1
|
AL Qtaish N, Gallego I, Paredes AJ, Villate-Beitia I, Soto-Sánchez C, Martínez-Navarrete G, Sainz-Ramos M, Lopez-Mendez TB, Fernández E, Puras G, Pedraz JL. Nanodiamond Integration into Niosomes as an Emerging and Efficient Gene Therapy Nanoplatform for Central Nervous System Diseases. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13665-13677. [PMID: 35289181 PMCID: PMC8949757 DOI: 10.1021/acsami.2c02182] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Nanodiamonds (NDs) are promising materials for gene delivery because of their unique physicochemical and biological features, along with their possibility of combination with other nonviral systems. Our aim was to evaluate the biophysical performance of NDs as helper components of niosomes, named nanodiasomes, to address a potential nonviral gene delivery nanoplatform for therapeutic applications in central nervous system (CNS) diseases. Nanodiasomes, niosomes, and their corresponding complexes, obtained after genetic material addition at different ratios (w/w), were evaluated in terms of physicochemical properties, cellular uptake, intracellular disposition, biocompatibility, and transfection efficiency in HEK-293 cells. Nanodiasomes, niosomes, and complexes fulfilled the physicochemical features for gene therapy applications. Biologically, the incorporation of NDs into niosomes enhanced 75% transfection efficiency (p < 0.001) and biocompatibility (p < 0.05) to values over 90%, accompanied by a higher cellular uptake (p < 0.05). Intracellular trafficking analysis showed higher endocytosis via clathrins (p < 0.05) in nanodiaplexes compared with nioplexes, followed by higher lysosomal colocalization (p < 0.05), that coexisted with endosomal escape properties, whereas endocytosis mediated by caveolae was the most efficient pathway in the case of nanodiaplexes. Moreover, studies in CNS primary cells revealed that nanodiaplexes successfully transfected neuronal and retinal cells. This proof-of-concept study points out that ND integration into niosomes represents an encouraging nonviral nanoplatform strategy for the treatment of CNS diseases by gene therapy.
Collapse
Affiliation(s)
- Nuseibah AL Qtaish
- NanoBioCel
Research Group, Laboratory of Pharmacy and Pharmaceutical Technology,
Faculty of Pharmacy, University of the Basque
Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Networking
Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Idoia Gallego
- NanoBioCel
Research Group, Laboratory of Pharmacy and Pharmaceutical Technology,
Faculty of Pharmacy, University of the Basque
Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Networking
Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba,
NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Alejandro J. Paredes
- Research
and Development Unit in Pharmaceutical Technology (UNITEFA), CONICET
and Department of Pharmaceutical Sciences, Chemistry Sciences Faculty, National University of Córdoba, Haya de la Torre y Medina Allende, X5000XHUA Córdoba, Argentina
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, U.K.
| | - Ilia Villate-Beitia
- NanoBioCel
Research Group, Laboratory of Pharmacy and Pharmaceutical Technology,
Faculty of Pharmacy, University of the Basque
Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Networking
Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba,
NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Cristina Soto-Sánchez
- Networking
Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Neuroprothesis
and Neuroengineering Research Group, Institute
of Bioengineering, Miguel Hernández University, Avenida de la Universidad, 03202 Elche, Spain
| | - Gema Martínez-Navarrete
- Networking
Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Neuroprothesis
and Neuroengineering Research Group, Institute
of Bioengineering, Miguel Hernández University, Avenida de la Universidad, 03202 Elche, Spain
| | - Myriam Sainz-Ramos
- NanoBioCel
Research Group, Laboratory of Pharmacy and Pharmaceutical Technology,
Faculty of Pharmacy, University of the Basque
Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Networking
Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba,
NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Tania B. Lopez-Mendez
- NanoBioCel
Research Group, Laboratory of Pharmacy and Pharmaceutical Technology,
Faculty of Pharmacy, University of the Basque
Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Networking
Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba,
NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Eduardo Fernández
- Networking
Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Neuroprothesis
and Neuroengineering Research Group, Institute
of Bioengineering, Miguel Hernández University, Avenida de la Universidad, 03202 Elche, Spain
| | - Gustavo Puras
- NanoBioCel
Research Group, Laboratory of Pharmacy and Pharmaceutical Technology,
Faculty of Pharmacy, University of the Basque
Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Networking
Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba,
NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - José Luis Pedraz
- NanoBioCel
Research Group, Laboratory of Pharmacy and Pharmaceutical Technology,
Faculty of Pharmacy, University of the Basque
Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Networking
Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba,
NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| |
Collapse
|
2
|
Baron Y, Sens J, Lange L, Nassauer L, Klatt D, Hoffmann D, Kleppa MJ, Barbosa PV, Keisker M, Steinberg V, Suerth JD, Vondran FW, Meyer J, Morgan M, Schambach A, Galla M. Improved alpharetrovirus-based Gag.MS2 particles for efficient and transient delivery of CRISPR-Cas9 into target cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:810-823. [PMID: 35141043 PMCID: PMC8801357 DOI: 10.1016/j.omtn.2021.12.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/29/2021] [Indexed: 12/12/2022]
Abstract
DNA-modifying technologies, such as the CRISPR-Cas9 system, are promising tools in the field of gene and cell therapies. However, high and prolonged expression of DNA-modifying enzymes may cause cytotoxic and genotoxic side effects and is therefore unwanted in therapeutic approaches. Consequently, development of new and potent short-term delivery methods is of utmost importance. Recently, we developed non-integrating gammaretrovirus- and MS2 bacteriophage-based Gag.MS2 (g.Gag.MS2) particles for transient transfer of non-retroviral CRISPR-Cas9 RNA into target cells. In the present study, we further improved the technique by transferring the system to the alpharetroviral vector platform (a.Gag.MS2), which significantly increased CRISPR-Cas9 delivery into target cells and allowed efficient targeted knockout of endogenous TP53/Trp53 genes in primary murine fibroblasts as well as primary human fibroblasts, hepatocytes, and cord-blood-derived CD34+ stem and progenitor cells. Strikingly, co-packaging of Cas9 mRNA and multiple single guide RNAs (sgRNAs) into a.Gag.MS2 chimera displayed efficient targeted knockout of up to three genes. Co-transfection of single-stranded DNA donor oligonucleotides during CRISPR-Cas9 particle production generated all-in-one particles, which mediated up to 12.5% of homology-directed repair in primary cell cultures. In summary, optimized a.Gag.MS2 particles represent a versatile tool for short-term delivery of DNA-modifying enzymes into a variety of target cells, including primary murine and human cells.
