1
|
Senapati S, Bertolini TB, Minnier MA, Yazicioglu MN, Markusic DM, Zhang R, Wicks J, Nahvi A, Herzog RW, Walsh MC, Cejas PJ, Armour SM. Inhibition of IFNAR-JAK signaling enhances tolerability and transgene expression of systemic non-viral DNA delivery. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102502. [PMID: 40206655 PMCID: PMC11979999 DOI: 10.1016/j.omtn.2025.102502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 02/28/2025] [Indexed: 04/11/2025]
Abstract
Lipid nanoparticles (LNPs) have demonstrated significant therapeutic value for non-viral delivery of mRNA and siRNA. While there is considerable interest in utilizing LNPs for delivering DNA (DNA-LNPs) to address a broad range of genetic disorders, acute inflammatory responses pose significant safety concerns and limit transgene expression below therapeutically relevant levels. However, the mechanisms and immune signaling pathways underlying DNA-LNP-triggered inflammatory responses are not well characterized. Through the use of gene-targeted mouse models, we have identified cGAS-STING and interferon-α/β receptor (IFNAR) pathways as major mediators of acute inflammation triggered by systemic delivery of DNA-LNPs. cGAS-STING activation induces expression of numerous JAK-STAT-activating cytokines, and we show that treatment of mice with the JAK inhibitors ruxolitinib or baricitinib significantly improves tolerability to systemically delivered DNA-LNPs. Furthermore, specific inhibition of IFNAR signaling enhances both DNA-LNP tolerability and transgene expression. Utilization of JAK inhibitors or IFNAR blockade represent promising strategies for enhancing the safety and efficacy of non-viral DNA delivery for gene therapy.
Collapse
Affiliation(s)
| | - Thais B. Bertolini
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | - David M. Markusic
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rui Zhang
- Discovery Group, Spark Therapeutics, Philadelphia, PA, USA
| | - Joan Wicks
- Gene Therapy Research, Spark Therapeutics, Philadelphia, PA, USA
| | - Ali Nahvi
- Discovery Group, Spark Therapeutics, Philadelphia, PA, USA
| | - Roland W. Herzog
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Pedro J. Cejas
- Discovery Group, Spark Therapeutics, Philadelphia, PA, USA
| | - Sean M. Armour
- Discovery Group, Spark Therapeutics, Philadelphia, PA, USA
| |
Collapse
|
2
|
Kiełbowski K, Plewa P, Bratborska AW, Bakinowska E, Pawlik A. JAK Inhibitors in Rheumatoid Arthritis: Immunomodulatory Properties and Clinical Efficacy. Int J Mol Sci 2024; 25:8327. [PMID: 39125897 PMCID: PMC11311960 DOI: 10.3390/ijms25158327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Rheumatoid arthritis (RA) is a highly prevalent autoimmune disorder. The pathogenesis of the disease is complex and involves various cellular populations, including fibroblast-like synoviocytes, macrophages, and T cells, among others. Identification of signalling pathways and molecules that actively contribute to the development of the disease is crucial to understanding the mechanisms involved in the chronic inflammatory environment present in affected joints. Recent studies have demonstrated that the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway regulates the behaviour of immune cells and contributes to the progression of RA. Several JAK inhibitors, such as tofacitinib, baricitinib, upadacitinib, and filgocitinib, have been developed, and their efficacy and safety in patients with RA have been comprehensively investigated in a number of clinical trials. Consequently, JAK inhibitors have been approved and registered as a treatment for patients with RA. In this review, we discuss the involvement of JAK/STAT signalling in the pathogenesis of RA and summarise the potential beneficial effects of JAK inhibitors in cells implicated in the pathogenesis of the disease. Moreover, we present the most important phase 3 clinical trials that evaluated the use of these agents in patients.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.)
| | - Paulina Plewa
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland;
| | | | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.)
| |
Collapse
|
3
|
Bradford D, Rodgers KE. Advancements and challenges in amyotrophic lateral sclerosis. Front Neurosci 2024; 18:1401706. [PMID: 38846716 PMCID: PMC11155303 DOI: 10.3389/fnins.2024.1401706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/03/2024] [Indexed: 06/09/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) continues to pose a significant challenge due to the disease complexity and heterogeneous manifestations. Despite recent drug approvals, there remains a critical need for the development of more effective therapies. This review explores the underlying mechanisms involved; including neuroinflammation, glutamate mediated excitotoxicity, mitochondrial dysfunction, and hypermetabolism, and how researchers are trying to develop novel drugs to target these pathways. While progress has been made, the unmet need of ALS patients highlights the urgency for continued research and resource allocation in the pursuit of effective treatments.
