1
|
Shu Z, Zhang J, Zhou Q, Peng Y, Huang Y, Zhou Y, Zheng J, Zhao M, Hu C, Lan S. Effects of inactivated Lactobacillus rhamnosus on growth performance, serum indicators, and colonic microbiota and metabolism of weaned piglets. BMC Vet Res 2024; 20:422. [PMID: 39304851 DOI: 10.1186/s12917-024-04133-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/11/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND To assess the effects of inactivated Lactobacillus rhamnosus (ILR) on growth performance, serum biochemical indices, colonic microbiota, and metabolomics in weaned piglets, 120 piglets were randomly divided into five groups. Samples in the control group were fed a basal diet, while the experimental ILR1, ILR2, ILR3, and ILR4 groups were fed basal diets supplemented with 0.1%, 0.2%, 0.3%, and 0.4% ILR, respectively. The prefeeding period lasted for 5 days and was followed by a formal period of 28 days. RESULTS Compared to the control, the average daily gain increased by 4.38%, 7.98%, 19.32%, and 18.80% for ILR1, ILR2, ILR3, and ILR4, respectively, and the ratio of feed to gain decreased by 0.63%, 3.80%, 12.66%, and 10.76%, respectively. Serum IgA, IgG, IgM, total antioxidant capacity, and glutathione peroxidase levels increased significantly in weaned piglets in the treatment groups. Addition of 0.3% ILR significantly increased the Shannon and Simpson indices of the colonic microbiota in weaned piglets and altered the microbiota composition. Changes in metabolic profiles were observed and were primarily related to the urea cycle, amino acid metabolism, and lipid metabolism. CONCLUSION ILR improved growth performance and serum immunological and biochemical indices and optimized the colonic microbiota structure and metabolism of weaned piglets.
Collapse
Affiliation(s)
- Zhiheng Shu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Junhao Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Qingwen Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Yingjie Peng
- Guangdong Chuangzhan Bona Agricultural Technology Co., Ltd, Guangning, 526339, China
| | - Yuanhao Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Yi Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Jun Zheng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Manya Zhao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Chao Hu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| | - Shile Lan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
2
|
Kang A, Kwak MJ, Choi HJ, Son SH, Lim SH, Eor JY, Song M, Kim MK, Kim JN, Yang J, Lee M, Kang M, Oh S, Kim Y. Integrative Analysis of Probiotic-Mediated Remodeling in Canine Gut Microbiota and Metabolites Using a Fermenter for an Intestinal Microbiota Model. Food Sci Anim Resour 2024; 44:1080-1095. [PMID: 39246539 PMCID: PMC11377207 DOI: 10.5851/kosfa.2024.e41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 09/10/2024] Open
Abstract
In contemporary society, the increasing number of pet-owning households has significantly heightened interest in companion animal health, expanding the probiotics market aimed at enhancing pet well-being. Consequently, research into the gut microbiota of companion animals has gained momentum, however, ethical and societal challenges associated with experiments on intelligent and pain-sensitive animals necessitate alternative research methodologies to reduce reliance on live animal testing. To address this need, the Fermenter for Intestinal Microbiota Model (FIMM) is being investigated as an in vitro tool designed to replicate gastrointestinal conditions of living animals, offering a means to study gut microbiota while minimizing animal experimentation. The FIMM system explored interactions between intestinal microbiota and probiotics within a simulated gut environment. Two strains of commercial probiotic bacteria, Enterococcus faecium IDCC 2102 and Bifidobacterium lactis IDCC 4301, along with a newly isolated strain from domestic dogs, Lactobacillus acidophilus SLAM AK001, were introduced into the FIMM system with gut microbiota from a beagle model. Findings highlight the system's capacity to mirror and modulate the gut environment, evidenced by an increase in beneficial bacteria like Lactobacillus and Faecalibacterium and a decrease in the pathogen Clostridium. The study also verified the system's ability to facilitate accurate interactions between probiotics and commensal bacteria, demonstrated by the production of short-chain fatty acids and bacterial metabolites, including amino acids and gamma-aminobutyric acid precursors. Thus, the results advocate for FIMM as an in vitro system that authentically simulates the intestinal environment, presenting a viable alternative for examining gut microbiota and metabolites in companion animals.
Collapse
Affiliation(s)
- Anna Kang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Min-Jin Kwak
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Hye Jin Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Seon-Hui Son
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Sei-Hyun Lim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Ju Young Eor
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Minho Song
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Min Kyu Kim
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Jong Nam Kim
- Department of Food Science & Nutrition, Dongseo University, Busan 47011, Korea
| | - Jungwoo Yang
- IBS R&D Center, Ildong Bioscience, Pyeongtaek 17957, Korea
| | - Minjee Lee
- IBS R&D Center, Ildong Bioscience, Pyeongtaek 17957, Korea
| | - Minkyoung Kang
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju 55069, Korea
| | - Sangnam Oh
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju 55069, Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
3
|
Wang X, Wen Q, Wu H, Peng W, Cai K, Tan Z, Na W, Wu K. Effect of Sex on Intestinal Microbial Metabolites of Hainan Special Wild Boars. Animals (Basel) 2024; 14:2164. [PMID: 39123691 PMCID: PMC11310994 DOI: 10.3390/ani14152164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/01/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
The intestinal microbiota and its metabolites are essential for the health and growth development of animals. Current research indicates that sex has a certain impact on the structure and function of the intestinal microbiota, but there are few reports on sex differences in intestinal microbiota metabolites, including those of castrated male animals. This study aimed to explore the impact of sex on the intestinal microbial metabolites of Hainan special wild boars (10 entire male pigs, 10 female pigs, and 10 castrated male pigs, denoted EM, FE, and CM, respectively) by employing non-targeted metabolomics and gas chromatography. A total of 1086 metabolites were detected, with the greatest number of differential metabolites observed between EM and FE (54 differential metabolites, including 18 upregulated and 36 downregulated metabolites), the fewest between CM and FE (7 differential metabolites, including 1 upregulated and 6 downregulated metabolites), and an intermediate number between CM and EM (47 differential metabolites, including 35 upregulated and 12 downregulated metabolites). Differential metabolites were involved in more pathways between EM and FE and between CM and EM, including amino acid metabolism and digestive system pathways, whereas differential metabolites were involved in the fewest pathways between CM and FE. Correlation analysis showed Ruminococcaceae UCG-009, uncultured_bacterium_o_SAR324_cladeMarine_group_B, and Candidatus Saccharimonas contributed to the production of metabolites such as trehalose, docosatrienoic acid, D(-)-beta-hydroxy butyric acid, and acetyl-DL-leucine. The levels of acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, and isovaleric acid were significantly higher in EM than in FE, with CM falling between the two. Streptococcus, Lachnospiraceae_NK4A136_group and Rikenellaceae_RC9_gut_group showed a significant positive correlation with the production of short-chain fatty acids (SCFAs), while [Eubacterium]_coprostanoligenes_group, uncultured_bacterium_f_p-251-o5 and Ruminococcaceae_UCG-005 showed a significant negative correlation with the generation of SCFAs. This study provides foundational data and significant insights into precision feeding strategies for Hainan special wild boars of different sexes, as well as the study of sex differences in intestinal microbial metabolites in animals.
Collapse
Affiliation(s)
- Xiaozhe Wang
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China; (X.W.); (K.W.)
- Sanya Institute, China Agricultural University, Sanya 572024, China
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Qiong Wen
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China; (X.W.); (K.W.)
- Wuhan Xiangda Feedstuff Co., Ltd., Wuhan 430045, China
| | - Hongfen Wu
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China; (X.W.); (K.W.)
| | - Wenchuan Peng
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China; (X.W.); (K.W.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Keqi Cai
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China; (X.W.); (K.W.)
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Zhen Tan
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China; (X.W.); (K.W.)
| | - Wei Na
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China; (X.W.); (K.W.)
| | - Kebang Wu
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China; (X.W.); (K.W.)
| |
Collapse
|
4
|
Opriessnig T, Halbur P, Bayne J, Rawal G, Tong H, Mou K, Li G, Zhang D, Zhang J, Muwonge A. Exploratory application of a cannulation model in recently weaned pigs to monitor longitudinal changes in the enteric microbiome across varied porcine reproductive and respiratory syndrome virus (PRRSV) infection statuses. Front Vet Sci 2024; 11:1422012. [PMID: 39100768 PMCID: PMC11294941 DOI: 10.3389/fvets.2024.1422012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/17/2024] [Indexed: 08/06/2024] Open
Abstract
Introduction The enteric microbiome and its possible modulation to improve feed conversion or vaccine efficacy is gaining more attention in pigs. Weaning pigs from their dam, along with many routine procedures, is stressful. A better understanding of the impact of this process on the microbiome may be important for improving pig production. The objective of this study was to develop a weaner pig cannulation model, thus allowing ileum content collection from the same pig over time for 16S rRNA sequencing under different porcine reproductive and respiratory syndrome virus (PRRSV) infection statuses. Methods A total of 15 3-week-old pigs underwent abdominal surgery and were fitted with an ileum cannula, with ileum contents collected over time. In this pilot study, treatment groups included a NEG-CONTROL group (no vaccination, no PRRSV challenge), a POS-CONTROL group (no vaccination, challenged with PRRSV), a VAC-PRRSV group (vaccinated, challenged with PRRSV), a VAC-PRO-PRRSV group (vaccinated, supplemented with a probiotic, challenged with PRRSV), and a VAC-ANTI-PRRSV group (vaccinated, administered an antibiotic, challenged with PRRSV). We assessed the microbiome over time and measured anti-PRRSV serum antibodies, PRRSV load in serum and nasal samples, and the severity of lung lesions. Results Vaccination was protective against PRRSV challenge, irrespective of other treatments. All vaccinated pigs mounted an immune response to PRRSV within 1 week after vaccination. A discernible impact of treatment on the diversity, structure, and taxonomic abundance of the enteric microbiome among the groups was not observed. Instead, significant influences on the ileum microbiome were observed in relation to time and treatment. Discussion The cannulation model described in this pilot study has the potential to be useful in studying the impact of weaning, vaccination, disease challenge, and antimicrobial administration on the enteric microbiome and its impact on pig health and production. Remarkably, despite the cannulation procedures, all vaccinated pigs exhibited robust immune responses and remained protected against PRRSV challenge, as evidenced by the development of anti-PRRSV serum antibodies and viral shedding data.
Collapse
Affiliation(s)
- Tanja Opriessnig
- Department of Vaccines and Diagnostics, Moredun Research Institute, Penicuik, United Kingdom
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Patrick Halbur
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Jenna Bayne
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Gaurav Rawal
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Hao Tong
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Kathy Mou
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Ganwu Li
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Danyang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Adrian Muwonge
- The Digital One Health Laboratory, Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
5
|
Jeon K, Song M, Lee J, Oh H, Song D, Chang S, An J, Cho H, Park S, Kim H, Cho J. Effects of single and complex probiotics in growing-finishing pigs and swine compost. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:763-780. [PMID: 39165745 PMCID: PMC11331375 DOI: 10.5187/jast.2024.e88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2024]
Abstract
This study was conducted to supplement single and complex probiotics to investigate the effect on growing-finishing pigs and compost. In experiment 1, the 64 crossbred ([Landrace × Yorkshire] × Duroc) pigs with an initial body weight of 18.75 ± 0.33 kg and a birth of 63 days were assigned to a completely randomized four treatment groups based on the initial body weight (4 pigs in a pen with 4 replicate pens for each treatment). For 13 weeks, the dietary treatments were provided: 1) Control (CON; basal diet), 2) T1 (CON + 0.2% Bacillus subtilis), 3) T2 (CON + 0.2% Saccharomyces cerevisiae), 4) T3 (CON + 0.2% Bacillus subtilis + 0.2% Saccharomyces cerevisiae). In experiment 2, the pig manure was obtained from Chungbuk National University (Cheongju, Korea) swine farm. For 12 weeks, the supplementary treatments were provided: 1) CON, non-additive compost; 2) T1, spray Bacillus subtilis 10 g per 3.306 m2; 3) T2, spray Bacillus subtilis 40 g per 3.306 m2; 4) T3, spray Saccharomyces cerevisiae 10 g per 3.306 m2; 5) T4: spray Saccharomyces cerevisiae 40 g per 3.306 m2; 6) T5, spray Bacillus subtilis 5 g + Saccharomyces cerevisiae 5 g per 3.306 m2; 7) T6, spray Saccharomyces subtilis 20 g + S. cerevisiae 20 g per 3.306 m2 and there were 6 replicates each treatment. In experiment 1, During the overall experimental period, T3 showed significantly improved (p < 0.05) feed conversion ratio and average daily gain compared to other groups. In average maturity score, T3 showed significantly higher (p < 0.05) than other groups. Supplementing complex probiotics group improved (p < 0.05) H2S emissions and fecal microflora compared to the non-supplementing group. In experiment 2, additive probiotics groups had no effect (p > 0.05) on moisture content than the non-additive group at 9 and 12 weeks. T6 showed a significantly improved (p < 0.05) average maturity score at all periods and ammonia emissions at 1 week and 4 weeks compared to other groups. In summary, supplementation complex probiotics induced positive effects on both pigs and compost.