Collapse
Affiliation(s)
- Yvonne Baron
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Johanna Sens
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Lucas Lange
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Larissa Nassauer
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Denise Klatt
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Dirk Hoffmann
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Marc-Jens Kleppa
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Philippe Vollmer Barbosa
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover 30625, Germany
| | - Maximilian Keisker
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Viviane Steinberg
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Julia D. Suerth
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Florian W.R. Vondran
- ReMediES, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover 30625, Germany
- German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover Medical School, Hannover 30625, Germany
| | - Johann Meyer
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| |
Collapse
|
3
|
Cruz-Acuña M, Kakwere H, Lewis JS. The roadmap to micro: Generation of micron-sized polymeric particles using a commercial microfluidic system. J Biomed Mater Res A 2022; 110:1121-1133. [PMID: 35073454 PMCID: PMC8934288 DOI: 10.1002/jbm.a.37358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 11/08/2022]
Abstract
Microfluidic-assisted particle fabrication provides a route to circumvent the disadvantages associated with traditional methods of polymeric particle generation, such as low drug loading efficiency, challenges in controlling encapsulated drug release rates, batch-to-batch variability in particle physical properties and formulation instability. However, this approach primarily produces particles with nanometer size dimensions, which limits drug delivery modalities. Herein, we systematically studied parameters for the generation of micron-sized poly(lactic-co-glycolic) acid (PLGA) particles using a microfluidic system, the NanoAssemblr benchtop. Initially, we used two organic solvents that have been reported suitable for the fabrication of PLGA nanoparticles - acetone and acetonitrile. Subsequently, we methodically manipulated polymer concentration, organic: aqueous flow rate ratios, total flow rate, organic phase composition, and surfactant concentration to develop a route for the fabrication of micron-sized PLGA particles. Further, we incorporated hydroxychloroquine (HCQ), a clinically approved drug for malaria and lymphoma, and measured how its incorporation impacted particle physicochemical properties. Briefly, altering the organic phase composition by including ethyl acetate (less polar solvent), resulted in micron-scale particles, as well as increased polydispersity indexes (PDIs). Adjusting the surfactant concentration of poly vinyl alcohol (PVA) after the addition of these solvent mixtures rendered large particles with lower PDI variability. Moreover, encapsulation of HCQ influenced particle hydrodynamic diameter and PDI in a PVA concentration dependent manner. Finally, we demonstrated that unloaded and HCQ-loaded microparticles did not affect the viability of RAW 264.7 macrophages. This study provides an itinerary for fabricating biocompatible, drug-loaded, micron-sized polymeric particles, particularly when the drug of interest is not readily soluble in conventional organic solvents.
Collapse
Affiliation(s)
- Melissa Cruz-Acuña
- Department of Biomedical Engineering, University of California, Davis, California, USA
| | - Hamilton Kakwere
- Department of Biomedical Engineering, University of California, Davis, California, USA
| | - Jamal S Lewis
- Department of Biomedical Engineering, University of California, Davis, California, USA
| |
Collapse
|
4
|
Application of Non-Viral Vectors in Drug Delivery and Gene Therapy. Polymers (Basel) 2021; 13:polym13193307. [PMID: 34641123 PMCID: PMC8512075 DOI: 10.3390/polym13193307] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/15/2021] [Accepted: 09/18/2021] [Indexed: 12/13/2022] Open
Abstract
Vectors and carriers play an indispensable role in gene therapy and drug delivery. Non-viral vectors are widely developed and applied in clinical practice due to their low immunogenicity, good biocompatibility, easy synthesis and modification, and low cost of production. This review summarized a variety of non-viral vectors and carriers including polymers, liposomes, gold nanoparticles, mesoporous silica nanoparticles and carbon nanotubes from the aspects of physicochemical characteristics, synthesis methods, functional modifications, and research applications. Notably, non-viral vectors can enhance the absorption of cargos, prolong the circulation time, improve therapeutic effects, and provide targeted delivery. Additional studies focused on recent innovation of novel synthesis techniques for vector materials. We also elaborated on the problems and future research directions in the development of non-viral vectors, which provided a theoretical basis for their broad applications.
Collapse
|
5
|
How Far Are Non-Viral Vectors to Come of Age and Reach Clinical Translation in Gene Therapy? Int J Mol Sci 2021; 22:ijms22147545. [PMID: 34299164 PMCID: PMC8304344 DOI: 10.3390/ijms22147545] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/10/2021] [Indexed: 01/14/2023] Open
Abstract
Efficient delivery of genetic material into cells is a critical process to translate gene therapy into clinical practice. In this sense, the increased knowledge acquired during past years in the molecular biology and nanotechnology fields has contributed to the development of different kinds of non-viral vector systems as a promising alternative to virus-based gene delivery counterparts. Consequently, the development of non-viral vectors has gained attention, and nowadays, gene delivery mediated by these systems is considered as the cornerstone of modern gene therapy due to relevant advantages such as low toxicity, poor immunogenicity and high packing capacity. However, despite these relevant advantages, non-viral vectors have been poorly translated into clinical success. This review addresses some critical issues that need to be considered for clinical practice application of non-viral vectors in mainstream medicine, such as efficiency, biocompatibility, long-lasting effect, route of administration, design of experimental condition or commercialization process. In addition, potential strategies for overcoming main hurdles are also addressed. Overall, this review aims to raise awareness among the scientific community and help researchers gain knowledge in the design of safe and efficient non-viral gene delivery systems for clinical applications to progress in the gene therapy field.