Collapse
Affiliation(s)
| | - Kathleen E. Rodgers
- Department of Medical Pharmacology, Center for Innovation in Brain Science, University of Arizona College of Medicine, Tucson, AZ, United States
| |
Collapse
|
4
|
Liao J, Yu X, Huang Z, He Q, Yang J, Zhang Y, Chen J, Song W, Luo J, Tao Q. Chemokines and lymphocyte homing in Sjögren's syndrome. Front Immunol 2024; 15:1345381. [PMID: 38736890 PMCID: PMC11082322 DOI: 10.3389/fimmu.2024.1345381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Sjögren's syndrome (SS) is a chronic systemic autoimmune disease that typically presents with lymphocyte, dendritic cell, and macrophage infiltration of exocrine gland ducts and the formation of ectopic germinal centers. The interactions of lymphocyte homing receptors and addressins and chemokines and their receptors, such as α4β7/MAdCAM-1, LFA-1/ICAM-1, CXCL13/CXCR5, CCL25/CCR9, CX3CL1/CX3CR1, play important roles in the migration of inflammatory cells to the focal glands and the promotion of ectopic germinal center formation in SS. A variety of molecules have been shown to be involved in lymphocyte homing, including tumor necrosis factor-α, interferon (IFN)-α, IFN-β, and B cell activating factor. This process mainly involves the Janus kinase-signal transducer and activator of transcription signaling pathway, lymphotoxin-β receptor pathway, and nuclear factor-κB signaling pathway. These findings have led to the development of antibodies to cell adhesion molecules, antagonists of chemokines and their receptors, compounds interfering with chemokine receptor signaling, and gene therapies targeting chemokines and their receptors, providing new targets for the treatment of SS in humans. The aim of this study was to explore the relationship between lymphocyte homing and the pathogenesis of SS, and to provide a review of recent studies addressing lymphocyte homing in targeted therapy for SS.
Collapse
Affiliation(s)
- Jiahe Liao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Xinbo Yu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Ziwei Huang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Qian He
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Jianying Yang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Yan Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Jiaqi Chen
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Weijiang Song
- Traditional Chinese Medicine Department, Peking University Third Hospital, Beijing, China
| | - Jing Luo
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
- Beijing Key Laboratory of Immune Inflammatory Disease, China-Japan Friendship Hospital, Beijing, China
| | - Qingwen Tao
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
- Beijing Key Laboratory of Immune Inflammatory Disease, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
5
|
Panda AK, Ranjan S, Sahu JK. Efficacy of baricitinib for the treatment of systemic lupus erythematosus patients: A meta-analysis of randomized controlled trials. Int J Rheum Dis 2024; 27:e14964. [PMID: 37950554 DOI: 10.1111/1756-185x.14964] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/10/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by abnormal autoantibody production, inflammation, and organ damage. Most SLE treatment strategies aim to induce remission or reduce disease activity while avoiding flares. Baricitinib has been used effectively to manage various inflammatory diseases, and some randomized controlled trials (RCT) have shown that it is beneficial in treating SLE. The current study aims to assess the efficacy of baricitinib in treating SLE patients. MATERIALS AND METHODS Various databases such as PubMed, Scopus, and Science Direct were searched to obtain eligible studies for the present meta-analysis. Data such as baseline characteristics of patients, doses of the baricitinib, follow-up duration, and treatment outcome in the form of SLE responder index-4 (SRI-4) and lupus low disease activity state (LLDAS) were extracted. Combined odds ratio, 95% confidence interval, and probability values were calculated to study the efficacy of baricitinib in treating SLE patients. A p-value less than .05 was taken as significant. Comprehensive meta-analysis v3 was used for all analyses. RESULTS Three articles were found eligible for the present meta-analysis comprising 614 patients with placebo, 614 SLE patients receiving 4 mg, and 621 patients with 2 mg of baricitinib. Meta-analysis revealed a beneficial effect of 4 mg baricitinib in SLE patients compared to placebo, as measured by an increase in the SRI-4 (p = .006, OR = 1.370) and LLDAS (p = .083, OR = 1.252) rates. In contrast to the placebo group, however, patients receiving 2 mg of baricitinib exhibited no significant improvement. The trial sequential analysis revealed the need for additional RCTs to determine the role of baricitinib in treating SLE patients. CONCLUSION In treating SLE patients, administrating a higher dose of baricitinib (4 mg) may be effective. However, additional RCTs in different populations with larger sample sizes are required to validate our findings.
