1
|
Chen Y, Guo B, Ma G, Cao H. Sensory nerve regulation of bone homeostasis: Emerging therapeutic opportunities for bone-related diseases. Ageing Res Rev 2024; 99:102372. [PMID: 38880342 DOI: 10.1016/j.arr.2024.102372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
Understanding the intricate interplay between sensory nerves and bone tissue cells is of paramount significance in the field of bone biology and clinical medicine. The regulatory role of sensory nerves in bone homeostasis offers a novel perspective for the development of targeted therapeutic interventions for a spectrum of bone-related diseases, including osteoarthritis, osteoporosis, and intervertebral disc degeneration. By elucidating the mechanisms through which sensory nerves and their neuropeptides influence the differentiation and function of bone tissue cells, this review aims to shed light on emerging therapeutic targets that harness the neuro-skeletal axis for the treatment and management of debilitating bone disorders. Moreover, a comprehensive understanding of sensory nerve-mediated bone regulation may pave the way for the development of innovative strategies to promote bone health and mitigate the burden of skeletal pathologies in clinical practice.
Collapse
Affiliation(s)
- Yong Chen
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Botao Guo
- The First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, China
| | - Guixing Ma
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Huiling Cao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
2
|
Hasegawa Y, Franks JM, Tanaka Y, Uehara Y, Read DF, Williams C, Srivatsan S, Pitstick LB, Nikolaidis NM, Shaver CM, Kropski J, Ware LB, Taylor CJ, Banovich NE, Wu H, Gardner JC, Osterburg AR, Yu JJ, Kopras EJ, Teitelbaum SL, Wikenheiser-Brokamp KA, Trapnell C, McCormack FX. Pulmonary osteoclast-like cells in silica induced pulmonary fibrosis. SCIENCE ADVANCES 2024; 10:eadl4913. [PMID: 38985878 PMCID: PMC11235167 DOI: 10.1126/sciadv.adl4913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 06/05/2024] [Indexed: 07/12/2024]
Abstract
The pathophysiology of silicosis is poorly understood, limiting development of therapies for those who have been exposed to the respirable particle. We explored mechanisms of silica-induced pulmonary fibrosis in human lung samples collected from patients with occupational exposure to silica and in a longitudinal mouse model of silicosis using multiple modalities including whole-lung single-cell RNA sequencing and histological, biochemical, and physiologic assessments. In addition to pulmonary inflammation and fibrosis, intratracheal silica challenge induced osteoclast-like differentiation of alveolar macrophages and recruited monocytes, driven by induction of the osteoclastogenic cytokine, receptor activator of nuclear factor κΒ ligand (RANKL) in pulmonary lymphocytes, and alveolar type II cells. Anti-RANKL monoclonal antibody treatment suppressed silica-induced osteoclast-like differentiation in the lung and attenuated pulmonary fibrosis. We conclude that silica induces differentiation of pulmonary osteoclast-like cells leading to progressive lung injury, likely due to sustained elaboration of bone-resorbing proteases and hydrochloric acid. Interrupting osteoclast-like differentiation may therefore constitute a promising avenue for moderating lung damage in silicosis.
Collapse
Affiliation(s)
- Yoshihiro Hasegawa
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Jennifer M. Franks
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Yusuke Tanaka
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Yasuaki Uehara
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - David F. Read
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Claire Williams
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Sanjay Srivatsan
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Lori B. Pitstick
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Nikolaos M. Nikolaidis
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Ciara M. Shaver
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan Kropski
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lorraine B. Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chase J. Taylor
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nicholas E. Banovich
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Huixing Wu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Jason C. Gardner
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Andrew R. Osterburg
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Jane J. Yu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Elizabeth J. Kopras
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Steven L. Teitelbaum
- Department of Pathology and Immunology, and Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kathryn A. Wikenheiser-Brokamp
- Division of Pathology and Laboratory Medicine and Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Francis X. McCormack
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
3
|
Zhang P, Feng Q, Chen W, Bai X. Catalpol antagonizes LPS-mediated inflammation and promotes osteoblast differentiation through the miR-124-3p/DNMT3b/TRAF6 axis. Acta Histochem 2024; 126:152118. [PMID: 38039796 DOI: 10.1016/j.acthis.2023.152118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Dysregulated inflammation and osteoblast differentiation are implicated in osteoporosis. Exploring the activity of catalpol in inflammation and osteoblast differentiation deepens the understanding of osteoporosis pathogenesis. METHODS LPS was used to treated hFOB1.19 cells to induce inflammation and repress osteoblast differentiation. FOB1.19 cells were induced in osteoblast differentiation medium and treated with LPS and catalpol. Cell viability was assessed using CCK-8. ALP and Alizarin red S staining were conducted for analyzing osteoblast differentiation. The levels of IL-1β, TNF-α and IL-6 were examined by ELISA. The methylation of TRAF6 promoter was examined through MS-PCR. The binding of miR-124-3p to DNMT3b and DNMT3b to TRAF6 promoter was determined with dual luciferase reporter and ChIP assays. RESULTS LPS enhanced secretion of inflammatory cytokines and suppressed osteoblast differentiation. MiR-124-3p and TRAF6 were upregulated and DNMT3b was downregulated in LPS-induced hFOB1.19 cells. Catalpol protected hFOB1.19 cells against LPS via inhibiting inflammation and promoting osteoblast differentiation. MiR-124-3p targeted DNMT3b, and its overexpression abrogated catalpol-mediated protection in LPS-treated hFOB1.19 cells. In addition, DNMT3b methylated TRAF6 promoter to restrain its expression. Catalpol exerted protective effects through suppression of the miR-124-3p/DNMT3b/TRAF6 axis in hFOB1.19 cells. CONCLUSION Catalpol antagonizes LPS-mediated inflammation and suppressive osteoblast differentiation via controlling the miR-124-3p/DNMT3b/TRAF6 axis.
Collapse
Affiliation(s)
- Pan Zhang
- Department of Orthopaedics, The People's Hospital of Liaoning Province, Shenyang 110016, Liaoning, People's Republic of China
| | - Qun Feng
- Department of Orthopaedics, The People's Hospital of Liaoning Province, Shenyang 110016, Liaoning, People's Republic of China
| | - Wenxiao Chen
- Department of Orthopaedics, The People's Hospital of Liaoning Province, Shenyang 110016, Liaoning, People's Republic of China
| | - Xizhuang Bai
- Department of Orthopaedics, The People's Hospital of Liaoning Province, Shenyang 110016, Liaoning, People's Republic of China.
| |
Collapse
|
4
|
Yun HM, Cho MH, Jeong H, Kim SH, Jeong YH, Park KR. Osteogenic Activities of Trifolirhizin as a Bioactive Compound for the Differentiation of Osteogenic Cells. Int J Mol Sci 2023; 24:17103. [PMID: 38069425 PMCID: PMC10706948 DOI: 10.3390/ijms242317103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
Plant extracts are widely used as traditional medicines. Sophora flavescens Aiton-derived natural compounds exert various beneficial effects, such as anti-inflammatory, anticancer, antioxidant, and antiregenerative activities, through their bioactive compounds, including flavonoids and alkaloids. In the present study, we investigated the biological effects of an S. flavescens-derived flavonoid, trifolirhizin (trifol), on the stimulation of osteogenic processes during osteoblast differentiation. Trifol (>98% purity) was successfully isolated from the root of S. flavescens and characterized. Trifol did not exhibit cellular toxicity in osteogenic cells, but promoted alkaline phosphatase (ALP) staining and activity, with enhanced expression of the osteoblast differentiation markers, including Alp, ColI, and Bsp. Trifol induced nuclear runt-related transcription factor 2 (RUNX2) expression during the differentiation of osteogenic cells, and concomitantly stimulated the major osteogenic signaling proteins, including GSK3β, β-catenin, and Smad1/5/8. Among the mitogen-activated protein kinases (MAPKs), Trifol activated JNK, but not ERK1/2 and p38. Trifol also increased the osteoblast-mediated bone-forming phenotypes, including transmigration, F-actin polymerization, and mineral apposition, during osteoblast differentiation. Overall, trifol exhibits bioactive activities related to osteogenic processes via differentiation, migration, and mineralization. Collectively, these results suggest that trifol may serve as an effective phytomedicine for bone diseases such as osteoporosis.