Collapse
|
6
|
Rai N, Shihan M, Seeger W, Schermuly RT, Novoyatleva T. Genetic Delivery and Gene Therapy in Pulmonary Hypertension. Int J Mol Sci 2021; 22:ijms22031179. [PMID: 33503992 PMCID: PMC7865388 DOI: 10.3390/ijms22031179] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Pulmonary hypertension (PH) is a progressive complex fatal disease of multiple etiologies. Hyperproliferation and resistance to apoptosis of vascular cells of intimal, medial, and adventitial layers of pulmonary vessels trigger excessive pulmonary vascular remodeling and vasoconstriction in the course of pulmonary arterial hypertension (PAH), a subgroup of PH. Multiple gene mutation/s or dysregulated gene expression contribute to the pathogenesis of PAH by endorsing the proliferation and promoting the resistance to apoptosis of pulmonary vascular cells. Given the vital role of these cells in PAH progression, the development of safe and efficient-gene therapeutic approaches that lead to restoration or down-regulation of gene expression, generally involved in the etiology of the disease is the need of the hour. Currently, none of the FDA-approved drugs provides a cure against PH, hence innovative tools may offer a novel treatment paradigm for this progressive and lethal disorder by silencing pathological genes, expressing therapeutic proteins, or through gene-editing applications. Here, we review the effectiveness and limitations of the presently available gene therapy approaches for PH. We provide a brief survey of commonly existing and currently applicable gene transfer methods for pulmonary vascular cells in vitro and describe some more recent developments for gene delivery existing in the field of PH in vivo.
Collapse
Affiliation(s)
- Nabham Rai
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (N.R.); (M.S.); (W.S.); (R.T.S.)
| | - Mazen Shihan
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (N.R.); (M.S.); (W.S.); (R.T.S.)
| | - Werner Seeger
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (N.R.); (M.S.); (W.S.); (R.T.S.)
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Ralph T. Schermuly
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (N.R.); (M.S.); (W.S.); (R.T.S.)
| | - Tatyana Novoyatleva
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (N.R.); (M.S.); (W.S.); (R.T.S.)
- Correspondence:
| |
Collapse
|
7
|
Pennetta C, Bono N, Ponti F, Bellucci MC, Viani F, Candiani G, Volonterio A. Multifunctional Neomycin-Triazine-Based Cationic Lipids for Gene Delivery with Antibacterial Properties. Bioconjug Chem 2021; 32:690-701. [PMID: 33470802 PMCID: PMC8154203 DOI: 10.1021/acs.bioconjchem.0c00616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
![]()
Cationic
lipids (CLs) have gained significant attention among nonviral
gene delivery vectors due to their ease of synthesis and functionalization
with multivalent moieties. In particular, there is an increasing request
for multifunctional CLs having gene delivery capacity and antibacterial
activity. Herein, we describe the design and synthesis of a novel
class of aminoglycoside (AG)-based multifunctional vectors with high
transfection efficiency and noticeable antibacterial properties. Specifically,
cationic amphiphiles were built on a triazine scaffold, allowing for
an easy derivatization with up to three potentially different substituents,
such as neomycin (Neo) that serves as the polar head and one or two
lipophilic tails, namely stearyl (ST) and oleyl (OL) alkyl chains
and cholesteryl (Chol) tail. With the aim to shed more light on the
effect of different types and numbers of lipophilic moieties on the
ability of CLs to condense and transfect cells, the performance of
Neo–triazine-based derivatives as gene delivery vectors was
evaluated and compared. The ability of Neo–triazine-based derivatives
to act as antimicrobial agents was evaluated as well. Neo–triazine-based
CLs invariably exhibited excellent DNA condensation ability, even
at a low charge ratio (CR, +/−). Besides, each derivative showed
very good transfection performance at its optimal CR on two different
cell lines, along with negligible cytotoxicity. CLs bearing symmetric
two-tailed OL proved to be the most effective in transfection. Interestingly,
Neo–triazine-based derivatives, used as either free lipids
or lipoplexes, exhibited strong antibacterial activity against Gram-negative
bacteria, especially in the case of CLs bearing one or two aliphatic
chains. Altogether, these results highlight the potential of Neo–triazine-based
derivatives as effective multifunctional nonviral gene delivery vectors.
