethylated-triggered downregulation of ANXA2R under oxidative stress induced melanocyte apoptosis, and inhibited the secretion of stem cell factor (SCF) from keratinocytes thus impaired the survival of melanocytes. CONCLUSIONS Our study illustrates the DNA methylation modification in vitiligo, and further demonstrates the molecular mechanism of hypermethylated ANXA2R in the dysfunction of melanocytes under oxidative stress.
Collapse
Affiliation(s)
- Jiaxi Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Shaanxi, China
| | - Yinghan Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Shaanxi, China
| | - Wei Dai
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Shaanxi, China
| | - Xinyuan Xu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Shaanxi, China
| | - Qingrong Ni
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Shaanxi, China
| | - Xiuli Yi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Shaanxi, China
| | - Pan Kang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Shaanxi, China
| | - Jingjing Ma
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Shaanxi, China
| | - Lili Wu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Shaanxi, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Shaanxi, China.
| | - Shuli Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Shaanxi, China.
| |
Collapse
|
2
|
Xie Y, Wu N, Tang S, Zhou Z, Chen J, Li J, Wu F, Xu M, Xu X, Liu Y, Ma X. Endoplasmic Reticulum Dysfunction: An Emerging Mechanism of Vitiligo Pathogenesis. Clin Cosmet Investig Dermatol 2024; 17:1133-1144. [PMID: 38774812 PMCID: PMC11107934 DOI: 10.2147/ccid.s459070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/25/2024] [Indexed: 05/24/2024]
Abstract
The endoplasmic reticulum (ER) is the main site of protein synthesis, transport, and modification. Its abnormal status has now emerged as an established cause of many pathological processes, such as tumors and autoimmune diseases. Recent studies also demonstrated that the defective functions of ER may lead to pigmentary diseases. Vitiligo is a depigmenting ailment skin disorder whose pathogenesis is now found to be associated with ER. However, the detailed mechanism is still unclear. In this review, we try to link the association between ER with its inter- and intra-organellar interactions in vitiligo pathogenesis and focus on the function, mechanism, and clinical potential of ER with vitiligo. Expand ER is found in melanocytes of vitiligo and ER stress (ERS) might be a bridge between oxidative stress and innate and adaptive immunity. Meanwhile, the tight association between ER and mitochondria or melanosomes in organelles levels, as well as genes and cytokines, is the new paradigm in the pathogenesis of vitiligo. This undoubtedly adds a new aspect to the understanding of vitiligo, facilitating the design of targeted therapies for vitiligo.
Collapse
Affiliation(s)
- Yongyi Xie
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Nanhui Wu
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Suwei Tang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Zhiyu Zhou
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Jiashe Chen
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Jie Li
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Fei Wu
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Mingyuan Xu
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Xiaoxiang Xu
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Yeqiang Liu
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Xin Ma
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
3
|
Li J, Zeng X, Chen S, Tang L, Zhang Q, Lv M, Lian W, Wang J, Lv H, Liu Y, Shen J, Uyama T, Wu F, Wu J, Xu J. The Treatment of Refractory Vitiligo With Autologous Cultured Epithelium Grafting: A Real-World Retrospective Cohort Study. Stem Cells Transl Med 2024; 13:415-424. [PMID: 38513284 DOI: 10.1093/stcltm/szae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 01/11/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Surgical intervention is the main therapy for refractory vitiligo. We developed a modified autologous cultured epithelial grafting (ACEG) technique for vitiligo treatment. Between January 2015 and June 2019, a total of 726 patients with vitiligo underwent ACEG in China, with patient characteristics and clinical factors being meticulously documented. Using a generalized linear mixed model, we were able to assess the association between these characteristics and the repigmentation rate. RESULTS ACEG demonstrated a total efficacy rate of 82.81% (1754/2118) in treating 726 patients, with a higher repigmentation rate of 64.87% compared to conventional surgery at 52.69%. Notably, ACEG showed a better response in treating segmental vitiligo, lesions on lower limbs, age ≤ 18, and stable period > 3 years. A keratinocyte:melanocyte ratio below 25 was found to be advantageous too. Single-cell RNA sequencing analysis revealed an increase in melanocyte count and 2 subclusters of keratinocytes after ACEG, which remained higher in repigmented sites even after 1 year. CONCLUSIONS ACEG is a promising therapy for refractory vitiligo. Patient age, clinical type, lesion site, and stability before surgery influence repigmentation in ACEG. The mechanism of repigmentation after ACEG treatment is likely not confined to the restoration of melanocyte populations. It may also involve an increase in the number of keratinocytes that support melanocyte function within the affected area. These keratinocytes may aid the post-transplant survival and function of melanocytes by secreting cytokines and extracellular matrix components. TRIAL REGISTRATION registered with Chictr.org.cn (ChiCTR2100051405).
Collapse
Affiliation(s)
- Jian Li
- Department of Dermatology, Huashan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Xuanhao Zeng
- Department of Dermatology, Huashan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Shujun Chen
- Department of Dermatology, Huashan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Luyan Tang
- Department of Dermatology, Huashan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Qi Zhang
- Department of Dermatology, Huashan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Minzi Lv
- Centre of Evidence Medicine, Fudan University, Shanghai, People's Republic of China
| | - Weiling Lian
- Department of Dermatology, Huashan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Jinqi Wang
- Department of Dermatology, Huashan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Haozhen Lv
- Department of Dermatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Yating Liu
- Department of Dermatology, Huashan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Jiayi Shen
- Department of Dermatology, Huashan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Taro Uyama
- ReMed Regenerative Medicine Clinical Application Institute, Shanghai, People's Republic of China
| | - Fuyue Wu
- ReMed Regenerative Medicine Clinical Application Institute, Shanghai, People's Republic of China
| | - Jinfeng Wu
- Department of Dermatology, Huashan Hospital of Fudan University, Shanghai, People's Republic of China
- The Shanghai Institute of Dermatology, Shanghai, People's Republic of China
| | - Jinhua Xu
- Department of Dermatology, Huashan Hospital of Fudan University, Shanghai, People's Republic of China
- The Shanghai Institute of Dermatology, Shanghai, People's Republic of China
| |
Collapse
|
4
|
Zhang J, Xiang F, Ding Y, Hu W, Wang H, Zhang X, Lei Z, Li T, Wang P, Kang X. Identification and validation of RNA-binding protein SLC3A2 regulates melanocyte ferroptosis in vitiligo by integrated analysis of single-cell and bulk RNA-sequencing. BMC Genomics 2024; 25:236. [PMID: 38438962 PMCID: PMC10910712 DOI: 10.1186/s12864-024-10147-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND The pathogenesis of vitiligo remains unclear. The genes encoding vitiligo-related RNA-binding proteins (RBPs) and their underlying pathogenic mechanism have not been determined. RESULTS Single-cell transcriptome sequencing (scRNA-seq) data from the CNCB database was obtained to identify distinct cell types and subpopulations and the relative proportion changes in vitiligo and healthy samples. We identified 14 different cell types and 28 cell subpopulations. The proportion of each cell subpopulation significantly differed between the patients with vitiligo and healthy groups. Using RBP genes for unsupervised clustering, we obtained the specific RBP genes of different cell types in vitiligo and healthy groups. The RBP gene expression was highly heterogeneous; there were significant differences in some cell types, such as keratinocytes, Langerhans, and melanocytes, while there were no significant differences in other cells, such as T cells and fibroblasts, in the two groups. The melanocyte-specific RBP genes were enriched in the apoptosis and immune-related pathways in the patients with vitiligo. Combined with the bulk RNA-seq data of melanocytes, key RBP genes related to melanocytes were identified, including eight upregulated RBP genes (CDKN2A, HLA-A, RPL12, RPL29, RPL31, RPS19, RPS21, and RPS28) and one downregulated RBP gene (SLC3A2). Cell experiments were conducted to explore the role of the key RBP gene SLC3A2 in vitiligo. Cell experiments confirmed that melanocyte proliferation decreased, whereas apoptosis increased, after SLC3A2 knockdown. SLC3A2 knockdown in melanocytes also decreased the SOD activity and melanin content; increased the Fe2+, ROS, and MDA content; significantly increased the expression levels of TYR and COX2; and decreased the expression levels of glutathione and GPX4. CONCLUSION We identified the RBP genes of different cell subsets in patients with vitiligo and confirmed that downregulating SLC3A2 can promote ferroptosis in melanocytes. These findings provide new insights into the pathogenesis of vitiligo.
Collapse
Affiliation(s)
- Jingzhan Zhang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China
| | - Fang Xiang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China
| | - Yuan Ding
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China
| | - Wen Hu
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China
| | - Hongjuan Wang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China
| | - Xiangyue Zhang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China
| | - Zixian Lei
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China
| | - Tingting Li
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China
| | - Peng Wang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China
| | - Xiaojing Kang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China.
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China.
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China.
| |
Collapse
|
5
|
Tabata K, Ikarashi N, Shinozaki Y, Yoshida R, Kon R, Sakai H, Hosoe T, Kamei J. Effect of the gut microbiota on the expression of genes that are important for maintaining skin function: Analysis using aged mice. J Dermatol 2024; 51:419-428. [PMID: 38087767 DOI: 10.1111/1346-8138.17062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/16/2023] [Accepted: 11/11/2023] [Indexed: 03/05/2024]
Abstract
The gut microbiota changes greatly at the onset of disease, and the importance of intestinal bacteria has been highlighted. The gut microbiota also changes greatly with aging. Aging causes skin dryness, but it is not known how changes in the gut microbiota with aging affects the expression of genes that are important for maintaining skin function. In this study, we investigated how age-related changes in gut microbiota affect the expression of genes that regulate skin function. The gut microbiotas from young mice and aged mice were transplanted into germ-free mice (fecal microbiota transplantation [FMT]). These recipient mice were designated FMT-young mice and FMT-old mice respectively, and the expression levels of genes important for maintaining skin function were analyzed. The dermal water content was significantly lower in old mice than that in young mice, indicating dry skin. The gut microbiota significantly differed between old mice and young mice. The water channel aquaporin-3 (Aqp3) expression level in the skin of FMT-old mice was significantly higher than that in FMT-young mice. In addition, among the genes that play an important role in maintaining skin function, the expression levels of those encoding ceramide-degrading enzyme, ceramide synthase, hyaluronic acid-degrading enzyme, and Type I collagen were also significantly higher in FMT-old mice than in FMT-young mice. It was revealed that the gut microbiota, which changes with age, regulates the expression levels of genes related to skin function, including AQP3.