Collapse
Affiliation(s)
- Aditya K Panda
- Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur, Odisha, India
- Centre of Excellence on "Bioprospecting of Ethnopharmaceuticals of Southern Odisha" (CoE-BESO), Berhampur University, Bhanja Bihar, Berhampur, Odisha, India
| | - Shovit Ranjan
- University Department of Zoology, Kolhan University, Chaibasa, Jharkhand, India
| | - Jayanta K Sahu
- Department of Biology, Odisha Adarsha Vidyalaya Kursud, Balangir, Odisha, India
| |
Collapse
|
6
|
Kim J, Ham J, Kang HR, Bae YS, Kim T, Kim HY. JAK3 inhibitor suppresses multipotent ILC2s and attenuates steroid-resistant asthma. SCIENCE ADVANCES 2023; 9:eadi3770. [PMID: 38117887 PMCID: PMC10732531 DOI: 10.1126/sciadv.adi3770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 11/17/2023] [Indexed: 12/22/2023]
Abstract
Steroids are the standard treatment for allergic airway inflammation in asthma, but steroid-refractory asthma poses a challenge. Group 2 innate lymphoid cells (ILC2s), such as T helper 2 (TH2) cells, produce key asthma-related type 2 cytokines. Recent insights from mouse and human studies indicate a potential connection between ILC2s and steroid-resistant asthma. Here, we highlight that lung ILC2s, rather than TH2 cells, can develop steroid resistance, allowing them to persist and maintain their disease-driving activity even during steroid treatment. The emergence of multipotent IL-5+IL-13+IL-17A+ ILC2s is associated with steroid-resistant ILC2s. The Janus kinase 3 (JAK3)/signal transducer and activator of transcription (STAT) 3, 5, and 6 pathways contribute to the acquisition of steroid-resistant ILC2s. The JAK3 inhibitor reduces ILC2 survival, proliferation, and cytokine production in vitro and ameliorates ILC2-driven Alternaria-induced asthma. Furthermore, combining a JAK3 inhibitor with steroids results in the inhibition of steroid-resistant asthma. These findings suggest a potential therapeutic approach for addressing this challenging condition in chronic asthma.
Collapse
Affiliation(s)
- Jihyun Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea
| | - Jongho Ham
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea
- Department of Biological Sciences, SRC Center for Immune Research on Non-lymphoid Organs, Sungkyunkwan University, Suwon, South Korea
| | - Hye Ryun Kang
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Yong-Soo Bae
- Department of Biological Sciences, SRC Center for Immune Research on Non-lymphoid Organs, Sungkyunkwan University, Suwon, South Korea
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - TaeSoo Kim
- Department of Life Science, Multitasking Macrophage Research Center, Ewha Womans University, Seoul, South Korea
| | - Hye Young Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea
- Department of Biological Sciences, SRC Center for Immune Research on Non-lymphoid Organs, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
7
|
Gabbianelli R, Shahar E, de Simone G, Rucci C, Bordoni L, Feliziani G, Zhao F, Ferrati M, Maggi F, Spinozzi E, Mahajna J. Plant-Derived Epi-Nutraceuticals as Potential Broad-Spectrum Anti-Viral Agents. Nutrients 2023; 15:4719. [PMID: 38004113 PMCID: PMC10675658 DOI: 10.3390/nu15224719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Although the COVID-19 pandemic appears to be diminishing, the emergence of SARS-CoV-2 variants represents a threat to humans due to their inherent transmissibility, immunological evasion, virulence, and invulnerability to existing therapies. The COVID-19 pandemic affected more than 500 million people and caused over 6 million deaths. Vaccines are essential, but in circumstances in which vaccination is not accessible or in individuals with compromised immune systems, drugs can provide additional protection. Targeting host signaling pathways is recommended due to their genomic stability and resistance barriers. Moreover, targeting host factors allows us to develop compounds that are effective against different viral variants as well as against newly emerging virus strains. In recent years, the globe has experienced climate change, which may contribute to the emergence and spread of infectious diseases through a variety of factors. Warmer temperatures and changing precipitation patterns can increase the geographic range of disease-carrying vectors, increasing the risk of diseases spreading to new areas. Climate change may also affect vector behavior, leading to a longer breeding season and more breeding sites for disease vectors. Climate change may also disrupt ecosystems, bringing humans closer to wildlife that transmits zoonotic diseases. All the above factors may accelerate the emergence of new viral epidemics. Plant-derived products, which have been used in traditional medicine for treating