Collapse
Affiliation(s)
- Chiara Pennetta
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Via Mancinelli 7, Milan 20131, Italy
| | - Nina Bono
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Via Mancinelli 7, Milan 20131, Italy
| | - Federica Ponti
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Via Mancinelli 7, Milan 20131, Italy.,Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Department of Min-Met-Materials Engineering & Research Center of CHU de Quebec, Division of Regenerative Medicine, Laval University, Quebec City, Quebec G1 V 0A6, Canada
| | - Maria Cristina Bellucci
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, Milan 20133, Italy
| | - Fiorenza Viani
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche "G. Natta" (SCITEC), Via Mario Bianco 9, Milan 20131, Italy
| | - Gabriele Candiani
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Via Mancinelli 7, Milan 20131, Italy
| | - Alessandro Volonterio
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Via Mancinelli 7, Milan 20131, Italy.,Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche "G. Natta" (SCITEC), Via Mario Bianco 9, Milan 20131, Italy
| |
Collapse
|
8
|
AL Qtaish N, Gallego I, Villate-Beitia I, Sainz-Ramos M, López-Méndez TB, Grijalvo S, Eritja R, Soto-Sánchez C, Martínez-Navarrete G, Fernández E, Puras G, Pedraz JL. Niosome-Based Approach for In Situ Gene Delivery to Retina and Brain Cortex as Immune-Privileged Tissues. Pharmaceutics 2020; 12:E198. [PMID: 32106545 PMCID: PMC7150807 DOI: 10.3390/pharmaceutics12030198] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 01/02/2023] Open
Abstract
Non-viral vectors have emerged as a promising alternative to viral gene delivery systems due to their safer profile. Among non-viral vectors, recently, niosomes have shown favorable properties for gene delivery, including low toxicity, high stability, and easy production. The three main components of niosome formulations include a cationic lipid that is responsible for the electrostatic interactions with the negatively charged genetic material, a non-ionic surfactant that enhances the long-term stability of the niosome, and a helper component that can be added to improve its physicochemical properties and biological performance. This review is aimed at providing recent information about niosome-based non-viral vectors for gene delivery purposes. Specially, we will discuss the composition, preparation methods, physicochemical properties, and biological evaluation of niosomes and corresponding nioplexes that result from the addition of the genetic material onto their cationic surface. Next, we will focus on the in situ application of such niosomes to deliver the genetic material into immune-privileged tissues such as the brain cortex and the retina. Finally, as future perspectives, non-invasive administration routes and different targeting strategies will be discussed.
Collapse
Affiliation(s)
- Nuseibah AL Qtaish
- NanoBioCel group, University of the Basque Country (UPV/EHU), E-01006 Vitoria-Gasteiz, Spain; (N.A.Q.); (I.G.); (I.V.-B.); (M.S.-R.); (T.B.L.-M.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-01006 Vitoria-Gasteiz, Spain
| | - Idoia Gallego
- NanoBioCel group, University of the Basque Country (UPV/EHU), E-01006 Vitoria-Gasteiz, Spain; (N.A.Q.); (I.G.); (I.V.-B.); (M.S.-R.); (T.B.L.-M.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-01006 Vitoria-Gasteiz, Spain
| | - Ilia Villate-Beitia
- NanoBioCel group, University of the Basque Country (UPV/EHU), E-01006 Vitoria-Gasteiz, Spain; (N.A.Q.); (I.G.); (I.V.-B.); (M.S.-R.); (T.B.L.-M.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-01006 Vitoria-Gasteiz, Spain
| | - Myriam Sainz-Ramos
- NanoBioCel group, University of the Basque Country (UPV/EHU), E-01006 Vitoria-Gasteiz, Spain; (N.A.Q.); (I.G.); (I.V.-B.); (M.S.-R.); (T.B.L.-M.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-01006 Vitoria-Gasteiz, Spain
| | - Tania Belén López-Méndez
- NanoBioCel group, University of the Basque Country (UPV/EHU), E-01006 Vitoria-Gasteiz, Spain; (N.A.Q.); (I.G.); (I.V.-B.); (M.S.-R.); (T.B.L.-M.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-01006 Vitoria-Gasteiz, Spain
| | - Santiago Grijalvo
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-08034 Barcelona, Spain; (S.G.); (R.E.)
- Institute for Advanced Chemistry of Catalonia, (IQAC-CSIC), E-08034 Barcelona, Spain
| | - Ramón Eritja
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-08034 Barcelona, Spain; (S.G.); (R.E.)
- Institute for Advanced Chemistry of Catalonia, (IQAC-CSIC), E-08034 Barcelona, Spain
| | - Cristina Soto-Sánchez
- Neuroprothesis and Neuroengineering Research Group, Miguel Hernández University, E-03202 Elche, Spain; (C.S.-S.); (G.M.-N.); (E.F.)
| | - Gema Martínez-Navarrete
- Neuroprothesis and Neuroengineering Research Group, Miguel Hernández University, E-03202 Elche, Spain; (C.S.-S.); (G.M.-N.); (E.F.)
- Networking Research Centre for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-03202 Elche, Spain
| | - Eduardo Fernández
- Neuroprothesis and Neuroengineering Research Group, Miguel Hernández University, E-03202 Elche, Spain; (C.S.-S.); (G.M.-N.); (E.F.)
- Networking Research Centre for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-03202 Elche, Spain
| | - Gustavo Puras
- NanoBioCel group, University of the Basque Country (UPV/EHU), E-01006 Vitoria-Gasteiz, Spain; (N.A.Q.); (I.G.); (I.V.-B.); (M.S.-R.); (T.B.L.-M.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-01006 Vitoria-Gasteiz, Spain
| | - José Luis Pedraz
- NanoBioCel group, University of the Basque Country (UPV/EHU), E-01006 Vitoria-Gasteiz, Spain; (N.A.Q.); (I.G.); (I.V.-B.); (M.S.-R.); (T.B.L.-M.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
9
|
Non-Viral in Vitro Gene Delivery: It is Now Time to Set the Bar! Pharmaceutics 2020; 12:pharmaceutics12020183. [PMID: 32098191 PMCID: PMC7076396 DOI: 10.3390/pharmaceutics12020183] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 01/31/2023] Open
Abstract
Transfection by means of non-viral gene delivery vectors is the cornerstone of modern gene delivery. Despite the resources poured into the development of ever more effective transfectants, improvement is still slow and limited. Of note, the performance of any gene delivery vector in vitro is strictly dependent on several experimental conditions specific to each laboratory. The lack of standard tests has thus largely contributed to the flood of inconsistent data underpinning the reproducibility crisis. A way researchers seek to address this issue is by gauging the effectiveness of newly synthesized gene delivery vectors with respect to benchmarks of seemingly well-known behavior. However, the performance of such reference molecules is also affected by the testing conditions. This survey points to non-standardized transfection settings and limited information on variables deemed relevant in this context as the major cause of such misalignments. This review provides a catalog of conditions optimized for the gold standard and internal reference, 25 kDa polyethyleneimine, that can be profitably replicated across studies for the sake of comparison. Overall, we wish to pave the way for the implementation of standardized protocols in order to make the evaluation of the effectiveness of transfectants as unbiased as possible.