Collapse
Affiliation(s)
- Keito Tabata
- Department of Biomolecular Pharmacology, Hoshi University, Tokyo, Japan
| | - Nobutomo Ikarashi
- Department of Biomolecular Pharmacology, Hoshi University, Tokyo, Japan
| | - Yui Shinozaki
- Department of Biomolecular Pharmacology, Hoshi University, Tokyo, Japan
| | - Ryotaro Yoshida
- Department of Biomolecular Pharmacology, Hoshi University, Tokyo, Japan
| | - Risako Kon
- Department of Biomolecular Pharmacology, Hoshi University, Tokyo, Japan
| | - Hiroyasu Sakai
- Department of Biomolecular Pharmacology, Hoshi University, Tokyo, Japan
| | - Tomoo Hosoe
- Department of Biomolecular Pharmacology, Hoshi University, Tokyo, Japan
| | - Junzo Kamei
- Juntendo Advanced Research Institute for Health Science, Juntendo University, Tokyo, Japan
| |
Collapse
|
6
|
Arjmand B, Bahrami-Vahdat E, Alavi-Moghadam S, Arjmand R, Rezaei-Tavirani M, Namazi N, Larijani B. Human-Induced Pluripotent Stem Cell‒Derived Keratinocytes, as Therapeutic Option in Vitiligo. Methods Mol Biol 2024; 2849:185-202. [PMID: 38189899 DOI: 10.1007/7651_2023_510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Vitiligo is a skin condition affecting 1% of the global population, causing non-scaly, chalky-white macules on the skin and hair. It is caused by the pathologic destruction of melanocytes, which produce melanin. Research has focused on the abnormalities of melanocytes and their interaction with neighboring keratinocytes. Current treatments are mainly immunosuppressive drugs and UV radiation, which are scarce and ineffective. To treat vitiligo, regenerative medicine techniques, such as cell-based and cell-free methods, are recommended. Keratinocyte cell transplantation has shown promising results in treating vitiligo. Moreover, studies suggest individualized therapy for diseases can be provided by reprogramming somatic cells into induced pluripotent stem cells. On the other hand, differentiation into particular cell types is a key component of induced pluripotent stem cells-based treatment. In this chapter, the differentiation and validation of human induced pluripotent stem cells into a keratinocyte as a therapeutic option in vitiligo will be discussed.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasta Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Nazli Namazi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
| |
Collapse
|
7
|
Kim NH, Lee CH, Lee AY. Extraciliary OFD1 Is Involved in Melanocyte Survival through Cell Adhesion to ECM via Paxillin. Int J Mol Sci 2023; 24:17528. [PMID: 38139355 PMCID: PMC10743763 DOI: 10.3390/ijms242417528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Primary cilia play a significant role in influencing cell fate, including apoptosis in multiple cell types. In the lesional epidermis of vitiligo patients, a reduced number of ciliated cells was observed. Our study also revealed a downregulation of oral-facial digital syndrome type 1 (OFD1) in the affected skin of vitiligo patients. However, it remains unknown whether primary cilia are involved in the control of melanocyte apoptosis. While both intraflagellar transport 88 (IFT88) and retinitis pigmentosa GTPase regulator-interacting protein-1 like (RPGRIP1L) are associated with ciliogenesis in melanocytes, only the knockdown of OFD1, but not IFT88 and RPGRIP1L, resulted in increased melanocyte apoptosis. OFD1 knockdown led to a decrease in the expression of proteins involved in cell-extracellular matrix (ECM) interactions, including paxillin. The OFD1 amino acid residues 601-1012 interacted with paxillin, while the amino acid residues 1-601 were associated with ciliogenesis, suggesting that the OFD1 domains responsible for paxillin binding are distinct from those involved in ciliogenesis. OFD1 knockdown, but not IFT88 knockdown, inhibited melanocyte adhesion to the ECM, a defect that was restored by paxillin overexpression. In summary, our findings indicate that the downregulation of OFD1 induces melanocyte apoptosis, independent of any impairment in ciliogenesis, by reducing melanocyte adhesion to the ECM via paxillin.
Collapse
Affiliation(s)
- Nan-Hyung Kim
- Department of Dermatology, Dongguk University Ilsan Hospital, 814 Siksa-dong, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea;
| | - Ai-Young Lee
- Department of Dermatology, Dongguk University Ilsan Hospital, 814 Siksa-dong, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| |
Collapse
|
8
|
Kim NH, Kim HJ, Lee AY. Aquaporin-3 Downregulation in Vitiligo Keratinocytes Increases Oxidative Stress of Melanocytes. Biomol Ther (Seoul) 2023; 31:648-654. [PMID: 37818624 PMCID: PMC10616513 DOI: 10.4062/biomolther.2023.112] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/25/2023] [Accepted: 08/08/2023] [Indexed: 10/12/2023] Open
Abstract
Oxidative stress-induced melanocyte apoptosis is linked to the immune system and plays a critical role in the pathogenesis of vitiligo. Aquaporin-3 (AQP3), which is downregulated in vitiligo keratinocytes, regulates intracellular H2O2 accumulation. However, the role of AQP3 in oxidative stress is uncertain in vitiligo. This study investigated the effect of downregulated AQP3 on oxidative stress in vitiligo using lesional and non-lesional skin specimen sets from vitiligo patients and primary cultured adult normal human epidermal keratinocytes, with or without downregulation and overexpression of AQP3 in the presence or absence of H2O2 treatment. The levels of nuclear factor E2-related factor 2 (NRF2) and/or its main target, NAD(P)H quinone dehydrogenase 1 (NQO-1), were lower in the lesional keratinocytes and cultured keratinocytes with AQP3 knockdown, but were increased in keratinocytes upon AQP3 overexpression. Ratios of NRF2 nuclear translocation and NQO-1 expression levels were further reduced in AQP3-knockdown keratinocytes following H2O2 treatment. The conditioned media from AQP3-knockdown keratinocytes treated with H2O2 contained higher concentrations of reactive oxygen species (ROS). Moreover, the number of viable melanocytes was reduced when the conditioned media were added to the culture media. Overall, AQP3 downregulation in the keratinocytes of patients with vitiligo can induce oxidative stress in neighboring melanocytes, leading to melanocyte death.
Collapse
Affiliation(s)
- Nan-Hyung Kim
- Department of Dermatology, Dongguk University School of Medicine, Goyang 10326, Republic of Korea
| | - Ha Jung Kim
- Department of Dermatology, Dongguk University School of Medicine, Goyang 10326, Republic of Korea
| | - Ai-Young Lee
- Department of Dermatology, Dongguk University School of Medicine, Goyang 10326, Republic of Korea
| |
Collapse
|
9
|
Touni AA, Shivde RS, Echuri H, Abdel-Aziz RTA, Abdel-Wahab H, Kundu RV, Le Poole IC. Melanocyte-keratinocyte cross-talk in vitiligo. Front Med (Lausanne) 2023; 10:1176781. [PMID: 37275386 PMCID: PMC10235633 DOI: 10.3389/fmed.2023.1176781] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/27/2023] [Indexed: 06/07/2023] Open
Abstract
Vitiligo is a common acquired pigmentary disorder that presents as progressive loss of melanocytes from the skin. Epidermal melanocytes and keratinocytes are in close proximity to each other, forming a functional and structural unit where keratinocytes play a pivotal role in supporting melanocyte homeostasis and melanogenesis. This intimate relationship suggests that keratinocytes might contribute to ongoing melanocyte loss and subsequent depigmentation. In fact, keratinocyte dysfunction is a documented phenomenon in vitiligo. Keratinocyte apoptosis can deprive melanocytes from growth factors including stem cell factor (SCF) and other melanogenic stimulating factors which are essential for melanocyte function. Additionally, keratinocytes control the mobility/stability phases of melanocytes via matrix metalloproteinases and basement membrane remodeling. Hence keratinocyte dysfunction may be implicated in detachment of melanocytes from the basement membrane and subsequent loss from the epidermis, also potentially interfering with repigmentation in patients with stable disease. Furthermore, keratinocytes contribute to the autoimmune insult in vitiligo. Keratinocytes express MHC II in perilesional skin and may present melanosomal antigens in the context of MHC class II after the pigmented organelles have been transferred from melanocytes. Moreover, keratinocytes secrete cytokines and chemokines including CXCL-9, CXCL-10, and IL-15 that amplify the inflammatory circuit within vitiligo skin and recruit melanocyte-specific, skin-resident memory T cells. In summary, keratinocytes can influence vitiligo development by a combination of failing to produce survival factors, limiting melanocyte adhesion in lesional skin, presenting melanocyte antigens and enhancing the recruitment of pathogenic T cells.
Collapse
Affiliation(s)
- Ahmed Ahmed Touni
- Department of Dermatology, Faculty of Medicine, Minia University, Minia, Egypt
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Rohan S. Shivde
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Harika Echuri
- Department of Dermatology, Emory University, Atlanta, GA, United States
| | | | - Hossam Abdel-Wahab
- Department of Dermatology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Roopal V. Kundu
- Department of Dermatology, Faculty of Medicine, Minia University, Minia, Egypt
| | - I. Caroline Le Poole
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
10
|
Chang WL, Ko CH. The Role of Oxidative Stress in Vitiligo: An Update on Its Pathogenesis and Therapeutic Implications. Cells 2023; 12:cells12060936. [PMID: 36980277 PMCID: PMC10047323 DOI: 10.3390/cells12060936] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Vitiligo is an autoimmune skin disorder caused by dysfunctional pigment-producing melanocytes which are attacked by immune cells. Oxidative stress is considered to play a crucial role in activating consequent autoimmune responses related to vitiligo. Melanin synthesis by melanocytes is the main intracellular stressor, producing reactive oxygen species (ROS). Under normal physiological conditions, the antioxidative nuclear factor erythroid 2-related factor 2 (Nrf2) pathway functions as a crucial mediator for cells to resist oxidative stress. In pathological situations, such as with antioxidant defects or under inflammation, ROS accumulate and cause cell damage. Herein, we summarize events at the cellular level under excessive ROS in vitiligo and highlight exposure to melanocyte-specific antigens that trigger immune responses. Such responses lead to functional impairment and the death of melanocytes, which sequentially increase melanocyte cytotoxicity through both innate and adaptive immunity. This report provides new perspectives and advances our understanding of interrelationships between oxidative stress and autoimmunity in the pathogenesis of vitiligo. We describe progress with targeted antioxidant therapy, with the aim of providing potential therapeutic approaches.
Collapse
Affiliation(s)
- Wei-Ling Chang
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chi-Hsiang Ko
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
11
|
Gamil H, Assaf M, Khater M, Fawzy M. Abnormal nuclear expression of aquaporin-3 in lesional and perilesional skin of vitiligo patients: A novel immunohistochemical finding. J Cosmet Dermatol 2023; 22:1063-1070. [PMID: 36437598 DOI: 10.1111/jocd.15518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Vitiligo is a skin disease characterized by a complex etiopathogenesis. Keratinocyte apoptosis may play a role in vitiligo pathogenesis. Aquaporin-3 (AQP-3) is an aqua-glyceroporin that controls keratinocyte proliferation and differentiation. AIM To assess the immunohistochemical expression of AQP-3 in lesional and perilesional skin of vitiligo patients compared to healthy control skin. METHODS A total of 20 patients with generalized non-segmental vitiligo and 20 age- and sex-matched healthy controls were included. Lesional and perilesional skin of vitiligo patients, as well as normal skin of control subjects, were biopsied. The immunohistochemical expression of AQP3 in the epidermis was examined. RESULTS Compared to control skin, both lesional and perilesional skin showed a significant reduction in the intensity of membranous staining of AQP-3 (p < 0.001, p = 0.002, respectively). Moreover, the membrano-cytoplasmic pattern of AQP-3 staining was significantly detected in 80% of lesions and 85% of perilesional biopsies, while it was absent in control skin (p < 0.001). Additionally, nuclear AQP-3 expression was significantly detected in 35% of lesions and 55% of perilesional biopsies, while it was not detected in control skin (p = 0.012, p < 0.001, respectively). No statistically significant difference was detected between lesional and perilesional skin. CONCLUSIONS To our knowledge, this is the first immunohistochemical research to show a significant abnormal nuclear expression of AQP-3 in lesional and perilesional skin of vitiligo patients. This abnormality may reflect impaired functions of AQP-3, leading to keratinocyte apoptosis with subsequent melanocyte death and development of vitiligo.
Collapse
Affiliation(s)
- Hend Gamil
- Department of Dermatology, Venereology & Andrology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Magda Assaf
- Department of Pathology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamad Khater
- Department of Dermatology, Venereology & Andrology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Manal Fawzy
- Department of Dermatology, Venereology & Andrology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
12
|
Domaszewska-Szostek A, Polak A, Słupecka-Ziemilska M, Krzyżanowska M, Puzianowska-Kuźnicka M. Current Status of Cell-Based Therapies for Vitiligo. Int J Mol Sci 2023; 24:ijms24043357. [PMID: 36834766 PMCID: PMC9964504 DOI: 10.3390/ijms24043357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Vitiligo is a chronic pigmentary disease with complex etiology, the signs of which are caused by the destruction of melanocytes in the epidermis, leading to the lack of melanin pigment responsible for skin coloration. The treatment of vitiligo, which aims at repigmentation, depends both on the clinical characteristics of the disease as well as on molecular markers that may predict the response to treatment. The aim of this review is to provide an overview of the clinical evidence for vitiligo cell-based therapies taking into account the required procedures and equipment necessary to carry them out as well as their effectiveness in repigmentation, assessed using the percentage of repigmentation of the treated area. This review was conducted by assessing 55 primary clinical studies published in PubMed and ClinicalTrails.gov between 2000 and 2022. This review concludes that the extent of repigmentation, regardless of the treatment method, is highest in stable localized vitiligo patients. Moreover, therapies that combine more than one cell type, such as melanocytes and keratinocytes, or more than one method of treatment, such as the addition of NV-UVB to another treatment, increase the chances of >90% repigmentation. Lastly, this review concludes that various body parts respond differently to all treatments.
