1
|
Xie L, Wang Y, Wan A, Huang L, Wang Q, Tang W, Qi X, Hu X. Research trends of neoadjuvant therapy for breast cancer: A bibliometric analysis. Hum Vaccin Immunother 2025; 21:2460272. [PMID: 39904891 PMCID: PMC11801352 DOI: 10.1080/21645515.2025.2460272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/06/2025] [Accepted: 01/25/2025] [Indexed: 02/06/2025] Open
Abstract
The approach of neoadjuvant therapy for breast cancer, which involves administering systemic treatment prior to primary surgery, has undergone substantial advancements in recent decades. This strategy is intended to reduce tumor size, thereby enabling less invasive surgical procedures and enhancing patient outcomes. This study presents a comprehensive bibliometric analysis of research trends in neoadjuvant therapy for breast cancer from 2009 to 2024. Using data extracted from the Web of Science Core Collection, a total of 3,674 articles were analyzed to map the research landscape in this field. The analysis reveals a steady increase in publication output, peaking in 2022, with the United States and China identified as the leading contributors. Key institutions, such as the University of Texas System and MD Anderson Cancer Center, have been instrumental in advancing the research on neoadjuvant therapy. The study also highlights the contributions of influential authors like Sibylle Loibl and Gunter von Minckwitz, as well as major journals such as the Journal of Clinical Oncology. Emerging research topics, including immunotherapy, liquid biopsy, and artificial intelligence, are gaining prominence and represent potential future directions for clinical applications. This bibliometric analysis provides critical insights into global research trends, key contributors, and future developments in the field of neoadjuvant therapy for breast cancer, offering a foundation for future research and clinical practice advancements.
Collapse
Affiliation(s)
- Laiping Xie
- Department of Nuclear Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yuhang Wang
- Department of Gastroenterology, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Andi Wan
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis, Chongqing, China
| | - Lin Huang
- Department of Radiology, People’s Hospital of Xingyi, Guizhou, China
| | - Qing Wang
- Institute of Medical Information, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wanyan Tang
- Department of Oncology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Xiaowei Qi
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis, Chongqing, China
| | - Xiaofei Hu
- Department of Nuclear Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
2
|
Loughrey CF, Maguire S, Dłotko P, Bai L, Orr N, Jurek-Loughrey A. A novel method for subgroup discovery in precision medicine based on topological data analysis. BMC Med Inform Decis Mak 2025; 25:139. [PMID: 40102808 DOI: 10.1186/s12911-025-02852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/03/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND The Mapper algorithm is a data mining topological tool that can help us to obtain higher level understanding of disease by visualising the structure of patient data as a similarity graph. It has been successfully applied for exploratory analysis of cancer data in the past, delivering several significant subgroup discoveries. Using the Mapper algorithm in practice requires setting up multiple parameters. The graph then needs to be manually analysed according to a research question at hand. It has been highlighted in the literature that Mapper's parameters have significant impact on the output graph shape and there is no established way to select their optimal values. Hence while using the Mapper algorithm, different parameter values and consequently different output graphs need to be studied. This prevents routine application of the Mapper algorithm in real world settings. METHODS We propose a new algorithm for subgroup discovery within the Mapper graph. We refer to the task as hotspot detection as it is designed to identify homogenous and geometrically compact subsets of patients, which are distinct with respect to their clinical or molecular profiles (e.g. survival). Furthermore, we propose to include the existence of a hotspot as a criterion while searching the parameter space, addressing one of the key limitations of the Mapper algorithm (i.e. parameter selection). RESULTS Two experiments were performed to demonstrate the efficacy of the algorithm, including an artificial hotspot in the Two Circles dataset and a real world case study of subgroup discovery in oestrogen receptor-positive breast cancer. Our hotspot detection algorithm successfully identified graphs containing homogenous communities of nodes within the Two Circles dataset. When applied to gene expression data of ER+ breast cancer patients, appropriate parameters were identified to generate a Mapper graph revealing a hotspot of ER+ patients with poor prognosis and characteristic patterns of gene expression. This was subsequently confirmed in an independent breast cancer dataset. CONCLUSIONS Our proposed method can be effectively applied for subgroup discovery with pathology data. It allows us to find optimal parameters of the Mapper algorithm, bridging the gap between its potential and the translational research.