Collapse
|
10
|
Delivery of miRNA-Targeted Oligonucleotides in the Rat Striatum by Magnetofection with Neuromag ®. Molecules 2018; 23:molecules23071825. [PMID: 30041414 PMCID: PMC6099620 DOI: 10.3390/molecules23071825] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/17/2018] [Accepted: 07/21/2018] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) regulate gene expression at posttranscriptional level by triggering RNA interference. In such a sense, aberrant expressions of miRNAs play critical roles in the pathogenesis of many disorders, including Parkinson’s disease (PD). Controlling the level of specific miRNAs in the brain is thus a promising therapeutic strategy for neuroprotection. A fundamental need for miRNA regulation (either replacing or inhibition) is a carrier capable of delivering oligonucleotides into brain cells. This study aimed to examine a polymeric magnetic particle, Neuromag®, for delivery of synthetic miRNA inhibitors in the rat central nervous system. We injected the miRNA inhibitor complexed with Neuromag® into the lateral ventricles next to the striatum, by stereotaxic surgery. Neuromag efficiently delivered oligonucleotides in the striatum and septum areas, as shown by microscopy imaging of fluorescein isothiocyanate (FITC)-labeled oligos in astrocytes and neurons. Transfected oligos showed efficacy concerning miRNA inhibition. Neuromag®-structured miR-134 antimiR (0.36 nmol) caused a significant 0.35 fold decrease of striatal miR-134, as revealed by real-time quantitative polymerase chain reaction (RT-qPCR). In conclusion, the polymeric magnetic particle Neuromag® efficiently delivered functional miRNA inhibitors in brain regions surrounding lateral ventricles, particularly the striatum. This delivery system holds potential as a promising miRNA-based disease-modifying drug and merits further pre-clinical studies using animal models of PD.
Collapse
|
11
|
Kaemmerer WF. How will the field of gene therapy survive its success? Bioeng Transl Med 2018; 3:166-177. [PMID: 30065971 PMCID: PMC6063870 DOI: 10.1002/btm2.10090] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 02/01/2023] Open
Abstract
In August 2017, for the first time, a gene therapy was approved for market release in the United States. That approval was followed by two others before the end of the year. This article cites primary literature, review articles concerning particular biotechnologies, and press releases by the FDA and others in order to provide an overview of the current status of the field of gene therapy with respect to its translation into practice. Technical hurdles that have been overcome in the past decades are summarized, as are hurdles that need to be the subject of continued research. Then, some social and practical challenges are identified that must be overcome if the field of gene therapy, having survived past failures, is to achieve not only technical and clinical but also market success. One of these, the need for an expanded capacity for the manufacturing of viral vectors to be able to meet the needs of additional gene therapies that will be coming soon, is a challenge that the talents of current and future bioengineers may help address.
Collapse
|
12
|
Kodama Y, Nishigaki W, Nakamura T, Fumoto S, Nishida K, Kurosaki T, Nakagawa H, Kitahara T, Muro T, Sasaki H. Splenic Delivery System of pDNA through Complexes Electrostatically Constructed with Protamine and Chondroitin Sulfate. Biol Pharm Bull 2018; 41:342-349. [DOI: 10.1248/bpb.b17-00667] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yukinobu Kodama
- Department of Hospital Pharmacy, Nagasaki University Hospital
| | - Waka Nishigaki
- Department of Hospital Pharmacy, Nagasaki University Hospital
| | | | - Shintaro Fumoto
- Department of Pharmaceutics, Graduate School of Biomedical Sciences, Nagasaki University
| | - Koyo Nishida
- Department of Pharmaceutics, Graduate School of Biomedical Sciences, Nagasaki University
| | | | - Hiroo Nakagawa
- Department of Hospital Pharmacy, Nagasaki University Hospital
| | | | - Takahiro Muro
- Department of Hospital Pharmacy, Nagasaki University Hospital
| | - Hitoshi Sasaki
- Department of Hospital Pharmacy, Nagasaki University Hospital
| |
Collapse
|
13
|
Pezzoli D, Giupponi E, Mantovani D, Candiani G. Size matters for in vitro gene delivery: investigating the relationships among complexation protocol, transfection medium, size and sedimentation. Sci Rep 2017; 7:44134. [PMID: 28272487 PMCID: PMC5341125 DOI: 10.1038/srep44134] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 02/03/2017] [Indexed: 02/06/2023] Open
Abstract
Although branched and linear polyethylenimines (bPEIs and lPEIs) are gold standard transfectants, a systematic analysis of the effects of the preparation protocol of polyplexes and the composition of the transfection medium on their physicochemical behaviour and effectiveness in vitro have been much neglected, undermining in some way the identification of precise structure-function relationships. This work aimed to address these issues. bPEI/DNA and lPEI/DNA, prepared using two different modes of addition of reagents, gave rise to polyplexes with exactly the same chemical composition but differing in dimensions. Upon dilution in serum-free medium, the size of any kind of polyplex promptly rose over time while remained invariably stable in complete DMEM. Of note, the bigger the dimension of polyplexes (in the nano- to micrometer range), the greater their efficiency in vitro. Besides, centrifugal sedimentation of polyplexes displaying different dimensions to speed up and enhance their settling onto cells boosted transfection efficiencies. Conversely, transgene expression was significantly blunted in cells held upside-down and transfected, definitively pointing out the impact of gravitational sedimentation of polyplexes on their transfection efficiency. Overall, much more attention must be paid to the actual polyplex size that relies on the complexation conditions and the transfection medium.