Collapse
Affiliation(s)
- Hyung-Mun Yun
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Mi Hyeon Cho
- Korea Basic Science Institute (KBSI), Seoul 02841, Republic of Korea; (M.H.C.); (H.J.)
| | - Hoibin Jeong
- Korea Basic Science Institute (KBSI), Seoul 02841, Republic of Korea; (M.H.C.); (H.J.)
| | - Soo Hyun Kim
- National Development Institute for Korean Medicine, Gyeongsan 38540, Republic of Korea; (S.H.K.); (Y.H.J.)
| | - Yun Hee Jeong
- National Development Institute for Korean Medicine, Gyeongsan 38540, Republic of Korea; (S.H.K.); (Y.H.J.)
| | - Kyung-Ran Park
- Korea Basic Science Institute (KBSI), Gwangju 61751, Republic of Korea
| |
Collapse
|
5
|
Fan JB, Yuan K, Zhu XH, Cui SY, Yi H, Zhang W. Neuroligin-3 activates Akt-dependent Nrf2 cascade to protect osteoblasts from oxidative stress. Free Radic Biol Med 2023; 208:807-819. [PMID: 37774803 DOI: 10.1016/j.freeradbiomed.2023.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Excessive oxidative stress will cause significant injury to osteoblasts, serving as one major pathological mechanism of osteoporosis. Neuroligin-3 (NLGN3) is a postsynaptic cell adhesion protein and is expressed in the bone. We here explored its potential activity against hydrogen peroxide (H2O2)-induced oxidative injury in cultured osteoblasts. In primary murine and human osteoblasts, NLGN3 stimulation dose-dependently induced Akt, Erk1/2 and S6K activation. NLGN3 pretreatment ameliorated H2O2-induced cytotoxicity and death in osteoblasts. Moreover, H2O2-induced reactive oxygen species (ROS) production and oxidative injury were alleviated with NLGN3 pretreatment in cultured osteoblasts. Further studies showed that NLGN3 activated Nrf2 signaling cascade and induced Nrf2 protein Serine-40 phosphorylation, Keap1-Nrf2 dissociation, Nrf2 protein stabilization and nuclear translocation in osteoblasts. NLGN3 also increased antioxidant response element (ARE) activity and induced expression of Nrf2-ARE-dependent genes (HO1, GCLC and NQO1) in osteoblasts. Moreover NLGN3 mitigated osteoblast oxidative injury by dexamethasone or sodium fluoride (NaF). Nrf2 cascade activation is essential for NLGN3-induced cytoprotective activity in osteoblasts. Nrf2 shRNA or knockout (KO) abolished NLGN3-induced osteoblast cytoprotection against H2O2. Contrarily forced Nrf2 cascade activation by Keap1 KO mimicked NLGN3-induced anti-oxidative activity in murine osteoblasts. Importantly, NLGN3-induced Serine-40 phosphorylation and Nrf2 cascade activation were blocked by an Akt inhibitor MK-2206 or by Akt1 shRNA. Importantly, Akt inhibition, Akt1 silencing or Nrf2 S40T mutation largely inhibited NLGN3-induced osteoblast cytoprotection against H2O2. At last, we showed that NLGN3 mRNA and protein expression was significantly downregulated in necrotic bone tissues of dexamethasone-taken patients. Taken together, NLGN3 activated Akt-dependent Nrf2 cascade to protect osteoblasts from oxidative stress.
Collapse
Affiliation(s)
- Jian-Bo Fan
- Department of Orthopaedics, Affiliated Hospital 2 of Nantong University, Nantong, China.
| | - Kun Yuan
- Department of Orthopaedics, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Xin-Hui Zhu
- Department of Orthopaedics, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Sheng-Yu Cui
- Department of Orthopaedics, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Hong Yi
- Department of Orthopaedics, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Wei Zhang
- Department of Orthopaedics, Affiliated Hospital 2 of Nantong University, Nantong, China
| |
Collapse
|
6
|
Shen Y, Jiang B, Lu W, Luo B, Zhou Y, Qian G. Dexamethasone-induced mitochondrial ROS-mediated inhibition of AMPK activity facilitates osteoblast necroptosis. Toxicol Res (Camb) 2023; 12:922-929. [PMID: 37915480 PMCID: PMC10615823 DOI: 10.1093/toxres/tfad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 11/03/2023] Open
Abstract
Long-term or high-dose glucocorticoid use can lead to serious orthopedic complications, including femoral head necrosis. Both basic and clinical studies have shown that high doses dexamethasone (Dex) can directly induce osteoblasts death. This study investigated the mechanism underlying Dex induced osteoblast death. In this study, we showed that Dex induces osteoblast necroptosis, rather than apoptosis, through the inhibition of AMP-activated protein kinase (AMPK) activity. We also demonstrated that inactivation of AMPK-mediated necroptosis is through receptor-interacting protein kinase 3 (RIP3), but not RIP1. Furthermore, we found that Dex-induced necroptosis is dependent on mitochondrial reactive oxygen species (ROS) following with directly activation of RIP1 and inactivation of AMPK. These findings provide new insights into the mechanism of Dex-induced osteoblast death and may have implications for the development of new therapies for osteoporosis and other bone-related diseases.
Collapse
Affiliation(s)
- Yingchao Shen
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, No. 6, Huanghe Road, Changshu, Jiangsu 215500, China
| | - Bo Jiang
- Department of Hand and Foot Surgery, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, Jiangsu 215004, China
| | - Wei Lu
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, No. 6, Huanghe Road, Changshu, Jiangsu 215500, China
| | - Bin Luo
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, No. 6, Huanghe Road, Changshu, Jiangsu 215500, China
| | - Yuan Zhou
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, No. 6, Huanghe Road, Changshu, Jiangsu 215500, China
| | - Guiying Qian
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, No. 6, Huanghe Road, Changshu, Jiangsu 215500, China
| |
Collapse
|
7
|
Shimonty A, Bonewald LF, Pin F. Role of the Osteocyte in Musculoskeletal Disease. Curr Osteoporos Rep 2023; 21:303-310. [PMID: 37084017 DOI: 10.1007/s11914-023-00788-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 04/22/2023]
Abstract
PURPOSE OF THE REVIEW The purpose of this review is to summarize the role of the osteocyte in muscle atrophy in cancer patients, sarcopenia, spinal cord injury, Duchenne's muscular dystrophy, and other conditions associated with muscle deterioration. RECENT FINDINGS One type of bone cell, the osteocyte, appears to play a major role in muscle and bone crosstalk, whether physiological or pathological. Osteocytes are cells living within the bone-mineralized matrix. These cells are connected to each other by means of dendrites to create an intricately connected network. The osteocyte network has been shown to respond to different types of stimuli such as mechanical unloading, immobilization, aging, and cancer by producing osteocytes-derived factors. It is now becoming clear that some of these factors including sclerostin, RANKL, TGF-β, and TNF-α have detrimental effects on skeletal muscle. Bone and muscle not only communicate mechanically but also biochemically. Osteocyte-derived factors appear to contribute to the pathogenesis of muscle disease and could be used as a cellular target for new therapeutic approaches.
Collapse
Affiliation(s)
- Anika Shimonty
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lynda F Bonewald
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
- Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fabrizio Pin
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.
- Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
8
|
Molecular Basis beyond Interrelated Bone Resorption/Regeneration in Periodontal Diseases: A Concise Review. Int J Mol Sci 2023; 24:ijms24054599. [PMID: 36902030 PMCID: PMC10003253 DOI: 10.3390/ijms24054599] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 03/02/2023] Open
Abstract
Periodontitis is the sixth most common chronic inflammatory disease, destroying the tissues supporting the teeth. There are three distinct stages in periodontitis: infection, inflammation, and tissue destruction, where each stage has its own characteristics and hence its line of treatment. Illuminating the underlying mechanisms of alveolar bone loss is vital in the treatment of periodontitis to allow for subsequent reconstruction of the periodontium. Bone cells, including osteoclasts, osteoblasts, and bone marrow stromal cells, classically were thought to control bone destruction in periodontitis. Lately, osteocytes were found to assist in inflammation-related bone remodeling besides being able to initiate physiological bone remodeling. Furthermore, mesenchymal stem cells (MSCs) either transplanted or homed exhibit highly immunosuppressive properties, such as preventing monocytes/hematopoietic precursor differentiation and downregulating excessive release of inflammatory cytokines. In the early stages of bone regeneration, an acute inflammatory response is critical for the recruitment of MSCs, controlling their migration, and their differentiation. Later during bone remodeling, the interaction and balance between proinflammatory and anti-inflammatory cytokines could regulate MSC properties, resulting in either bone formation or bone resorption. This narrative review elaborates on the important interactions between inflammatory stimuli during periodontal diseases, bone cells, MSCs, and subsequent bone regeneration or bone resorption. Understanding these concepts will open up new possibilities for promoting bone regeneration and hindering bone loss caused by periodontal diseases.
Collapse
|
9
|
Liu F, Song C, Cai W, Chen J, Cheng K, Guo D, Duan DD, Liu Z. Shared mechanisms and crosstalk of COVID-19 and osteoporosis via vitamin D. Sci Rep 2022; 12:18147. [PMID: 36307516 PMCID: PMC9614744 DOI: 10.1038/s41598-022-23143-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/25/2022] [Indexed: 12/31/2022] Open
Abstract
Recently accumulated evidence implicates a close association of vitamin D (VitD) insufficiency to the incidence and clinical manifestations of the COVID-19 caused by severe acute respiratory syndrome coronavirus-2 (SARS-COV-2). Populations with insufficient VitD including patients with osteoporosis are more susceptible to SARS-COV-2 infection and patients with COVID-19 worsened or developed osteoporosis. It is currently unknown, however, whether osteoporosis and COVID-19 are linked by VitD insufficiency. In this study, 42 common targets for VitD on both COVID-19 and osteoporosis were identified among a total of 243 VitD targets. Further bioinformatic analysis revealed 8 core targets (EGFR, AR, ESR1, MAPK8, MDM2, EZH2, ERBB2 and MAPT) in the VitD-COVID-19-osteoporosis network. These targets are involved in the ErbB and MAPK signaling pathways critical for lung fibrosis, bone structural integrity, and cytokines through a crosstalk between COVID-19 and osteoporosis via the VitD-mediated conventional immune and osteoimmune mechanisms. Molecular docking confirmed that VitD binds tightly to the predicted targets. These findings support that VitD may target common signaling pathways in the integrated network of lung fibrosis and bone structural integrity as well as the immune systems. Therefore, VitD may serve as a preventive and therapeutic agent for both COVID-19 and osteoporosis.