Collapse
Affiliation(s)
- Ciara F Loughrey
- School of Electronics, Electrical Engineering and Computer Science, Queen's University Belfast, Belfast, UK
| | - Sarah Maguire
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Paweł Dłotko
- Dioscuri Centre in Topological Data Analysis, Mathematical Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Lu Bai
- School of Electronics, Electrical Engineering and Computer Science, Queen's University Belfast, Belfast, UK
| | - Nick Orr
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Anna Jurek-Loughrey
- School of Electronics, Electrical Engineering and Computer Science, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
3
|
Edvall C, Kale N, Tani S, Ambhore S, Hossain R, Ozoude C, Van Horsen K, Mohammad J, Tuvin DM, Kalathingal S, Loganathan J, Choi Y, Sathish V, Brown J, Mallik S. Hypoxia-Responsive Polymersomes for Stemness Reduction in Patient-Derived Solid Tumor Spheroids. ACS APPLIED BIO MATERIALS 2025. [PMID: 40056142 DOI: 10.1021/acsabm.4c01735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
Abstract
Aggressive solid tumors are associated with rapid growth, early hypoxia, a lack of targeted therapies, and a poor prognosis. The hypoxic niches within the rapidly growing solid tumors give rise to a stem-cell-like phenotype with higher metastasis and drug resistance. To overcome the drug resistance of these regions, we used hypoxia-responsive polymersomes with an encapsulated anticancer drug (doxorubicin, Dox) and a stemness modulator (all-trans retinoic acid, ATRA). Reductase enzymes overexpressed in hypoxia reduce the azobenzene linker of the polymers, disrupt the bilayer structure of the polymersomes, and release the encapsulated drugs. We used triple-negative breast cancer (TNBC) as a representative of aggressive and hypoxic solid tumors. We observed that ATRA synergistically enhanced the efficacy of Dox in killing cancer cells. A synergistic combination of the two drug-encapsulated polymersomes reduced the volumes of patient-derived TNBC spheroids by 90%. In contrast, Dox alone decreased the spheroid volumes by 70% and encapsulated ATRA by 19%. Mechanistic studies revealed that ATRA inhibited efflux pumps, leading to a higher concentration of doxorubicin within TNBC cells. In addition, the combination of encapsulated Dox and ATRA significantly decreased stemness expression of the TNBC cells in hypoxia compared to that of Dox alone.
Collapse
Affiliation(s)
- Connor Edvall
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Narendra Kale
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Sakurako Tani
- Department of Physics, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Shubhashri Ambhore
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Rayat Hossain
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Chukwuebuka Ozoude
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Karl Van Horsen
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Jiyan Mohammad
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Daniel M Tuvin
- Sanford Broadway Clinic,801 Broadway N, Fargo, North Dakota 58102, United States
| | - Santo Kalathingal
- Agathos Biologics,4837 Amber Valley Pkwy Suite 12, Fargo, North Dakota 58104, United States
| | - Jagadish Loganathan
- Agathos Biologics,4837 Amber Valley Pkwy Suite 12, Fargo, North Dakota 58104, United States
| | - Yongki Choi
- Department of Physics, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58105, United States
| | - James Brown
- Agathos Biologics,4837 Amber Valley Pkwy Suite 12, Fargo, North Dakota 58104, United States
| | - Sanku Mallik
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, South Dakota 57007, United States
| |
Collapse
|
4
|
McMahon AN, Reis IM, Takita C, Wright JL, Hu JJ. Metabolomic Profiling of Disease Progression Following Radiotherapy for Breast Cancer. Cancers (Basel) 2025; 17:891. [PMID: 40075737 PMCID: PMC11899340 DOI: 10.3390/cancers17050891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND This study aims to explore metabolic biomarkers and pathways in breast cancer prognosis. METHODS We performed a global post-radiotherapy (RT) urinary metabolomic analysis of 120 breast cancer patients: 60 progression-free (PF) patients as the reference and 60 with progressive disease (PD: recurrence, second primary, metastasis, or death). UPLC-MS/MS (Metabolon Inc.) identified 1742 biochemicals (1258 known and 484 unknown structures). Following normalization to osmolality, log transformation, and imputation of missing values, a Welch's two-sample t-test was used to identify biochemicals and metabolic pathways that differed between PF and PD groups. Data analysis and visualization were performed with MetaboAnalyst. RESULTS Metabolic biomarkers and pathways that significantly differed between the PD and PF groups were the following: amino acid metabolism, including phenylalanine, tyrosine, and tryptophan biosynthesis (impact value (IV) = 1.00; p = 0.0007); histidine metabolism (IV = 0.60; p < 0.0001); and arginine and proline metabolism (IV = 0.70; p = 0.0035). Metabolites of carbohydrate metabolism, including glucose (p = 0.0197), sedoheptulose (p = 0.0115), and carboxymethyl lysine (p = 0.0098), were elevated in patients with PD. Gamma-glutamyl amino acids, myo-inositol, and oxidative stress biomarkers, including 7-Hydroxyindole Sulfate and sulfate, were elevated in patients who died (p ≤ 0.05). CONCLUSIONS Amino acid metabolism emerged as a key pathway in breast cancer progression, while carbohydrate and oxidative stress metabolites also showed potential utility as biomarkers for breast cancer progression. These findings demonstrate applications of metabolomics in identifying metabolic biomarkers and pathways as potential targets for predicting breast cancer progression.