Collapse
Affiliation(s)
- Anna Domaszewska-Szostek
- Department of Human Epigenetics, Mossakowski Medical Research Institute, PAS, 02-106 Warsaw, Poland
| | - Agnieszka Polak
- Faculty of Biology, University of Cambridge, Cambridge CD2 1TN, UK
| | - Monika Słupecka-Ziemilska
- Department of Human Epigenetics, Mossakowski Medical Research Institute, PAS, 02-106 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-60-86-401
| | - Marta Krzyżanowska
- Division of Ophthalmology and Optometry, Department of Ophthalmology, Collegium Medicum, Nicolaus Copernicus University in Toruń, 85-168 Bydgoszcz, Poland
| | - Monika Puzianowska-Kuźnicka
- Department of Human Epigenetics, Mossakowski Medical Research Institute, PAS, 02-106 Warsaw, Poland
- Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland
| |
Collapse
|
13
|
Ikarashi N, Shiseki M, Yoshida R, Tabata K, Kimura R, Watanabe T, Kon R, Sakai H, Kamei J. Cannabidiol Application Increases Cutaneous Aquaporin-3 and Exerts a Skin Moisturizing Effect. Pharmaceuticals (Basel) 2021; 14:ph14090879. [PMID: 34577578 PMCID: PMC8469387 DOI: 10.3390/ph14090879] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 12/28/2022] Open
Abstract
Cannabidiol (CBD) is a major nonpsychotropic component of Cannabis sativa with various pharmacological activities. In this study, we investigated the skin moisturizing effect of CBD and its mechanism. A 1% CBD solution was applied daily to skin of HR-1 hairless (Seven-week-old, male) for 14 days. The dermal water content in CBD-treated mice was significantly increased compared to that in the control group. Furthermore, no inflammatory reaction in the skin and no obvious skin disorders were observed. The mRNA expression levels of loricrin, filaggrin, collagen, hyaluronic acid degrading enzyme, hyaluronic acid synthase, ceramide degrading enzyme, and ceramide synthase in the skin were not affected by the application of CBD. However, only aquaporin-3 (AQP3), a member of the aquaporin family, showed significantly higher levels in the CBD-treated group than in the control group at both the mRNA and protein levels. It was revealed that CBD has a moisturizing effect on the skin. In addition, it is possible that increased expression of AQP3, which plays an important role in skin water retention, is a contributor to the mechanism. CBD is expected to be developed in the future as a cosmetic material with a unique mechanism.
Collapse
Affiliation(s)
- Nobutomo Ikarashi
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (M.S.); (R.Y.); (K.T.); (R.K.); (T.W.); (R.K.); (H.S.)
- Correspondence: (N.I.); (J.K.); Tel.: +81-3-5498-5918 (N.I.); +81-3-3815-7021 (J.K.)
| | - Marina Shiseki
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (M.S.); (R.Y.); (K.T.); (R.K.); (T.W.); (R.K.); (H.S.)
| | - Ryotaro Yoshida
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (M.S.); (R.Y.); (K.T.); (R.K.); (T.W.); (R.K.); (H.S.)
| | - Keito Tabata
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (M.S.); (R.Y.); (K.T.); (R.K.); (T.W.); (R.K.); (H.S.)
| | - Rina Kimura
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (M.S.); (R.Y.); (K.T.); (R.K.); (T.W.); (R.K.); (H.S.)
| | - Tomofumi Watanabe
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (M.S.); (R.Y.); (K.T.); (R.K.); (T.W.); (R.K.); (H.S.)
| | - Risako Kon
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (M.S.); (R.Y.); (K.T.); (R.K.); (T.W.); (R.K.); (H.S.)
| | - Hiroyasu Sakai
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (M.S.); (R.Y.); (K.T.); (R.K.); (T.W.); (R.K.); (H.S.)
| | - Junzo Kamei
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (M.S.); (R.Y.); (K.T.); (R.K.); (T.W.); (R.K.); (H.S.)
- Juntendo Advanced Research Institute for Health Science, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Correspondence: (N.I.); (J.K.); Tel.: +81-3-5498-5918 (N.I.); +81-3-3815-7021 (J.K.)
| |
Collapse
|
14
|
Is vitiligo associated with systemic aquaporin-3 deficiency? Postepy Dermatol Alergol 2021; 38:156-158. [PMID: 34408583 PMCID: PMC8362775 DOI: 10.5114/ada.2021.104291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/21/2019] [Indexed: 11/21/2022] Open
Abstract
Introduction Recent studies on pathomechanisms of vitiligo have focused on the abnormality of keratinocytes that affect the melanocytes. Aquaporin-3 (AQP3) was implicated as a mechanism for keratinocyte apoptosis owing to the relationship between the PI3K/AKT pathway and the E-cadherin-catenin complex. Aim Based on this evidence, we undertook a cross-sectional study to assess the skin and blood AQP-3 levels in patients with non-segmental vitiligo in comparison to controls and to correlate these levels with malondialdehyde (MDA) levels and total antioxidant status (TAS) in the skin and blood of patients with non-segmental vitiligo and also with their disease activity. Material and methods Thirty-six patients with non-segmental vitiligo and 36 controls were included in this study. AQP3, TAS and MDA levels were assayed both in skin as well as in circulation. Results We observed that skin and plasma aquaporin and TAS were lowered and MDA levels were increased in patients with non-segmental vitiligo as compared to controls. There was a significant negative correlation of skin and plasma aquaporin levels with disease activity. We also observed the local and systemic AQP3 deficiency to correlate with the local and systemic oxidative stress in vitiligo. Conclusions Our results demonstrate a systemic and local AQP3 deficiency in vitiligo correlating with the disease severity and oxidative stress which might have therapeutic implications.
Collapse
|
15
|
Wound-Healing and Skin-Moisturizing Effects of Sasa veitchii Extract. Healthcare (Basel) 2021; 9:healthcare9060761. [PMID: 34205315 PMCID: PMC8235400 DOI: 10.3390/healthcare9060761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 11/30/2022] Open
Abstract
Sasa veitchii (S. veitchii) is a traditional herb derived from the bamboo genus, which is collectively called Kumazasa. Although Kumazasa extract is believed to have various effects on the skin, there is little scientific evidence for these effects. In this study, we aimed to obtain scientific evidence regarding the wound-healing and skin-moisturizing effects of Kumazasa extract. Kumazasa extract was applied to the skin of a mouse wound model for 14 days, and the wound area and dermal water content were measured. Mice treated with Kumazasa extract had smaller wound areas than control mice. The dermal water content in the Kumazasa extract-treated group was significantly higher than that in the control group. The mRNA and protein expression levels of cutaneous aquaporin-3 (AQP3), which is involved in wound healing and increases in dermal water content, were significantly increased by treatment with Kumazasa extract. Kumazasa extract-treated HaCaT cells exhibited significantly higher AQP3 expression and p38 mitogen-activated protein kinase (MAPK) phosphorylation than control cells. With continuous application, Kumazasa extract increases AQP3 expression and exerts wound-healing and moisturizing effects. The increase in AQP3 expression elicited by Kumazasa extract may be due to enhancement of transcription via activation of p38 MAPK signaling.
Collapse
|
16
|
Lee YJ, Park SH, Park HR, Lee Y, Kang H, Kim JE. Mesenchymal Stem Cells Antagonize IFN-Induced Proinflammatory Changes and Growth Inhibition Effects via Wnt/β-Catenin and JAK/STAT Pathway in Human Outer Root Sheath Cells and Hair Follicles. Int J Mol Sci 2021; 22:4581. [PMID: 33925529 PMCID: PMC8123883 DOI: 10.3390/ijms22094581] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/13/2021] [Accepted: 04/22/2021] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stem cell therapy (MSCT) has been shown to be a new therapeutic option for treating alopecia areata (AA). Outer root sheath cells (ORSCs) play key roles in maintaining the hair follicle structure and supporting the bulge area. In human ORSCs (hORSCs), the mechanism for this process has not been extensively studied. In this study, we aimed to examine the influence of human hematopoietic mesenchymal stem cells (hHMSCs) in the hORSCs in vitro model of AA and determine the mechanisms controlling efficacy. Interferon-gamma (IFN-γ) pretreatment was used to induce an in vitro model of AA in hORSCs. The effect of MSCT on the viability and migration of hORSCs was examined using co-cultures, the MTT assay, and migration assays. We investigated the expression of molecules related to the Wnt/β-catenin pathway, JAK/STAT pathway, and growth factors in hHMSC-treated hORSCs by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analyses. hHMSCs increased hORSC viability and migration when they were co-cultured. hHMSCs reverted IFN-γ-induced expression-including NLRP3, ASC, caspase-1, CXCL-9 through 11, IL-1β, and IL-15-and upregulated several growth factors and hair stem cell markers. hHMSCs activated several molecules in the Wnt/β-catenin signaling pathway, such as in the Wnt families, β-catenin, phosphorylated GSK-3β and cyclin D1, and suppressed the expression of DKK1 induced by IFN-γ in hORSCs. hHMSCs suppressed the phosphorylation of JAK1 to 3, STAT1, and STAT3 compared to the controls and IFN-γ-pretreated hORSCs. These results demonstrate that hHMSCs increased hORSC viability and migration in the in vitro AA model. Additionally, MSCT definitely stimulated anagen survival and hair growth in an HF organ culture model. MSCT appeared to be associated with the Wnt/β-catenin and JAK/STAT pathways in hORSCs.
Collapse
Affiliation(s)
- Yu-Jin Lee
- Department of Dermatology, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Korea; (Y.-J.L.); (S.-H.P.); (H.-R.P.); (H.K.)
| | - Song-Hee Park
- Department of Dermatology, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Korea; (Y.-J.L.); (S.-H.P.); (H.-R.P.); (H.K.)
| | - Hye-Ree Park
- Department of Dermatology, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Korea; (Y.-J.L.); (S.-H.P.); (H.-R.P.); (H.K.)
| | - Young Lee
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon 35015, Korea;
| | - Hoon Kang
- Department of Dermatology, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Korea; (Y.-J.L.); (S.-H.P.); (H.-R.P.); (H.K.)
| | - Jung-Eun Kim
- Department of Dermatology, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Korea; (Y.-J.L.); (S.-H.P.); (H.-R.P.); (H.K.)
| |
Collapse
|
17
|
De Cordova JA. Role of Photo-Biomodulation Therapy in Facial Rejuvenation and Facial Plastic Surgery. Facial Plast Surg 2021; 37:267-273. [PMID: 33588472 DOI: 10.1055/s-0041-1722980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Photo-biomodulation (PBM) also known as low-level laser therapy is a rising technology with multiple potential uses in medicine and recently in the cosmetic field for the treatment of skin conditions and skin rejuvenation. Due to its wound healing and anti-inflammatory properties, there is an increase in popularity in its use as adjunctive treatment before and after surgical procedures in the face and neck.
Collapse
Affiliation(s)
- Jose A De Cordova
- Department of ENT, Head and Neck Surgery, Jersey General Hospital, Jersey, United Kingdom.,VIDA Health & Aesthetics, Jersey, United Kingdom
| |
Collapse
|
18
|
Role of Cutaneous Aquaporins in the Development of Xeroderma in Type 2 Diabetes. Biomedicines 2021; 9:biomedicines9020104. [PMID: 33494453 PMCID: PMC7912687 DOI: 10.3390/biomedicines9020104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/20/2022] Open
Abstract
Xeroderma is induced by diabetes, reducing patients’ quality of life. We aimed to clarify the roles of cutaneous water channel aquaporin-3 (AQP3) in diabetic xeroderma using type 2 diabetes model db/db mice. Blood glucose levels were unchanged in 5-week-old db/db mice compared to db/+ mice (control mice), but the pathophysiology of type 2 diabetes was confirmed in 12-week-old db/db mice. The dermal water content and AQP3 expression in 5-week-old db/db mice were almost the same as those in the control mice. On the other hand, in 12-week-old db/db mice, the dermal water content and AQP3 expression were significantly decreased. The addition of glucose to HaCaT cells had no effect on AQP3, but tumor necrosis factor-α (TNF-α) decreased the AQP3 expression level. Blood TNF-α levels or skin inflammation markers in the 12-week-old db/db mice were significantly higher than those in control mice. AQP3 levels in the skin were decreased in type 2 diabetes, and this decrease in AQP3 may be one of the causes of xeroderma. Therefore, a substance that increases AQP3 may be useful for improving xeroderma. Additionally, a decrease in skin AQP3 may be triggered by inflammation. Therefore, anti-inflammatory drugs may be effective as new therapeutic agents for diabetic xerosis.