pathological conditions, offer structurally novel therapeutic compounds, including those with anti-viral activity. In addition, plant-derived bioactive substances might serve as the ideal basis for developing sustainable/efficient/cost-effective anti-viral alternatives. Interest in herbal antiviral products has increased. More than 50% of approved drugs originate from herbal sources. Plant-derived compounds offer diverse structures and bioactive molecules that are candidates for new drug development. Combining these therapies with conventional drugs could improve patient outcomes. Epigenetics modifications in the genome can affect gene expression without altering DNA sequences. Host cells can use epigenetic gene regulation as a mechanism to silence incoming viral DNA molecules, while viruses recruit cellular epitranscriptomic (covalent modifications of RNAs) modifiers to increase the translational efficiency and transcript stability of viral transcripts to enhance viral gene expression and replication. Moreover, viruses manipulate host cells' epigenetic machinery to ensure productive viral infections. Environmental factors, such as natural products, may influence epigenetic modifications. In this review, we explore the potential of plant-derived substances as epigenetic modifiers for broad-spectrum anti-viral activity, reviewing their modulation processes and anti-viral effects on DNA and RNA viruses, as well as addressing future research objectives in this rapidly emerging field.
Collapse
Affiliation(s)
- Rosita Gabbianelli
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Ehud Shahar
- Department of Nutrition and Natural Products, Migal—Galilee Research Institute, Kiryat Shmona 11016, Israel;
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona 1220800, Israel
| | - Gaia de Simone
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Chiara Rucci
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Laura Bordoni
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Giulia Feliziani
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Fanrui Zhao
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Marta Ferrati
- Chemistry Interdisciplinary Project (ChIP) Research Centre, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (F.M.); (E.S.)
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP) Research Centre, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (F.M.); (E.S.)
| | - Eleonora Spinozzi
- Chemistry Interdisciplinary Project (ChIP) Research Centre, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (F.M.); (E.S.)
| | - Jamal Mahajna
- Department of Nutrition and Natural Products, Migal—Galilee Research Institute, Kiryat Shmona 11016, Israel;
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona 1220800, Israel
| |
Collapse
|
8
|
Lim CK, Romeo O, Tran BM, Flanagan DJ, Kirby EN, McCartney EM, Tse E, Vincan E, Beard MR. Assessment of hepatitis B virus infection and interhost cellular responses using intrahepatic cholangiocyte organoids. J Med Virol 2023; 95:e29232. [PMID: 38009279 DOI: 10.1002/jmv.29232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/28/2023]
Abstract
The intrahepatic cholangiocyte organoids (ICOs) model was evaluated for host differences in hepatitis B virus (HBV) infection, cellular responses, antiviral and immunomodulator responses. Twelve ICOs generated from liver resections and biopsies were assessed for metabolic markers and functional HBV entry receptor expression throughout differentiation. Structural changes relevant to HBV infection were characterized using histology, confocal, and electron microscopy examinations. Optimal ICO culture conditions for HBV infection using HepAD38 (genotype D) and plasma-derived HBV (genotype B and C) were described. HBV infection was confirmed using HBcAg immunostaining, qRT-PCR (RNA, covalently closed circular DNA [cccDNA], extracellular DNA) and ELISA (HBsAg and HBeAg). Drug response to antiviral and immunosuppressive agent, and cellular responses (interferon-stimulated genes [ISG]) to interferon-α and viral mimic (PolyI:C) were assessed. ICOs underwent metabolic and structural remodeling following differentiation. Optimal HBV infection was achieved in well-differentiated ICOs using spinoculation, with time and donor-dependent increase in HBV RNA, cccDNA, extracellular DNA, HBeAg and HBsAg. Donor-dependent drug responsiveness to entry inhibitor and JAK inhibitor was observed. Despite having a robust ISG response to interferon-α and PolyI:C, HBV infection in ICOs did not upregulate ISGs. Human ICOs support HBV infection and replication with donor-dependent variation in viral dynamics and cellular responses. These features can be utilized for the development of personalized drug testing platform for antivirals.