Collapse
Affiliation(s)
- Kyeongho Jeon
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Minho Song
- Department of Animal Science and
Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Jihwan Lee
- Department of Poultry Science, University
of Georgia (UGA), Athens, GA 30602, USA
| | - Hanjin Oh
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Dongcheol Song
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Seyeon Chang
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Jaewoo An
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Hyunah Cho
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Sehyun Park
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Hyeunbum Kim
- Department of Animal Resource and Science,
Dankook University, Cheonan 31116, Korea
| | - Jinho Cho
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| |
Collapse
|
6
|
Jeon K, Song M, Lee J, Oh H, Song D, Chang S, An J, Cho H, Park S, Kim H, Cho J. Effects of single and complex probiotics in growing-finishing pigs and swine compost. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:763-780. [PMID: 39165745 PMCID: PMC11331375 DOI: 10.5187/jast.2023.e88] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 10/24/2024]
Abstract
This study was conducted to supplement single and complex probiotics to investigate the effect on growing-finishing pigs and compost. In experiment 1, the 64 crossbred ([Landrace × Yorkshire] × Duroc) pigs with an initial body weight of 18.75 ± 0.33 kg and a birth of 63 days were assigned to a completely randomized four treatment groups based on the initial body weight (4 pigs in a pen with 4 replicate pens for each treatment). For 13 weeks, the dietary treatments were provided: 1) Control (CON; basal diet), 2) T1 (CON + 0.2% Bacillus subtilis), 3) T2 (CON + 0.2% Saccharomyces cerevisiae), 4) T3 (CON + 0.2% Bacillus subtilis + 0.2% Saccharomyces cerevisiae). In experiment 2, the pig manure was obtained from Chungbuk National University (Cheongju, Korea) swine farm. For 12 weeks, the supplementary treatments were provided: 1) CON, non-additive compost; 2) T1, spray Bacillus subtilis 10 g per 3.306 m2; 3) T2, spray Bacillus subtilis 40 g per 3.306 m2; 4) T3, spray Saccharomyces cerevisiae 10 g per 3.306 m2; 5) T4: spray Saccharomyces cerevisiae 40 g per 3.306 m2; 6) T5, spray Bacillus subtilis 5 g + Saccharomyces cerevisiae 5 g per 3.306 m2; 7) T6, spray Saccharomyces subtilis 20 g + S. cerevisiae 20 g per 3.306 m2 and there were 6 replicates each treatment. In experiment 1, During the overall experimental period, T3 showed significantly improved (p < 0.05) feed conversion ratio and average daily gain compared to other groups. In average maturity score, T3 showed significantly higher (p < 0.05) than other groups. Supplementing complex probiotics group improved (p < 0.05) H2S emissions and fecal microflora compared to the non-supplementing group. In experiment 2, additive probiotics groups had no effect (p > 0.05) on moisture content than the non-additive group at 9 and 12 weeks. T6 showed a significantly improved (p < 0.05) average maturity score at all periods and ammonia emissions at 1 week and 4 weeks compared to other groups. In summary, supplementation complex probiotics induced positive effects on both pigs and compost.
Collapse
Affiliation(s)
- Kyeongho Jeon
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Minho Song
- Department of Animal Science and
Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Jihwan Lee
- Department of Poultry Science, University
of Georgia (UGA), Athens, GA 30602, USA
| | - Hanjin Oh
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Dongcheol Song
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Seyeon Chang
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Jaewoo An
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Hyunah Cho
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Sehyun Park
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Hyeunbum Kim
- Department of Animal Resource and Science,
Dankook University, Cheonan 31116, Korea
| | - Jinho Cho
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| |
Collapse
|
7
|
Xia W, Gao Y, Fang X, Jin L, Liu R, Wang LS, Deng Y, Gao J, Yang H, Wu W, Gao H. Simulated gastrointestinal digestion of walnut protein yields anti-inflammatory peptides. Food Chem 2024; 445:138646. [PMID: 38382250 DOI: 10.1016/j.foodchem.2024.138646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/06/2024] [Accepted: 01/30/2024] [Indexed: 02/23/2024]
Abstract
The impact of the simulated gastrointestinal digestion process on walnut protein and the potential anti-inflammatory properties of its metabolites was studied. Structural changes induced by digestion, notably in α-Helix, β-Turn, and Random Coil configurations, were unveiled. Proteins over 10,000 Da significantly decreased by 35.6 %. Antioxidant activity in these metabolites paralleled increased amino acid content. Molecular docking identified three walnut polypeptides-IPAGTPVYLINR, FQGQLPR, and VVYVLR-with potent anti-inflammatory properties. RMSD and RMSF analysis demonstrated the stable and flexible interaction of these polypeptides with their target proteins. In lipopolysaccharide (LPS)-induced inflammation in normal human colon mucosal epithelial NCM460 cells, these peptides decreased 5-hydroxytryptamine (5-HT), tumor necrosis factor-alpha (TNF-α), and vascular endothelial growth factor (VEGF) expression, while mitigating cell apoptosis and inflammation. Our study offers valuable insights into walnut protein physiology, shedding light on its potential health benefits.
Collapse
Affiliation(s)
- Wei Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yuan Gao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Xiangjun Fang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Long Jin
- Chacha Food Co., Ltd., Hefei 230061, China
| | - Ruiling Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Li-Shu Wang
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Hematology and Hematopoietic Cell Transplantation, Comprehensive, Cancer Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Yangyong Deng
- Hangzhou Yaoshengji Food Co., Ltd., Hangzhou 310052, China
| | - Junlong Gao
- Hangzhou Yaoshengji Food Co., Ltd., Hangzhou 310052, China
| | - Hailong Yang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Weijie Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Haiyan Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
8
|
Sha W, Beshir Ata E, Yan M, Zhang Z, Fan H. Swine Colibacillosis: Analysis of the Gut Bacterial Microbiome. Microorganisms 2024; 12:1233. [PMID: 38930615 PMCID: PMC11205844 DOI: 10.3390/microorganisms12061233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
This study aimed to evaluate the disruption of the swine gut microbiota and histopathological changes caused by infection with enterotoxigenic E. coli. Fecal samples were collected from piglets suffering from diarrhea post-recovery and healthy animals. Intestinal tissues were collected for histopathological changes. The results revealed histopathological changes mainly in the ileum of the infected animals compared to those in the ileum of the control and recovered animals. The operational taxonomic units (OTUs) revealed that the E. coli diarrheal group exhibited the highest bacterial richness. Principal coordinate analysis (PCoA) corroborated the presence of dysbiosis in the gut microbiota following E. coli-induced diarrhea. While the normal control and infected groups displayed slight clustering, the recovery group formed a distinct cluster with a distinct flora. Bacteroidetes, Firmicutes, and Fusobacteria were the dominant phyla in both the healthy and recovered piglets and in the diarrheal group. LEfSe and the associated LDA score analysis revealed that the recovered group exhibited dominance of the phyla Euryarchaeota and Bacteroidota, while groups N and I showed dominance of the phyla Firmicutes and Fusobacteriota, respectively. The LDA scores highlighted a significant expression of the Muribaculacea family in group R. The obtained findings will help in understanding the microbiome during swine colibacillosis, which will support control of the outbreaks.
Collapse
Affiliation(s)
- Wanli Sha
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China;
- Technology Innovation Center of Pig Ecological Breeding and Disease Prevention and Control, College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132109, China;
| | - Emad Beshir Ata
- Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt;
| | - Man Yan
- Technology Innovation Center of Pig Ecological Breeding and Disease Prevention and Control, College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132109, China;
| | - Zhijie Zhang
- Heilongjiang Provincial Center for Disease Control and Prevention, Harbin 150030, China;
| | - Honggang Fan
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China;
| |
Collapse
|
9
|
Belloumi D, García-Rebollar P, Calvet S, Francino MP, Reyes-Prieto M, González-Garrido J, Piquer L, Jiménez-Belenguer AI, Bermejo A, Cano C, Cerisuelo A. Impact of including two types of destoned olive cakes in pigs' diets on fecal bacterial composition and study of the relationship between fecal microbiota, feed efficiency, gut fermentation, and gaseous emissions. Front Microbiol 2024; 15:1359670. [PMID: 38946909 PMCID: PMC11211982 DOI: 10.3389/fmicb.2024.1359670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
The microbial population in the pig's gastrointestinal tract can be influenced by incorporating fibrous by-products into the diets. This study investigated the impact of including two types of dried olive cake (OC) in pigs' diets on fecal bacterial composition. The correlation between fecal microbiota and growth performance, nutrient digestibility, gut fermentation pattern and slurry gas emissions was also evaluated. Thirty male Pietrain x (Landrace x Large white) pigs (47.9 ± 4.21 kg) were assigned to three groups: a control group (C), a group fed a diet with 20% partially defatted OC (20PDOC), and a group fed a diet with 20% cyclone OC (20COC) for 21 days. Fecal samples collected before and after providing the experimental diets were analyzed for the V3-V4 region of the 16S rRNA gene. Pigs were weighed, and feed intake was recorded throughout the study. Potential ammonia and methane emissions from slurry were measured. No significant differences in alpha diversity indexes were found. The taxonomic analysis revealed that Firmicutes and Bacteroidota phyla were dominant at the phylum level across all groups. Differential abundance analysis using ALDEx showed significant differences among groups for various bacteria at the phylum, genus, and species levels at the end of the experiment. Pigs from 20PDOC and 20COC groups exhibited increased abundances of health-promoting bacteria, such as Plactomycetota at the phylum level and Allisonella and an unidentified genus from the Eggerthellaceae family at the genus level. These changes influenced short-chain fatty acids' (SCFA) concentration in slurries, leading to greater acetic, butyric, caproic and heptanoic acids in OC-fed groups, especially 20COC pigs. A volatility analysis revealed significant positive correlations (p < 0.05) between Uncultured_Bacteroidales and Unculured_Selenomonadaceae and energy digestibility. Monoglobus and Desulfovibrio showed a positive significant (p < 0.05) correlation with total SCFA, indicating a high impact on gut fermentation. However, growth performance parameters and potential gas emission displayed no significant correlations with a specific bacterial genus. In conclusion, our results suggest that OC inclusion into pig diets could positively modulate and contribute to the gut microbiota's favorable composition and functionality. Also, nutrient digestibility and gut fermentation patterns can be associated with specific microbial populations.
Collapse
Affiliation(s)
- Dhekra Belloumi
- Centro de Investigación y Tecnología Animal, Instituto Valenciano de Investigaciones Agrarias, Segorbe, Spain
- Institute for Animal Science and Technology, Universitat Politècnica de València, Valencia, Spain
| | - Paloma García-Rebollar
- Departamento de Producción Agraria, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - Salvador Calvet
- Institute for Animal Science and Technology, Universitat Politècnica de València, Valencia, Spain
| | - M. Pilar Francino
- FISABIO-Public Health, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, Valencia, Spain
- CIBER en Epidemiología y Salud Pública, Madrid, Spain
| | - Mariana Reyes-Prieto
- Sequencing and Bioinformatics Service, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, Valencia, Spain
| | - Jorge González-Garrido
- Sequencing and Bioinformatics Service, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, Valencia, Spain
| | - Laia Piquer
- Centro de Investigación y Tecnología Animal, Instituto Valenciano de Investigaciones Agrarias, Segorbe, Spain
| | | | - Almudena Bermejo
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Moncada, Spain
| | - Carmen Cano
- Centro de Investigación y Tecnología Animal, Instituto Valenciano de Investigaciones Agrarias, Segorbe, Spain
| | - Alba Cerisuelo
- Centro de Investigación y Tecnología Animal, Instituto Valenciano de Investigaciones Agrarias, Segorbe, Spain
| |
Collapse
|
10
|
Lee DJ, Eor JY, Kwak MJ, Lee J, Kang AN, Mun D, Choi H, Song M, Kim JN, Kim JM, Yang J, Kim HW, Oh S, Kim Y. Metabolic Regulation of Longevity and Immune Response in Caenorhabditis elegans by Ingestion of Lacticaseibacillus rhamnosus IDCC 3201 Using Multi-Omics Analysis. J Microbiol Biotechnol 2024; 34:1109-1118. [PMID: 38563104 PMCID: PMC11180920 DOI: 10.4014/jmb.2402.02025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
Probiotics, specifically Lacticaseibacillus rhamnosus, have garnered attention for their potential health benefits. This study focuses on evaluating the probiotic properties of candidate probiotics L. rhamnosus IDCC 3201 (3201) using the Caenorhabditis elegans surrogate animal model, a well-established in vivo system for studying host-bacteria interactions. The adhesive ability to the host's gastrointestinal tract is a crucial criterion for selecting potential probiotic bacteria. Our findings demonstrated that 3201 exhibits significantly higher adhesive capabilities compared with Escherichia coli OP50 (OP50), a standard laboratory food source for C. elegans and is comparable with the widely recognized probiotic L. rhamnosus GG (LGG). In lifespan assay, 3201 significantly increased the longevity of C. elegans compared with OP50. In addition, preconditioning with 3201 enhanced C. elegans immune response against four different foodborne pathogenic bacteria. To uncover the molecular basis of these effects, transcriptome analysis elucidated that 3201 modulates specific gene expression related to the innate immune response in C. elegans. C-type lectin-related genes and lysozyme-related genes, crucial components of the immune system, showed significant upregulation after feeding 3201 compared with OP50. These results suggested that preconditioning with 3201 may enhance the immune response against pathogens. Metabolome analysis revealed increased levels of fumaric acid and succinic acid, metabolites of the citric acid cycle, in C. elegans fed with 3201 compared with OP50. Furthermore, there was an increase in the levels of lactic acid, a well-known antimicrobial compound. This rise in lactic acid levels may have contributed to the robust defense mechanisms against pathogens. In conclusion, this study demonstrated the probiotic properties of the candidate probiotic L. rhamnosus IDCC 3201 by using multi-omics analysis.