Collapse
|
19
|
Eid A, Issa Y, Mohamed A, Badran F. Interleukin-9 and soluble tumor necrosis factor-like weak inducer of apoptosis in serum and suction blister fluid of nonsegmental vitiligo patients: Relation to disease severity. DERMATOL SIN 2021. [DOI: 10.4103/ds.ds_44_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
20
|
Tumor necrosis factor (TNF)-α- 308 G/A gene polymorphism (rs1800629) in Egyptian patients with alopecia areata and vitiligo, a laboratory and in silico analysis. PLoS One 2020; 15:e0240221. [PMID: 33370782 PMCID: PMC7769607 DOI: 10.1371/journal.pone.0240221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/15/2020] [Indexed: 11/19/2022] Open
Abstract
Purpose & methods Several single-nucleotide polymorphisms (SNPs) in the promoter region of the TNF-α gene can cause variations in the gene regulatory sites and act as risk factors for some autoimmune disorders as alopecia areata (AA) and vitiligo. This study aimed to detect the serum TNF-α (sTNF) level (by ELISA) and the rs1800629 (by real-time PCR) among AA and vitiligo Egyptian patients and to determine their relation with disease duration and severity. In silico analysis of this SNP to study the molecular regulation of the mutant genotypes was also done. Results In AA patients, no risk was associated with the mutant genotypes vs. the normal genotype, or with A allele vs. G allele. The risk of vitiligo was significantly higher with the G/A and A/A genotypes compared with HCs (p = 0.011). Similarly, a significantly increased risk was noted in patients with A allele vs. G allele (p<0.0001). In AA and vitiligo patients, a significant increase in sTNF-α levels was noted in the mutant G/A genotypes vs. the normal G/G genotype (p<0.0001) and in the A allele vs the G allele (p<0.0001). According to the in silico analysis, this SNP could mainly affect the SP1 transcription factor binding site with subsequent effect on TNF-α expression. Conclusion According to results of the laboratory and the in silico study, the mutant TNF-α (308) genotypes were risk factors that conferred susceptibility to vitiligo among Egyptian patients but had no effect on the susceptibility to AA.
Collapse
|
21
|
Shehata WA, Maraee A, Mehesin M, Tayel N, Azmy R. Genetic polymorphism of liver X receptor gene in vitiligo: Does it have an association? J Cosmet Dermatol 2020; 20:1906-1914. [PMID: 33031595 DOI: 10.1111/jocd.13772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/01/2022]
Abstract
BACKGROUND Vitiligo is an acquired depigmentation of the skin and the mucous membranes, exhibited as white macules and patches due to selective loss of melanocytes. Etiological theories of vitiligo include genetic, immunological, neurohormonal, cytotoxic, biochemical, oxidative stress, and newer theories of melanocytorrhagy and diminished melanocytes survival. It has been revealed that liver X receptor alpha gene is expressed in skin tissue such as sebaceous glands, hair follicle, keratinocytes, and fibroblasts and is linked to various skin disorders as acne vulgaris and psoriasis. AIM OF THE STUDY To evaluate the association between liver X receptor-α gene polymorphism (rs11039155 and rs2279238) and vitiligo and whether they are related to disease activity and severity or not. SUBJECTS AND METHODS 50 vitiligo patients and 20 age- and sex-matched apparently healthy controls were enrolled. All the included subjects were genotyped using polymerase chain reaction-restriction fragment length polymorphism analysis technique for (-6G/A) and (+1257C/T) SNPs. RESULTS Significant statistical difference between cases and controls regarding genotype and allele frequencies for -6G/A polymorphism with predominance of AA genotype (OR: 5.1, 95% CI: 1.6-15.9) and A allele (OR: 5.3, 95% CI: 1.6-15.9) in cases and also for +1257C/T polymorphism with predominance of TT genotype OR: 9.2 (95% CI: 1.4-82.9) and T allele OR: 3.4 (95% CI: 1.4-8.1) in vitiligo cases. No significant relationship between -6G/A genotypes nor +1257C/T genotypes and disease activity and severity. CONCLUSION The study showed significant association between Liver X receptor gene polymorphisms (-6G/A, +1257 C/T) and development of vitiligo in Egyptian patients. However, it failed to show any relation with disease activity nor severity.
Collapse
Affiliation(s)
- Wafaa A Shehata
- Dermatology, Andrology and STDs Department, Menoufia University, Shebin El-Kom, Egypt
| | - Alaa Maraee
- Dermatology, Andrology and STDs Department, Menoufia University, Shebin El-Kom, Egypt
| | - Marwa Mehesin
- General Practitioner in Health Sector, Shebin El-Kom, Egypt
| | - Nermin Tayel
- Lecturer of Molecular Diagnostics & Therapeutics, Molecular Diagnostics & Therapeutics Department, Genetic Engineering and Biotechnology Research Institute, Sadat City University, Sadat, Egypt
| | - Rania Azmy
- Medical Biochemistry and Molecular Biology Department, Menoufia University, Shebin El-Kom, Egypt
| |
Collapse
|
22
|
Ikarashi N, Kon R, Nagoya C, Ishikura A, Sugiyama Y, Takahashi J, Sugiyama K. Effect of Astaxanthin on the Expression and Activity of Aquaporin-3 in Skin in an In-Vitro Study. Life (Basel) 2020; 10:life10090193. [PMID: 32932769 PMCID: PMC7554991 DOI: 10.3390/life10090193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/01/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
Astaxanthin (3,3′-dihydroxy-β,β-carotene-4,4′-dione) is a red lipophilic pigment with strong antioxidant action. Oral or topical administration of astaxanthin has been reported to improve skin function, including increasing skin moisture. In this study, we examined the mechanism by which astaxanthin improves skin function by focusing on the water channel aquaporin-3 (AQP3), which plays important roles in maintaining skin moisture and function. When astaxanthin was added to PHK16-0b or HaCaT cells, the mRNA expression level of AQP3 increased significantly in a concentration-dependent manner in both cell lines. The AQP3 protein expression level was also confirmed to increase when astaxanthin was added to HaCaT cells. Similarly, when astaxanthin was added to 3D human epidermis model EpiSkin, AQP3 expression increased. Furthermore, when glycerol and astaxanthin were simultaneously added to EpiSkin, glycerol permeability increased significantly compared with that observed for the addition of glycerol alone. We demonstrated that astaxanthin increases AQP3 expression in the skin and enhances AQP3 activity. This result suggests that the increased AQP3 expression in the skin is associated with the increase in skin moisture by astaxanthin. Thus, we consider astaxanthin useful for treating dry skin caused by decreased AQP3 due to factors such as diabetes mellitus and aging.
Collapse
Affiliation(s)
- Nobutomo Ikarashi
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan;
- Correspondence: (N.I.); (K.S.); Tel.: +81-3-5498-5918 (N.I.)
| | - Risako Kon
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan;
| | - Chika Nagoya
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (C.N.); (A.I.); (Y.S.)
| | - Airi Ishikura
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (C.N.); (A.I.); (Y.S.)
| | - Yuri Sugiyama
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (C.N.); (A.I.); (Y.S.)
| | - Jiro Takahashi
- Fuji Chemical Industries Co., Ltd., 1 Gohkakizawa, Kamiichi-machi, Nakaniikawa-gun, Toyama 930-0405, Japan;
| | - Kiyoshi Sugiyama
- Department of Functional Molecular Kinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- Correspondence: (N.I.); (K.S.); Tel.: +81-3-5498-5918 (N.I.)
| |
Collapse
|
23
|
Bellei B, Papaccio F, Filoni A, Caputo S, Lopez G, Migliano E, Picardo M. Extracellular fraction of adipose tissue as an innovative regenerative approach for vitiligo treatment. Exp Dermatol 2020; 28:695-703. [PMID: 31066942 DOI: 10.1111/exd.13954] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 04/15/2019] [Accepted: 04/29/2019] [Indexed: 12/26/2022]
Abstract
Vitiligo is a common, disfiguring autoimmune disease that negatively affects patients' self-esteem and quality of life. Current treatments are moderately effective in reversing disease and promoting melanocyte regeneration. Thus, therapeutic advanced strategies are emerging from regenerative medicine. It has recently emerged that adipose tissue secretome may be used as a cell-free therapy in skin regeneration since paracrine functions of adipose-derived stem cells alone are responsible for most of the therapeutic effect of stem cells in several animal disease models. In this study, we tested the effect of adipose tissue extracellular fraction (AT-Ex) isolated from lipoaspirates on dermal and epidermal vitiligo cells in vitro. Using this experimental model, we demonstrated that molecules secreted by adipose tissue ameliorate the capability to counteract oxidative stress by a physiological stimulation of intracellular antioxidant enzymes and positively impact on cell proliferation. Due to the presence of Wnt-secreted factors, AT-Ex treatment promotes glycogen synthase kinase 3β inactivation and consequently Wnt/β-catenin pathway activation. Collectively, our findings show that AT-Ex could be useful as a natural approach to improve treatment of vitiligo.
Collapse
Affiliation(s)
- Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center for Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy.,Department of Plastic and Reconstructive Surgery, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Federica Papaccio
- Laboratory of Cutaneous Physiopathology and Integrated Center for Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy.,Department of Plastic and Reconstructive Surgery, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Angela Filoni
- Laboratory of Cutaneous Physiopathology and Integrated Center for Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy.,Department of Plastic and Reconstructive Surgery, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Silvia Caputo
- Laboratory of Cutaneous Physiopathology and Integrated Center for Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy.,Department of Plastic and Reconstructive Surgery, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Gianluca Lopez
- Laboratory of Cutaneous Physiopathology and Integrated Center for Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy.,Department of Plastic and Reconstructive Surgery, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Emilia Migliano
- Laboratory of Cutaneous Physiopathology and Integrated Center for Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy.,Department of Plastic and Reconstructive Surgery, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center for Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy.,Department of Plastic and Reconstructive Surgery, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| |
Collapse
|
24
|
El-Taweel AEAI, Abdelrahman AMN, Sabry S, Salem RM. Serum TWEAK: A cutoff between segmental and nonsegmental vitiligo. J Cosmet Dermatol 2020; 20:1017-1021. [PMID: 32808442 DOI: 10.1111/jocd.13644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND TWEAK/Fn14 is expressed in many tissues including the skin, playing an important role in many inflammatory, autoimmune, and neoplastic cutaneous disorders. AIMS To assess the serum levels of tumor necrosis factor-like weak inducer of apoptosis (TWEAK) in vitiligo patients. METHODS This case-control study included 100 subjects (50 vitiligo patients and 50 control subjects) recruited from Dermatology Outpatient Clinic, Benha University. All patients were subjected to complete cutaneous examination, to evaluate the clinical type, distribution and severity of vitiligo using the Vitiligo Area Scoring Index (VASI). RESULTS TWEAK serum levels were significantly higher in patients than in the control subjects (644.76 ± 688.93 vs 282.75 ± 125.67, respectively). Serum levels were significantly elevated in segmental versus nonsegmental vitiligo. Receiver operating characteristic (ROC) analysis revealed that TWEAK shows 80% sensitivity and 56.67% specificity in diagnosing vitiligo and 100% sensitivity and 80.09% specificity in differentiating segmental from nonsegmental vitiligo. CONCLUSION TWEAK may play a role in vitiligo pathogenesis. It may be used in the differentiation between segmental and nonsegmental vitiligo and represent a promising therapeutic target in vitiligo.