Collapse
Affiliation(s)
- Chuan K Lim
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Doherty Institute of Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- Research Centre for Infectious Diseases and Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ornella Romeo
- Research Centre for Infectious Diseases and Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Bang M Tran
- Department of Infectious Diseases, Doherty Institute of Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Dustin J Flanagan
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Emily N Kirby
- Research Centre for Infectious Diseases and Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Erin M McCartney
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, Victoria, Australia
| | - Edmund Tse
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, Victoria, Australia
| | - Elizabeth Vincan
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Doherty Institute of Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Michael R Beard
- Research Centre for Infectious Diseases and Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
9
|
Lim CK, Tran BM, Flanagan D, McCartney E, Tse E, Vincan E. Assessment of HBV infection and inter-host cellular responses using intrahepatic cholangiocyte organoids. J Med Virol 2023; 95:e28975. [PMID: 37503549 DOI: 10.1002/jmv.28975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/14/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023]
Abstract
Intrahepatic cholangiocyte organoids (ICOs) model was evaluated for host differences in hepatitis B virus (HBV) infection, cellular responses, antiviral, and immunomodulator responses. Twelve ICOs generated from liver resections and biopsies were assessed for metabolic markers and functional HBV entry receptor expression throughout differentiation. Structural changes relevant to HBV infection were characterized using histology, confocal, and electron microscopy examinations. Optimal ICO culture conditions for HBV infection using HepAD38 (genotype D) and plasma derived HBV (genotype B & C) were described. HBV infection was confirmed using HBcAg immunostaining, qRT-PCR (RNA, cccDNA, extracellular DNA), and ELISA (HBsAg and HBeAg). Drug response to antiviral and immunosuppressive agent, and cellular responses (interferon-stimulated genes [ISG]) to interferon-α and viral mimic (PolyI:C) were assessed. ICOs underwent metabolic and structural remodeling following differentiation. Optimal HBV infection was achieved in well-differentiated ICOs using spinoculation, with time and donor dependent increase in HBV RNA, cccDNA, extracellular DNA, HBeAg, and HBsAg. Donor dependent drug-responsiveness to entry inhibitor and JAK inhibitor was observed. Despite having a robust ISG response to interferon-α and PolyI:C, HBV infection in ICOs did not upregulate ISGs. Human ICOs support HBV infection and replication with donor dependent variation in viral dynamics and cellular responses. These features can be utilized for development of personalized drug testing platform for antivirals.