Collapse
Affiliation(s)
- Fei Liu
- grid.410578.f0000 0001 1114 4286Department of Orthopedics, The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Chao Song
- grid.410578.f0000 0001 1114 4286Department of Orthopedics, The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Weiye Cai
- grid.410578.f0000 0001 1114 4286Department of Orthopedics, The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Jingwen Chen
- grid.410578.f0000 0001 1114 4286Department of Orthopedics, The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Kang Cheng
- grid.410578.f0000 0001 1114 4286Department of Orthopedics, The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Daru Guo
- grid.410578.f0000 0001 1114 4286Department of Orthopedics, The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Dayue Darrel Duan
- grid.410578.f0000 0001 1114 4286Center for Phenomics of Traditional Chinese Medicine, and the Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Zongchao Liu
- grid.410578.f0000 0001 1114 4286Department of Orthopedics, The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, 646000 Sichuan China
| |
Collapse
|
10
|
Bolamperti S, Villa I, Rubinacci A. Bone remodeling: an operational process ensuring survival and bone mechanical competence. Bone Res 2022; 10:48. [PMID: 35851054 PMCID: PMC9293977 DOI: 10.1038/s41413-022-00219-8] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 05/02/2022] [Accepted: 05/15/2022] [Indexed: 12/12/2022] Open
Abstract
Bone remodeling replaces old and damaged bone with new bone through a sequence of cellular events occurring on the same surface without any change in bone shape. It was initially thought that the basic multicellular unit (BMU) responsible for bone remodeling consists of osteoclasts and osteoblasts functioning through a hierarchical sequence of events organized into distinct stages. However, recent discoveries have indicated that all bone cells participate in BMU formation by interacting both simultaneously and at different differentiation stages with their progenitors, other cells, and bone matrix constituents. Therefore, bone remodeling is currently considered a physiological outcome of continuous cellular operational processes optimized to confer a survival advantage. Bone remodeling defines the primary activities that BMUs need to perform to renew successfully bone structural units. Hence, this review summarizes the current understanding of bone remodeling and future research directions with the aim of providing a clinically relevant biological background with which to identify targets for therapeutic strategies in osteoporosis.
Collapse
Affiliation(s)
- Simona Bolamperti
- Osteoporosis and Bone and Mineral Metabolism Unit, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132, Milano, Italy
| | - Isabella Villa
- Osteoporosis and Bone and Mineral Metabolism Unit, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132, Milano, Italy
| | - Alessandro Rubinacci
- Osteoporosis and Bone and Mineral Metabolism Unit, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132, Milano, Italy.
| |
Collapse
|
11
|
Tanaka M, Izumiya M, Haniu H, Ueda K, Ma C, Ueshiba K, Ideta H, Sobajima A, Uchiyama S, Takahashi J, Saito N. Current Methods in the Study of Nanomaterials for Bone Regeneration. NANOMATERIALS 2022; 12:nano12071195. [PMID: 35407313 PMCID: PMC9000656 DOI: 10.3390/nano12071195] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 12/18/2022]
Abstract
Nanomaterials show great promise as bone regeneration materials. They can be used as fillers to strengthen bone regeneration scaffolds, or employed in their natural form as carriers for drug delivery systems. A variety of experiments have been conducted to evaluate the osteogenic potential of bone regeneration materials. In vivo, such materials are commonly tested in animal bone defect models to assess their bone regeneration potential. From an ethical standpoint, however, animal experiments should be minimized. A standardized in vitro strategy for this purpose is desirable, but at present, the results of studies conducted under a wide variety of conditions have all been evaluated equally. This review will first briefly introduce several bone regeneration reports on nanomaterials and the nanosize-derived caveats of evaluations in such studies. Then, experimental techniques (in vivo and in vitro), types of cells, culture media, fetal bovine serum, and additives will be described, with specific examples of the risks of various culture conditions leading to erroneous conclusions in biomaterial analysis. We hope that this review will create a better understanding of the evaluation of biomaterials, including nanomaterials for bone regeneration, and lead to the development of versatile assessment methods that can be widely used in biomaterial development.
Collapse
Affiliation(s)
- Manabu Tanaka
- Department of Orthopedic Surgery, Okaya City Hospital, 4-11-33 Honcho, Okaya, Nagano 394-8512, Japan;
- Correspondence: (M.T.); (H.H.); Tel.: +81-266-23-8000 (M.T.); +81-263-37-3555 (H.H.)
| | - Makoto Izumiya
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (M.I.); (K.U.); (C.M.); (K.U.); (N.S.)
- Biomedical Engineering Division, Graduate School of Medicine, Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan;
| | - Hisao Haniu
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (M.I.); (K.U.); (C.M.); (K.U.); (N.S.)
- Biomedical Engineering Division, Graduate School of Medicine, Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan;
- Biomedical Engineering Division, Graduate School of Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
- Correspondence: (M.T.); (H.H.); Tel.: +81-266-23-8000 (M.T.); +81-263-37-3555 (H.H.)
| | - Katsuya Ueda
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (M.I.); (K.U.); (C.M.); (K.U.); (N.S.)
- Biomedical Engineering Division, Graduate School of Medicine, Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan;
| | - Chuang Ma
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (M.I.); (K.U.); (C.M.); (K.U.); (N.S.)
- Biomedical Engineering Division, Graduate School of Medicine, Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan;
| | - Koki Ueshiba
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (M.I.); (K.U.); (C.M.); (K.U.); (N.S.)
- Biomedical Engineering Division, Graduate School of Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Hirokazu Ideta
- Biomedical Engineering Division, Graduate School of Medicine, Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan;
- Department of Orthopedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (A.S.); (J.T.)
| | - Atsushi Sobajima
- Department of Orthopedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (A.S.); (J.T.)
- Department of Orthopedics (Lower Limbs), Social Medical Care Corporation Hosei-kai Marunouchi Hospital, 1-7-45 Nagisa, Matsumoto, Nagano 390-8601, Japan
| | - Shigeharu Uchiyama
- Department of Orthopedic Surgery, Okaya City Hospital, 4-11-33 Honcho, Okaya, Nagano 394-8512, Japan;
| | - Jun Takahashi
- Department of Orthopedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (A.S.); (J.T.)
| | - Naoto Saito
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (M.I.); (K.U.); (C.M.); (K.U.); (N.S.)
| |
Collapse
|
12
|
Marycz K, Kornicka-Garbowska K, Patej A, Sobierajska P, Kotela A, Turlej E, Kepska M, Bienko A, Wiglusz RJ. Aminopropyltriethoxysilane (APTES)-Modified Nanohydroxyapatite (nHAp) Incorporated with Iron Oxide (IO) Nanoparticles Promotes Early Osteogenesis, Reduces Inflammation and Inhibits Osteoclast Activity. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2095. [PMID: 35329547 PMCID: PMC8953252 DOI: 10.3390/ma15062095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 12/02/2022]
Abstract
Due to its increased prevalence, osteoporosis (OP) represents a great challenge to health care systems and brings an economic burden. To overcome these issues, treatment plans that suit the need of patients should be developed. One of the approaches focuses on the fabrication of personalized biomaterials, which can restore the balance and homeostasis of disease-affected bone. In the presented study, we fabricated nanometer crystalline hydroxyapatite (nHAp) and iron oxide (IO) nanoparticles stabilized with APTES and investigated whether they can modulate bone cell metabolism and be useful in the fabrication of personalized materials for OP patients. Using a wide range of molecular techniques, we have shown that obtained nHAp@APTES promotes viability and RUNX-2 expression in osteoblasts, as well as reducing activity of critical proinflammatory cytokines while inhibiting osteoclast activity. Materials with APTES modified with nHAp incorporated with IO nanoparticles can be applied to support the healing of osteoporotic bone fractures as they enhance metabolic activity of osteoblasts and diminish osteoclasts' metabolism and inflammation.
Collapse
Affiliation(s)
- Krzysztof Marycz
- The Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland; (K.K.-G.); (E.T.); (M.K.)
- International Institute of Translational Medicine, Jesionowa 11, Malin, 55-114 Wisznia Mała, Poland
- Collegium Medicum, Cardinal Stefan Wyszynski University (UKSW), Woycickiego 1/3, 01-938 Warsaw, Poland;
| | - Katarzyna Kornicka-Garbowska
- The Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland; (K.K.-G.); (E.T.); (M.K.)