Collapse
|
25
|
Ikarashi N, Kaneko M, Watanabe T, Kon R, Yoshino M, Yokoyama T, Tanaka R, Takayama N, Sakai H, Kamei J. Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Erlotinib Induces Dry Skin via Decreased in Aquaporin-3 Expression. Biomolecules 2020; 10:biom10040545. [PMID: 32260143 PMCID: PMC7225942 DOI: 10.3390/biom10040545] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 12/26/2022] Open
Abstract
An adverse reaction of dry skin occurs frequently during treatment with anticancer epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). In this study, we conducted basic research to clarify the mechanism of EGFR-TKI-induced dry skin and propose new treatments or preventative measures. Dermal water content was significantly lower in the erlotinib-treated mice than in the control group. An assessment of the expression levels of functional genes in the skin revealed that only the expression of the water channel aquaporin-3 (AQP3) was significantly decreased in the erlotinib-treated group. When erlotinib was added to epidermal keratinocyte HaCaT cells, the expression levels of both AQP3 mRNA and protein decreased. Erlotinib treatment also significantly decreased the expression levels of phospho-EGFR and phospho-extracellular signal-regulated kinase (ERK), both in HaCaT cells and mouse skin. Dry skin due to erlotinib may be caused by the decreased expression of AQP3 in the skin, thereby limiting water transport from the vascular side to the corneum side. The decrease in AQP3 may also be attributable to ERK suppression via inhibition of EGFR activity by erlotinib. Therefore, substances that increase AQP3 expression may be effective for erlotinib-induced dry skin.
Collapse
|
26
|
Yan S, Shi J, Sun D, Lyu L. Current insight into the roles of microRNA in vitiligo. Mol Biol Rep 2020; 47:3211-3219. [PMID: 32086720 DOI: 10.1007/s11033-020-05336-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/18/2020] [Indexed: 12/11/2022]
Abstract
Vitiligo is a common chronic depigmented skin disease characterized by melanocyte loss or dysfunction in the lesion. The pathogenesis of vitiligo has not been fully clarified. Most studies have suggested that the occurrence and progression of vitiligo are due to multiple factors and gene interactions in which noncoding RNAs contribute to an individual's susceptibility to vitiligo. Noncoding RNAs, including microRNAs (miRNAs), are a hot topic in posttranscriptional regulatory mechanism research. miRNAs are noncoding RNAs with a length of approximately 22 nucleotides and play a negative regulatory role by binding to the 3'-UTR or 5'-UTR of the target mRNA to inhibit translation or initiate mRNA degradation. Previous studies have screened the differential expression profiles of miRNAs in the skin lesions, melanocytes, peripheral blood mononuclear cells (PBMCs) and sera of patients and mouse models with vitiligo. Moreover, several studies have focused on miRNA-25, miRNA-155 and other miRNAs involved in melanin metabolism, oxidative stress, and melanocyte proliferation and apoptosis. These miRNAs and regulatory processes further illuminate the pathogenesis of vitiligo and provide hope for the application of small molecules in the treatment of vitiligo. In this review, we summarize miRNA expression profiles in different tissues of vitiligo patients and the mechanisms by which key miRNAs mediate vitiligo development.
Collapse
Affiliation(s)
- Shili Yan
- Science and Technology Achievement Incubation Center, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jingpei Shi
- Science and Technology Achievement Incubation Center, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
- School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Dongjie Sun
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lechun Lyu
- Science and Technology Achievement Incubation Center, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China.
| |
Collapse
|
27
|
Bellei B, Picardo M. Premature cell senescence in human skin: Dual face in chronic acquired pigmentary disorders. Ageing Res Rev 2020; 57:100981. [PMID: 31733332 DOI: 10.1016/j.arr.2019.100981] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/16/2019] [Accepted: 11/07/2019] [Indexed: 01/10/2023]
Abstract
Although senescence was originally described as an in vitro acquired cellular characteristic, it was recently recognized that senescence is physiologically and pathologically involved in aging and age-related diseases in vivo. The definition of cellular senescence has expanded to include the growth arrest caused by various cellular stresses, including DNA damage, inadequate mitochondria function, activated oncogene or tumor suppressor genes and oxidative stress. While senescence in normal aging involves various tissues over time and contributes to a decline in tissue function even with healthy aging, disease-induced premature senescence may be restricted to one or a few organs triggering a prolonged and more intense rate of accumulation of senescent cells than in normal aging. Organ-specific high senescence rate could lead to chronic diseases, especially in post-mitotic rich tissue. Recently, two opposite acquired pathological conditions related to skin pigmentation were described to be associated with premature senescence: vitiligo and melasma. In both cases, it was demonstrated that pathological dysfunctions are not restricted to melanocytes, the cell type responsible for melanin production and transport to surrounding keratinocytes. Similar to physiological melanogenesis, dermal and epidermal cells contribute directly and indirectly to deregulate skin pigmentation as a result of complex intercellular communication. Thus, despite senescence usually being reported as a uniform phenotype sharing the expression of characteristic markers, skin senescence involving mainly the dermal compartment and its paracrine function could be associated with the disappearance of melanocytes in vitiligo lesions and with the exacerbated activity of melanocytes in the hyperpigmentation spots of melasma. This suggests that the difference may arise in melanocyte intrinsic differences and/or in highly defined microenvironment peculiarities poorly explored at the current state of the art. A similar dualistic phenotype has been attributed to intratumoral stromal cells as cancer-associated fibroblasts presenting a senescent-like phenotype which influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. Here, we present a framework dissecting senescent-related molecular alterations shared by vitiligo and melasma patients and we also discuss disease-specific differences representing new challenges for treatment.
Collapse
Affiliation(s)
- Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center for Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy.
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center for Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| |
Collapse
|
28
|
Catinean A, Neag MA, Mitre AO, Bocsan CI, Buzoianu AD. Microbiota and Immune-Mediated Skin Diseases-An Overview. Microorganisms 2019; 7:microorganisms7090279. [PMID: 31438634 PMCID: PMC6781142 DOI: 10.3390/microorganisms7090279] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 12/16/2022] Open
Abstract
In recent years, increased attention has been paid to the relationship between microbiota and various diseases, especially immune-mediated diseases. Because conventional therapy for many autoimmune diseases is limited both in efficacy and safety, there is an increased interest in identifying nutraceuticals, particularly probiotics, able to modulate the microbiota and ameliorate these diseases. In this review, we analyzed the research focused on the role of gut microbiota and skin in immunity, their role in immune-mediated skin diseases (IMSDs), and the beneficial effect of probiotics in patients with this pathology. We selected articles published between 2009 and 2019 in PubMed and ScienceDirect that provided information regarding microbiota, IMSDs and the role of probiotics in these diseases. We included results from different types of studies including observational and interventional clinical trials or in vivo and in vitro experimental studies. Our results showed that probiotics have a beneficial effect in changing the microbiota of patients with IMSDs; they also influence disease progression. Further studies are needed to better understand the impact of new therapies on intestinal microbiota. It is also important to determine whether the microbiota of patients with autoimmune diseases can be manipulated in order to restore homeostasis of the microbiota.
Collapse
Affiliation(s)
- Adrian Catinean
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Maria Adriana Neag
- Pharmacology, Toxicology and Clinical Pharmacology Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania.
| | - Andrei Otto Mitre
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Corina Ioana Bocsan
- Pharmacology, Toxicology and Clinical Pharmacology Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Anca Dana Buzoianu
- Pharmacology, Toxicology and Clinical Pharmacology Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| |
Collapse
|
29
|
Ikarashi N, Mizukami N, Kon R, Kaneko M, Uchino R, Fujisawa I, Fukuda N, Sakai H, Kamei J. Study of the Mechanism Underlying the Onset of Diabetic Xeroderma Focusing on an Aquaporin-3 in a Streptozotocin-Induced Diabetic Mouse Model. Int J Mol Sci 2019; 20:ijms20153782. [PMID: 31382467 PMCID: PMC6696158 DOI: 10.3390/ijms20153782] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 12/16/2022] Open
Abstract
Xeroderma is a frequent complication in diabetic patients. In this study, we investigated the mechanism underlying the onset of diabetic xeroderma, focusing on aquaporin-3 (AQP3), which plays an important role in water transport in the skin. Dermal water content in diabetic mice was significantly lower than that in control mice. The expression level of AQP3 in the skin was significantly lower in diabetic mice than in control mice. One week after streptozotocin (STZ) treatment, despite their increased blood glucose levels, mice showed no changes in the expression levels of AQP3, Bmal1, Clock, and D site-binding protein (Dbp) in the skin and 8-hydroxydeoxyguanosine (8-OHdG) in the urine. In contrast, two weeks after STZ treatment, mice showed increases in the blood glucose level, decreases in AQP3, Bmal1, Clock, and Dbp levels, and increases in the urinary levels of 8-OHdG. The results of this study suggest that skin AQP3 expression decreases in diabetes, which may limit water transport from the vessel side to the corneum side, causing dry skin. In addition, in diabetic mice, increased oxidative stress triggered decreases in the expression levels of Bmal1 and Clock in the skin, thereby inhibiting the transcription of Aqp3 by Dbp, which resulted in decreased AQP3 expression.
Collapse
Affiliation(s)
- Nobutomo Ikarashi
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Nanaho Mizukami
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Risako Kon
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Miho Kaneko
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Ryogo Uchino
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Izumi Fujisawa
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Natsuko Fukuda
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Hiroyasu Sakai
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Junzo Kamei
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| |
Collapse
|
30
|
Bastonini E, Bellei B, Filoni A, Kovacs D, Iacovelli P, Picardo M. Involvement of non‐melanocytic skin cells in vitiligo. Exp Dermatol 2019; 28:667-673. [DOI: 10.1111/exd.13868] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/23/2018] [Accepted: 12/19/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Emanuela Bastonini
- Cutaneous Physiopathology and Integrated Center of Metabolomics ResearchSan Gallicano Dermatological Institute, IRCCS Rome Italy
| | - Barbara Bellei
- Cutaneous Physiopathology and Integrated Center of Metabolomics ResearchSan Gallicano Dermatological Institute, IRCCS Rome Italy
| | - Angela Filoni
- Cutaneous Physiopathology and Integrated Center of Metabolomics ResearchSan Gallicano Dermatological Institute, IRCCS Rome Italy
| | - Daniela Kovacs
- Cutaneous Physiopathology and Integrated Center of Metabolomics ResearchSan Gallicano Dermatological Institute, IRCCS Rome Italy
| | - Paolo Iacovelli
- Cutaneous Physiopathology and Integrated Center of Metabolomics ResearchSan Gallicano Dermatological Institute, IRCCS Rome Italy
| | - Mauro Picardo
- Cutaneous Physiopathology and Integrated Center of Metabolomics ResearchSan Gallicano Dermatological Institute, IRCCS Rome Italy
| |
Collapse
|
31
|
Zhou M, Lin F, Xu W, Jin R, Xu A. Decreased SUMOylation of the retinoblastoma protein in keratinocytes during the pathogenesis of vitiligo. Mol Med Rep 2018; 18:3469-3475. [PMID: 30066925 DOI: 10.3892/mmr.2018.9299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/12/2018] [Indexed: 11/06/2022] Open
Abstract
The role of SUMOylation in the pathogenesis of vitiligo has not been reported previously. The present study aimed to reveal abnormalities in small ubiquitin‑like modifier (SUMO) conjugation in keratinocytes from depigmented lesions of patients with vitiligo and confirm the role of SUMOylation in keratinocytes from patients with vitiligo. Skin samples used for immunohistochemistry were obtained by punch biopsy from the depigmented lesions of 6 patients. Blisters were produced by vacuum and the roofs were collected for keratinocyte culture. HaCaT cells were transduced with SUMO1 knockdown vectors. The protein expression of SUMO1, SUMO‑specific peptidase 1 (SENP1), ubiquitin‑conjugating enzyme E2 I (Ubc9), SUMO‑activating enzyme subunit 1 (SAE1), cyclin‑dependent kinase (CDK)2, CDK6, proliferating cell nuclear antigen (PCNA), retinoblastoma protein (Rb), phosphorylated Rb (pRb) and β‑actin was assessed by western blotting. The SUMOylation status of proteins was assessed by immunoprecipitation. Cell cycle analysis was performed by flow cytometry and cell proliferation rate was investigated using a Cell Counting Kit‑8. The results demonstrated that the levels of SUMO1‑conjugated proteins were decreased in vitiligo lesions and vitiligo keratinocytes compared with normal controls. The protein expression of Ubc9 was decreased and SENP1 was increased in vitiligo keratinocytes compared with normal keratinocytes, with no alterations in SAE1 expression. Following knockdown of SUMO1 in HaCaT cells, the proliferation of HaCaT cells was reduced and the cell cycle was arrested in G1 phase. Furthermore, the protein expression levels of PCNA, CDK2, CDK6 and pRb were reduced in SUMO1‑knockdown HaCaT cells, and SUMOylated Rb was also decreased markedly in keratinocytes from lesions of patients with vitiligo compared with normal keratinocytes. In conclusion, vitiligo lesions in the present study exhibited dysregulated SUMOylation and deSUMOylation balance and dysregulation of cell cycle progression may be present in SUMO1 knockdown HaCaT cells. These results indicate that deSUMOylation of Rb of keratinocytes may serve an important role in vitiligo, providing a novel direction for the study into the mechanism of vitiligo.