Collapse
Affiliation(s)
- Daniel Junpyo Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Rrepublic of Korea
| | - Ju Young Eor
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Rrepublic of Korea
| | - Min-Jin Kwak
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Rrepublic of Korea
| | - Junbeom Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Rrepublic of Korea
| | - An Na Kang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Rrepublic of Korea
| | - Daye Mun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Rrepublic of Korea
| | - Hyejin Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Rrepublic of Korea
| | - Minho Song
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jong Nam Kim
- Department of Food Science & Nutrition, Dongseo University, Busan 47011, Republic of Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Jungwoo Yang
- Department of Microbiology, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Hyung Wook Kim
- College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
| | - Sangnam Oh
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju 55069, Republic of Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Rrepublic of Korea
| |
Collapse
|
11
|
Tang C, Li L, Jin X, Wang J, Zou D, Hou Y, Yu X, Wang Z, Jiang H. Investigating the Impact of Gut Microbiota on Gout Through Mendelian Randomization. Orthop Res Rev 2024; 16:125-136. [PMID: 38766545 PMCID: PMC11100514 DOI: 10.2147/orr.s454211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
Background The relationship between gout and gut microbiota has attracted significant attention in current research. However, due to the diverse range of gut microbiota, the specific causal effect on gout remains unclear. This study utilizes Mendelian randomization (MR) to investigate the causal relationship between gut microbiota and gout, aiming to elucidate the underlying mechanism of microbiome-mediated gout and provide valuable guidance for clinical prevention and treatment. Materials and Methods The largest genome-wide association study meta-analysis conducted by the MiBioGen Consortium (n=18,340) was utilized to perform a two-sample Mendelian randomization investigation on aggregate statistics of intestinal microbiota. Summary statistics for gout were utilized from the data released by EBI. Various methods, including inverse variance weighted, weighted median, weighted model, MR-Egger, and Simple-mode, were employed to assess the causal relationship between gut microbiota and gout. Reverse Mendelian randomization analysis revealed a causal association between bacteria and gout in forward Mendelian randomization analysis. Cochran's Q statistic was used to quantify instrumental variable heterogeneity. Results The inverse variance weighted estimation revealed that Rikenellaceae exhibited a slight protective effect on gout, while the presence of Ruminococcaceae UCG_011 is associated with a marginal increase in the risk of gout. According to the reverse Mendelian Randomization results, no significant causal relationship between gout and gut microbiota was observed. No significant heterogeneity of instrumental variables or level pleiotropy was detected. Conclusion Our MR analysis revealed a potential causal relationship between the development of gout and specific gut microbiota; however, the causal effect was not robust, and further research is warranted to elucidate its underlying mechanism in gout development. Considering the significant association between diet, gut microbiota, and gout, these findings undoubtedly shed light on the mechanisms of microbiota-mediated gout and provide new insights for translational research on managing and standardizing treatment for this condition.
Collapse
Affiliation(s)
- Chaoqun Tang
- The First Clinical Medical School, Anhui University of Chinese Medicine, Hefei, Anhui, People’s Republic of China
| | - Lei Li
- Department of Orthopedics, Shandong Wendeng Osteopathic Hospital, Wendeng, Weihai, Shandong, People’s Republic of China
| | - Xin Jin
- Department of Orthopedics, Shandong Wendeng Osteopathic Hospital, Wendeng, Weihai, Shandong, People’s Republic of China
| | - Jinfeng Wang
- Department of Orthopedics, Shandong Wendeng Osteopathic Hospital, Wendeng, Weihai, Shandong, People’s Republic of China
| | - Debao Zou
- Department of Orthopedics, Shandong Wendeng Osteopathic Hospital, Wendeng, Weihai, Shandong, People’s Republic of China
| | - Yan Hou
- Department of Orthopedics, Shandong Wendeng Osteopathic Hospital, Wendeng, Weihai, Shandong, People’s Republic of China
| | - Xin Yu
- Department of Orthopedics, Shandong Wendeng Osteopathic Hospital, Wendeng, Weihai, Shandong, People’s Republic of China
| | - Zhizhou Wang
- Department of Orthopedics, Shandong Wendeng Osteopathic Hospital, Wendeng, Weihai, Shandong, People’s Republic of China
| | - Hongjiang Jiang
- The First Clinical Medical School, Anhui University of Chinese Medicine, Hefei, Anhui, People’s Republic of China
- Department of Orthopedics, Shandong Wendeng Osteopathic Hospital, Wendeng, Weihai, Shandong, People’s Republic of China
| |
Collapse
|
12
|
Kang M, Kang M, Yoo J, Lee J, Lee S, Yun B, Song M, Kim JM, Kim HW, Yang J, Kim Y, Oh S. Dietary supplementation with Lacticaseibacillus rhamnosus IDCC3201 alleviates sarcopenia by modulating the gut microbiota and metabolites in dexamethasone-induced models. Food Funct 2024; 15:4936-4953. [PMID: 38602003 DOI: 10.1039/d3fo05420a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Probiotics can exert direct or indirect influences on various aspects of health claims by altering the composition of the gut microbiome and producing bioactive metabolites. The aim of this study was to examine the effect of Lacticaseibacillus rhamnosus IDCC3201 on skeletal muscle atrophy in dexamethasone-induced C2C12 cells and a mouse animal model. Dexamethasone treatment significantly reduced C2C12 muscle cell viability, myotube diameter, and levels of muscle atrophic markers (Atrogin-1 and MuRF-1). These effects were alleviated by conditioned media (CM) and cell extract (EX) derived from L. rhamnosus IDCC3201. In addition, we assessed the in vivo therapeutic effect of L. rhamnosus IDCC3201 in a mouse model of dexamethasone (DEX)-induced muscle atrophy. Supplementation with IDCC3201 resulted in significant enhancements in body composition, particularly in lean mass, muscle strength, and myofibril size, in DEX-induced muscle atrophy mice. In comparison to the DEX-treatment group, the normal and DEX + L. rhamnosus IDCC3201 groups showed a higher transcriptional level of myosin heavy chain family genes (MHC1, MHC1b, MHC2A, 2bB, and 2X) and a reduction in atrophic muscle makers. These analyses revealed that L. rhamnosus IDCC3201 supplementation led to increased production of branched-chain amino acids (BCAAs) and improved the Allobaculum genus within the gut microbiota of muscle atrophy-induced groups. Taken together, our findings suggest that L. rhamnosus IDCC3201 represents a promising dietary supplement with the potential to alleviate sarcopenia by modulating the gut microbiome and metabolites.
Collapse
Affiliation(s)
- Minkyoung Kang
- Department of Food and Nutrition, Jeonju University, Jeonju 55069, Republic of Korea
| | - Minji Kang
- Department of Food and Nutrition, Jeonju University, Jeonju 55069, Republic of Korea
| | - Jiseon Yoo
- Department of Food and Nutrition, Jeonju University, Jeonju 55069, Republic of Korea
| | - Juyeon Lee
- Department of Food and Nutrition, Jeonju University, Jeonju 55069, Republic of Korea
| | - Sujeong Lee
- Department of Food and Nutrition, Jeonju University, Jeonju 55069, Republic of Korea
| | - Bohyun Yun
- Honam National Institute of Biological Resources, Mokpo 58762, Republic of Korea
| | - Minho Song
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Gyeonggi-do, Republic of Korea
| | - Hyung Wook Kim
- College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
| | - Jungwoo Yang
- Department of Microbiology, College of Medicine, Dongguk University, Gyeongju, 38066, Republic of Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Sangnam Oh
- Department of Food and Nutrition, Jeonju University, Jeonju 55069, Republic of Korea
| |
Collapse
|
13
|
Zhang Z, Zhao H, Chen X, Tian G, Liu G, Cai J, Jia G. Enhancing pig growth and gut health with fermented Jatropha curcas cake: Impacts on microbiota, metabolites, and neurotransmitters. J Anim Physiol Anim Nutr (Berl) 2024. [PMID: 38648292 DOI: 10.1111/jpn.13960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/23/2023] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
Given the escalating global crisis in feed protein availability, Jatropha curcas L. cake has attracted significant interest as a viable alternative protein source in animal feed. This experiment was conducted to investigate the effects of fermented Jatropha curcas L. cake (FJCC) as a protein feed in the diet of pigs. A total of 96 growing pigs with an average weight of 27.60 ± 1.59 kg were divided into three dietary groups with varying FJCC inclusion levels (0, 2.5, and 5%) for a 28 d trial. Results showed that the diet with 5% FJCC (FJCC5) demonstrated significant improvements in average daily gain (p = 0.009), feed-to-gain ratio (p = 0.036), nutrient digestibility, and intestinal morphology. Furthermore, the FJCC5 diet resulted in a decrease in pH values in different gut sections (jejunum p = 0.045, cecum p = 0.001, colon p = 0.012), and favorably altered the profile of short-chain fatty acids (SCFAs) with increased butyric acid content (p = 0.005) and total SCFAs (p = 0.019). Additionally, this diet notably decreased IL-6 levels in the jejunum (p = 0.008) and colon (=0.047), significantly reduced IL-1 levels in the hypothalamus (p < 0.001), and lowered IL-1, IL-6, and IL-10 levels in plasma (p < 0.05). Microbiota and metabolite profile analysis revealed an elevated abundance of beneficial microbes (p < 0.05) and key metabolites such as 4-aminobutyric acid (GABA) (p = 0.003) and serotonin (5-HT) (p = 0.022), linked to neuroactive ligand-receptor interaction. Moreover, FJCC5 significantly boosted circulating neurotransmitter levels of 5-HT (p = 0.006) and GABA (p = 0.002) in plasma and hypothalamus, with corresponding increases in precursor amino acids (p < 0.05). These findings suggest that FJCC, particularly at a 5% inclusion rate, can be an effective substitute for traditional protein sources like soybean meal, offering benefits beyond growth enhancement to gut health and potentially impacting the gut-brain axis. This research underscores FJCC's potential as a valuable component in sustainable animal nutrition strategies.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Institute of Animal Husbandry and Veterinary Medicine, Meishan Vocational Technical College, Meishan, China
- Agricultural and Rural Bureau of Dongpo District, Meishan, China
| | - Hua Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaoling Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Gang Tian
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Guangmang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jingyi Cai
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Gang Jia
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
14
|
Choi Y, Kwak MJ, Kang MG, Kang AN, Lee W, Mun D, Choi H, Park J, Eor JY, Song M, Kim JN, Oh S, Kim Y. Molecular characterization and environmental impact of newly isolated lytic phage SLAM_phiST1N3 in the Cornellvirus genus for biocontrol of a multidrug-resistant Salmonella Typhimurium in the swine industry chain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171208. [PMID: 38408652 DOI: 10.1016/j.scitotenv.2024.171208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
Salmonella Typhimurium is a highly lethal pathogenic bacterium in weaned piglets, causing significant treatment costs and economic losses in the swine industry. Additionally, due to its ability to induce zoonotic diseases, resulting in harm to humans through the transmission of the pathogen from pork, it presents a serious public health issue. Bacteriophages (phages), viruses that infect specific bacterial strains, have been proposed as an alternative to antibiotics for controlling pathogenic bacteria. In this study, we isolated SLAM_phiST1N3, a phage infecting a multidrug-resistant (MDR) S. Typhimurium wild-type strain isolated from diseased pigs. First, comparative genomics and phylogenetic analysis revealed that SLAM_phiST1N3 belongs to the Cornellvirus genus. Moreover, utilizing a novel classification approach introduced in this study, SLAM_phiST1N3 was classified at the species level. Host range experiments demonstrated that SLAM_phiST1N3 did not infect other pathogenic bacteria or probiotics derived from pigs or other livestock. While complete eradication of Salmonella was not achievable in the liquid inhibition assay, surprisingly, we succeeded in largely eliminating Salmonella in the FIMM analysis, a gut simulation system using weaned piglet feces. Furthermore, using the C. elegans model, we showcased the potential of SLAM_phiST1N3 to prevent S. Typhimurium infection in living organisms. In addition, it was confirmed that bacterial control could be achieved when phage was applied to Salmonella-contaminated pork. pH and temperature stability experiments demonstrated that SLAM_phiST1N3 can endure swine industry processes and digestive conditions. In conclusion, SLAM_phiST1N3 demonstrates potential environmental impact as a substance for Salmonella prevention across various aspects of the swine industry chain.
Collapse
Affiliation(s)
- Youbin Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Min-Jin Kwak
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Min-Geun Kang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - An Na Kang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Woogji Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Daye Mun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyejin Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeongkuk Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Ju Young Eor
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Minho Song
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jong Nam Kim
- Department of Food Science & Nutrition, Dongseo University, Busan 47011, Republic of Korea
| | - Sangnam Oh
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju 55069, Republic of Korea.