Collapse
Affiliation(s)
- Daniele Pezzoli
- Research Unit Milano Politecnico, National Interuniversity Consortium of Materials Science and Technology - INSTM, Via Mancinelli 7, Milan 20131, Italy.,Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Mining, Metallurgical and Materials Engineering &CHU de Quebec Research Centre, Laval University, 10 rue de l'Espinay, Quebec City (QC) G1L 3L5, Canada
| | - Elisa Giupponi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, Milan 20131, Italy
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Mining, Metallurgical and Materials Engineering &CHU de Quebec Research Centre, Laval University, 10 rue de l'Espinay, Quebec City (QC) G1L 3L5, Canada
| | - Gabriele Candiani
- Research Unit Milano Politecnico, National Interuniversity Consortium of Materials Science and Technology - INSTM, Via Mancinelli 7, Milan 20131, Italy.,Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, Milan 20131, Italy
| |
Collapse
|
14
|
Villate-Beitia I, Zarate J, Puras G, Pedraz JL. Gene delivery to the lungs: pulmonary gene therapy for cystic fibrosis. Drug Dev Ind Pharm 2017; 43:1071-1081. [PMID: 28270008 DOI: 10.1080/03639045.2017.1298122] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cystic fibrosis (CF) is a monogenic autosomal recessive disorder where the defective gene, the cystic fibrosis transmembrane conductance regulator (CFTR), is well identified. Moreover, the respiratory tract can be targeted through noninvasive aerosolized formulations for inhalation. Therefore, gene therapy is considered a plausible strategy to address this disease. Conventional gene therapy strategies rely on the addition of a correct copy of the CFTR gene into affected cells in order to restore the channel activity. In recent years, genome correction strategies have emerged, such as zinc-finger nucleases, transcription activator-like effector nucleases and clustered regularly interspaced short palindromic repeats associated to Cas9 nucleases. These gene editing tools aim to repair the mutated gene at its original genomic locus with high specificity. Besides, the success of gene therapy critically depends on the nucleic acids carriers. To date, several clinical studies have been carried out to add corrected copies of the CFTR gene into target cells using viral and non-viral vectors, some of them with encouraging results. Regarding genome editing systems, preliminary in vitro studies have been performed in order to repair the CFTR gene. In this review, after briefly introducing the basis of CF, we discuss the up-to-date gene therapy strategies to address the disease. The review focuses on the main factors to take into consideration when developing gene delivery strategies, such as the design of vectors and plasmid DNA, in vitro/in vivo tests, translation to human use, administration methods, manufacturing conditions and regulatory issues.
Collapse
Affiliation(s)
- Ilia Villate-Beitia
- a NanoBioCel Group, University of the Basque Country (UPV/EHU) , Vitoria-Gasteiz , Spain.,b Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , Vitoria-Gasteiz , Spain
| | - Jon Zarate
- a NanoBioCel Group, University of the Basque Country (UPV/EHU) , Vitoria-Gasteiz , Spain.,b Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , Vitoria-Gasteiz , Spain
| | - Gustavo Puras
- a NanoBioCel Group, University of the Basque Country (UPV/EHU) , Vitoria-Gasteiz , Spain.,b Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , Vitoria-Gasteiz , Spain
| | - José Luis Pedraz
- a NanoBioCel Group, University of the Basque Country (UPV/EHU) , Vitoria-Gasteiz , Spain.,b Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , Vitoria-Gasteiz , Spain
| |
Collapse
|
15
|
Promoter, transgene, and cell line effects in the transfection of mammalian cells using PDMAEMA-based nano-stars. ACTA ACUST UNITED AC 2016; 11:53-61. [PMID: 28352540 PMCID: PMC5042300 DOI: 10.1016/j.btre.2016.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/09/2016] [Accepted: 05/09/2016] [Indexed: 11/23/2022]
Abstract
4 cell lines, 4 promoters, and 3 gene products were studied, i.e. 48 combinations. Distinct cell line depended effects were observed. Jurkat cell results tended to differ from that obtained with the other cells. Co-transfection works well in CHO cells, but fails in up to 80% of Jurkat cells. High transfection efficiency in CHO and HEK cells is maintained in spite of pDNA dilution.
Non-viral transfection protocols are typically optimized using standard cells and reporter proteins, potentially underestimating cellular or transgene effects. Here such effects were studied for two human (Jurkat, HEK-293) and two rodent (CHO-K1, L929) cell lines and three fluorescent reporter proteins. Expression of the enhanced green fluorescent protein (EGFP) was studied under the control of the human elongation factor 1 alpha promoter and three viral promoters (SV40, SV40/enhancer, CMV), that of ZsYellow1 (yellow fluorescence) and mCherry (red fluorescence) for the CMV promoter. Results varied with the cell line, in particular for the Jurkat cells. Pair-wise co-transfection of the CMV controlled transgenes resulted in a significant fraction of monochromatic cells (EGFP for EGFP/YFP and EGFP/RFP co-transfections, YFP in case of YFP/RFP co-transfections). Only Jurkat cells were almost incapable of expressing YFP. Dilution of the plasmid DNA with a non-expressed plasmid showed cell line dependent effects on transfection efficiency and/or expression levels.