Collapse
Affiliation(s)
- Miaoni Zhou
- Department of Dermatology, Hangzhou Institute of Dermatology and Venereology, Third People's Hospital of Hangzhou, Hangzhou, Zhejiang 310009, P.R. China
| | - Fuquan Lin
- Department of Dermatology, Hangzhou Institute of Dermatology and Venereology, Third People's Hospital of Hangzhou, Hangzhou, Zhejiang 310009, P.R. China
| | - Wen Xu
- Department of Dermatology, Hangzhou Institute of Dermatology and Venereology, Third People's Hospital of Hangzhou, Hangzhou, Zhejiang 310009, P.R. China
| | - Rong Jin
- Department of Dermatology, Hangzhou Institute of Dermatology and Venereology, Third People's Hospital of Hangzhou, Hangzhou, Zhejiang 310009, P.R. China
| | - Aie Xu
- Department of Dermatology, Hangzhou Institute of Dermatology and Venereology, Third People's Hospital of Hangzhou, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
32
|
Speeckaert R, Dugardin J, Lambert J, Lapeere H, Verhaeghe E, Speeckaert MM, van Geel N. Critical appraisal of the oxidative stress pathway in vitiligo: a systematic review and meta-analysis. J Eur Acad Dermatol Venereol 2018; 32:1089-1098. [PMID: 29341310 DOI: 10.1111/jdv.14792] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/13/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND The pathogenesis of vitiligo remains a topic of extensive debate. This is partly due to the moderate efficacy of current treatments. The role of the oxidative stress pathway in vitiligo is a popular although controversial research topic. OBJECTIVE To clarify the role of the oxidative stress pathway in vitiligo compared to other inflammatory skin disorders and to assess the therapeutic role of antioxidants. METHODS We conducted a systematic search of the existing literature on the aberrancies of the oxidative stress pathway in vitiligo. Subsequently, the efficacy of both topical and oral antioxidants in clinical trials was investigated. RESULTS A deregulated oxidative pathway is clearly evident with elevated superoxide dismutase, decreased catalase and increased lipid peroxidation. However, similar results have been obtained in other inflammatory skin diseases such as psoriasis, atopic dermatitis, lichen planus and urticaria. This questions the unique role of oxidative stress in the development of vitiligo. Some isolated successes have been reported with oral ginkgo biloba, polypodium leucotomos and vitamin C and E preparations, while other clinical trials have failed to show reproducible results. The use of topical antioxidants delivers in general no beneficial results. CONCLUSION The oxidative pathway is affected in vitiligo, but its unique initiating or contributory role in the pathogenesis is less evident. Interesting data support the added value of oral antioxidants in vitiligo although confirmatory studies are missing.
Collapse
Affiliation(s)
- R Speeckaert
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium
| | - J Dugardin
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium
| | - J Lambert
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium
| | - H Lapeere
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium
| | - E Verhaeghe
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium
| | - M M Speeckaert
- Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - N van Geel
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
33
|
Kundu RV, Mhlaba JM, Rangel SM, Le Poole IC. The convergence theory for vitiligo: A reappraisal. Exp Dermatol 2018; 28:647-655. [PMID: 29704874 DOI: 10.1111/exd.13677] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2018] [Indexed: 12/15/2022]
Abstract
Vitiligo is characterized by progressive loss of skin pigmentation. The search for aetiologic factors has led to the biochemical, the neurologic and the autoimmune theory. The convergence theory was then proposed several years ago to incorporate existing theories of vitiligo development into a single overview of vitiligo aetiology. The viewpoint that vitiligo is not caused only by predisposing mutations, or only by melanocytes responding to chemical/radiation exposure, or only by hyperreactive T cells, but rather results from a combination of aetiologic factors that impact melanocyte viability, has certainly stood the test of time. New findings have since informed the description of progressive depigmentation. Understanding the relative importance of such aetiologic factors combined with a careful selection of the most targetable pathways will continue to drive the next phase in vitiligo research: the development of effective therapeutics. In that arena, it is likewise important to acknowledge that pathways affected in some patients may not be altered in others. Taken together, the convergence theory continues to provide a comprehensive viewpoint of vitiligo aetiology. The theory serves to intertwine aetiologic pathways and will help to define pathways amenable to disease intervention in individual patients.
Collapse
Affiliation(s)
- Roopal V Kundu
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | - Julia M Mhlaba
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | | | - I Caroline Le Poole
- Department of Dermatology, Northwestern University, Chicago, IL, USA.,Department of Microbiology and Immunology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
34
|
Bakry OA, Shoeib MAEM, El Kady N, Attalla S. Re-appraisal of Keratinocytes' Role in Vitiligo Pathogenesis. Indian J Dermatol 2018; 63:231-240. [PMID: 29937560 PMCID: PMC5996628 DOI: 10.4103/ijd.ijd_520_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background Vitiligo is a common pigmentary disorder. Studies on its pathogenesis extensively investigated melanocytes' abnormalities and few studies searched for keratinocytes' role in disease development. Liver X receptor-α (LXR-α) is a member of nuclear hormone receptors that acts as a transcription factor. Its target genes are the main regulators of melanocyte functions. Aim The aim of this study is to investigate keratinocytes' role in vitiligo pathogenesis through immunohistochemical expression of LXR-α in lesional, perilesional, and distant nonlesional vitiligo skin. Materials and Methods This case-control study was carried out on 44 participants. These included 24 patients with vitiligo and 20 age- and sex-matched normal individuals as a control group. Biopsies, from cases, were taken from lesional, perilesional, and distant nonlesional areas. Evaluation was done using immunohistochemical technique. Results Keratinocyte LXR-α expression was upregulated in the lesional and perilesional skin (follicular and interfollicular epidermis) compared with control skin (P <0.001 for all). There was significant association between higher histoscore (H-score) in lesional epidermis (P <0.001) and in hair follicle (P =0.001) and the presence of angiogenesis. There was significant association between higher H-score in lesional epidermis and suprabasal vacuolization (P =0.02). No significant association was found between H-score or expression percentage and clinical data of selected cases. Conclusion LXR-α upregulation is associated with keratinocyte damage in vitiligo lesional skin that leads to decreased keratinocyte-derived mediators and growth factors supporting the growth and/or melanization of surrounding melanocytes. Therefore, melanocyte function and survival are affected.
Collapse
Affiliation(s)
- Ola Ahmed Bakry
- Department of Dermatology, Andrology and STDs, Faculty of Medicine, Menoufiya University, Shebeen El-Kom, Egypt
| | | | - Noha El Kady
- Department of Pathology, Faculty of Medicine, Menoufiya University, Shebeen El-Kom, Egypt
| | - Shereen Attalla
- Department of Dermatology, Andrology and STDs, Faculty of Medicine, Menoufiya University, Shebeen El-Kom, Egypt
| |
Collapse
|
35
|
Bishnoi A, Parsad D. Clinical and Molecular Aspects of Vitiligo Treatments. Int J Mol Sci 2018; 19:ijms19051509. [PMID: 29783663 PMCID: PMC5983813 DOI: 10.3390/ijms19051509] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 12/15/2022] Open
Abstract
Vitiligo is an asymptomatic but cosmetically disfiguring disorder that results in the formation of depigmented patches on skin and/or mucosae. Vitiligo can be segmental or non-segmental depending upon the morphology of the clinical involvement. It can also be classified as progressing or stable based on the activity of the disease. Further, the extent of involvement can be limited (localized disease) or extensive (generalized disease). The treatment of vitiligo therefore depends on the clinical classification/characteristics of the disease and usually comprises of 2 strategies. The first involves arresting the progression of active disease (to provide stability) in order to limit the area involved by depigmentation. The second strategy aims at repigmentation of the depigmented area. It is also important to maintain the disease in a stable phase and to prevent relapse. Accordingly, a holistic treatment approach for vitiligo should be individualistic and should take care of all these considerations. In this review, we shall discuss the vitiligo treatments and their important clinical and molecular aspects.
Collapse
Affiliation(s)
- Anuradha Bishnoi
- Department of Dermatology, Venereology and Leprology, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India.
| | - Davinder Parsad
- Department of Dermatology, Venereology and Leprology, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India.
| |
Collapse
|
36
|
Zhang C, Zhou L, Huang J, Mei X, Wu Z, Shi W. A preliminary study of growth characteristics of melanocytes co-cultured with keratinocytes in vitro. J Cell Biochem 2018; 119:6173-6180. [PMID: 29637612 DOI: 10.1002/jcb.26825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/28/2018] [Indexed: 12/18/2022]
Abstract
To clarify the characteristic growth of melanocytes (MCs) and Keratinocytes (KCs) in vitro and discuss the mechanism of culturing autologous melanocytes in the treatment of vitiligo. Epidermis cells derived from normal skin tissues were isolated and cultured in vitro. Melanocytes in DOPA staining were observed. The expression level of markers in MCs was detected by qRT-PCR and the percentage of MCs and KCs were detected by flow cytometry. Cells derived from normal skin tissues mainly included KCs, MCs, and fibroblasts. There were significant differences between the percentage of KC, MC, fibroblasts (P < 0.05), and the expression of Microphthalmia-associated transcription factor (P < 0.05) and Tyrosinase-related protein-2 (P < 0.05) in the second, 10th, 20th, and 30th day. Significant differences were also found between the average numbers of MC stained by DOPA (P < 0.05) and the average percentage of MCs in the 10th, 20th, and 30th Day (P < 0.05). But there were no significant differences between the average percentage of KCs in the 10th, 20th, and 30th Day (P > 0.05) detected by flow cytometry. The number of MCs co-cultured with KCs in vitro reached the maximum in the 20th Day and this co-cultured model may contribute to the growth of MCs which could be used in the treatment of vitiligo.
Collapse
Affiliation(s)
- Chengzhong Zhang
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Le Zhou
- Department of Dermatology, Wuxi Branch of Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Wuxi, China
| | - Jie Huang
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xingyu Mei
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhouwei Wu
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weimin Shi
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
37
|
Salinas-Santander M, Trevino V, De la Rosa-Moreno E, Verduzco-Garza B, Sánchez-Domínguez CN, Cantú-Salinas C, Ocampo-Garza J, Lagos-Rodríguez A, Ocampo-Candiani J, Ortiz-López R. CAPN3, DCT, MLANA and TYRP1 are overexpressed in skin of vitiligo vulgaris Mexican patients. Exp Ther Med 2018; 15:2804-2811. [PMID: 29456684 PMCID: PMC5795480 DOI: 10.3892/etm.2018.5764] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/05/2018] [Indexed: 12/18/2022] Open
Abstract
Vitiligo is a disorder causing skin depigmentation, in which several factors have been proposed for its pathogenesis: Environmental, genetic and biological aspects of melanocytes, even those of the surrounding keratinocytes. However, the lack of understanding of the mechanisms has complicated the task of predicting the development and progression. The present study used microarray analysis to characterize the transcriptional profile of skin from Vitiligo Vulgaris (VV) patients and the identified transcripts were validated using targeted high-throughput RNA sequencing in a broader set of patients. For microarrays, mRNA was taken from 20 skin biopsies of 10 patients with VV (pigmented and depigmented skin biopsy of each), and 5 biopsies of healthy subjects matched for age and sex were used as a control. A signature was identified that contains the expression pattern of 722 genes between depigmented vitiligo skin vs. healthy control, 1,108 between the pigmented skin of vitiligo vs. healthy controls and 1,927 between pigmented skin, depigmented vitiligo and healthy controls (P<0.05; false discovery rate, <0.1). When comparing the pigmented and depigmented skin of patients with vitiligo, which reflects the real difference between both skin types, 5 differentially expressed genes were identified and further validated in 45 additional VV patients by RNA sequencing. This analysis showed significantly higher RNA levels of calpain-3, dopachrome tautomerase, melan-A and tyrosinase-related protein-1 genes. The data revealed that the pigmented skin of vitiligo is already affected at the level of gene expression and that the main differences between pigmented and non-pigmented skin are explained by the expression of genes associated with pigment metabolism.