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
15
|
Lee JJ, Kyoung H, Cho JH, Park KI, Kim Y, Ahn J, Choe J, Kim Y, Kim HB, Song M. Change in the Gut Microbiota of Lactating Sows and Their Piglets by Inclusion of Dietary Spray-Dried Plasma in Sow Diets. J Microbiol Biotechnol 2024; 34:516-524. [PMID: 38111306 PMCID: PMC11016772 DOI: 10.4014/jmb.2311.11001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023]
Abstract
This study aimed to investigate the effects of dietary spray-dried plasma (SDP) on the gut microbiota of lactating sows and their piglets. A total of 12 sows were randomly assigned to one of two dietary treatment groups in a completely randomized design. The treatments were a sow diet based on corn and soybean meal (CON), and a CON diet with an added 1% SDP. The sows were fed the dietary treatments from d 30 before farrowing to weaning (d 28). The fecal samples of three sows from each treatment and two of their randomly selected piglets were collected to verify their fecal microbiota. There were no differences in the alpha diversity and distinct clustering of the microbial communities in the sows and their piglets when SDP was added to the sow diets from late gestation to weaning. The fecal microbiota of the lactating sows and their piglets showed a higher relative abundance of the phylum Bacteroidota and genus Lactobacillus and Ruminococcus and showed a lower relative abundance of the phylum Bacillota and genus Bacteroides, Escherichia/Shigella, and Clostridium in the sows fed the SDP diet than those fed the CON diet. Overall, these results show that the addition of SDP to the sow diet during lactation altered the gut environment with positive microbial composition changes. These results were similar in the nursing piglets, suggesting that the control of the sow diets during lactation may contribute to the intestinal health and growth in piglets after weaning.
Collapse
Affiliation(s)
- Jeong Jae Lee
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyunjin Kyoung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin Ho Cho
- Division of Food and Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Kyeong Il Park
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yonghee Kim
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jinmu Ahn
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jeehwan Choe
- Korea National of Agriculture and Fisheries, Jeonju 54874, Republic of Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeun Bum Kim
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Minho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
16
|
Kang A, Kwak MJ, Lee DJ, Lee JJ, Kim MK, Song M, Lee M, Yang J, Oh S, Kim Y. Dietary supplementation with probiotics promotes weight loss by reshaping the gut microbiome and energy metabolism in obese dogs. Microbiol Spectr 2024; 12:e0255223. [PMID: 38270436 PMCID: PMC10913549 DOI: 10.1128/spectrum.02552-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/08/2023] [Indexed: 01/26/2024] Open
Abstract
Obesity and overweight among companion animals are significant concerns, paralleling the issues observed in human populations. Recent research has highlighted the potential benefits of various probiotics in addressing weight-related changes, obesity, and associated pathologies. In this study, we delved into the beneficial probiotic mechanisms in high-fat-induced obese canines, revealing that Enterococcus faecium IDCC 2102 (IDCC 2102) and Bifidobacterium lactis IDCC 4301 (IDCC 4301) have the capacity to mitigate the increase in body weight and lipid accumulation in obese canines subjected to a high-fat diet and hyperlipidemic Caenorhabditis elegans (C. elegans) strain VS29. Both IDCC 2102 and IDCC 4301 demonstrated the ability to reduce systemic inflammation and hormonal disruptions induced by obesity. Notably, these probiotics induced modifications in the microbiota by promoting lactic acid bacteria, including Lactobacillaceae, Ruminococcaceae, and S24-7, with concomitant activation of pyruvate metabolism. IDCC 4301, through the generation of bacterial short-chain fatty acids and carboxylic acids, facilitated glycolysis and contributed to ATP synthesis. Meanwhile, IDCC 2102 produced bacterial metabolites such as acetic acid and butyric acid, exhibiting a particular ability to stimulate dopamine synthesis in a canine model. This stimulation led to the restoration of eating behavior and improvements in glucose and insulin tolerance. In summary, we propose novel probiotics for the treatment of obese animals based on the modifications induced by IDCC 2102 and IDCC 4301. These probiotics enhanced systemic energy utilization in response to high caloric intake, thereby preventing lipid accumulation and restoring stability to the fecal microbiota. Consequently, this intervention resulted in a reduction in systemic inflammation caused by the high-fat diet.IMPORTANCEProbiotic supplementation affected commensal bacterial proliferation, and administering probiotics increased glycolysis and activated pyruvate metabolism in the body, which is related to propanate metabolism as a result of pyruvate metabolism activation boosting bacterial fatty acid production via dopamine and carboxylic acid specialized pathways, hence contributing to increased ATP synthesis and energy metabolism activity.
Collapse
Affiliation(s)
- Anna Kang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Min-Jin Kwak
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Daniel Junpyo Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Jeong Jae Lee
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu, South Korea
| | - Min Kyu Kim
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, South Korea
| | - Minho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, South Korea
| | - Minjee Lee
- Ildong Bioscience, Pyeongtaek-si, Gyeonggi-do, South Korea
| | - Jungwoo Yang
- Ildong Bioscience, Pyeongtaek-si, Gyeonggi-do, South Korea
| | - Sangnam Oh
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju, South Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| |
Collapse
|
17
|
Grandmont A, Rhouma M, Létourneau-Montminy MP, Thériault W, Mainville I, Arcand Y, Leduc R, Demers B, Thibodeau A. Characterization of the Effects of a Novel Probiotic on Salmonella Colonization of a Piglet-Derived Intestinal Microbiota Using Improved Bioreactor. Animals (Basel) 2024; 14:787. [PMID: 38473172 DOI: 10.3390/ani14050787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The carriage of Salmonella in pigs is a major concern for the agri-food industry and for global healthcare systems. Humans could develop salmonellosis when consuming contaminated pig products. On the other hand, some Salmonella serotypes could cause disease in swine, leading to economic losses on farms. The purpose of the present study was to characterize the anti-Salmonella activity of a novel Bacillus-based probiotic using a bioreactor containing a piglet-derived intestinal microbiota. Two methods of probiotic administration were tested: a single daily and a continuous dose. Salmonella enumeration was performed using selective agar at T24h, T48h, T72h, T96h and T120h. The DNA was extracted from bioreactor samples to perform microbiome profiling by targeted 16S rRNA gene sequencing on Illumina Miseq. The quantification of short-chain fatty acids (SCFAs) was also assessed at T120h. The probiotic decreased Salmonella counts at T96 for the daily dose and at T120 for the continuous one. Both probiotic doses affected the alpha and beta diversity of the piglet-derived microbiota (p < 0.05). A decrease in acetate concentration and an increase in propionate proportion were observed in the continuous condition. In conclusion, the tested Bacillus-based product showed a potential to modulate microbiota and reduce Salmonella colonization in a piglet-derived intestinal microbiota and could therefore be used in vivo.
Collapse
Affiliation(s)
- Amely Grandmont
- Chaire de Recherche en Salubrité des Viandes, Département de Microbiologie et Pathologie, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, QC J2S 2M2, Canada
- Groupe de Recherche et d'Enseignement en Salubrité Alimentaire, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, QC J2S 2M2, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, QC J2S 2M2, Canada
| | - Mohamed Rhouma
- Chaire de Recherche en Salubrité des Viandes, Département de Microbiologie et Pathologie, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, QC J2S 2M2, Canada
- Groupe de Recherche et d'Enseignement en Salubrité Alimentaire, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, QC J2S 2M2, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, QC J2S 2M2, Canada
| | - Marie-Pierre Létourneau-Montminy
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, QC J2S 2M2, Canada
- Chaire de Recherche sur les Stratégies Alternatives d'Alimentation des Porcs et des Volailles: Approche Systémique pour un Développement Durable, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec, QC G1V 0A6, Canada
| | - William Thériault
- Chaire de Recherche en Salubrité des Viandes, Département de Microbiologie et Pathologie, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, QC J2S 2M2, Canada
- Groupe de Recherche et d'Enseignement en Salubrité Alimentaire, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, QC J2S 2M2, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, QC J2S 2M2, Canada
| | | | - Yves Arcand
- Agriculture et Agroalimentaire Canada, St-Hyacinthe, QC J2S 8E3, Canada
| | - Roland Leduc
- NUVAC Éco-Sciences, Valcourt, QC J0E 2L0, Canada
| | - Bruno Demers
- NUVAC Éco-Sciences, Valcourt, QC J0E 2L0, Canada
| | - Alexandre Thibodeau
- Chaire de Recherche en Salubrité des Viandes, Département de Microbiologie et Pathologie, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, QC J2S 2M2, Canada
- Groupe de Recherche et d'Enseignement en Salubrité Alimentaire, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, QC J2S 2M2, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, QC J2S 2M2, Canada
| |
Collapse
|
18
|
Ma L, Tao S, Song T, Lyu W, Li Y, Wang W, Shen Q, Ni Y, Zhu J, Zhao J, Yang H, Xiao Y. Clostridium butyricum and carbohydrate active enzymes contribute to the reduced fat deposition in pigs. IMETA 2024; 3:e160. [PMID: 38868506 PMCID: PMC10989082 DOI: 10.1002/imt2.160] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/06/2023] [Indexed: 06/14/2024]
Abstract
Pig gastrointestinal tracts harbor a heterogeneous and dynamic ecosystem populated with trillions of microbes, enhancing the ability of the host to harvest energy from dietary carbohydrates and contributing to host adipogenesis and fatness. However, the microbial community structure and related mechanisms responsible for the differences between the fatty phenotypes and the lean phenotypes of the pigs remained to be comprehensively elucidated. Herein, we first found significant differences in microbial composition and potential functional capacity among different gut locations in Jinhua pigs with distinct fatness phenotypes. Second, we identified that Jinhua pigs with lower fatness exhibited higher levels of short-chain fatty acids in the colon, highlighting their enhanced carbohydrate fermentation capacity. Third, we explored the differences in expressed carbohydrate-active enzyme (CAZyme) in pigs, indicating their involvement in modulating fat storage. Notably, Clostridium butyricum might be a representative bacterial species from Jinhua pigs with lower fatness, and a significantly higher percentage of its genome was dedicated to CAZyme glycoside hydrolase family 13 (GH13). Finally, a subsequent mouse intervention study substantiated the beneficial effects of C. butyricum isolated from experimental pigs, suggesting that it may possess characteristics that promote the utilization of carbohydrates and hinder fat accumulation. Remarkably, when Jinhua pigs were administered C. butyricum, similar alterations in the gut microbiome and host fatness traits were observed, further supporting the potential role of C. butyricum in modulating fatness. Taken together, our findings reveal previously overlooked links between C. butyricum and CAZyme function, providing insight into the basic mechanisms that connect gut microbiome functions to host fatness.
Collapse
Affiliation(s)
- Lingyan Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Shiyu Tao
- Department of Animal Nutrition and Feed Science, College of Animal Sciences and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Tongxing Song
- Department of Animal Nutrition and Feed Science, College of Animal Sciences and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Wentao Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Ying Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and EngineeringFoshan UniversityFoshanChina
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Qicheng Shen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Yan Ni
- The Children's Hospital, Zhejiang University School of MedicineNational Clinical Research Center for Child HealthHangzhouChina
| | - Jiang Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Jiangchao Zhao
- Department of Animal Science, Division of AgricultureUniversity of ArkansasFayettevilleArkansasUSA
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| |
Collapse
|
19
|
White CS, Froebel LE, Dilger RN. A review on the effect of soy bioactive components on growth and health outcomes in pigs and broiler chickens. J Anim Sci 2024; 102:skae261. [PMID: 39234891 PMCID: PMC11452720 DOI: 10.1093/jas/skae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024] Open
Abstract
While soy products have long been included in animal diets for their macronutrient fractions, more recent work has focused on the immunomodulatory potential of bioactive components of this feedstuff. This comprehensive review aims to identify the current state of knowledge on minor soy fractions and their impact on the health and growth of pigs and broiler chickens to better direct future research. A total of 7,683 publications were screened, yet only 151 were included in the review after exclusion criteria were applied, with the majority (n = 87) of these studies conducted in pigs. In both species, antinutritional factors and carbohydrates, like stachyose and raffinose, were the most frequently studied categories of bioactive components. For both categories, most publications were evaluating ways to decrease the prevalence of the examined components in soy products, especially when fed at earlier ages. Overall, most studies evaluated the effect of the bioactive component on performance-related outcomes (n = 137), followed by microbial analysis (n = 38) and intestinal structure and integrity measures (n = 37). As they were analyzed in the majority of publications, antinutritional factors were also the most frequently investigated category in relation to each specific outcome. This trend did not hold true for microbiota- or antioxidant-associated outcomes, which were most often studied with carbohydrates or polyphenols, respectively. Changes to the host microbiota have the potential to modulate the immune system, feed intake, and social behaviors through the microbiota-gut-brain axis, though few publications measured behavior and brain characteristics as an outcome. Other identified gaps in research included the study of soy saponins, as most research focused on saponins derived from other plants, the study of phytosterols outside of their role in cardiovascular or reproductive outcomes, and the general examination of bioactive peptides. Overall, given soy's popularity as a current constituent of animal feed, additional research into these bioactive components may serve to define the value of soy products through their potential ability to support the productivity, health, and well-being of animals.