Collapse
Affiliation(s)
- Chuan Kok Lim
- Victorian Infectious Diseases Reference Laboratory, Doherty Institute for Infection and Immunity, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Doherty Institute of Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Bang Manh Tran
- Department of Infectious Diseases, Doherty Institute of Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Dustin Flanagan
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Erin McCartney
- Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, Australia
| | - Edmund Tse
- Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, Australia
| | - Elizabeth Vincan
- Victorian Infectious Diseases Reference Laboratory, Doherty Institute for Infection and Immunity, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Doherty Institute of Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Signaling pathways in rheumatoid arthritis: implications for targeted therapy. Signal Transduct Target Ther 2023; 8:68. [PMID: 36797236 PMCID: PMC9935929 DOI: 10.1038/s41392-023-01331-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/16/2022] [Accepted: 01/18/2023] [Indexed: 02/18/2023] Open
Abstract
Rheumatoid arthritis (RA) is an incurable systemic autoimmune disease. Disease progression leads to joint deformity and associated loss of function, which significantly impacts the quality of life for sufferers and adds to losses in the labor force. In the past few decades, RA has attracted increased attention from researchers, the abnormal signaling pathways in RA are a very important research field in the diagnosis and treatment of RA, which provides important evidence for understanding this complex disease and developing novel RA-linked intervention targets. The current review intends to provide a comprehensive overview of RA, including a general introduction to the disease, historical events, epidemiology, risk factors, and pathological process, highlight the primary research progress of the disease and various signaling pathways and molecular mechanisms, including genetic factors, epigenetic factors, summarize the most recent developments in identifying novel signaling pathways in RA and new inhibitors for treating RA. therapeutic interventions including approved drugs, clinical drugs, pre-clinical drugs, and cutting-edge therapeutic technologies. These developments will hopefully drive progress in new strategically targeted therapies and hope to provide novel ideas for RA treatment options in the future.
Collapse
|
11
|
Lorenzo-Vizcaya A, Isenberg DA. Clinical trials in systemic lupus erythematosus: the dilemma-Why have phase III trials failed to confirm the promising results of phase II trials? Ann Rheum Dis 2023; 82:169-174. [PMID: 36202589 DOI: 10.1136/ard-2022-222839] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/04/2022] [Indexed: 01/26/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune rheumatic disease of unknown aetiology, characterised by the production of auto-antibodies and formation of immune complexes against self-antigens and complement activation. This inflammatory response can lead to tissue infiltration and eventually, to organ damage.Patients with SLE invariably have periods of relapse and remission. Flares can occur even when the patient is on seemingly adequate treatment, which suggests that more effective therapies are necessary for the management of SLE. Thus, trials with many drugs against different targets, such as CD22, IL-12 and IL-23 or tyrosine kinases, have been carried out in recent years.A frustrating feature of some of the biologic drugs used to treat SLE has been the reporting of successful phase II trials followed by failures of the phase III trials.In this review, we will focus on phase II and III trials carried out with epratuzumab (anti CD22), baricitinib (Janus kinases inhibitor), rigerimod (P140 peptide) and ustekinumab (IL-12 and IL-23 inhibitor) and consider the reasons for their ultimate failure to 'make the grade'. Likewise, we will try to explain the possible reasons that can influence why good results may be obtained in phase II trials and lead to undue optimism.
Collapse
|
12
|
Nagaraju EV. In-silico Prediction of Maximum Binding Affinity of Disease-Modifying Antirheumatic Drugs with Homo sapiens Acrosomal Protein SP-10. INTERNATIONAL JOURNAL OF PHARMACEUTICAL RESEARCH AND ALLIED SCIENCES 2023. [DOI: 10.51847/ptup5schcd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
Preparation and physical characterization of Methotrexate encapsulated poly (n-methyl glycine) microspheres for the Rheumatoid arthritis treatment option. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
|
14
|
Felger JC. Increased Inflammation and Treatment of Depression: From Resistance to Reuse, Repurposing, and Redesign. ADVANCES IN NEUROBIOLOGY 2023; 30:387-416. [PMID: 36928859 DOI: 10.1007/978-3-031-21054-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Based on mounting clinical and translational evidence demonstrating the impact of exogenously administered inflammatory stimuli on the brain and behavior, increased endogenous inflammation has received attention as one pathophysiologic process contributing to psychiatric illnesses and particularly depression. Increased endogenous inflammation is observed in a significant proportion of depressed patients and has been associated with reduced responsiveness to standard antidepressant therapies. This chapter presents recent evidence that inflammation affects neurotransmitters and neurocircuits to contribute to specific depressive symptoms including anhedonia, motor slowing, and anxiety, which may preferentially improve after anti-cytokine therapies in patients with evidence of increased inflammation. Existing and novel pharmacological strategies that target inflammation or its downstream effects on the brain and behavior will be discussed in the context of a need for intelligent trial design in order to meaningfully translate these concepts and develop more precise therapies for depressed patients with increased inflammation.