- International Institute of Translational Medicine, Jesionowa 11, Malin, 55-114 Wisznia Mała, Poland
| | - Adrian Patej
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland; (A.P.); (P.S.)
| | - Paulina Sobierajska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland; (A.P.); (P.S.)
| | - Andrzej Kotela
- Collegium Medicum, Cardinal Stefan Wyszynski University (UKSW), Woycickiego 1/3, 01-938 Warsaw, Poland;
| | - Eliza Turlej
- The Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland; (K.K.-G.); (E.T.); (M.K.)
| | - Martyna Kepska
- The Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland; (K.K.-G.); (E.T.); (M.K.)
| | - Alina Bienko
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie14 Street, 50-383 Wroclaw, Poland;
| | - Rafal J. Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland; (A.P.); (P.S.)
| |
Collapse
|
13
|
Koca CG, Yıldırım B, Ozmen O, Dikilitas A, Cicek MF, Simsek AT, Gungor MA, Tuncay E. Effect of single-dose locally applied lactoferrin on autograft healing in peri-implant bone in rat models. Injury 2022; 53:858-867. [PMID: 35042599 DOI: 10.1016/j.injury.2021.11.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/20/2021] [Accepted: 11/28/2021] [Indexed: 02/02/2023]
Abstract
Immediate dental implant installation into fresh extraction sockets has become a common surgical technique and yields successful clinical results. In addition, complete contact may not be possible with this procedure cause of defects between the bone wall and the implant surface. Therefore, different graft materials have been used in the literature to increase the peri‑implant bone volume. The aim of the present study was to evaluate the effect of single-dose and locally applied lactoferrin on autograft healing in peri‑implant area and bone implant contact value. Twenty-four Sprague-Dawley rats were included in this study. Firstly, a trephine drill was used for creating a cylindrical bony defects (6.5 mm in diameter and 3 mm in depth) under sterile saline irrigation in the lateral side of the femur. Subsequently, implant beds -2.5 mm diameter and 6 mm depth - were prepared in the middle of each defect with special implant drills. All of the implants were installed and primary stability was achieved. Rats were randomly divided into 3 groups (n = 8 each): Group-1 had empty defects, Group-2 had defects filled with autograft, and Group-3 had defects filled with autograft and lactoferrin solution (100 μg/ml) combination. All of the rats were sacrificed at postoperative 4th week and samples were analyzed with micro-computed tomography, histomorphometry and immunohistochemistry respectively. It was found that Group 3 had the least area of fibrous tissue (6.75±0.83mm2) according to the other 2 groups (p<0.001). On the other hand, Group 3 had the highest osteoblast number (25.50±3.29), osteoclast number (21.25±1.03), newly formed bone area (20.50±1.30 mm2), total healing area (22.62±0.93 mm2), defect closure rate (80.37±1.40%), bone implant contact value (23.2%±0.6%), and percentage bone volume (18.2%±0.3%) (p<0.001). Matrix metalloproteinase-3 expression was found to be highest in Group 3 by immunohistochemistry analysis. In this study it was observed that the results of the different analysis techniques supported each other. According to these findings it can be stated that a single-dose and locally applied lactoferrin solution plays an important role in the autograft healing in peri‑implant area and increasing bone implant contact value. These findings will shed light on further clinical studies of implant osseointegration.
Collapse
Affiliation(s)
- Cansu Gul Koca
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Usak University, Usak, Turkey.
| | - Bengisu Yıldırım
- Department of Prosthodontics, Faculty of Dentistry, Usak University, Usak, Turkey
| | - Ozlem Ozmen
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Ahu Dikilitas
- Department of Periodontology, Faculty of Dentistry, Usak University, Usak, Turkey
| | - Muhammed Fatih Cicek
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Usak University, Usak, Turkey
| | - Aysıla Tekeli Simsek
- Department of Prosthodontics, Faculty of Dentistry, Usak University, Usak, Turkey
| | - Mehmet Ali Gungor
- Department of Prosthodontics, Faculty of Dentistry, Usak University, Usak, Turkey
| | | |
Collapse
|
14
|
Ballato E, Deepika F, Prado M, Russo V, Fuenmayor V, Bathina S, Villareal DT, Qualls C, Armamento-Villareal R. Circulating osteogenic progenitors and osteoclast precursors are associated with long-term glycemic control, sex steroids, and visceral adipose tissue in men with type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2022; 13:936159. [PMID: 36171900 PMCID: PMC9511027 DOI: 10.3389/fendo.2022.936159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Type 2 diabetes mellitus (T2DM) is well-known to be associated with normal bone density but, concurrently, low bone turnover and increased risk for fracture. One of the proposed mechanisms is possible derangement in bone precursor cells, which could be represented by deficiencies in circulating osteogenic progenitor (COP) cells and osteoclast precursors (OCP). The objective of our study is to understand whether extent of glycemic control has an impact on these cells, and to identify other factors that may as well. METHODS This was a secondary analysis of baseline data from 51 male participants, aged 37-65 in an ongoing clinical trial at Michael E. DeBakey VA Medical Center, Houston, Texas, USA. At study entry serum Hemoglobin A1c was measured by high-performance liquid chromatography osteocalcin (OCN) and C-terminal telopeptide of type 1 collagen (CTx) were measured by ELISA, and testosterone and estradiol by liquid-chromatography/mass-spectrometry. Areal bone mineral density (BMD), trabecular bone score and body composition were measured by dual energy x-ray absorptiometry, while COP and OCP were measured by flow cytometry. RESULTS When adjusted for serum testosterone, parathyroid hormone, and 25-hydroxyvitamin D, those with poor long-term glycemic control had significantly higher percentage of COP (p = 0.04). COP correlated positively with visceral adipose tissue (VAT) volume (r = 0.37, p = 0.01) and negatively with free testosterone (r = -0.28, p = 0.05) and OCN (r = -0.28, p = 0.07), although only borderline for the latter. OCP correlated positively with age, FSH, lumbar spine BMD, and COP levels, and negatively with glucose, triglycerides, and free estradiol. Multivariable regression analyses revealed that, in addition to being predictors for each other, another independent predictor for COP was VAT volume while age, glucose, and vitamin D for OCP. CONCLUSION Our results suggest that high COP could be a marker of poor metabolic control. However, given the complex nature and the multitude of factors influencing osteoblastogenesis/adipogenesis, it is possible that the increase in COP is a physiologic response of the bone marrow to increased osteoblast apoptosis from poor glycemic control. Alternatively, it is also likely that a metabolically unhealthy profile may retard the development of osteogenic precursors to fully mature osteoblastic cells.
Collapse
Affiliation(s)
- Elliot Ballato
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey Veterans Affairs (VA) Medical Center, Houston, TX, United States
| | - Fnu Deepika
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey Veterans Affairs (VA) Medical Center, Houston, TX, United States
| | - Mia Prado
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey Veterans Affairs (VA) Medical Center, Houston, TX, United States
| | - Vittoria Russo
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey Veterans Affairs (VA) Medical Center, Houston, TX, United States
| | - Virginia Fuenmayor
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey Veterans Affairs (VA) Medical Center, Houston, TX, United States
| | - Siresha Bathina
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey Veterans Affairs (VA) Medical Center, Houston, TX, United States
| | - Dennis T. Villareal
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey Veterans Affairs (VA) Medical Center, Houston, TX, United States
| | - Clifford Qualls
- Biomedical Research Institute of New Mexico, Albuquerque, NM, United States
- Research Service Line, New Mexico Veterans Affairs Health Care System, Albuquerque, NM, United States
| | - Reina Armamento-Villareal
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey Veterans Affairs (VA) Medical Center, Houston, TX, United States
- *Correspondence: Reina Armamento-Villareal,
| |
Collapse
|
15
|
Na W, Kang MK, Park SH, Kim DY, Oh SY, Oh MS, Park S, Kang IIJ, Kang YH. Aesculetin Accelerates Osteoblast Differentiation and Matrix-Vesicle-Mediated Mineralization. Int J Mol Sci 2021; 22:ijms222212391. [PMID: 34830274 PMCID: PMC8621655 DOI: 10.3390/ijms222212391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
The imbalance between bone resorption and bone formation in favor of resorption results in bone loss and deterioration of bone architecture. Osteoblast differentiation is a sequential event accompanying biogenesis of matrix vesicles and mineralization of collagen matrix with hydroxyapatite crystals. Considerable efforts have been made in developing naturally-occurring plant compounds, preventing bone pathologies, or enhancing bone regeneration. Coumarin aesculetin inhibits osteoporosis through hampering the ruffled border formation of mature osteoclasts. However, little is known regarding the effects of aesculetin on the impairment of matrix vesicle biogenesis. MC3T3-E1 cells were cultured in differentiation media with 1–10 μM aesculetin for up to 21 days. Aesculetin boosted the bone morphogenetic protein-2 expression, and alkaline phosphatase activation of differentiating MC3T3-E1 cells. The presence of aesculetin strengthened the expression of collagen type 1 and osteoprotegerin and transcription of Runt-related transcription factor 2 in differentiating osteoblasts for 9 days. When ≥1–5 μM aesculetin was added to differentiating cells for 15–18 days, the induction of non-collagenous proteins of bone sialoprotein II, osteopontin, osteocalcin, and osteonectin was markedly enhanced, facilitating the formation of hydroxyapatite crystals and mineralized collagen matrix. The induction of annexin V and PHOSPHO 1 was further augmented in ≥5 μM aesculetin-treated differentiating osteoblasts for 21 days. In addition, the levels of tissue-nonspecific alkaline phosphatase and collagen type 1 were further enhanced within the extracellular space and on matrix vesicles of mature osteoblasts treated with aesculetin, indicating matrix vesicle-mediated bone mineralization. Finally, aesculetin markedly accelerated the production of thrombospondin-1 and tenascin C in mature osteoblasts, leading to their adhesion to preformed collagen matrix. Therefore, aesculetin enhanced osteoblast differentiation, and matrix vesicle biogenesis and mineralization. These findings suggest that aesculetin may be a potential osteo-inductive agent preventing bone pathologies or enhancing bone regeneration.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - II-Jun Kang
- Correspondence: (I.-J.K.); (Y.-H.K.); Tel.: +82-33-248-2135 (I.-J.K.); +82-33-248-2132 (Y.-H.K.)
| | - Young-Hee Kang
- Correspondence: (I.-J.K.); (Y.-H.K.); Tel.: +82-33-248-2135 (I.-J.K.); +82-33-248-2132 (Y.-H.K.)
| |
Collapse
|
16
|
Marini F, Giusti F, Iantomasi T, Brandi ML. Congenital Metabolic Bone Disorders as a Cause of Bone Fragility. Int J Mol Sci 2021; 22:10281. [PMID: 34638624 PMCID: PMC8509040 DOI: 10.3390/ijms221910281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Bone fragility is a pathological condition caused by altered homeostasis of the mineralized bone mass with deterioration of the microarchitecture of the bone tissue, which results in a reduction of bone strength and an increased risk of fracture, even in the absence of high-impact trauma. The most common cause of bone fragility is primary osteoporosis in the elderly. However, bone fragility can manifest at any age, within the context of a wide spectrum of congenital rare bone metabolic diseases in which the inherited genetic defect alters correct bone modeling and remodeling at different points and aspects of bone synthesis and/or bone resorption, leading to defective bone tissue highly prone to long bone bowing, stress fractures and pseudofractures, and/or fragility fractures. To date, over 100 different Mendelian-inherited metabolic bone disorders have been identified and included in the OMIM database, associated with germinal heterozygote, compound heterozygote, or homozygote mutations, affecting over 80 different genes involved in the regulation of bone and mineral metabolism. This manuscript reviews clinical bone phenotypes, and the associated bone fragility in rare congenital metabolic bone disorders, following a disease taxonomic classification based on deranged bone metabolic activity.