Collapse
Affiliation(s)
- Cameron S White
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Laney E Froebel
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Ryan N Dilger
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| |
Collapse
|
20
|
Duddeck KA, Petersen TE, Adkins HJ, Smith AH, Hernandez S, Wenner SJ, Yao D, Chen C, Li W, Fregulia P, Larsen A, Jang YD. Dose-Dependent Effects of Supplementing a Two-Strain Bacillus subtilis Probiotic on Growth Performance, Blood Parameters, Fecal Metabolites, and Microbiome in Nursery Pigs. Animals (Basel) 2023; 14:109. [PMID: 38200840 PMCID: PMC10777967 DOI: 10.3390/ani14010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
This experiment was conducted to evaluate the effects of dietary supplementation level of a two-strain Bacillus subtilis probiotic on growth performance, blood parameters, fecal metabolites, and microbiome in nursery pigs. A total of 54 weaned piglets were allotted to three treatments in three replicate pens with six pigs/pen for a 28 d feeding trial. The treatments were as follows: control: no probiotic supplementation; Pro1x: B. subtilis supplementation at 1.875 × 105 CFU/g diet; and Pro10x: B. subtilis supplementation at 1.875 × 106 CFU/g diet. Body weight at d 14 postweaning (p = 0.06) and average daily gain for d 0 to 14 postweaning (p < 0.05) were greater in the Pro1x treatment than in the other treatments. Blood glucose levels were greater in both probiotic treatments than in the control treatment at d 14 postweaning (p < 0.05). In the fecal short-chain fatty acid (SCFA) concentrations, the butyrate concentrations were greater in the Pro1x treatment than in the other treatments (p < 0.05), and the acetate, propionate, and total SCFA concentrations were greater in the Pro1x treatment than in the Pro10x treatment (p < 0.05). The beta diversity of fecal microbiome composition at d 14 postweaning based on Unweighted Unifrac analysis was dissimilar between the Pro1x and Pro10x treatments (p < 0.05). In conclusion, dietary B. subtilis supplementation of two strains selected to reduce effects of pathogenic Escherichia coli to nursery diets at 1.875 × 105 CFU/g diet improved the growth rate in the early postweaning period, increased fecal SCFA concentrations and altered the fecal microbial community composition. A higher dose of B. subtilis did not improve the performance parameters over those of the control piglets.
Collapse
Affiliation(s)
- Karyn A. Duddeck
- Department of Animal and Food Science, University of Wisconsin-River Falls, River Falls, WI 54022, USA
| | - Tiffany E. Petersen
- Department of Animal and Food Science, University of Wisconsin-River Falls, River Falls, WI 54022, USA
| | - Haley J. Adkins
- Department of Animal and Food Science, University of Wisconsin-River Falls, River Falls, WI 54022, USA
| | - Alexandra H. Smith
- The ScienceHearted Center, Arm & Hammer Animal and Food Production, Waukesha, WI 53186, USA
| | - Samantha Hernandez
- The ScienceHearted Center, Arm & Hammer Animal and Food Production, Waukesha, WI 53186, USA
| | - Seth J. Wenner
- The ScienceHearted Center, Arm & Hammer Animal and Food Production, Waukesha, WI 53186, USA
| | - Dan Yao
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA
| | - Chi Chen
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA
| | - Wenli Li
- United States Department of Agriculture-Agricultural Research Service, US Dairy Forage Research Center, Madison, WI 53706, USA
| | - Priscila Fregulia
- United States Department of Agriculture-Agricultural Research Service, US Dairy Forage Research Center, Madison, WI 53706, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Anna Larsen
- United States Department of Agriculture-Agricultural Research Service, US Dairy Forage Research Center, Madison, WI 53706, USA
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Young Dal Jang
- Department of Animal and Food Science, University of Wisconsin-River Falls, River Falls, WI 54022, USA
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
21
|
Sevillano E, Lafuente I, Peña N, Cintas LM, Muñoz-Atienza E, Hernández PE, Borrero J. Evaluation of Safety and Probiotic Traits from a Comprehensive Genome-Based In Silico Analysis of Ligilactobacillus salivarius P1CEA3, Isolated from Pigs and Producer of Nisin S. Foods 2023; 13:107. [PMID: 38201135 PMCID: PMC10778751 DOI: 10.3390/foods13010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Ligilactobacillus salivarius is an important member of the porcine gastrointestinal tract (GIT). Some L. salivarius strains are considered to have a beneficial effect on the host by exerting different probiotic properties, including the production of antimicrobial peptides which help maintain a healthy gut microbiota. L. salivarius P1CEA3, a porcine isolated strain, was first selected and identified by its antimicrobial activity against a broad range of pathogenic bacteria due to the production of the novel bacteriocin nisin S. The assembled L. salivarius P1CEA3 genome includes a circular chromosome, a megaplasmid (pMP1CEA3) encoding the nisin S gene cluster, and two small plasmids. A comprehensive genome-based in silico analysis of the L. salivarius P1CEA3 genome reveals the presence of genes related to probiotic features such as bacteriocin synthesis, regulation and production, adhesion and aggregation, the production of lactic acid, amino acids metabolism, vitamin biosynthesis, and tolerance to temperature, acid, bile salts and osmotic and oxidative stress. Furthermore, the strain is absent of risk-related genes for acquired antibiotic resistance traits, virulence factors, toxic metabolites and detrimental metabolic or enzymatic activities. Resistance to common antibiotics and gelatinase and hemolytic activities have been discarded by in vitro experiments. This study identifies several probiotic and safety traits of L. salivarius P1CEA3 and suggests its potential as a promising probiotic in swine production.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Juan Borrero
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Spain; (E.S.); (I.L.); (N.P.); (L.M.C.); (E.M.-A.); (P.E.H.)
| |
Collapse
|
22
|
Park S, Song J, Park MA, Jang HJ, Son S, Kim DH, Kim Y. Assessing the Probiotic Effects of Pediococcus pentosaceus CACC616 in Weaned Piglets. Microorganisms 2023; 11:2890. [PMID: 38138034 PMCID: PMC10746064 DOI: 10.3390/microorganisms11122890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
During weaning, piglets experience various stressor events that disrupt their gut microbiota and immune balance, decrease growth parameters, and increase mortality rates. In this study, we assessed the efficacy of Pediococcus pentosaceus CACC616 as a probiotic supplement. We characterized this strain and evaluated its effect on improving growth performance, modulating gut microbiota composition, and reducing noxious odor components in weaned piglets compared to a non-supplementary diet (control). During the 26-day period, 40 crossbred weaned piglets were randomly assigned to pens with 20 animals each in two groups: control and treatment groups with CACC616. On day 26, the treatment group exhibited a lower feed conversion ratio (FCR) and a significant alteration in gut microbial composition, correlating with improved growth parameters and gut health (p < 0.05). The treatment group also exhibited significantly reduced digestibility- and intestinal-environment-related noxious odor components (p < 0.05). The CACC616 strain effectively reduced pathogenic genera numbers, including Campylobacter, Mogibacterium, Escherichia-Shigella, and Desulfovibrio spp., with the treatment group exhibiting lower fecal calprotectin levels than the control group (p < 0.05). Overall, this study revealed that the functional probiotic CACC616 contributes to enhanced FCR and effectively modulates weaned piglets' inflammation and intestinal microbiota.
Collapse
Affiliation(s)
- Soyeon Park
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup 56212, Republic of Korea; (S.P.); (J.S.); (M.A.P.); (H.-J.J.); (S.S.); (D.-H.K.)
| | - Jeongsup Song
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup 56212, Republic of Korea; (S.P.); (J.S.); (M.A.P.); (H.-J.J.); (S.S.); (D.-H.K.)
| | - Mi Ae Park
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup 56212, Republic of Korea; (S.P.); (J.S.); (M.A.P.); (H.-J.J.); (S.S.); (D.-H.K.)
| | - Hyun-Jun Jang
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup 56212, Republic of Korea; (S.P.); (J.S.); (M.A.P.); (H.-J.J.); (S.S.); (D.-H.K.)
| | - Seoyun Son
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup 56212, Republic of Korea; (S.P.); (J.S.); (M.A.P.); (H.-J.J.); (S.S.); (D.-H.K.)
| | - Dae-Hyuk Kim
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup 56212, Republic of Korea; (S.P.); (J.S.); (M.A.P.); (H.-J.J.); (S.S.); (D.-H.K.)
- Department of Molecular Biology, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Bioactive Material Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Yangseon Kim
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup 56212, Republic of Korea; (S.P.); (J.S.); (M.A.P.); (H.-J.J.); (S.S.); (D.-H.K.)
| |
Collapse
|
23
|
Popov IV, Einhardt Manzke N, Sost MM, Verhoeven J, Verbruggen S, Chebotareva IP, Ermakov AM, Venema K. Modulation of Swine Gut Microbiota by Phytogenic Blends and High Concentrations of Casein in a Validated Swine Large Intestinal In Vitro Model. Vet Sci 2023; 10:677. [PMID: 38133228 PMCID: PMC10748322 DOI: 10.3390/vetsci10120677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Phytogenic feed additives are gaining popularity in livestock as a replacement for antibiotic growth promotors. Some phytogenic blends (PB) positively affect the production performance, inhibit pathogens within the gut microbiota, and improve the overall health of farm animals. In this study, a swine large intestine in vitro model was used to evaluate the effect of two PBs, alone or in combination with casein, on swine gut microbiota. As a result, the combination of casein with PB1 had the most beneficial effects on swine gut microbiota, as it increased the relative abundance of some commensal bacteria and two genera (Lactobacillus and Oscillospiraceae UCG-002), which are associated with greater production performance in pigs. At the same time, supplementation with PBs did not lead to an increase in opportunistic pathogens, indicating their safety for pigs. Both PBs showed fewer changes in swine gut microbiota compared to interventions with added casein. In contrast, casein supplementation significantly increased beta diversity and the relative abundance of commensal as well as potentially beneficial bacteria. In conclusion, the combination of casein with PBs, in particular PB1, had the most beneficial effects among the studied supplements in vitro, with respect to microbiota modulation and metabolite production, although this data should be proven in further in vivo studies.
Collapse
Affiliation(s)
- Igor V. Popov
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University—Campus Venlo, 5928 SZ Venlo, The Netherlands; (I.V.P.); (M.M.S.); (S.V.)
- Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia (A.M.E.)
- Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, 354340 Sochi, Russia
| | | | - Mônica Maurer Sost
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University—Campus Venlo, 5928 SZ Venlo, The Netherlands; (I.V.P.); (M.M.S.); (S.V.)
| | - Jessica Verhoeven
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University—Campus Venlo, 5928 SZ Venlo, The Netherlands; (I.V.P.); (M.M.S.); (S.V.)
| | - Sanne Verbruggen
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University—Campus Venlo, 5928 SZ Venlo, The Netherlands; (I.V.P.); (M.M.S.); (S.V.)
| | - Iuliia P. Chebotareva
- Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia (A.M.E.)
- Division of Nanobiomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, 354340 Sochi, Russia
| | - Alexey M. Ermakov
- Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia (A.M.E.)
| | - Koen Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University—Campus Venlo, 5928 SZ Venlo, The Netherlands; (I.V.P.); (M.M.S.); (S.V.)
| |
Collapse
|
24
|
Albuquerque A, Garrido N, Charneca R, Egas C, Martin L, Ramos A, Costa F, Marmelo C, Martins JM. Influence of Sex and a High-Fiber Diet on the Gut Microbiome of Alentejano Pigs Raised to Heavy Weights. Vet Sci 2023; 10:641. [PMID: 37999464 PMCID: PMC10675691 DOI: 10.3390/vetsci10110641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/22/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
This study investigates the influence of sex and a dietary transition on the gut microbiota of a local Portuguese pig breed. Three groups of male Alentejano pigs (n = 10 each) were raised between ~40 and 160 kg LW. Group C included pigs that were surgically castrated, while the I group included intact ones; both were fed with commercial diets. The third group, IExp, included intact pigs that were fed commercial diets until ~130 kg, then replaced by an experimental diet based on legumes and agro-industrial by-products between ~130 and 160 kg. Fecal samples were collected two weeks before slaughter. The total DNA was extracted and used for 16S metabarcoding on a MiSeq® System. The dietary transition from a commercial diet to the experimental diet substantially increased and shifted the diversity observed. Complex carbohydrate fermenting bacteria, such as Ruminococcus spp. and Sphaerochaeta spp., were significantly more abundant in IExp (q < 0.05). On the other hand, castrated pigs presented a significantly lower abundance of the potential probiotic, Roseburia spp. and Lachnospiraceae NK4A136 group (q < 0.01), bacteria commonly associated with better gut health and lower body fat composition. Understanding the role of gut microbiota is paramount to ensure a low skatole deposition and consumers' acceptance of pork products from non-castrated male pigs.
Collapse
Affiliation(s)
- André Albuquerque
- ECO-PIG Consortium, Z.I. Catraia, Ap. 50, 3440-131 Santa Comba Dão, Portugal; (N.G.); (R.C.); (L.M.); (A.R.); (F.C.); (C.M.)
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Nicolás Garrido
- ECO-PIG Consortium, Z.I. Catraia, Ap. 50, 3440-131 Santa Comba Dão, Portugal; (N.G.); (R.C.); (L.M.); (A.R.); (F.C.); (C.M.)
- Escola Superior Agrária de Elvas, Departamento de Ciência Agrárias e Veterinárias, Edifício Quartel do Trem, Avenida 14 de Janeiro n° 21, 7350-092 Elvas, Portugal
| | - Rui Charneca
- ECO-PIG Consortium, Z.I. Catraia, Ap. 50, 3440-131 Santa Comba Dão, Portugal; (N.G.); (R.C.); (L.M.); (A.R.); (F.C.); (C.M.)
- MED & CHANGE, Departamento de Zootecnia, ECT–Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Conceição Egas
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- Next Generation Sequencing Unit, Biocant, 3060-197 Cantanhede, Portugal
| | - Luísa Martin
- ECO-PIG Consortium, Z.I. Catraia, Ap. 50, 3440-131 Santa Comba Dão, Portugal; (N.G.); (R.C.); (L.M.); (A.R.); (F.C.); (C.M.)