Collapse
|
15
|
Acosta-Martinez M, Cabail MZ. The PI3K/Akt Pathway in Meta-Inflammation. Int J Mol Sci 2022; 23:ijms232315330. [PMID: 36499659 PMCID: PMC9740745 DOI: 10.3390/ijms232315330] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
Obesity is a global epidemic representing a serious public health burden as it is a major risk factor for the development of cardiovascular disease, stroke and all-cause mortality. Chronic low-grade systemic inflammation, also known as meta-inflammation, is thought to underly obesity's negative health consequences, which include insulin resistance and the development of type 2 diabetes. Meta-inflammation is characterized by the accumulation of immune cells in adipose tissue, a deregulation in the synthesis and release of adipokines and a pronounced increase in the production of proinflammatory factors. In this state, the infiltration of macrophages and their metabolic activation contributes to complex paracrine and autocrine signaling, which sustains a proinflammatory microenvironment. A key signaling pathway mediating the response of macrophages and adipocytes to a microenvironment of excessive nutrients is the phosphoinositide 3-kinase (PI3K)/Akt pathway. This multifaceted network not only transduces metabolic information but also regulates macrophages' intracellular changes, which are responsible for their phenotypic switch towards a more proinflammatory state. In the present review, we discuss how the crosstalk between macrophages and adipocytes contributes to meta-inflammation and provide an overview on the involvement of the PI3K/Akt signaling pathway, and how its impairment contributes to the development of insulin resistance.
Collapse
Affiliation(s)
- Maricedes Acosta-Martinez
- Department of Physiology and Biophysics, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maria Zulema Cabail
- Biological Science Department, State University of New York-College at Old Westbury, Old Westbury, NY 11568, USA
- Correspondence:
| |
Collapse
|
16
|
Hou Z, Su X, Han G, Xue R, Chen Y, Chen Y, Wang H, Yang B, Liang Y, Ji S. JAK1/2 Inhibitor Baricitinib Improves Skin Fibrosis and Digital Ulcers in Systemic Sclerosis. Front Med (Lausanne) 2022; 9:859330. [PMID: 35733864 PMCID: PMC9208297 DOI: 10.3389/fmed.2022.859330] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/05/2022] [Indexed: 01/28/2023] Open
Abstract
Background Systemic sclerosis (SSc) is a rare disabling connective tissue disease with few available treatment options. Diffuse cutaneous systemic sclerosis (dcSSc) is associated with high mortality. A previous experiment has shown that JAK2 inhibitor can significantly improve skin fibrosis in bleomycin (BLM)-induced murine model, including reducing dermal thickening and collagen accumulation. We aimed to describe the efficacy of oral JAK1/2 inhibitor baricitinib in SSc patients, especially focusing on skin fibrosis and microvascular manifestations. Methods We described the different effects of oral selective JAK1, JAK2, or JAK3 inhibitor treatment in a BLM-induced skin fibrosis mouse model. Furthermore, 10 adult patients with dcSSc were treated with baricitinib. We assessed the changes in modified rodman skin score (mRSS) and digital ulcer net burden at week 12 and 24 from baseline. We also compared the absolute changes in scores on the Scleroderma Health Assessment Questionnaire (SHAQ) and a total score on the St. George's Respiratory Questionnaire (SGRQ) over a 24-week period. Results In the experimental mouse model of skin fibrosis, a JAK1 and JAK2 inhibitor ameliorated skin fibrosis, and a JAK2 inhibitor had the most obvious effect. Treatment with the JAK2 inhibitor also blunted the capillary rarefaction. We demonstrated that skin fibrosis and digital ulcers were significantly relieved in 10 SSc patients treated with baricitinib. The mRSS significantly improved at week 12 from baseline, with a mean change in mRSS of -8.3 [95% confidence interval (CI), -12.03 to -4.574; p = 0.0007] and improved greater at week 24 to -11.67 (95% CI, -16.84 to -6.496; p = 0.0008). Among the four patients with digital ulcers (DU), three were completely healed at week 24, the number of ulcers in another patient was significantly reduced, and there was no patient with new ulcers. Only one adverse event (AE) of herpes zoster was observed. Conclusions Our results indicate that selective JAK1 and JAK2 inhibitor alleviates skin fibrosis, and oral JAK1/2 inhibitor baricitinib is a potentially effective treatment for dcSSc patients with skin fibrosis and DU. Baricitinib was well-tolerated by most patients in this study. Additional large clinical trials are needed to confirm our pilot findings. Chinese Clinical Trial Registry Number ChiCTR2000030995.