Collapse
|
16
|
Raup A, Stahlschmidt U, Jérôme V, Synatschke CV, Müller AHE, Freitag R. Influence of Polyplex Formation on the Performance of Star-Shaped Polycationic Transfection Agents for Mammalian Cells. Polymers (Basel) 2016; 8:polym8060224. [PMID: 30979314 PMCID: PMC6432395 DOI: 10.3390/polym8060224] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/30/2016] [Accepted: 06/01/2016] [Indexed: 12/19/2022] Open
Abstract
Genetic modification (“transfection”) of mammalian cells using non-viral, synthetic agents such as polycations, is still a challenge. Polyplex formation between the DNA and the polycation is a decisive step in such experiments. Star-shaped polycations have been proposed as superior transfection agents, yet have never before been compared side-by-side, e.g., in view of structural effects. Herein four star-shaped polycationic structures, all based on (2-dimethylamino) ethyl methacrylate (DMAEMA) building blocks, were investigated for their potential to deliver DNA to adherent (CHO, L929, HEK-293) and non-adherent (Jurkat, primary human T lymphocytes) mammalian cells. The investigated vectors included three structures where the PDMAEMA arms (different arm length and grafting densities) had been grown from a center silsesquioxane or silica-coated γ-Fe2O3-core and one micellar structure self-assembled from poly(1,2-butadiene)-block PDMAEMA polymers. All nano-stars combined high transfection potential with excellent biocompatibility. The micelles slightly outperformed the covalently linked agents. For method development and optimization, the absolute amount of polycation added to the cells was more important than the N/P-ratio (ratio between polycation nitrogen and DNA phosphate), provided a lower limit was passed and enough polycation was present to overcompensate the negative charge of the plasmid DNA. Finally, the matrix (NaCl vs. HEPES-buffered glucose solution), but also the concentrations adjusted during polyplex formation, affected the results.
Collapse
Affiliation(s)
- Alexander Raup
- Process Biotechnology, University of Bayreuth, 95440 Bayreuth, Germany.
| | | | - Valérie Jérôme
- Process Biotechnology, University of Bayreuth, 95440 Bayreuth, Germany.
| | - Christopher V Synatschke
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, 60611 IL, USA.
| | - Axel H E Müller
- Institute of Organic Chemistry, Johannes-Gutenberg-University, 55099 Mainz, Germany.
| | - Ruth Freitag
- Process Biotechnology, University of Bayreuth, 95440 Bayreuth, Germany.
| |
Collapse
|
17
|
Agirre M, Ojeda E, Zarate J, Puras G, Grijalvo S, Eritja R, García del Caño G, Barrondo S, González-Burguera I, López de Jesús M, Sallés J, Pedraz JL. New Insights into Gene Delivery to Human Neuronal Precursor NT2 Cells: A Comparative Study between Lipoplexes, Nioplexes, and Polyplexes. Mol Pharm 2015; 12:4056-66. [DOI: 10.1021/acs.molpharmaceut.5b00496] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Mireia Agirre
- NanoBioCel
Group, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Edilberto Ojeda
- NanoBioCel
Group, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Jon Zarate
- NanoBioCel
Group, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Gustavo Puras
- NanoBioCel
Group, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Santiago Grijalvo
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
- Institute of Advanced Chemistry of Catalonia, IQAC−CSIC, Barcelona, Spain
| | - Ramón Eritja
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
- Institute of Advanced Chemistry of Catalonia, IQAC−CSIC, Barcelona, Spain
| | - Gontzal García del Caño
- Department
of Neurosciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Sergio Barrondo
- Department
of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Imanol González-Burguera
- Department
of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Maider López de Jesús
- Department
of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Joan Sallés
- Department
of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - José Luis Pedraz
- NanoBioCel
Group, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| |
Collapse
|
18
|
Chakraborty S, Haque M, Banu L. Gene therapy: A veracity or myth! ACTA MEDICA INTERNATIONAL 2015. [DOI: 10.5530/ami.2015.4.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
19
|
Kodama Y, Ohkubo C, Kurosaki T, Egashira K, Sato K, Fumoto S, Nishida K, Higuchi N, Kitahara T, Nakamura T, Sasaki H. Secure and effective gene delivery system of plasmid DNA coated by polynucleotide. J Drug Target 2014; 23:43-51. [PMID: 25148610 DOI: 10.3109/1061186x.2014.950665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Polynucleotides are anionic macromolecules which are expected to transfer into the targeted cells through specific uptake mechanisms. So, we developed polynucleotides coating complexes of plasmid DNA (pDNA) and polyethylenimine (PEI) for a secure and efficient gene delivery system and evaluated their usefulness. Polyadenylic acid (polyA), polyuridylic acid (polyU), polycytidylic acid (polyC), and polyguanylic acid (polyG) were examined as the coating materials. pDNA/PEI/polyA, pDNA/PEI/polyU, and pDNA/PEI/polyC complexes formed nanoparticles with a negative surface charge although pDNA/PEI/polyG was aggregated. The pDNA/PEI/polyC complex showed high transgene efficiency in B16-F10 cells although there was little efficiency in pDNA/PEI/polyA and pDNA/PEI/polyU complexes. An inhibition study strongly indicated the specific uptake mechanism of pDNA/PEI/polyC complex. Polynucleotide coating complexes had lower cytotoxicity than pDNA/PEI complex. The pDNA/PEI/polyC complex showed high gene expression selectively in the spleen after intravenous injection into mice. The pDNA/PEI/polyC complex showed no agglutination with erythrocytes and no acute toxicity although these were observed in pDNA/PEI complex. Thus, we developed polynucleotide coating complexes as novel vectors for clinical gene therapy, and the pDNA/PEI/polyC complex as a useful candidate for a gene delivery system.