- Departamento de Ciências Agrárias e Tecnologias, Escola Superior Agrária de Coimbra, Bencanta, 3045-601 Coimbra, Portugal
| | - Amélia Ramos
- ECO-PIG Consortium, Z.I. Catraia, Ap. 50, 3440-131 Santa Comba Dão, Portugal; (N.G.); (R.C.); (L.M.); (A.R.); (F.C.); (C.M.)
- Departamento de Ciências Agrárias e Tecnologias, Escola Superior Agrária de Coimbra, Bencanta, 3045-601 Coimbra, Portugal
| | - Filipa Costa
- ECO-PIG Consortium, Z.I. Catraia, Ap. 50, 3440-131 Santa Comba Dão, Portugal; (N.G.); (R.C.); (L.M.); (A.R.); (F.C.); (C.M.)
| | - Carla Marmelo
- ECO-PIG Consortium, Z.I. Catraia, Ap. 50, 3440-131 Santa Comba Dão, Portugal; (N.G.); (R.C.); (L.M.); (A.R.); (F.C.); (C.M.)
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - José Manuel Martins
- ECO-PIG Consortium, Z.I. Catraia, Ap. 50, 3440-131 Santa Comba Dão, Portugal; (N.G.); (R.C.); (L.M.); (A.R.); (F.C.); (C.M.)
- MED & CHANGE, Departamento de Zootecnia, ECT–Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| |
Collapse
|
25
|
Song JG, Mun D, Lee B, Song M, Oh S, Kim JM, Yang J, Kim Y, Kim HW. Protective Effects of Lacticaseibacillus rhamnosus IDCC3201 on Motor Functions and Anxiety Levels in a Chronic Stress Mouse Model. Food Sci Anim Resour 2023; 43:1044-1054. [PMID: 37969325 PMCID: PMC10636227 DOI: 10.5851/kosfa.2023.e54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/01/2023] [Accepted: 09/13/2023] [Indexed: 11/17/2023] Open
Abstract
Growing evidence indicates a crucial role of the gut microbiota in physiological functions. Gut-brain axis imbalance has also been associated with neuropsychiatric and neurodegenerative disorders. Studies have suggested that probiotics regulate the stress response and alleviate mood-related symptoms. In this study, we investigated the effects of the probiotic Lacticaseibacillus rhamnosus IDCC3201 (L3201) on the behavioral response and fecal metabolite content in an unpredictable chronic mild stress (UCMS) mouse model. Our study shows that chronic stress in mice for three weeks resulted in significant changes in behavior, including lower locomotor activity, higher levels of anxiety, and depressive-like symptoms, compared to the control group. Metabolomic analysis demonstrated that disrupted fecal metabolites associated with aminoacyl-tRNA biosynthesis and valine, leucine, and isoleucine biosynthesis by UCMS were restored with the administration of L3201. Oral administration of the L3201 ameliorated the observed changes and improved the behavioral alterations along with fecal metabolites, suggesting that probiotics play a neuroprotective role.
Collapse
Affiliation(s)
- Jae Gwang Song
- College of Life Sciences, Sejong
University, Seoul 05006, Korea
| | - Daye Mun
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Bomi Lee
- College of Life Sciences, Sejong
University, Seoul 05006, Korea
| | - Minho Song
- Department of Animal Science and
Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Sangnam Oh
- Department of Functional Food and
Biotechnology, Jeonju University, Jeonju 55069, Korea
| | - Jun-Mo Kim
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | | | - Younghoon Kim
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Hyung Wook Kim
- College of Life Sciences, Sejong
University, Seoul 05006, Korea
| |
Collapse
|
26
|
Hwang YH, Lee EY, Lim HT, Joo ST. Multi-Omics Approaches to Improve Meat Quality and Taste Characteristics. Food Sci Anim Resour 2023; 43:1067-1086. [PMID: 37969318 PMCID: PMC10636221 DOI: 10.5851/kosfa.2023.e63] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 11/17/2023] Open
Abstract
With rapid advances in meat science in recent decades, changes in meat quality during the pre-slaughter phase of muscle growth and the post-slaughter process from muscle to meat have been investigated. Commonly used techniques have evolved from early physicochemical indicators such as meat color, tenderness, water holding capacity, flavor, and pH to various omic tools such as genomics, transcriptomics, proteomics, and metabolomics to explore fundamental molecular mechanisms and screen biomarkers related to meat quality and taste characteristics. This review highlights the application of omics and integrated multi-omics in meat quality and taste characteristics studies. It also discusses challenges and future perspectives of multi-omics technology to improve meat quality and taste. Consequently, multi-omics techniques can elucidate the molecular mechanisms responsible for changes of meat quality at transcriptome, proteome, and metabolome levels. In addition, the application of multi-omics technology has great potential for exploring and identifying biomarkers for meat quality and quality control that can make it easier to optimize production processes in the meat industry.
Collapse
Affiliation(s)
- Young-Hwa Hwang
- Institute of Agriculture & Life
Science, Gyeongsang National University, Jinju 52828,
Korea
| | - Eun-Yeong Lee
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52828,
Korea
| | - Hyen-Tae Lim
- Institute of Agriculture & Life
Science, Gyeongsang National University, Jinju 52828,
Korea
- Division of Animal Science, Gyeongsang
National University, Jinju 52828, Korea
| | - Seon-Tea Joo
- Institute of Agriculture & Life
Science, Gyeongsang National University, Jinju 52828,
Korea
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52828,
Korea
- Division of Animal Science, Gyeongsang
National University, Jinju 52828, Korea
| |
Collapse
|
27
|
Lim JA, Cha J, Choi S, Kim JH, Kim D. Early Colonization of the Intestinal Microbiome of Neonatal Piglets Is Influenced by the Maternal Microbiome. Animals (Basel) 2023; 13:3378. [PMID: 37958132 PMCID: PMC10650534 DOI: 10.3390/ani13213378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
The intestinal microbiome plays a crucial role in animal health and growth by interacting with the host, inhibiting pathogenic microbial colonization, and regulating immunity. This study investigated dynamic changes in the fecal microbial composition of piglets from birth through weaning and the relationship between the piglet fecal microbiome and sows. Feces, skin, neonatal oral cavity, and vaginal samples were collected from eight sows and sixty-three piglets, and 16S genome sequencing was performed. The results revealed that Firmicutes, Bacteroidetes, and Proteobacteria dominated the piglet microbiome in the early stages, and Firmicutes and Bacteroidetes were crucial for maintaining a balance in the intestinal microbiome during nursing. The abundance of Christensenellaceae_R-7_group, Succinivibrio, and Prevotella increased in weaned piglets fed solid feed. Analysis of the microbiome from sows to piglets indicated a shift in the microbiome colonizing piglet intestines, which became a significant constituent of the piglet intestinal microbiome. This study supports the theory that the neonatal intestinal microbiome is vertically transmitted from the mother. Further research is required to integrate factors related to sows, piglets, and their environments to gain a better understanding of the early establishment of the intestinal microbiome in piglets.
Collapse
Affiliation(s)
| | | | | | | | - Dahye Kim
- Animal Genome and Bioinformatics, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea; (J.-A.L.); (J.C.); (S.C.); (J.-H.K.)
| |
Collapse
|
28
|
Yang J, Chen R, Peng Y, Chai J, Li Y, Deng F. The role of gut archaea in the pig gut microbiome: a mini-review. Front Microbiol 2023; 14:1284603. [PMID: 37876779 PMCID: PMC10593451 DOI: 10.3389/fmicb.2023.1284603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023] Open
Abstract
The gastrointestinal microbiota of swine harbors an essential but often overlooked component: the gut archaea. These enigmatic microorganisms play pivotal roles in swine growth, health, and yield quality. Recent insights indicate that the diversity of gut archaea is influenced by various factors including breed, age, and diet. Such factors orchestrate the metabolic interactions within the porcine gastrointestinal environment. Through symbiotic relationships with bacteria, these archaea modulate the host's energy metabolism and digestive processes. Contemporary research elucidates a strong association between the abundance of these archaea and economically significant traits in swine. This review elucidates the multifaceted roles of gut archaea in swine and underscores the imperative for strategic interventions to modulate their population and functionality. By exploring the probiotic potential of gut archaea, we envisage novel avenues to enhance swine growth, health, and product excellence. By spotlighting this crucial, yet under-investigated, facet of the swine gut microbiome, we aim to galvanize further scientific exploration into harnessing their myriad benefits.
Collapse
Affiliation(s)
- Jianbo Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Routing Chen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Yunjuan Peng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Jianmin Chai
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Feilong Deng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| |
Collapse
|
29
|
Kang MG, Kwak MJ, Kim Y. Polystyrene microplastics biodegradation by gut bacterial Enterobacter hormaechei from mealworms under anaerobic conditions: Anaerobic oxidation and depolymerization. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132045. [PMID: 37480606 DOI: 10.1016/j.jhazmat.2023.132045] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/24/2023]
Abstract
Synthetic plastic is used throughout daily life and industry, threatening organisms with microplastic pollution. Polystyrene is a major plastic polymer and also widely found sources of plastic wastes and microplastics. Here, we report that Enterobacter hormaechei LG3 (CP118279.1), a facultative anaerobic bacterial strain isolated from the gut of Tenebrio molitor larvae (mealworms) can oxidize and depolymerize polystyrene under anaerobic conditions. LG3 performed biodegradation while forming a biofilm on the plastic surface. PS biodegradation was characterized by analyses of surface oxidation, change in morphology and molecular weights, and production of biodegraded derivative. The biodegradation performance by LG3 was compared with PS biodegradation by Bacillus amyloliquefaciens SCGB1 under both anaerobic and aerobic conditions. In addition, through nanopore sequencing technology, we identified degradative enzymes, including thiol peroxidase (tpx), alkyl hydroperoxide reductase C (ahpC) and bacterioferritin comigratory protein (bcp). Along with the upregulation of degradative enzymes for biodegradation, changes in lipid A and biofilm-associated proteins were also observed after the cells were incubated with polystyrene microplastics. Our results provide evidence for anaerobic biodegradation by polystyrene-degrading bacteria and show alterations in gene expression patterns after polystyrene microplastics treatment in the opportunistic pathogen Enterobacter hormaechei.
Collapse
Affiliation(s)
- Min-Geun Kang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Min-Jin Kwak
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
30
|
Ma Z, Wu Z, Wang Y, Meng Q, Chen P, Li J, Shan A. Effect of Yeast Culture on Reproductive Performance, Gut Microbiota, and Milk Composition in Primiparous Sows. Animals (Basel) 2023; 13:2954. [PMID: 37760354 PMCID: PMC10525930 DOI: 10.3390/ani13182954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
The objective of this study was to evaluate the effects of yeast culture (YC) on reproductive performance, gut microbiota, and milk composition in primiparous sows. A total of 60 primiparous sows were randomly assigned to the control group (CON) and YC group (0.5% YC during gestation and 0.8% YC during lactation) consisting of 30 replicates, with one sow in each. The results showed that dietary YC supplementation increased the piglet birth weight and backfat thickness at 28 d of lactation (p < 0.05). Dietary YC supplementation increased the apparent total tract digestibility (ATTD) of gross energy and calcium during lactation, the content of acetic acid and propionic acid at 110 d of gestation, and the content of acetic acid and butyric acid at 28 d of lactation in feces (p < 0.05). Furthermore, dietary YC supplementation decreased the abundance of Firmicutes, Lachnospiraceae_XPB1014_group, and Terrisporobacter (p < 0.05), and increased the abundance of Prevotellaceae_NK3B31_group and Rikenellaceae_RC9_gut_group (p < 0.05). Compared to the control group, dietary YC supplementation increased the fat and lactose content of the colostrum (p < 0.05). Metabolomics analysis showed that YC increased 26 different metabolites in the colostrum. Among them were mainly pantothenic acid, proline, isoleucine, phenylalanine, acylcarnitine, and other metabolites. In conclusion, these results suggested that dietary YC supplementation improves reproductive performance and gut health and increases the nutrient content in the colostrum of primiparous sows.
Collapse
Affiliation(s)
- Zhizhuo Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Z.M.); (Z.W.); (Y.W.); (Q.M.)
| | - Ze Wu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Z.M.); (Z.W.); (Y.W.); (Q.M.)
| | - Yu Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Z.M.); (Z.W.); (Y.W.); (Q.M.)
| | - Qingwei Meng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Z.M.); (Z.W.); (Y.W.); (Q.M.)
| | - Peng Chen
- Beijing Enhalor International Tech Co., Ltd., Beijing 100081, China;
| | - Jianping Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Z.M.); (Z.W.); (Y.W.); (Q.M.)
| | - Anshan Shan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Z.M.); (Z.W.); (Y.W.); (Q.M.)
| |
Collapse
|
31
|
Kaur H, Kaur G, Gupta T, Mittal D, Ali SA. Integrating Omics Technologies for a Comprehensive Understanding of the Microbiome and Its Impact on Cattle Production. BIOLOGY 2023; 12:1200. [PMID: 37759599 PMCID: PMC10525894 DOI: 10.3390/biology12091200] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/16/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
Ruminant production holds a pivotal position within the global animal production and agricultural sectors. As population growth escalates, posing environmental challenges, a heightened emphasis is directed toward refining ruminant production systems. Recent investigations underscore the connection between the composition and functionality of the rumen microbiome and economically advantageous traits in cattle. Consequently, the development of innovative strategies to enhance cattle feed efficiency, while curbing environmental and financial burdens, becomes imperative. The advent of omics technologies has yielded fresh insights into metabolic health fluctuations in dairy cattle, consequently enhancing nutritional management practices. The pivotal role of the rumen microbiome in augmenting feeding efficiency by transforming low-quality feedstuffs into energy substrates for the host is underscored. This microbial community assumes focal importance within gut microbiome studies, contributing indispensably to plant fiber digestion, as well as influencing production and health variability in ruminants. Instances of compromised animal welfare can substantially modulate the microbiological composition of the rumen, thereby influencing production rates. A comprehensive global approach that targets both cattle and their rumen microbiota is paramount for enhancing feed efficiency and optimizing rumen fermentation processes. This review article underscores the factors that contribute to the establishment or restoration of the rumen microbiome post perturbations and the intricacies of host-microbiome interactions. We accentuate the elements responsible for responsible host-microbiome interactions and practical applications in the domains of animal health and production. Moreover, meticulous scrutiny of the microbiome and its consequential effects on cattle production systems greatly contributes to forging more sustainable and resilient food production systems, thereby mitigating the adverse environmental impact.