Collapse
Affiliation(s)
- Zhanying Hou
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China,Department of Dermatology, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Xuehan Su
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China,The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Guangming Han
- Department of Rheumatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Ruzeng Xue
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yangxia Chen
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Ye Chen
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Huan Wang
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Bin Yang
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yunsheng Liang
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Yunsheng Liang
| | - Suyun Ji
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China,Suyun Ji
| |
Collapse
|
17
|
Rocha CM, Alves AM, Bettanin BF, Majolo F, Gehringer M, Laufer S, Goettert MI. Current jakinibs for the treatment of rheumatoid arthritis: a systematic review. Inflammopharmacology 2021; 29:595-615. [PMID: 34046798 DOI: 10.1007/s10787-021-00822-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/15/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE One-third of patients with severe rheumatoid arthritis (RA) do not achieve remission or low disease activity, or they have side effects from cDMARD and bDMARD. They will need a new treatment option such as the small molecule JAK inhibitors. In this systematic review, we evaluate the efficacy and safety data of the current jakinibs: tofacitinib, peficitinib, decernotinib, upadacitinib, baricitinib and filgotinib in patients in whom treatment with conventional or biological disease-modifying antirheumatic drugs (cDMARD and/or bDMARD) failed. METHODS We searched for randomized controlled trials comparing efficacy and safety of jakinibs for RA treatment using the Web of Science, Scopus, PubMed, and clinicaltrials.gov databases with the terms: "rheumatoid arthritis" OR "arthritis rheumatoid" OR "RA" AND "inhibitor" OR "jak inhibitor" AND "clinical trial" OR "treatment" OR "therapy". RESULTS All jakinibs achieved good results in ACR 20, 50, 70 and with CRP-DAS28 for LDA and remission, upadacitinib showed better results compared to the others. In ESR-DAS28 for remission, tofacitinib achieved the best result. Regarding the safety of all jakinibs, peficitinib, baricitinib and filgotinib did not register deaths in their studies unlike tofacitinib that presented 11 deaths. Despite all benefits of jakinibs, the use in patients with severe liver and kidney disease should be avoided. CONCLUSIONS Jakinibs in monotherapy or in combination with methotrexate can be considered a viable alternative in the treatment of moderate-to-severe RA. Even after failures with combination of cDMARDS and bDMARDS, jakinibs demonstrated efficacy.
Collapse
Affiliation(s)
- Cláudia Monfroni Rocha
- Cell Culture Laboratory, Biotechnology Graduate Program, Universidade do Vale do Taquari, Univates, Av. Avelino Talini, 171, Lajeado, RS, 95914-014, Brazil
| | | | - Beatriz Fabris Bettanin
- Cell Culture Laboratory, Biotechnology Graduate Program, Universidade do Vale do Taquari, Univates, Av. Avelino Talini, 171, Lajeado, RS, 95914-014, Brazil.,School of Dentistry, University Center Univates, Lajeado, RS, Brazil
| | - Fernanda Majolo
- Cell Culture Laboratory, Biotechnology Graduate Program, Universidade do Vale do Taquari, Univates, Av. Avelino Talini, 171, Lajeado, RS, 95914-014, Brazil
| | - Matthias Gehringer
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumor Therapies', Eberhard Karls Universität Tübingen, Tübingen, Germany.,Tübingen Center for Academic Drug Discovery (TüCAD2), Tübingen, Germany
| | - Stefan Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard Karls Universität Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumor Therapies', Eberhard Karls Universität Tübingen, Tübingen, Germany.,Tübingen Center for Academic Drug Discovery (TüCAD2), Tübingen, Germany
| | - Márcia Inês Goettert
- Cell Culture Laboratory, Biotechnology Graduate Program, Universidade do Vale do Taquari, Univates, Av. Avelino Talini, 171, Lajeado, RS, 95914-014, Brazil. .,Medical Sciences Graduate Program, Universidade do Vale do Taquari, Univates, Lajeado, Brazil.
| |
Collapse
|