Collapse
Affiliation(s)
- Yukinobu Kodama
- Department of Hospital Pharmacy, Nagasaki University Hospital , Nagasaki , Japan and
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Cationic polyene phospholipids as DNA carriers for ocular gene therapy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:703253. [PMID: 25147812 PMCID: PMC4131563 DOI: 10.1155/2014/703253] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/18/2014] [Indexed: 11/17/2022]
Abstract
Recent success in the treatment of congenital blindness demonstrates the potential of ocular gene therapy as a therapeutic approach. The eye is a good target due to its small size, minimal diffusion of therapeutic agent to the systemic circulation, and low immune and inflammatory responses. Currently, most approaches are based on viral vectors, but efforts continue towards the synthesis and evaluation of new nonviral carriers to improve nucleic acid delivery. Our objective is to evaluate the efficiency of novel cationic retinoic and carotenoic glycol phospholipids, designated C20-18, C20-20, and C30-20, to deliver DNA to human retinal pigmented epithelium (RPE) cells. Liposomes were produced by solvent evaporation of ethanolic mixtures of the polyene compounds and coformulated with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) or cholesterol (Chol). Addition of DNA to the liposomes formed lipoplexes, which were characterized for binding, size, biocompatibility, and transgene efficiency. Lipoplex formulations of suitable size and biocompatibility were assayed for DNA delivery, both qualitatively and quantitatively, using RPE cells and a GFP-encoding plasmid. The retinoic lipoplex formulation with DOPE revealed a transfection efficiency comparable to the known lipid references 3β-[N-(N′,N′-dimethylaminoethane)-carbamoyl]-cholesterol (DC-Chol) and 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine (EPC) and GeneJuice. The results demonstrate that cationic polyene phospholipids have potential as DNA carriers for ocular gene therapy.
Collapse
|
21
|
New progress in angiogenesis therapy of cardiovascular disease by ultrasound targeted microbubble destruction. BIOMED RESEARCH INTERNATIONAL 2014; 2014:872984. [PMID: 24900995 PMCID: PMC4037580 DOI: 10.1155/2014/872984] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 03/26/2014] [Indexed: 02/08/2023]
Abstract
Angiogenesis plays a vital part in the pathogenesis and treatment of cardiovascular disease and has become one of the hotspots that are being discussed in the past decades. At present, the promising angiogenesis therapies are gene therapy and stem cell therapy. Besides, a series of studies have shown that the ultrasound targeted microbubble destruction (UTMD) was a novel gene delivery system, due to its advantages of noninvasiveness, low immunogenicity and toxicity, repeatability and temporal and spatial target specificity; UTMD has also been used for angiogenesis therapy of cardiovascular disease. In this review, we mainly discuss the combination of UTMD and gene therapy or stem cell therapy which is applied in angiogenesis therapy in recent researches, and outline the future challenges and good prospects of these approaches.
Collapse
|
22
|
Shcharbin D, Shakhbazau A, Bryszewska M. Poly(amidoamine) dendrimer complexes as a platform for gene delivery. Expert Opin Drug Deliv 2013; 10:1687-98. [PMID: 24168461 DOI: 10.1517/17425247.2013.853661] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Gene therapy is one of the most effective ways to treat major infectious diseases, cancer and genetic disorders. It is based on several viral and non-viral systems for nucleic acid delivery. The number of clinical trials based on application of non-viral drug and gene delivery systems is rapidly increasing. AREAS COVERED This review discusses and summarizes recent advances in poly(amidoamine) dendrimers as effective gene carriers in vitro and in vivo, and their advantages and disadvantages relative to viral vectors and other non-viral systems (liposomes, linear polymers) are considered. EXPERT OPINION In this regard, dendrimers are non-immunogenic and have the highest efficiency of transfection among other non-viral systems, and none of the drawbacks characteristic for viral systems. The toxicity of dendrimers both in vitro and in vivo is an important question that has been addressed on many occasions. Several non-toxic and efficient multifunctional dendrimer-based conjugates for gene delivery, along with modifications to improve transfection efficiency while decreasing cytotoxicity, are discussed. Twelve paradigms that affected the development of dendrimer-based gene delivery are described. The conclusion is that dendrimers are promising candidates for gene delivery, but this is just the beginning and further studies are required before using them in human gene therapy.
Collapse
Affiliation(s)
- Dzmitry Shcharbin
- Institute of Biophysics and Cell Engineering of NASB , Minsk , Belarus
| | | | | |
Collapse
|
23
|
Ziraksaz Z, Nomani A, Soleimani M, Bakhshandeh B, Arefian E, Haririan I, Tabbakhian M. Evaluation of cationic dendrimer and lipid as transfection reagents of short RNAs for stem cell modification. Int J Pharm 2013; 448:231-8. [PMID: 23535347 DOI: 10.1016/j.ijpharm.2013.03.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 03/07/2013] [Accepted: 03/16/2013] [Indexed: 12/20/2022]
Abstract
Nowadays a large number of clinical trials suffer from lacking an efficient method for drug delivery into target cells with minimal side effects. Due to the great significance of this issue in novel and effective therapies, more attempts are required in order to distinguish better conditions for biomedical drug delivery. Since embryonic stem cells (ESCs) are under scrutiny of many new studies, development of novel methods for their genetical and functional modifications is of great value. On the other hand, the application of short nucleic acids in new therapeutic approaches is increasing. In this study the efficiency of small interfering RNA (siRNA) uptake with two transfection reagents generation five of polyamidoamine dendrimer (PAMAM G5) as a cationic dendrimer and N-[1-(2,3-dioleoyloxy)]-N,N,N-trimethylammonium propane methyl-sulfate (DOTAP) as a cationic lipid and one commercially available reagent were evaluated in mouse ESCs using flow cytometry. Prior to the cellular investigations; atomic force microscopy; gel electrophoresis; siRNA binding and release assays; and size and zeta potential measurements were utilized to characterize the physicochemical properties of reagent-siRNA nano-complexes. The safety of the nano-complexes was subsequently assessed by MTT assay. Functional effects of siRNA (complementary strand for OCT4 transcript) transfection in ESCs with the mentioned reagents were analyzed using a quantitative real-time polymerase chain reaction (qPCR). Surprisingly DOTAP at higher molar ratios and PAMAM at lower molar ratios could successfully knock down the OCT4 transcription relatively better than commercial reagent. Our findings supported the appropriate efficiency of the mentioned transfection reagents for short nucleic acid transfection. From a clinical point of view, this research helps allocation of short nucleic acids into stem cells therapies.
Collapse
Affiliation(s)
- Zarrintaj Ziraksaz
- Department of Pharmaceutics and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | | | | | | | | |
Collapse
|