Collapse
Affiliation(s)
- Harpreet Kaur
- Division of Biochemistry, ICAR-National Dairy Research Institute (ICAR-NDRI), Karnal 132001, India
| | - Gurjeet Kaur
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia
- Mark Wainwright Analytical Centre, Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW 2052, Australia
- Steno Diabetes Center Copenhagen, DK-2730 Herlev, Denmark
| | - Taruna Gupta
- Division of Biochemistry, ICAR-National Dairy Research Institute (ICAR-NDRI), Karnal 132001, India
| | - Deepti Mittal
- Division of Biochemistry, ICAR-National Dairy Research Institute (ICAR-NDRI), Karnal 132001, India
| | - Syed Azmal Ali
- Cell Biology and Proteomics Lab, Animal Biotechnology Center, ICAR-National Dairy Research Institute (ICAR-NDRI), Karnal 132001, India
- Division Proteomics of Stem Cells and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany
| |
Collapse
|
32
|
Vasquez R, Kim SH, Oh JK, Song JH, Hwang IC, Kim IH, Kang DK. Multispecies probiotic supplementation in diet with reduced crude protein levels altered the composition and function of gut microbiome and restored microbiome-derived metabolites in growing pigs. Front Microbiol 2023; 14:1192249. [PMID: 37485501 PMCID: PMC10360209 DOI: 10.3389/fmicb.2023.1192249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023] Open
Abstract
Both crude protein (CP) and probiotics can modulate the gut microbiome of the host, thus conferring beneficial effects. However, the benefits of low CP diet supplemented with multispecies probiotics on gut microbiome and its metabolites have not been investigated in pigs. Thus, we investigated the combinatory effects of low CP diet supplemented with multispecies probiotics on gut microbiome composition, function, and microbial metabolites in growing pigs. In total, 140 6 week-old piglets (Landrace × Yorkshire × Duroc) were used in this study. The pigs were divided into four groups with a 2 × 2 factorial design based on their diets: normal-level protein diet (16% CP; NP), low-level protein diet (14% CP; LP), NP with multispecies probiotics (NP-P), and LP with multispecies probiotics (LP-P). After the feeding trial, the fecal samples of the pigs were analyzed. The fecal scores were improved by the probiotic supplementation, especially in LP-P group. We also observed a probiotic-mediated alteration in the gut microbiome of pigs. In addition, LP-P group showed higher species richness and diversity compared with other groups. The addition of multispecies probiotics in low CP diet also enhanced gut microbiota metabolites production, such as short-chain fatty acids (SCFAs) and polyamines. Correlation analysis revealed that Oscillospiraceae UCG-002, Eubacterium coprostanoligenes, Lachnospiraceae NK4A136 group, and Muribaculaceae were positively associated with SCFAs; and Prevotella, Eubacterium ruminantium, Catenibacterium, Alloprevotella, Prevotellaceae NK3B31 group, Roseburia, Butyrivibrio, and Dialister were positively correlated with polyamines. Supplementation with multispecies probiotics modulated the function of the gut microbiome by upregulating the pathways for protein digestion and utilization, potentially contributing to enriched metabolite production in the gut. The results of this study demonstrate that supplementation with multispecies probiotics may complement the beneficial effects of low CP levels in pig feed. These findings may help formulate sustainable feeding strategies for swine production.
Collapse
|
33
|
St-Pierre B, Perez Palencia JY, Samuel RS. Impact of Early Weaning on Development of the Swine Gut Microbiome. Microorganisms 2023; 11:1753. [PMID: 37512925 PMCID: PMC10385335 DOI: 10.3390/microorganisms11071753] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Considering that pigs are naturally weaned between 12 and 18 weeks of age, the common practice in the modern swine industry of weaning as early as between two and four weeks of age increases challenges during this transition period. Indeed, young pigs with an immature gut are suddenly separated from the sow, switched from milk to a diet consisting of only solid ingredients, and subjected to a new social hierarchy from mixing multiple litters. From the perspective of host gut development, weaning under these conditions causes a regression in histological structure as well as in digestive and barrier functions. While the gut is the main center of immunity in mature animals, the underdeveloped gut of early weaned pigs has yet to contribute to this function until seven weeks of age. The gut microbiota or microbiome, an essential contributor to the health and nutrition of their animal host, undergoes dramatic alterations during this transition, and this descriptive review aims to present a microbial ecology-based perspective on these events. Indeed, as gut microbial communities are dependent on cross-feeding relationships, the change in substrate availability triggers a cascade of succession events until a stable composition is reached. During this process, the gut microbiota is unstable and prone to dysbiosis, which can devolve into a diseased state. One potential strategy to accelerate maturation of the gut microbiome would be to identify microbial species that are critical to mature swine gut microbiomes, and develop strategies to facilitate their establishment in early post-weaning microbial communities.
Collapse
Affiliation(s)
- Benoit St-Pierre
- Department of Animal Science, South Dakota State University, Animal Science Complex, Box 2170, Brookings, SD 57007, USA
| | - Jorge Yair Perez Palencia
- Department of Animal Science, South Dakota State University, Animal Science Complex, Box 2170, Brookings, SD 57007, USA
| | - Ryan S Samuel
- Department of Animal Science, South Dakota State University, Animal Science Complex, Box 2170, Brookings, SD 57007, USA
| |
Collapse
|
34
|
Adekolurejo OO, McDermott K, Greathead HMR, Miller HM, Mackie AR, Boesch C. Effect of Red-Beetroot-Supplemented Diet on Gut Microbiota Composition and Metabolite Profile of Weaned Pigs-A Pilot Study. Animals (Basel) 2023; 13:2196. [PMID: 37443994 PMCID: PMC10339942 DOI: 10.3390/ani13132196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Red beetroot is a well-recognized and established source of bioactive compounds (e.g., betalains and polyphenols) with anti-inflammatory and antimicrobial properties. It is proposed as a potential alternative to zinc oxide with a focus on gut microbiota modulation and metabolite production. In this study, weaned pigs aged 28 days were fed either a control diet, a diet supplemented with zinc oxide (3000 mg/kg), or 2% and 4% pulverized whole red beetroot (CON, ZNO, RB2, and RB4; respectively) for 14 days. After pigs were euthanized, blood and digesta samples were collected for microbial composition and metabolite analyses. The results showed that the diet supplemented with red beetroot at 2% improved the gut microbial richness relative to other diets but marginally influenced the cecal microbial diversity compared to a zinc-oxide-supplemented diet. A further increase in red beetroot levels (4%-RB4) led to loss in cecal diversity and decreased short chain fatty acids and secondary bile acid concentrations. Also, an increased Proteobacteria abundance, presumably due to increased lactate/lactic-acid-producing bacteria was observed. In summary, red beetroot contains several components conceived to improve the gut microbiota and metabolite output of weaned pigs. Future studies investigating individual components of red beetroot will better elucidate their contributions to gut microbiota modulation and pig health.
Collapse
Affiliation(s)
- Opeyemi O. Adekolurejo
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (O.O.A.); (A.R.M.)
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (K.M.); (H.M.R.G.); (H.M.M.)
| | - Katie McDermott
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (K.M.); (H.M.R.G.); (H.M.M.)
| | - Henry M. R. Greathead
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (K.M.); (H.M.R.G.); (H.M.M.)
| | - Helen M. Miller
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (K.M.); (H.M.R.G.); (H.M.M.)
| | - Alan R. Mackie
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (O.O.A.); (A.R.M.)
| | - Christine Boesch
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (O.O.A.); (A.R.M.)
| |
Collapse
|
35
|
Lee JH, Kim S, Kim ES, Keum GB, Doo H, Kwak J, Pandey S, Cho JH, Ryu S, Song M, Cho JH, Kim S, Kim HB. Comparative analysis of the pig gut microbiome associated with the pig growth performance. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:856-864. [PMID: 37970497 PMCID: PMC10640952 DOI: 10.5187/jast.2022.e122] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 11/17/2023]
Abstract
There are a variety of microorganisms in the animal intestine, and it has been known that they play important roles in the host such as suppression of potentially pathogenic microorganisms, modulation of the gut immunity. In addition, the gut microbiota and the livestock growth performance have long been known to be related. Therefore, we evaluated the interrelation between the growth performance and the gut microbiome of the pigs from 3 different farms, with pigs of varied ages ready to be supplied to the market. When pigs reached average market weight of 118 kg, the average age of pigs in three different farms were < 180 days, about 190 days, and > 200 days, respectively. Fecal samples were collected from pigs of age of 70 days, 100 days, 130 days, and 160 days. The output data of the 16S rRNA gene sequencing by the Illumina Miseq platform was filtered and analyzed using Quantitative Insights into Microbial Ecology (QIIME)2, and the statistical analysis was performed using Statistical Analysis of Metagenomic Profiles (STAMP). The results of this study showed that the gut microbial communities shifted as pigs aged along with significant difference in the relative abundance of different phyla and genera in different age groups of pigs from each farm. Even though, there was no statistical differences among groups in terms of Chao1, the number of observed operational taxonomic units (OTUs), and the Shannon index, our results showed higher abundances of Bifidobacterium, Clostridium and Lactobacillus in the feces of pigs with rapid growth rate. These results will help us to elucidate important gut microbiota that can affect the growth performance of pigs.
Collapse
Affiliation(s)
| | - San Kim
- BRD Korea, Hwaseong 18471,
Korea
| | - Eun Sol Kim
- Department of Animal Resources Science,
Dankook University, Cheonan 31116, Korea
| | - Gi Beom Keum
- Department of Animal Resources Science,
Dankook University, Cheonan 31116, Korea
| | - Hyunok Doo
- Department of Animal Resources Science,
Dankook University, Cheonan 31116, Korea
| | - Jinok Kwak
- Department of Animal Resources Science,
Dankook University, Cheonan 31116, Korea
| | - Sriniwas Pandey
- Department of Animal Resources Science,
Dankook University, Cheonan 31116, Korea
| | - Jae Hyoung Cho
- Department of Animal Resources Science,
Dankook University, Cheonan 31116, Korea
| | - Sumin Ryu
- Department of Animal Resources Science,
Dankook University, Cheonan 31116, Korea
| | - Minho Song
- Division of Animal and Dairy Science,
Chungnam National University, Daejeon 34134, Korea
| | - Jin Ho Cho
- Division of Food and Animal Science,
Chungbuk National University, Cheongju 28644, Korea
| | - Sheena Kim
- Department of Animal Resources Science,
Dankook University, Cheonan 31116, Korea
| | - Hyeun Bum Kim
- Department of Animal Resources Science,
Dankook University, Cheonan 31116, Korea
| |
Collapse
|
36
|
Betancur C, Martínez Y. Effect of Oral Administration with Lactobacillus plantarum CAM6 on the Hematological Profile, Relative Weight of Digestive Organs, and Cecal Traits in Growing Pigs. Animals (Basel) 2023; 13:1915. [PMID: 37370425 DOI: 10.3390/ani13121915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
This study aimed to investigate the effects of oral administration with L. plantarum CAM6 on the hematological profile, relative weight of digestive organs, and cecal traits in growing pigs. A total of 36 castrated male pigs [(Landrace × Pietrain) × Duroc] aged 49 to 139 days old were randomly assigned to 3 experimental groups with 12 animals per treatment. The treatments included a control diet without additives (CTRL), a positive control with subtherapeutic antibiotics (TRT1), and CTRL supplemented with 5 mL Lactobacillus plantarum CAM6 preparation providing 109 CFU/pig/day (TRT2). The TRT2 group showed a higher (p ≤ 0.05) small intestine length and the cecum relative weight compared to the CTRL group. Moreover, L. plantarum CAM6 supplementation promoted (p ≤ 0.05) increased thickness of the muscular and mucosal layers, as well as enhanced depth and width of the cecal crypts. The TRT2 group also showed well-defined crypts without lesions, while the CTRL and TRT1 groups exhibited congestion, lymphocytic infiltration in the crypt, and intestinal-associated lymphoid tissue atrophy, respectively. Additionally, TRT2 stimulated (p ≤ 0.05) the growth of the autochthonous cecal microbiota compared to other experimental groups. Overall, the results indicate that oral administration of L. plantarum CAM6 improved intestinal health and enhanced the growth of autochthonous cecal lactic acid bacteria and had no impact on the complete blood count in growing pigs.