Collapse
Affiliation(s)
- Mauricio Salinas-Santander
- Departamento de Bioquímica y Medicina Molecular, Universidad Autónoma de Nuevo León, Facultad de Medicina, Monterrey, Nuevo León 64460, México.,Departamento de Investigación, Facultad de Medicina Unidad Saltillo, Universidad Autónoma de Coahuila, Saltillo, Coahuila 25000, México
| | - Víctor Trevino
- Grupo de Investigación en Bioinformática, Escuela de Medicina, Tecnológico de Monterrey, Monterrey, Nuevo León 64849, México
| | - Eduardo De la Rosa-Moreno
- Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León 64460, México
| | - Bárbara Verduzco-Garza
- Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León 64460, México
| | - Celia N Sánchez-Domínguez
- Departamento de Bioquímica y Medicina Molecular, Universidad Autónoma de Nuevo León, Facultad de Medicina, Monterrey, Nuevo León 64460, México
| | - Cristina Cantú-Salinas
- Servicio de Dermatología, Universidad Autónoma de Nuevo León, Hospital Universitario Dr. José Eleuterio González, Facultad de Medicina, Monterrey, Nuevo León 64460, México
| | - Jorge Ocampo-Garza
- Servicio de Dermatología, Universidad Autónoma de Nuevo León, Hospital Universitario Dr. José Eleuterio González, Facultad de Medicina, Monterrey, Nuevo León 64460, México
| | - Armando Lagos-Rodríguez
- Servicio de Dermatología, Universidad Autónoma de Nuevo León, Hospital Universitario Dr. José Eleuterio González, Facultad de Medicina, Monterrey, Nuevo León 64460, México
| | - Jorge Ocampo-Candiani
- Servicio de Dermatología, Universidad Autónoma de Nuevo León, Hospital Universitario Dr. José Eleuterio González, Facultad de Medicina, Monterrey, Nuevo León 64460, México
| | - Rocio Ortiz-López
- Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León 64460, México.,Escuela de Medicina, Tecnológico de Monterrey, Monterrey, Nuevo León 64849, México
| |
Collapse
|
38
|
Singh A, Gotherwal V, Junni P, Vijayan V, Tiwari M, Ganju P, Kumar A, Sharma P, Fatima T, Gupta A, Holla A, Kar HK, Khanna S, Thukral L, Malik G, Natarajan K, Gadgil CJ, Lahesmaa R, Natarajan VT, Rani R, Gokhale RS. Mapping architectural and transcriptional alterations in non-lesional and lesional epidermis in vitiligo. Sci Rep 2017; 7:9860. [PMID: 28852211 PMCID: PMC5575244 DOI: 10.1038/s41598-017-10253-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/08/2017] [Indexed: 01/31/2023] Open
Abstract
In vitiligo, chronic loss of melanocytes and consequent absence of melanin from the epidermis presents a challenge for long-term tissue maintenance. The stable vitiligo patches are known to attain an irreversible depigmented state. However, the molecular and cellular processes resulting in this remodeled tissue homeostasis is unclear. To investigate the complex interplay of inductive signals and cell intrinsic factors that support the new acquired state, we compared the matched lesional and non-lesional epidermis obtained from stable non-segmental vitiligo subjects. Hierarchical clustering of genome-wide expression of transcripts surprisingly segregated lesional and non-lesional samples in two distinct clades, despite the apparent heterogeneity in the lesions of different vitiligo subjects. Pathway enrichment showed the expected downregulation of melanogenic pathway and a significant downregulation of cornification and keratinocyte differentiation processes. These perturbations could indeed be recapitulated in the lesional epidermal tissue, including blunting of rete-ridges, thickening of stratum corneum and increase in the size of corneocytes. In addition, we identify marked increase in the putrescine levels due to the elevated expression of spermine/spermidine acetyl transferase. Our study provides insights into the intrinsic self-renewing ability of damaged lesional tissue to restore epidermal functionality in vitiligo.
Collapse
Affiliation(s)
- Archana Singh
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | - Vishvabandhu Gotherwal
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Päivi Junni
- Turku Centre for Biotechnology, University of Turku and ÅboAkademi University, Turku, Finland
| | - Vinaya Vijayan
- CSIR-National Chemical Laboratory, Chemical Engineering Division, Pune, India
| | - Manisha Tiwari
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | - Parul Ganju
- National Institute of Immunology, ArunaAsaf Ali Marg, New Delhi, India
| | - Avinash Kumar
- National Institute of Immunology, ArunaAsaf Ali Marg, New Delhi, India
| | - Pankaj Sharma
- Department of Dermatology, Post Graduate Institute for Medical Education and Research (PGIMER), Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Tanveer Fatima
- Department of Dermatology, Post Graduate Institute for Medical Education and Research (PGIMER), Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Aayush Gupta
- Department of Dermatology, Dr. D. Y. Patil Medical College, Pimpri, Pune, India
| | - Ananthaprasad Holla
- MelanoSite, Center for Advanced Vitiligo Treatment and Collaborative Pigment Cell Research, New Delhi, India
| | - Hemanta K Kar
- Department of Dermatology, Post Graduate Institute for Medical Education and Research (PGIMER), Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Sangeeta Khanna
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | - Lipi Thukral
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | - Garima Malik
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | | | - Chetan J Gadgil
- CSIR-National Chemical Laboratory, Chemical Engineering Division, Pune, India
| | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku and ÅboAkademi University, Turku, Finland
| | - Vivek T Natarajan
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India. .,Academy of Scientific and Innovative Research, New Delhi, India.
| | - Rajni Rani
- National Institute of Immunology, ArunaAsaf Ali Marg, New Delhi, India.
| | - Rajesh S Gokhale
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India. .,National Institute of Immunology, ArunaAsaf Ali Marg, New Delhi, India. .,CSIR-National Chemical Laboratory, Chemical Engineering Division, Pune, India. .,Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India.
| |
Collapse
|
39
|
Kim JY, Lee EJ, Seo J, Oh SH. Impact of high-mobility group box 1 on melanocytic survival and its involvement in the pathogenesis of vitiligo. Br J Dermatol 2017; 176:1558-1568. [PMID: 27787879 DOI: 10.1111/bjd.15151] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Vitiligo is attributable to loss of functional melanocytes and is the most common acquired depigmenting disorder. Oxidative stress and intense ultraviolet irradiation are known to aggravate this condition. The nonhistone high-mobility group box 1 (HMGB1) DNA-binding protein is a physiological activator of immune responses, cellular proliferation and cell death. Although it is implicated in the pathogenesis of autoimmune diseases and cutaneous disorders, the precise role of HMGB1 in melanocytes has yet to be studied. OBJECTIVES To elucidate the effect of HMGB1 on melanocytic survival and its involvement in the pathogenesis of vitiligo. METHODS Melanocytes were treated with recombinant HMGB1 (rHMGB1). Thereafter, apoptosis-, autophagy- and melanogenesis-related molecules were detected. Ex vivo skin organ culture was performed after rHMGB1 treatment. Also, levels of HMGB1 were examined in blood and skin specimens from patients with vitiligo. RESULTS In this study, rHMGB1 increased expression of cleaved caspase 3 and decreased melanin production and expression of melanogenesis-related molecules. rHMGB1-induced caspase 3 activation was confirmed through preincubation with a pan-caspase inhibitor. In ex vivo experiments for the confirmation of HMGB1-induced melanocyte apoptosis, melanocyte disappearance and increased caspase 3 activation were observed in rHMGB1-treated skin tissues. In Western blot analysis and enzyme-linked immunosorbent assay, patients with active vitiligo showed significantly higher blood levels of HMGB1 (vs. healthy controls). Also, greater expression of HMGB1 was observed in vitiliginous skin (vs. uninvolved skin). CONCLUSIONS External stimuli (e.g. oxidative stress and ultraviolet irradiation) may trigger HMGB1 release by keratinocytes, thereby perpetuating vitiligo through HMGB1-induced melanocytic apoptosis.
Collapse
Affiliation(s)
- J Y Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - E J Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - J Seo
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - S H Oh
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
40
|
Karam RA, Zidan HE, Khater MH. Genetic variants of interferon-gamma and its mRNA expression and inflammatory parameters in the pathogenesis of vitiligo. Biochem Cell Biol 2017; 95:474-481. [PMID: 28273427 DOI: 10.1139/bcb-2016-0228] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although genetics plays an essential role in the pathogenesis of vitiligo, vitiligo pathogenesis is still unclear. Our aim was to investigate the role of IFN-γ expression and polymorphism in vitiligo susceptibility and whether intercellular adhesion molecule-1 (ICAM-1), tumor necrosis factor (TNF)-α, and TNF-β play a role in vitiligo pathogenesis as important inflammatory parameters. Eighty-five patients with vitiligo and 90 controls were investigated for IFN-γ gene expression by quantitative real-time PCR and genotyped for IFN-γ +874T/A (rs2430561) and IFN-γ +2109A/G (rs1861494) gene polymorphisms by sequence-specific primer (SSP)-PCR and PCR-restriction fragment length polymorphism (RFLP), respectively. Serum levels of inflammatory parameters were measured using ELISA. Frequencies of the +874 TT genotype and T allele were significantly higher in patients with active vitiligo than in stable patients (P = 0.01 and 0.03, respectively). Calculation of odds ratio suggested a 1.7-fold increased risk of vitiligo in individuals having the TA haplotype. We observed overexpression of IFN-γ mRNA with elevated serum levels of IFN-γ, ICAM-1, TNF-α, and TNF-β in patients with vitiligo when compared with the control group (P = 0.001, for all). In addition, these levels were elevated in patients with active vitiligo compared with stable patients with vitiligo (P = 0.008, 0.006, 0.01, 0.01, and 0.03, respectively), which suggests the involvement of these cytokines in disease activity. In conclusion, IFN-γ is a promising immunological marker in vitiligo pathogenesis.
Collapse
Affiliation(s)
- Rehab A Karam
- a Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Haidy E Zidan
- a Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed H Khater
- b Dermatology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
41
|
Double-stranded RNA induces inflammation via the NF-κB pathway and inflammasome activation in the outer root sheath cells of hair follicles. Sci Rep 2017; 7:44127. [PMID: 28266599 PMCID: PMC5339809 DOI: 10.1038/srep44127] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 02/03/2017] [Indexed: 12/16/2022] Open
Abstract
Alopecia areata (AA), a chronic, relapsing, hair-loss disorder, is considered to be a T cell-mediated autoimmune disease. It affects approximately 1.7% of the population, but its precise pathogenesis remains to be elucidated. Despite the recent attention focused on the roles of inflammasomes in the pathogenesis of autoinflammatory diseases, little is known about inflammasome activation in AA. Thus, in this study, we investigated the pattern of NLRP3 inflammasome activation in the outer root sheath (ORS) cells of hair follicles. We found that interleukin (IL)-1β and caspase-1 expression was increased in hair follicle remnants and inflammatory cells of AA tissue specimens. After stimulation of ORS cells with the double-stranded (ds)RNA mimic polyinosinic:polycytidylic acid (poly[I:C]), the activation of caspase-1 and secretion of IL-1β were enhanced. Moreover, NLRP3 knockdown decreased this poly(I:C)-induced IL-1β production. Finally, we found that high-mobility group box 1 (HMGB1) translocated from the nucleus to the cytosol and was secreted into the extracellular space by inflammasome activation. Taken together, these findings suggest that ORS cells are important immunocompetent cells that induce NLRP3 inflammasomes. In addition, dsRNA-induced IL-1β and HMGB1 secretion from ORS cells may contribute to clarifying the pathogenesis and therapeutic targets of AA.