Collapse
Affiliation(s)
- Francesca Marini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (F.M.); (F.G.); (T.I.)
- F.I.R.M.O. Fondazione Italiana per la Ricerca sulle Malattie dell’Osso, Italian Foundation for the Research on Bone Diseases, 50141 Florence, Italy
| | - Francesca Giusti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (F.M.); (F.G.); (T.I.)
| | - Teresa Iantomasi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (F.M.); (F.G.); (T.I.)
| | - Maria Luisa Brandi
- F.I.R.M.O. Fondazione Italiana per la Ricerca sulle Malattie dell’Osso, Italian Foundation for the Research on Bone Diseases, 50141 Florence, Italy
| |
Collapse
|
17
|
Bioactivity and Delivery Strategies of Phytochemical Compounds in Bone Tissue Regeneration. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plant-derived secondary metabolites represent a reservoir of phytochemicals for regenerative medicine application because of their varied assortment of biological properties including anti-oxidant, anti-inflammatory, antibacterial, and tissue remodeling properties. In addition, bioactive phytochemicals can be easily available, are often more cost-effective in large-scale industrialization, and can be better tolerated compared to conventional treatments mitigating the long-lasting side effects of synthetic compounds. Unfortunately, their poor bioavailability and lack of long-term stability limit their clinical impact. Nanotechnology-based delivery systems can overcome these limitations increasing bioactive molecules’ local effectiveness with reduction of the possible side effects on healthy bone. This review explores new and promising strategies in the area of delivery systems with particular emphasis on solutions that enhance bioavailability and/or health effects of plant-derived phytochemicals such as resveratrol, quercetin, epigallocatechin-3-gallate, and curcumin in bone tissue regeneration.
Collapse
|
18
|
Mansoorifar A, Gordon R, Bergan R, Bertassoni LE. Bone-on-a-chip: microfluidic technologies and microphysiologic models of bone tissue. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2006796. [PMID: 35422682 PMCID: PMC9007546 DOI: 10.1002/adfm.202006796] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Indexed: 05/07/2023]
Abstract
Bone is an active organ that continuously undergoes an orchestrated process of remodeling throughout life. Bone tissue is uniquely capable of adapting to loading, hormonal, and other changes happening in the body, as well as repairing bone that becomes damaged to maintain tissue integrity. On the other hand, diseases such as osteoporosis and metastatic cancers disrupt normal bone homeostasis leading to compromised function. Historically, our ability to investigate processes related to either physiologic or diseased bone tissue has been limited by traditional models that fail to emulate the complexity of native bone. Organ-on-a-chip models are based on technological advances in tissue engineering and microfluidics, enabling the reproduction of key features specific to tissue microenvironments within a microfabricated device. Compared to conventional in-vitro and in-vivo bone models, microfluidic models, and especially organs-on-a-chip platforms, provide more biomimetic tissue culture conditions, with increased predictive power for clinical assays. In this review, we will report microfluidic and organ-on-a-chip technologies designed for understanding the biology of bone as well as bone-related diseases and treatments. Finally, we discuss the limitations of the current models and point toward future directions for microfluidics and organ-on-a-chip technologies in bone research.
Collapse
Affiliation(s)
- Amin Mansoorifar
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - Ryan Gordon
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Raymond Bergan
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Luiz E. Bertassoni
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
- Center for Regenerative Medicine, School of Medicine, Oregon Health & Science University, Portland, OR, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Portland, OR, USA
| |
Collapse
|
19
|
Alder KD, Lee I, Munger AM, Kwon HK, Morris MT, Cahill SV, Back J, Yu KE, Lee FY. Intracellular Staphylococcus aureus in bone and joint infections: A mechanism of disease recurrence, inflammation, and bone and cartilage destruction. Bone 2020; 141:115568. [PMID: 32745687 DOI: 10.1016/j.bone.2020.115568] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/19/2020] [Accepted: 07/26/2020] [Indexed: 02/06/2023]
Abstract
Bone and joint infections are devastating afflictions. Although medical interventions and advents have improved their care, bone and joint infections still portend dismal outcomes. Indeed, bone and joint infections are associated with extremely high mortality and morbidity rates and, generally, occur secondary to the aggressive pathogen Staphylococcus aureus. The consequences of bone and joint infections are further compounded by the fact that although they are aggressively treated, they frequently recur and result in massive bone and articular cartilage loss. Here, we review the literature and chronicle the fact that the fundamental cellular components of the musculoskeletal system can be internally infected with Staphylococcus aureus, which explains the ready recurrence of bone and joint infections even after extensive administration of antibiotic therapy and debridement and offer potential treatment solutions for further study. Moreover, we review the ramifications of intracellular infection and expound that the massive bone and articular cartilage loss is caused by the sustained proinflammatory state induced by infection and offer potential combination therapies for further study to protect bone and cartilage.
Collapse
Affiliation(s)
- Kareme D Alder
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA; Yale University School of Medicine, Department of Orthopaedics and Rehabilitation, 330 Cedar St, TMP 523, PO Box 208071, New Haven, CT 06520-8071, USA.
| | - Inkyu Lee
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA; Department of Life Science, Chung-Ang University, Seoul, Republic of Korea; Yale University School of Medicine, Department of Orthopaedics and Rehabilitation, 330 Cedar St, TMP 523, PO Box 208071, New Haven, CT 06520-8071, USA.
| | - Alana M Munger
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA; Yale University School of Medicine, Department of Orthopaedics and Rehabilitation, 330 Cedar St, TMP 523, PO Box 208071, New Haven, CT 06520-8071, USA.
| | - Hyuk-Kwon Kwon
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA; Yale University School of Medicine, Department of Orthopaedics and Rehabilitation, 330 Cedar St, TMP 523, PO Box 208071, New Haven, CT 06520-8071, USA.
| | - Montana T Morris
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA; Yale University School of Medicine, Department of Orthopaedics and Rehabilitation, 330 Cedar St, TMP 523, PO Box 208071, New Haven, CT 06520-8071, USA.
| | - Sean V Cahill
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA; Yale University School of Medicine, Department of Orthopaedics and Rehabilitation, 330 Cedar St, TMP 523, PO Box 208071, New Haven, CT 06520-8071, USA.
| | - JungHo Back
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA; Yale University School of Medicine, Department of Orthopaedics and Rehabilitation, 330 Cedar St, TMP 523, PO Box 208071, New Haven, CT 06520-8071, USA.
| | - Kristin E Yu
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA; Yale University School of Medicine, Department of Orthopaedics and Rehabilitation, 330 Cedar St, TMP 523, PO Box 208071, New Haven, CT 06520-8071, USA.
| | - Francis Y Lee
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA; Yale University School of Medicine, Department of Orthopaedics and Rehabilitation, 330 Cedar St, TMP 523, PO Box 208071, New Haven, CT 06520-8071, USA.
| |
Collapse
|
20
|
Optimization and validation of a chiral CE-LIF method for quantitation of aspartate, glutamate and serine in murine osteocytic and osteoblastic cells. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1152:122259. [DOI: 10.1016/j.jchromb.2020.122259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/20/2020] [Accepted: 06/29/2020] [Indexed: 01/25/2023]
|
21
|
Schwebach CL, Kudryashova E, Zheng W, Orchard M, Smith H, Runyan LA, Egelman EH, Kudryashov DS. Osteogenesis imperfecta mutations in plastin 3 lead to impaired calcium regulation of actin bundling. Bone Res 2020; 8:21. [PMID: 32509377 PMCID: PMC7244493 DOI: 10.1038/s41413-020-0095-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/06/2020] [Accepted: 03/23/2020] [Indexed: 12/11/2022] Open
Abstract
Mutations in actin-bundling protein plastin 3 (PLS3) emerged as a cause of congenital osteoporosis, but neither the role of PLS3 in bone development nor the mechanisms underlying PLS3-dependent osteoporosis are understood. Of the over 20 identified osteoporosis-linked PLS3 mutations, we investigated all five that are expected to produce full-length protein. One of the mutations distorted an actin-binding loop in the second actin-binding domain of PLS3 and abolished F-actin bundling as revealed by cryo-EM reconstruction and protein interaction assays. Surprisingly, the remaining four mutants fully retained F-actin bundling ability. However, they displayed defects in Ca2+ sensitivity: two of the mutants lost the ability to be inhibited by Ca2+, while the other two became hypersensitive to Ca2+. Each group of the mutants with similar biochemical properties showed highly characteristic cellular behavior. Wild-type PLS3 was distributed between lamellipodia and focal adhesions. In striking contrast, the Ca2+-hyposensitive mutants were not found at the leading edge but localized exclusively at focal adhesions/stress fibers, which displayed reinforced morphology. Consistently, the Ca2+-hypersensitive PLS3 mutants were restricted to lamellipodia, while chelation of Ca2+ caused their redistribution to focal adhesions. Finally, the bundling-deficient mutant failed to co-localize with any F-actin structures in cells despite a preserved F-actin binding through a non-mutation-bearing actin-binding domain. Our findings revealed that severe osteoporosis can be caused by a mutational disruption of the Ca2+-controlled PLS3's cycling between adhesion complexes and the leading edge. Integration of the structural, biochemical, and cell biology insights enabled us to propose a molecular mechanism of plastin activity regulation by Ca2+.