Collapse
Affiliation(s)
- Cesar Betancur
- Departamento de Ciencias Pecuarias, Facultad de Medicina Veterinaria y Zootecnia, Universidad de Córdoba, Montería 230002, Colombia
| | - Yordan Martínez
- Agricultural Science and Production Department, Zamorano University, Valle de Yeguare, San Antonio de Oriente, Francisco Morazán, Tegucigalpa 11101, Honduras
| |
Collapse
|
37
|
Ko YS, Tark D, Moon SH, Kim DM, Lee TG, Bae DY, Sunwoo SY, Oh Y, Cho HS. Alteration of the Gut Microbiota in Pigs Infected with African Swine Fever Virus. Vet Sci 2023; 10:vetsci10050360. [PMID: 37235443 DOI: 10.3390/vetsci10050360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The factors that influence the pathogenicity of African swine fever (ASF) are still poorly understood, and the host's immune response has been indicated as crucial. Although an increasing number of studies have shown that gut microbiota can control the progression of diseases caused by viral infections, it has not been characterized how the ASF virus (ASFV) changes a pig's gut microbiome. This study analyzed the dynamic changes in the intestinal microbiome of pigs experimentally infected with the high-virulence ASFV genotype II strain (N = 4) or mock strain (N = 3). Daily fecal samples were collected from the pigs and distributed into the four phases (before infection, primary phase, clinical phase, and terminal phase) of ASF based on the individual clinical features of the pigs. The total DNA was extracted and the V4 region of the 16 s rRNA gene was amplified and sequenced on the Illumina platform. Richness indices (ACE and Chao1) were significantly decreased in the terminal phase of ASF infection. The relative abundances of short-chain-fatty-acids-producing bacteria, such as Ruminococcaceae, Roseburia, and Blautia, were decreased during ASFV infection. On the other hand, the abundance of Proteobacteria and Spirochaetes increased. Furthermore, predicted functional analysis using PICRUSt resulted in a significantly reduced abundance of 15 immune-related pathways in the ASFV-infected pigs. This study provides evidence for further understanding the ASFV-pig interaction and suggests that changes in gut microbiome composition during ASFV infection may be associated with the status of immunosuppression.
Collapse
Affiliation(s)
- Young-Seung Ko
- Bio-Safety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Dongseob Tark
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea
| | - Sung-Hyun Moon
- Bio-Safety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Dae-Min Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea
| | - Taek Geun Lee
- Bio-Safety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Da-Yun Bae
- Bio-Safety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| | | | - Yeonsu Oh
- Institute of Veterinary Science, College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ho-Seong Cho
- Bio-Safety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| |
Collapse
|
38
|
Hasan I, Rimoldi S, Saroglia G, Terova G. Sustainable Fish Feeds with Insects and Probiotics Positively Affect Freshwater and Marine Fish Gut Microbiota. Animals (Basel) 2023; 13:1633. [PMID: 37238063 PMCID: PMC10215438 DOI: 10.3390/ani13101633] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Aquaculture is the fastest-growing agricultural industry in the world. Fishmeal is an essential component of commercial fish diets, but its long-term sustainability is a concern. Therefore, it is important to find alternatives to fishmeal that have a similar nutritional value and, at the same time, are affordable and readily available. The search for high-quality alternatives to fishmeal and fish oil has interested researchers worldwide. Over the past 20 years, different insect meals have been studied as a potential alternate source of fishmeal in aquafeeds. On the other hand, probiotics-live microbial strains-are being used as dietary supplements and showing beneficial effects on fish growth and health status. Fish gut microbiota plays a significant role in nutrition metabolism, which affects a number of other physiological functions, including fish growth and development, immune regulation, and pathogen resistance. One of the key reasons for studying fish gut microbiota is the possibility to modify microbial communities that inhabit the intestine to benefit host growth and health. The development of DNA sequencing technologies and advanced bioinformatics tools has made metagenomic analysis a feasible method for researching gut microbes. In this review, we analyze and summarize the current knowledge provided by studies of our research group on using insect meal and probiotic supplements in aquafeed formulations and their effects on different fish gut microbiota. We also highlight future research directions to make insect meals a key source of proteins for sustainable aquaculture and explore the challenges associated with the use of probiotics. Insect meals and probiotics will undoubtedly have a positive effect on the long-term sustainability and profitability of aquaculture.
Collapse
Affiliation(s)
- Imam Hasan
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant, 3-21100 Varese, Italy; (I.H.); (G.T.)
| | - Simona Rimoldi
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant, 3-21100 Varese, Italy; (I.H.); (G.T.)
| | - Giulio Saroglia
- Medical Devices Area, Institute of Digital Technologies for Personalized Healthcare-MeDiTech, Scuola Universitaria Professionale della Svizzera Italiana, Via La Santa 1, CH-6962 Lugano, Switzerland;
| | - Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant, 3-21100 Varese, Italy; (I.H.); (G.T.)
| |
Collapse
|
39
|
Li L, Yin F, Wang X, Yang C, Yu H, Lepp D, Wang Q, Lessard M, Lo Verso L, Mondor M, Yang C, Nie S, Gong J. Microencapsulation protected Lactobacillus viability and its activity in modulating the intestinal microbiota in newly weaned piglets. J Anim Sci 2023; 101:skad193. [PMID: 37403537 PMCID: PMC10516462 DOI: 10.1093/jas/skad193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/27/2023] [Indexed: 07/06/2023] Open
Abstract
Lactobacilli are sensitive to heat, which limits their application as probiotics in livestock production. Lactobacillus rhamnosus LB1 was previously shown to reduce enterotoxigenic Escherichia coli (ETEC) and Salmonella infections in pigs. To investigate its potential in the application, the bacterium was microencapsulated and examined for its survival from feed pelleting and long-term storage as well as its function in modulating pig intestinal microbiota. The in vitro studies showed that freshly microencapsulated Lactobacillus rhamnosus LB1 had viable counts of 9.03 ± 0.049 log10 colony-forming units/g, of which only 0.06 and 0.87 Log of viable counts were reduced after storage at 4 and 22 °C for 427 d. The viable counts of encapsulated Lactobacillus rhamnosus LB1 were 1.06 and 1.54 Log higher in the pelleted and mash feed, respectively, than the non-encapsulated form stored at 22 °C for 30 d. In the in vivo studies, 80 piglets (weaned at 21 d of age) were allocated to five dietary treatments for a 10-d growth trial. The dietary treatments were the basal diet (CTL) and basal diet combined with either non-encapsulated LB1 (NEP), encapsulated LB1 (EP), bovine colostrum (BC), or a combination of encapsulated LB1 and bovine colostrum (EP-BC). The results demonstrated that weaning depressed feed intake and reduced growth rates in pigs of all the treatments during 21 to 25 d of age; however, the body weight gain was improved during 25 to 31 d of age in all groups with the numerically highest increase in the EP-BC-fed pigs during 21 to 31 d of age. Dietary treatments with EP, particularly in combination with BC, modulated pig intestinal microbiota, including an increase in Lactobacillus relative abundance. These results suggest that microencapsulation can protect Lactobacillus rhamnosus LB1 against cell damage from a high temperature during processing and storage and there are possible complementary effects between EP and BC.
Collapse
Affiliation(s)
- Linyan Li
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi, China
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Fugui Yin
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Xiaoyin Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi, China
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Chongwu Yang
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Hai Yu
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Dion Lepp
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Qi Wang
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Martin Lessard
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec, Canada
| | - Luca Lo Verso
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec, Canada
| | - Martin Mondor
- St-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, St-Hyacinthe, Quebec, Canada
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi, China
| | - Joshua Gong
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| |
Collapse
|
40
|
Liu J, Ma X, Zhuo Y, Xu S, Hua L, Li J, Feng B, Fang Z, Jiang X, Che L, Zhu Z, Lin Y, Wu D. The Effects of Bacillus subtilis QST713 and β-mannanase on growth performance, intestinal barrier function, and the gut microbiota in weaned piglets. J Anim Sci 2023; 101:skad257. [PMID: 37583344 PMCID: PMC10449409 DOI: 10.1093/jas/skad257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023] Open
Abstract
We investigated the effects of different Bacillus subtilis QST713 doses and a B. subtilis QST713 and β-mannanase mix on growth performance, intestinal barrier function, and gut microbiota in weaned piglets. In total, 320 healthy piglets were randomly assigned to four groups: 1) control group (basal diet), 2) BS100 group (basal diet plus 100 mg/kg B. subtilis QST713), 3) BS200 group (basal diet plus 200 mg/kg B. subtilis QST713), and 4) a BS100XT group (basal diet plus 100 mg/kg B. subtilis QST713 and 150 mg/kg β-mannanase). The study duration was 42 d. We showed that feed intake in weaned piglets on days 1 to 21 was increased in group BS100 (P < 0.05), and that the feed conversion ratio in group BS100XT animals decreased throughout the study (P < 0.05). In terms of microbial counts, the BS100XT group showed reduced Escherichia coli and Clostridium perfringens numbers on day 21 (P < 0.05). Moreover, no significant α-diversity differences were observed across all groups during the study (P > 0.05). However, principal coordinates analysis indicated clear separations in bacterial community structures across groups (analysis of similarities: P < 0.05) on days 21 and 42. Additionally, E-cadherin, occludin, and zonula occludens-1 (ZO-1) expression in piglet feces increased (P < 0.05) by adding B. subtilis QST713 and β-mannanase to diets. Notably, this addition decreased short-chain fatty acid concentrations. In conclusion, B. subtilis QST713 addition or combined B. subtilis QST713 plus β-mannanase effectively improved growth performance, intestinal barrier function, and microbial balance in weaned piglets.
Collapse
Affiliation(s)
- Junchen Liu
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiangyuan Ma
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yong Zhuo
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shengyu Xu
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lun Hua
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jian Li
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Bin Feng
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhengfeng Fang
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xuemei Jiang
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lianqiang Che
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zeyuan Zhu
- Elanco Animal Health, Mutiara Damansara, Selangor, Malaysia
| | - Yan Lin
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - De Wu
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
41
|
Yu DY, Oh SH, Kim IS, Kim GI, Kim JA, Moon YS, Jang JC, Lee SS, Jung JH, Park J, Cho KK. Intestinal microbial composition changes induced by Lactobacillus plantarum GBL 16, 17 fermented feed and intestinal immune homeostasis regulation in pigs. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:1184-1198. [PMID: 36812041 PMCID: PMC9890339 DOI: 10.5187/jast.2022.e89] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 12/14/2022]
Abstract
In this study, Rubus coreanus (R. coreanus) byproducts with high polyphenol content were fermented with R. coreanus-derived lactic acid bacteria (Lactobacillus plantarum GBL 16 and 17). Then the effect of R. coreanus-derived lactic acid bacteria fermented feed (RC-LAB fermented feed) with probiotics (Bacillus subtills, Aspergillus oryzae, Yeast) as a feed additive for pigs on the composition of intestinal microbes and the regulation of intestinal immune homeostasis was investigated. Seventy-two finishing Berkshire pigs were randomly allotted to four different treatment groups and 18 replicates. RC-LAB fermented feed with probiotics increased the genera Lactobacillus, Streptococcus, Mitsuokella, Prevotella, Bacteroides spp., Roseburia spp., and Faecalibacterium prausnitzii, which are beneficial bacteria of the digestive tract of pigs. Also, RC-LAB fermented feed with probiotics decreased the genera Clostridium, Terrisporobacter, Romboutsia, Kandleria, Megasphaera and Escherichia, which are harmful bacteria. In particular, the relative abundance of the genera Lactobacillus and Streptococcus increased by an average of 8.51% and 4.68% in the treatment groups and the classes Clostridia and genera Escherichia decreased by an average of 27.05% and 2.85% in the treatment groups. In mesenteric lymph nodes (MLN) and spleens, the mRNA expression of transcription factors and cytokines in Th1 and Treg cells increased and the mRNA expression of Th2 and Th17 transcription factors and cytokines decreased, indicating a regulatory effect on intestinal immune homeostasis. RC-LAB fermented feed regulates gut immune homeostasis by influencing the composition of beneficial and detrimental microorganisms in the gut and regulating the balance of Th1/Th2 and Th17/Treg cells.
Collapse
Affiliation(s)
- Da Yoon Yu
- Division of Animal Science, Gyeongsang
National University, Jinju 52725, Korea
| | - Sang-Hyon Oh
- Division of Animal Science, Gyeongsang
National University, Jinju 52725, Korea
| | - In Sung Kim
- Division of Animal Science, Gyeongsang
National University, Jinju 52725, Korea
| | - Gwang Il Kim
- Division of Animal Science, Gyeongsang
National University, Jinju 52725, Korea
| | - Jeong A Kim
- Division of Animal Science, Gyeongsang
National University, Jinju 52725, Korea
| | - Yang Soo Moon
- Division of Animal Bioscience &
Integrated Biotechnology, Gyeongsang National University,
Jinju 52725, Korea
| | - Jae Cheol Jang
- Division of Animal Science, Gyeongsang
National University, Jinju 52725, Korea
| | - Sang Suk Lee
- Department of Animal Science and
Technology, Sunchon National University, Sunchon 57922,
Korea
| | | | - Jun Park
- Department of Animal Biotechnology,
Jeonbok National University, Jeonju 54896, Korea
| | - Kwang Keun Cho
- Division of Animal Science, Gyeongsang
National University, Jinju 52725, Korea,Corresponding author: Kwang Keun Cho
Division of Animal Science, Gyeongsang National University, Jinju 52725, Korea.
Tel: +82-55-772-3286 E-mail:
| |
Collapse
|