Collapse
|
42
|
Bakry OA, Hagag MM, Kandil MAEH, Shehata WA. Aquaporin 3 and E-Cadherin Expression in Perilesional Vitiligo Skin. J Clin Diagn Res 2016; 10:WC01-WC06. [PMID: 28208984 DOI: 10.7860/jcdr/2016/22730.8959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/07/2016] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Vitiligo is a common dermatologic disorder with debated aetiology. Most studies focused on role of melanocytes and few investigated the role of keratinocytes in pathogenesis of the disease. AIM To investigate the keratinocyte adhesion in perilesional vitiligo skin through the immunolocalization of Aquaporin-3 (AQP3) and E-cadherin. SETTING AND DESIGN Sixty five subjects were selected. These included 40 cases with vitiligo and 25 age and gender-matched healthy subjects as a control group. MATERIALS AND METHODS Skin biopsies were taken from perilesional skin of cases and from site-matched areas of control subjects. The expression of AQP3 and E-cadherin was evaluated by immunohistochemical techniques. STATISTICAL ANALYSIS Results were statistically analysed using IBM personal computer and the statistical package SPSS version 11. Fisher-exact and Chi-square tests were used to study the association between two qualitative variables. Mann-Whitney test was used for comparison between quantitative variables not normally distributed. Spearman's correlation coefficient was used to assess correlation between two quantitative variables. The p≤0.05 was considered significant. RESULTS Regarding AQP3 expression, strong intensity, diffuse distribution, higher percent of expression and higher H-score (p<0.001 for all) were significantly associated with control skin compared with perilesional skin in follicular and inter-follicular epidermis. Regarding E-cadherin expression, moderate intensity, higher percent of expression and higher H- score (p<0.001 for all) were significantly associated with control skin compared with perilesional skin in follicular and inter-follicular epidermis. No significant association was found between E-cadherin and AQP3 H-scores or percent of expression and clinical data of selected cases. No significant correlation was detected between E-cadherin and AQP3 H-scores or percent of expression and age of cases, disease duration or Vitiligo Disease Activity (VIDA) score. CONCLUSION The following sequence of events can be suggested for vitiligo pathogenesis, based on findings in perilesional skin: AQP3 is downregulated by a primary unknown factor and this will lead to down regulation of its downstream molecules, mainly phosphatidylinositol 3-kinase, E-cadherin and catenins, which is followed by defective keratinocyte adhesion and decreased release of keratinocyte-derived growth factors. Subsequently a secondary event, physical trauma, oxidative stress or autoantibodies, may lead to exfoliation of keratinocytes and pigmented cells.
Collapse
Affiliation(s)
- Ola Ahmed Bakry
- Assistant Professor, Department of Dermatology, Andrology and STDs, Faculty of Medicine, Menoufiya University , Egypt
| | - Magda Mostafa Hagag
- Professor, Department of Dermatology, Andrology and STDs, Faculty of Medicine, Menoufiya University , Egypt
| | | | - Wafaa Ahmed Shehata
- Assistant Lecturer, Department of Dermatology, Andrology and STDs, Faculty of Medicine, Menoufiya University , Egypt
| |
Collapse
|
43
|
Li S, Zhu G, Yang Y, Jian Z, Guo S, Dai W, Shi Q, Ge R, Ma J, Liu L, Li K, Luan Q, Wang G, Gao T, Li C. Oxidative stress drives CD8 + T-cell skin trafficking in patients with vitiligo through CXCL16 upregulation by activating the unfolded protein response in keratinocytes. J Allergy Clin Immunol 2016; 140:177-189.e9. [PMID: 27826097 DOI: 10.1016/j.jaci.2016.10.013] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 08/17/2016] [Accepted: 10/03/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND In patients with vitiligo, an increased reactive oxygen species (ROS) level has been proved to be a key player during disease initiation and progression in melanocytes. Nevertheless, little is known about the effects of ROS on other cells involved in the aberrant microenvironment, such as keratinocytes and the following immune events. CXCL16 is constitutively expressed in keratinocytes and was recently found to mediate homing of CD8+ T cells in human skin. OBJECTIVE We sought to explicate the effect of oxidative stress on human keratinocytes and its capacity to drive CD8+ T-cell trafficking through CXCL16 regulation. METHODS We first detected putative T-cell skin-homing chemokines and ROS in serum and lesions of patients with vitiligo. The production of candidate chemokines was detected by using quantitative real-time PCR and ELISA in keratinocytes exposed to H2O2. Furthermore, the involved mediators were analyzed by using quantitative real-time PCR, Western blotting, ELISA, and immunofluorescence. Next, we tested the chemotactic migration of CD8+ T cells from patients with vitiligo mediated by the CXCL16-CXCR6 pair using the transwell assay. RESULTS CXCL16 expression increased and showed a positive correlation with oxidative stress levels in serum and lesions of patients with vitiligo. The H2O2-induced CXCL16 expression was due to the activation of 2 unfolded protein response pathways: kinase RNA (PKR)-like ER kinase-eukaryotic initiation factor 2α and inositol-requiring enzyme 1α-X-box binding protein 1. CXCL16 produced by stressed keratinocytes induced migration of CXCR6+CD8+ T cells derived from patients with vitiligo. CXCR6+CD8+ T-cell skin infiltration is accompanied by melanocyte loss in lesions of patients with vitiligo. CONCLUSION Our study demonstrated that CXCL16-CXCR6 mediates CD8+ T-cell skin trafficking under oxidative stress in patients with vitiligo. The CXCL16 expression in human keratinocytes induced by ROS is, at least in part, caused by unfolded protein response activation.
Collapse
Affiliation(s)
- Shuli Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Shaanxi, China
| | - Guannan Zhu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Shaanxi, China
| | - Yuqi Yang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Shaanxi, China
| | - Zhe Jian
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Shaanxi, China
| | - Sen Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Shaanxi, China
| | - Wei Dai
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Shaanxi, China
| | - Qiong Shi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Shaanxi, China
| | - Rui Ge
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Shaanxi, China
| | - Jingjing Ma
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Shaanxi, China
| | - Ling Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Shaanxi, China
| | - Kai Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Shaanxi, China
| | - Qi Luan
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Shaanxi, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Shaanxi, China
| | - Tianwen Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Shaanxi, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Shaanxi, China.
| |
Collapse
|
44
|
Castanedo-Cázares JP, Cortés-García JD, Fuentes-Ahumada C, Martinez-Rosales K, Torres-Álvarez B. Repigmentation patterns induced by NB-UVB and their relationship with melanocytic migration and proliferation in vitiligo. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2016; 32:269-275. [PMID: 27627998 DOI: 10.1111/phpp.12275] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/07/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND/PURPOSE Vitiligo is the most commonly acquired depigmentation disorder of the skin and is characterized by the destruction of melanocytes. Ultraviolet phototherapy with narrow band (UVB-NB) induces proliferation, differentiation, maturation, and migration of melanocytes. The clinical repigmentation is featured by follicular, marginal, and diffuse patterns. The aim of this study was to observe the process involved in the melanocyte migration and proliferation among these patterns and the unresponsive lesions following UVB-NB phototherapy. The focal adhesion kinase (FAK) and c-KIT were used as markers of melanocyte migration and differentiation, respectively. METHODS A total of 17 vitiligo patients under UVB-NB therapy were selected. The patients expressed the three repigmentation patterns as well as unresponsive lesions at the conclusion of a 30-session cycle. Skin biopsies were evaluated by immunohistochemistry and qRT-PCR. RESULTS We found an increased expression of c-KIT in the follicular pattern compared to the diffuse pattern that was expressed predominantly of FAK. Marginal pattern expressed both proteins. The unresponsive achromic lesions showed poor expressions of both markers. CONCLUSION Proliferation was prominent in the follicular pattern, but migration was prominent in the diffuse pattern. For the marginal pattern, both dynamics were present. The absence of these markers in vitiligo lesions suggests a lack of response to UVB-NB.
Collapse
Affiliation(s)
- Juan Pablo Castanedo-Cázares
- Dermatology Department, Hospital Central Dr. Ignacio Morones Prieto, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Juan Diego Cortés-García
- Laboratory of Immunology and Cellular and Molecular Biology, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Cornelia Fuentes-Ahumada
- Dermatology Department, Hospital Central Dr. Ignacio Morones Prieto, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Karla Martinez-Rosales
- Dermatology Department, Hospital Central Dr. Ignacio Morones Prieto, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Bertha Torres-Álvarez
- Dermatology Department, Hospital Central Dr. Ignacio Morones Prieto, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| |
Collapse
|
45
|
Fawzy MM, El Maadawi ZM, Hegazy RA, El Fatah NSA. Vitiligo - The story from within: A transmission electron microscopic study before and after narrow-band ultraviolet B. Ultrastruct Pathol 2016; 40:265-75. [PMID: 27594347 DOI: 10.1080/01913123.2016.1218987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Melanocyte loss is the main feature of vitiligo, but evidence refers to pathological multiplayers. Transmission electron microscopy was utilized to further explore vitiligo before and after narrow-band ultraviolet B (NB-UVB) therapy. Skin biopsies were retrieved from lesional and perilesional skin and compared to normal control skin. Sections were examined for melanocytes and keratinocytes and the number of melanosomes and thickness of basal lamina were measured. In lesional skin, keratinocytes revealed two types of degeneration with a significant increase in the mean thickness of basal lamina and decrease in the number of melanosomes. After treatment, lesional and perilesional skin showed variable ultrastructural features.
Collapse
Affiliation(s)
- Marwa M Fawzy
- a Department of Dermatology , Faculty of Medicine, Cairo University , Cairo , Egypt
| | - Zeinab M El Maadawi
- b Department of Histology & Cell Biology , Faculty of Medicine, Cairo University , Cairo , Egypt
| | - Rehab A Hegazy
- a Department of Dermatology , Faculty of Medicine, Cairo University , Cairo , Egypt
| | | |
Collapse
|
46
|
Pei T, Zheng C, Huang C, Chen X, Guo Z, Fu Y, Liu J, Wang Y. Systematic understanding the mechanisms of vitiligo pathogenesis and its treatment by Qubaibabuqi formula. JOURNAL OF ETHNOPHARMACOLOGY 2016; 190:272-287. [PMID: 27265513 DOI: 10.1016/j.jep.2016.06.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 05/16/2016] [Accepted: 06/01/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Vitiligo is a depigmentation disorder, which results in substantial cosmetic disfigurement and poses a detriment to patients' physical as well as mental. Now the molecular pathogenesis of vitiligo still remains unclear, which leads to a daunting challenge for vitiligo therapy in modern medicine. Herbal medicines, characterized by multi-compound and multi-target, have long been shown effective in treating vitiligo, but their molecular mechanisms of action also remain ambiguous. MATERIALS AND METHODS Here we proposed a systems pharmacology approach using a clinically effective herb formula as a tool to detect the molecular pathogenesis of vitiligo. This study provided an integrative analysis of active chemicals, drug targets and interacting pathways of the Uygur medicine Qubaibabuqi formula for curing Vitiligo. RESULTS The results show that 56 active ingredients of Qubaibabuqi interacting with 83 therapeutic proteins were identified. And Qubaibabuqi probably participate in immunomodulation, neuromodulation and keratinocytes apoptosis inhibition in treatment of vitiligo by a synergistic/cooperative way. CONCLUSIONS The drug-target network-based analysis and pathway-based analysis can provide a new approach for understanding the pathogenesis of vitiligo and uncovering the molecular mechanisms of Qubaibabuqi, which will also facilitate the application of traditional Chinese herbs in modern medicine.
Collapse
Affiliation(s)
- Tianli Pei
- Center of Bioinformatics, College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, China
| | - Chunli Zheng
- Center of Bioinformatics, College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Chao Huang
- Center of Bioinformatics, College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xuetong Chen
- Center of Bioinformatics, College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Zihu Guo
- Center of Bioinformatics, College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Yingxue Fu
- Center of Bioinformatics, College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jianling Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, China
| | - Yonghua Wang
- Center of Bioinformatics, College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
47
|
|
48
|
Dey-Rao R, Sinha AA. Interactome analysis of gene expression profile reveals potential novel key transcriptional regulators of skin pathology in vitiligo. Genes Immun 2015; 17:30-45. [DOI: 10.1038/gene.2015.48] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 09/25/2015] [Accepted: 09/29/2015] [Indexed: 12/13/2022]
|
49
|
Lotti T, Hercogova J, Fabrizi G. Advances in the treatment options for vitiligo: activated low-dose cytokines-based therapy. Expert Opin Pharmacother 2015; 16:2485-96. [DOI: 10.1517/14656566.2015.1087508] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
50
|
Oxidized tyrosinase: A possible antigenic stimulus for non-segmental vitiligo autoantibodies. J Dermatol Sci 2015; 79:203-13. [DOI: 10.1016/j.jdermsci.2015.06.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 12/07/2014] [Accepted: 06/18/2015] [Indexed: 12/23/2022]
|