Collapse
Affiliation(s)
- Christopher L. Schwebach
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210 USA
- Molecular Cellular and Developmental Biology graduate program, The Ohio State University, Columbus, OH 43210 USA
| | - Elena Kudryashova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210 USA
| | - Weili Zheng
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908 USA
| | - Matthew Orchard
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210 USA
| | - Harper Smith
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210 USA
- Biophysics graduate program, The Ohio State University, Columbus, OH 43210 USA
| | - Lucas A. Runyan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210 USA
| | - Edward H. Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908 USA
| | - Dmitri S. Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210 USA
- Molecular Cellular and Developmental Biology graduate program, The Ohio State University, Columbus, OH 43210 USA
- Biophysics graduate program, The Ohio State University, Columbus, OH 43210 USA
| |
Collapse
|
22
|
Guder C, Gravius S, Burger C, Wirtz DC, Schildberg FA. Osteoimmunology: A Current Update of the Interplay Between Bone and the Immune System. Front Immunol 2020; 11:58. [PMID: 32082321 PMCID: PMC7004969 DOI: 10.3389/fimmu.2020.00058] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
Immunology, already a discipline in its own right, has become a major part of many different medical fields. However, its relationship to orthopedics and trauma surgery has unfortunately, and perhaps unjustly, been developing rather slowly. Discoveries in recent years have emphasized the immense breadth of communication and connection between both systems and, importantly, the highly promising therapeutic opportunities. Recent discoveries of factors originally assigned to the immune system have now also been shown to have a significant impact on bone health and disease, which has greatly changed how we approach treatment of bone pathologies. In case of bone fracture, immune cells, especially macrophages, are present throughout the whole healing process, assure defense against pathogens and discharge a complex variety of effectors to regulate bone modeling. In rheumatoid arthritis and osteoporosis, the immune system contributes to the formation of the pathological and chronic conditions. Fascinatingly, prosthesis failure is not at all solely a mechanical problem of improper strain but works in conjunction with an active contribution of the immune system as a reaction to irritant debris from material wear. Unraveling conjoined mechanisms of the immune and osseous systems heralds therapeutic possibilities for ailments of both. Contemplation of the bone as merely an unchanging support pillar is outdated and obsolete. Instead it is mandatory that this highly diverse network be incorporated in our understanding of the immune system and hematopoiesis.
Collapse
Affiliation(s)
- Christian Guder
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Sascha Gravius
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany.,Department of Orthopedics and Trauma Surgery, University Medical Center Mannheim of University Heidelberg, Mannheim, Germany
| | - Christof Burger
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Dieter C Wirtz
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Frank A Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
23
|
Delgado-Ruiz RA, Calvo-Guirado JL, Romanos GE. Effects of occlusal forces on the peri-implant-bone interface stability. Periodontol 2000 2019; 81:179-193. [PMID: 31407438 DOI: 10.1111/prd.12291] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The occlusal forces and their influence on the initiation of peri-implant bone loss or their relationship with peri-implantitis have created discussion during the past 30 years given the discrepancies observed in clinical, animal, and finite element analysis studies. Beyond these contradictions, in the case of an osseointegrated implant, the occlusal forces can influence the implant-bone interface and the cells responsible for the bone remodeling in different ways that may result in the maintenance or loss of the osseointegration. This comprehensive review focuses on the information available about the forces transmitted through the implant-crown system to the implant-bone interface and the mechano-transduction phenomena responsible for the bone cells' behavior and their interactions. Knowledge of the basic molecular biology of the peri-implant bone would help clinicians to understand the complex phenomenon of occlusal forces and their effects on the implant-bone interface, and would allow better control of the negative effects of mechanical stresses, leading to therapy with fewer risks and complications.
Collapse
Affiliation(s)
- Rafael Arcesio Delgado-Ruiz
- Department of Prosthodontics and Digital Technology, School of Dental Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Jose Luis Calvo-Guirado
- International Dentistry Research Cathedra, Faculty of Medicine and Dentistry, Universidad Catolica San Antonio De Murcia (UCAM), Murcia, Spain
| | - Georgios E Romanos
- Department of Periodontology, School of Dental Medicine, Stony Brook University, Stony Brook, New York, USA.,Department of Oral Surgery and Implant Dentistry, Johann Wolfgang Goethe University, Frankfurt, Germany
| |
Collapse
|
24
|
Castelblanco M, Nasi S, Pasch A, So A, Busso N. The role of the gasotransmitter hydrogen sulfide in pathological calcification. Br J Pharmacol 2019; 177:778-792. [PMID: 31231793 DOI: 10.1111/bph.14772] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/29/2019] [Accepted: 06/05/2019] [Indexed: 12/11/2022] Open
Abstract
Calcification is the deposition of minerals, mainly hydroxyapatite, inside the cell or in the extracellular matrix. Physiological calcification is central for many aspects of development including skeletal and tooth growth; conversely, pathological mineralization occurs in soft tissues and is significantly associated with malfunction and impairment of the tissue where it is located. Various mechanisms have been proposed to explain calcification. However, this research area lacks a more integrative, systemic, and global perspective that could explain both physiological and pathological processes. In this review, we propose such an integrated explanation. Hydrogen sulfide (H2 S) is a newly recognized multifunctional gasotransmitters and tis actions have been studied in different physiological and pathological contexts, but little is known about its potential role on calcification. Interestingly, we found that H2 S promotes calcification under physiological conditions and has an inhibitory effect on pathological processes. This makes H2 S a potential therapy for diseases related to pathological calcification. LINKED ARTICLES: This article is part of a themed section on Hydrogen Sulfide in Biology & Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.4/issuetoc.
Collapse
Affiliation(s)
- Mariela Castelblanco
- Service of Rheumatology, DAL, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland
| | - Sonia Nasi
- Service of Rheumatology, DAL, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland
| | | | - Alexander So
- Service of Rheumatology, DAL, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland
| | - Nathalie Busso
- Service of Rheumatology, DAL, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
25
|
Della Corte A, Giorgio I, Scerrato D. A review of recent developments in mathematical modeling of bone remodeling. Proc Inst Mech Eng H 2019; 234:273-281. [DOI: 10.1177/0954411919857599] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this article, we summarize the developments in the mathematical modeling of the mechanics of bone and related biological phenomena. We will devote special attention to the results of the last 10–15 years, although we will cover some relevant classical work to better frame the more recent researches. We will propose a division of the literature based on the main aim of the model (mechanical/biomathematical) and the type of biological phenomena considered (stimulus, growth, cell population dynamics). Finally, we will suggest some possible directions for future investigations.
Collapse
Affiliation(s)
- Alessandro Della Corte
- International Research Center for the Mathematics and Mechanics of Complex Systems, University of L’Aquila, L’Aquila, Italy
| | - Ivan Giorgio
- International Research Center for the Mathematics and Mechanics of Complex Systems, University of L’Aquila, L’Aquila, Italy
- Department of Structural and Geotechnical Engineering, SAPIENZA Università di Roma, Rome, Italy
| | - Daria Scerrato
- International Research Center for the Mathematics and Mechanics of Complex Systems, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
26
|
Deng L, Hu G, Jin L, Wang C, Niu H. Involvement of microRNA-23b in TNF-α-reduced BMSC osteogenic differentiation via targeting runx2. J Bone Miner Metab 2018; 36:648-660. [PMID: 29234953 DOI: 10.1007/s00774-017-0886-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 11/15/2017] [Indexed: 01/08/2023]
Abstract
Elucidation of the molecular mechanism governing bone marrow mesenchymal stem cell (BMSC) osteogenic differentiation is of great importance for improving the treatment of osteoporosis. TNF-α is a well-known inhibitory factor during osteogenic differentiation of BMSCs. In our experiment, we consistently observed that TNF-α significantly inhibited BMSC osteogenic differentiation, which was partially rescued by BAY 11-7082 (NF-κB inhibitor). In this study, we examined the potential roles of microRNAs (miRNAs) involved in TNF-α-mediated reduction of BMSC osteogenesis. We found that microRNA-23b (miR-23b) was dramatically induced under the stimulation of TNF-α, which was abolished by BAY 11-7082. Similar to the effect of TNF-α, miR-23b agonist (agomir-23b) obviously impaired BMSC osteogenic differentiation in vitro and in vivo. However, agomir-23b had no effect on osteoclast activity. Overexpression of miR-23b significantly reduced runx2, the master transcription factor during osteogenesis, suggesting that miR-23b acts as an endogenous attenuator of runx2 in BMSCs. Mutation of the putative miR-23b binding site in runx2 mRNA blocked miR-23b-mediated repression of the runx2 3' untranslated region (3'UTR) luciferase reporter activity, suggesting that miR-23b directly binds to runx2 3'UTR. Furthermore, infection with Ad-runx2 (adenovirus carrying the entire CDS sequence of runx2) effectively rescued the inhibition of BMSC osteogenic differentiation in miR-23b-overexpressing cells, indicating that the inhibiting effect of miR-23b on osteogenesis is mediated by suppression of runx2. Moreover, caudal vein injection of agomir-23b notably caused severe osteoporosis in mice, and forced expression of runx2 by combined injecting Ad-runx2 attenuated the bone loss induced by miR-23b. Collectively, these data indicated that miR-23b was involved in TNF-α-mediated reduction of BMSC osteogenesis by targeting runx2. These findings may provide new insights into understanding the regulatory role of miR-23b in the process of BMSC osteogenic differentiation in inflammatory conditions and a novel therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Lin Deng
- Department of Traumatology, Shu Guang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guoli Hu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences, Shanghai, China
| | - Lei Jin
- Anorectal Surgery, Shanghai Min Hang Traditional Chinese Medicine Hospital, Shanghai, China
| | - Chenglong Wang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Hongwen Niu
- Department of Traumatology, Shu Guang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
27
|
Zhang D, Bae C, Lee J, Lee J, Jin Z, Kang M, Cho YS, Kim JH, Lee W, Lim SK. The bone anabolic effects of irisin are through preferential stimulation of aerobic glycolysis. Bone 2018; 114:150-160. [PMID: 29775761 DOI: 10.1016/j.bone.2018.05.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/03/2018] [Accepted: 05/12/2018] [Indexed: 12/11/2022]
Abstract
Irisin, a recently identified hormone secreted by skeletal muscle in response to exercise, exhibits anabolic effects on the skeleton primarily through the stimulation of bone formation. However, the mechanism underlying the irisin-stimulated anabolic response remains largely unknown. To uncover the underlying mechanism, we biosynthesized recombinant irisin (r-irisin) using an Escherichia coli expression system and used it to treat several osteoblast cell types. Our synthesized r-irisin could promote proliferation and differentiation of osteoblasts as evidenced by enhanced expression of osteoblast-specific transcriptional factors, including Runt-related transcription factor-2 (Runx2), Oster (Osx), as well as early osteoblastic differentiation markers such as alkaline phosphatase (Alp) and collagen type I alpha 1 (Col1a1). Furthermore, we showed that the promotion of r-irisin on the proliferation and differentiation of osteoblast lineage cells are preferentially through aerobic glycolysis, as indicated by the enhanced abundance of representative enzymes such as lactate dehydrogenase A (LDHA) and pyruvate dehydrogenase kinase 1 (PDK1), together with increased lactate levels. Suppression of r-irisin-mediated aerobic glycolysis with Dichloroacetate blunted its anabolic effects. The favorite of the aerobic glycolysis after r-irisin treatment was then confirmed in primary calvarial cells by metabolic analysis using gas chromatography-mass spectrometry. Thus, our results suggest that the anabolic actions of r-irisin on the regulation of osteoblast lineage cells are preferentially through aerobic glycolysis, which may help to develop new irisin-based bone anabolic agents.
Collapse
Affiliation(s)
- Dongdong Zhang
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Republic of Korea; Division of Endocrinology & Metabolism, Department of Internal Medicine, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, People's Republic of China
| | - ChuHyun Bae
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| | - Junghak Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Jiho Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Zeyu Jin
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Myeongmo Kang
- Department of Internal Medicine, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Young Suk Cho
- Department of Internal Medicine, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Jeong-Han Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Weontae Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Sung-Kil Lim
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Republic of Korea; Department of Internal Medicine, College of Medicine, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
28
|
Luo D, Liu Y, Wu Y, Ma R, Wang L, Gu R, Fu W. Warm needle acupuncture in primary osteoporosis management: a systematic review and meta-analysis. Acupunct Med 2018; 36:215-221. [PMID: 29986901 PMCID: PMC6089200 DOI: 10.1136/acupmed-2016-011227] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2017] [Indexed: 01/14/2023]
Abstract
BACKGROUND Warm needle acupuncture (WNA) is commonly used in primary osteoporosis (OP) management in China. The evidence of its effectiveness needs to be systematically reviewed. OBJECTIVE The aim of the meta-analysis was to evaluate whether using WNA alone or combined with conventional medicine benefits primary OP. METHODS PubMed, Embase, the Cochrane Central Register, Medline, China National Knowledge Infrastructure, Wanfang and VIP databases were searched from their inception through 30 June 2016. RCTs applying WNA independently or as an adjunct to conventional medicine, compared with conventional medicine alone, were included. Primary outcomes were bone mineral density (BMD) of the lumbar vertebrae, femoral neck, Ward's triangle and greater trochanter. The secondary outcome was chronic pain measured by VAS score. Meta-analysis was conducted using RevMan V.5.3 software. RESULTS Nine RCTs involving 572 participants were included. When WNA was used as an adjunct to conventional medicine, meta-analysis revealed a statistical difference in favour of increasing BMD of the lumbar vertebrae (mean difference (MD)=0.06, 95% CI 0.03 to 0.08, P<0.001). WNA increased BMD of the femoral neck (MD 0.14, 95% CI 0.08 to 0.21, P<0.001) and greater trochanter (MD 0.09, 95% CI 0.04 to 0.15, P<0.001) when used alone, and additionally decreased VAS scores (MD=-1.10, 95% CI -1.14 to -1.06, P<0.001) when used as an adjunct to conventional medicine. However, the safety of WNA was not specifically reported. CONCLUSIONS WNA may have beneficial effects on BMD and VAS scores of patients with primary OP. However, all included trials were at high risk of bias and of low quality. Further rigorous studies are needed to determine the effectiveness of WNA for primary OP treatment.
Collapse
Affiliation(s)
- Ding Luo
- Second Clinical Department, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
- Acupuncture and Moxibustion Department, Guangdong Province Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Yue Liu
- Second Clinical Department, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Yanan Wu
- Second Clinical Department, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
- Tranditional Chinese Medicine Department, Fourth Hospital of Changsha City, Changsha City, Hunan Province, China
| | - Rui Ma
- Second Clinical Department, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
- Acupuncture and Moxibustion Department, Guangdong Province Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Lin Wang
- Second Clinical Department, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
- Acupuncture and Moxibustion Department, Guangdong Province Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Ronghe Gu
- Orthopedics Department, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Wenbin Fu
- Second Clinical Department, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
- Acupuncture and Moxibustion Department, Guangdong Province Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
| |
Collapse
|
29
|
Henderson B, Kaiser F. Bacterial modulators of bone remodeling in the periodontal pocket. Periodontol 2000 2017; 76:97-108. [DOI: 10.1111/prd.12160] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
30
|
Wittkowske C, Reilly GC, Lacroix D, Perrault CM. In Vitro Bone Cell Models: Impact of Fluid Shear Stress on Bone Formation. Front Bioeng Biotechnol 2016; 4:87. [PMID: 27896266 PMCID: PMC5108781 DOI: 10.3389/fbioe.2016.00087] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 10/25/2016] [Indexed: 01/06/2023] Open
Abstract
This review describes the role of bone cells and their surrounding matrix in maintaining bone strength through the process of bone remodeling. Subsequently, this work focusses on how bone formation is guided by mechanical forces and fluid shear stress in particular. It has been demonstrated that mechanical stimulation is an important regulator of bone metabolism. Shear stress generated by interstitial fluid flow in the lacunar-canalicular network influences maintenance and healing of bone tissue. Fluid flow is primarily caused by compressive loading of bone as a result of physical activity. Changes in loading, e.g., due to extended periods of bed rest or microgravity in space are associated with altered bone remodeling and formation in vivo. In vitro, it has been reported that bone cells respond to fluid shear stress by releasing osteogenic signaling factors, such as nitric oxide, and prostaglandins. This work focusses on the application of in vitro models to study the effects of fluid flow on bone cell signaling, collagen deposition, and matrix mineralization. Particular attention is given to in vitro set-ups, which allow long-term cell culture and the application of low fluid shear stress. In addition, this review explores what mechanisms influence the orientation of collagen fibers, which determine the anisotropic properties of bone. A better understanding of these mechanisms could facilitate the design of improved tissue-engineered bone implants or more effective bone disease models.
Collapse
Affiliation(s)
- Claudia Wittkowske
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK; INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| | - Gwendolen C Reilly
- INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK; Department of Material Science, University of Sheffield, Sheffield, UK
| | - Damien Lacroix
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK; INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| | - Cecile M Perrault
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK; INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| |
Collapse
|
31
|
Wang CL, Xiao F, Wang CD, Zhu JF, Shen C, Zuo B, Wang H, Li D, Wang XY, Feng WJ, Li ZK, Hu GL, Zhang X, Chen XD. Gremlin2 Suppression Increases the BMP-2-Induced Osteogenesis of Human Bone Marrow-Derived Mesenchymal Stem Cells Via the BMP-2/Smad/Runx2 Signaling Pathway. J Cell Biochem 2016; 118:286-297. [PMID: 27335248 DOI: 10.1002/jcb.25635] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/22/2016] [Indexed: 12/12/2022]
Abstract
Osteoblasts are essential for maintaining skeletal architecture and modulating bone microenvironment homeostasis. From numerous associated investigations, the BMP-2 pathway has been well-defined as a vital positive modulator of bone homeostasis. Gremlin2 (Grem2) is a bone morphogenetic protein (BMP) antagonists. However, the effect of Grem2 on the BMP-2-induced osteogenesis of human bone marrow-derived mesenchymal stem cells (hBMSCs) remains ambiguous. This study aimed to analyze the procedure in vitro and in vivo. The differentiation of hBMSCs was assessed by determining the expression levels of several osteoblastic genes, as well as the enzymatic activity and calcification of alkaline phosphatase. We found that Grem2 expression was upregulated by BMP-2 within the range of 0-1 μg/mL, and significant increases were evident at 48, 72, and 96 h after BMP-2 treatment. Si-Grem2 increased the BMP-2-induced osteogenic differentiation of hBMSCs, whereas overexpression of Grem2 had the opposite trend. The result was confirmed using a defective femur model. We also discovered that the BMP-2/Smad/Runx2 pathway played an important role in the process. This study showed that si-Grem2 increased the BMP-2-induced osteogenic differentiation of hBMSCs via the BMP-2/Smad/Runx2 pathway. J. Cell. Biochem. 118: 286-297, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cheng-Long Wang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Fei Xiao
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Chuan-Dong Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences, Shanghai, China
| | - Jun-Feng Zhu
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Chao Shen
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Bin Zuo
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Hui Wang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - De Li
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Xu-Yi Wang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Wei-Jia Feng
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Zhuo-Kai Li
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Guo-Li Hu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences, Shanghai, China
| | - Xiaoling Zhang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China.,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Dong Chen
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| |
Collapse
|
32
|
Liang WC, Fu WM, Wang YB, Sun YX, Xu LL, Wong CW, Chan KM, Li G, Waye MMY, Zhang JF. H19 activates Wnt signaling and promotes osteoblast differentiation by functioning as a competing endogenous RNA. Sci Rep 2016; 6:20121. [PMID: 26853553 PMCID: PMC4745008 DOI: 10.1038/srep20121] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 12/21/2015] [Indexed: 12/21/2022] Open
Abstract
Bone homeostasis is tightly orchestrated and maintained by the balance between osteoblasts and osteoclasts. Recent studies have greatly expanded our understanding of the molecular mechanisms of cellular differentiation. However, the functional roles of non-coding RNAs particularly lncRNAs in remodeling bone architecture remain elusive. In our study, lncRNA H19 was found to be upregulated during osteogenesis in hMSCs. Stable expression of H19 significantly accelerated in vivo and in vitro osteoblast differentiation. Meanwhile, by using bioinformatic investigations and RIP assays combined with luciferase reporter assays, we demonstrated that H19 functioned as an miRNA sponge for miR-141 and miR-22, both of which were negative regulators of osteogenesis and Wnt/β-catenin pathway. Further investigations revealed that H19 antagonized the functions of these two miRNAs and led to de-repression of their shared target gene β-catenin, which eventually activated Wnt/β-catenin pathway and hence potentiated osteogenesis. In addition, we also identified a novel regulatory feedback loop between H19 and its encoded miR-675-5p. And miR-675-5p was found to directly target H19 and counteracted osteoblast differentiation. To sum up, these observations indicate that the lncRNA H19 modulates Wnt/β-catenin pathway by acting as a competing endogenous RNA, which may shed light on the functional role of lncRNAs in coordinating osteogenesis.
Collapse
Affiliation(s)
- Wei-Cheng Liang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China
| | - Wei-Ming Fu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P.R.China.,Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Guangzhou, 510000, P.R. China
| | - Yu-Bing Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China
| | - Yu-Xin Sun
- Department of Orthopaedics &Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, P.R. China
| | - Liang-Liang Xu
- Department of Orthopaedics &Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, P.R. China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, P.R. China
| | - Cheuk-Wa Wong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China
| | - Kai-Ming Chan
- Department of Orthopaedics &Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, P.R. China.,Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, P.R. China
| | - Gang Li
- Department of Orthopaedics &Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, P.R. China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, P.R. China.,Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, P.R. China
| | - Mary Miu-Yee Waye
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China
| | - Jin-Fang Zhang
- Department of Orthopaedics &Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, P.R. China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, P.R. China.,Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, P.R. China.,School of medicine, South China Unversity of Technlogy, Guangzhou, 510000, P.R. China
| |
Collapse
|
33
|
Ousingsawat J, Wanitchakool P, Schreiber R, Wuelling M, Vortkamp A, Kunzelmann K. Anoctamin-6 controls bone mineralization by activating the calcium transporter NCX1. J Biol Chem 2015; 290:6270-80. [PMID: 25589784 DOI: 10.1074/jbc.m114.602979] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Anoctamin-6 (Ano6, TMEM16F) belongs to a family of putative Ca(2+)-activated Cl(-) channels and operates as membrane phospholipid scramblase. Deletion of Ano6 leads to reduced skeleton size, skeletal deformities, and mineralization defects in mice. However, it remains entirely unclear how a lack of Ano6 leads to a delay in bone mineralization by osteoblasts. The Na(+)/Ca(2+) exchanger NCX1 was found to interact with Ano6 in a two-hybrid split-ubiquitin screen. Using human osteoblasts and osteoblasts from Ano6(-/-) and WT mice, we demonstrate that NCX1 requires Ano6 to efficiently translocate Ca(2+) out of osteoblasts into the calcifying bone matrix. Ca(2+)-activated anion currents are missing in primary osteoblasts isolated from Ano6 null mice. Our findings demonstrate the importance of NCX1 for bone mineralization and explain why deletion of an ion channel leads to the observed mineralization defect: Ano6 Cl(-) currents are probably required to operate as a Cl(-) bypass channel, thereby compensating net Na(+) charge movement by NCX1.
Collapse
Affiliation(s)
- Jiraporn Ousingsawat
- From the Institut für Physiologie, Universität Regensburg, D-93053 Regensburg and
| | | | - Rainer Schreiber
- From the Institut für Physiologie, Universität Regensburg, D-93053 Regensburg and
| | - Manuela Wuelling
- the Department Entwicklungsbiologie, Fakultät für Biologie, Universität Duisburg-Essen, 45141 Essen, Germany
| | - Andrea Vortkamp
- the Department Entwicklungsbiologie, Fakultät für Biologie, Universität Duisburg-Essen, 45141 Essen, Germany
| | - Karl Kunzelmann
- From the Institut für Physiologie, Universität Regensburg, D-93053 Regensburg and
| |
Collapse
|
34
|
Gemini-Piperni S, Takamori ER, Sartoretto SC, Paiva KBS, Granjeiro JM, de Oliveira RC, Zambuzzi WF. Cellular behavior as a dynamic field for exploring bone bioengineering: a closer look at cell-biomaterial interface. Arch Biochem Biophys 2014; 561:88-98. [PMID: 24976174 DOI: 10.1016/j.abb.2014.06.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/14/2014] [Accepted: 06/18/2014] [Indexed: 01/09/2023]
Abstract
Bone is a highly dynamic and specialized tissue, capable of regenerating itself spontaneously when afflicted by minor injuries. Nevertheless, when major lesions occur, it becomes necessary to use biomaterials, which are not only able to endure the cellular proliferation and migration, but also to substitute the original tissue or integrate itself to it. With the life expectancy growth, regenerative medicine has been gaining constant attention in the reconstructive field of dentistry and orthopedy. Focusing on broadening the therapeutic possibilities for the regeneration of injured organs, the development of biomaterials allied with the applicability of gene therapy and bone bioengineering has been receiving vast attention over the recent years. The progress of cellular and molecular biology techniques gave way to new-guided therapy possibilities. Supported by multidisciplinary activities, tissue engineering combines the interaction of physicists, chemists, biologists, engineers, biotechnologist, dentists and physicians with common goals: the search for materials that could promote and lead cell activity. A well-oriented combining of scaffolds, promoting factors, cells, together with gene therapy advances may open new avenues to bone healing in the near future. In this review, our target was to write a report bringing overall concepts on tissue bioengineering, with a special attention to decisive biological parameters for the development of biomaterials, as well as to discuss known intracellular signal transduction as a new manner to be explored within this field, aiming to predict in vitro the quality of the host cell/material and thus contributing with the development of regenerative medicine.
Collapse
Affiliation(s)
- Sara Gemini-Piperni
- Laboratório de Bioensaios e Dinâmica Celular, Depto. Química e Bioquímica, Instituto de Biociência, Universidade Estadual Paulista, UNESP, Campus Botucatu, Botucatu, SP, Brazil; Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | | | | | - Katiúcia B S Paiva
- Extracellular Matrix Biology and Cellular Interaction Group, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - José Mauro Granjeiro
- Instituto Nacional de Metrologia, Normalização e Qualidade Industrial (INMETRO), Diretoria de Programas (DIPRO)/Bioengenharia, Xerém, RJ, Brazil
| | - Rodrigo Cardoso de Oliveira
- Department of Biological Sciences, Bauru Dental School, University of São Paulo (USP), Alameda Dr. Octávio Pinheiro Brisolla 9-75, Bauru, São Paulo, SP 17012-901, Brazil
| | - Willian Fernando Zambuzzi
- Laboratório de Bioensaios e Dinâmica Celular, Depto. Química e Bioquímica, Instituto de Biociência, Universidade Estadual Paulista, UNESP, Campus Botucatu, Botucatu, SP, Brazil.
| |
Collapse
|