Collapse
Affiliation(s)
- Alexandra N. McMahon
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (A.N.M.); (I.M.R.)
| | - Isildinha M. Reis
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (A.N.M.); (I.M.R.)
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Cristiane Takita
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jean L. Wright
- Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, NC 27514, USA;
| | - Jennifer J. Hu
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (A.N.M.); (I.M.R.)
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| |
Collapse
|
5
|
Taralli S, Orlandi A, Pafundi PC, Tempesta V, Di Leone A, Pontolillo L, Scardina L, Lorusso M, Paris I, Calcagni ML. Baseline 18F-FDG PET/CT for predicting pathological response to neoadjuvant chemotherapy and prognosis in locally advanced breast cancer patients: analysis of tumor and lymphoid organs metabolic parameters. LA RADIOLOGIA MEDICA 2025; 130:422-437. [PMID: 39937369 DOI: 10.1007/s11547-025-01961-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 01/23/2025] [Indexed: 02/13/2025]
Abstract
PURPOSE To investigate metabolic parameters from baseline 18F-FDG PET/CT as predictors of pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) and disease recurrence in locally advanced breast cancer (LABC) patients. MATERIALS AND METHODS From 142 LABC in 137 patients (bilateral-synchronous BC: 5/137), the following parameters from baseline (pre-treatment) 18F-FDG PET/CT were retrospectively analyzed, along with clinic-histological data: primary tumor activity (SUVmax, SUVmean, SUVpeak, tumor-to-liver ratio-TLR-, MTV, TLG); lymphoid organs activity (spleen and bone marrow SUVmax and SUVmean, spleen-to-liver ratio-SLR-, bone marrow-to-liver ratio-BLR); and PET-positive lymph-nodes' number. Predictors of pCR and recurrence-free survival (RFS) were assessed by univariable logistic regression and Cox regression (significant or suggestive association: p < 0.05; p < 0.10). RESULTS 74/142 tumors were "Luminal A/B HER2-", 44/142 "Luminal B HER2+/HER2+", 24/142 TNBC; pCR after NAC occurred in 26/142 tumors (18.3%) and disease recurrence at follow-up (45 ± 18.1 months) in 25/127 assessable patients (19.7%). Significant or suggestive predictors of NAC response, in Luminal A/B HER2-: lower spleen SUVmax and patients' age (OR 0.06; 0.93) for pCR; lower TLRmax, TLRmean and BLRmax (OR 1.33; 1.22; and 26.42) for residual disease. Significant negative RFS predictors: higher SUVmax, SUVmean, SUVpeak (HR 1.10; 1.15; 1.11), TLRmax and TLRmean (HR 1.02; 1.00), MTV and TLG (HR 1.32; 1.26) in Luminal A/B HER2-; higher spleen SUVmax, PET-positive nodes' number and patients' age (HR 6.24; 1.20; 1.08) in Luminal B HER2+/HER2+. CONCLUSION Primary tumor and lymphoid organs parameters at baseline 18F-FDG PET/CT resulted as predictors of NAC response and prognosis in LABC patients, respectively, reflecting the BC cells' proliferative activity and metabolic burden, and the role of tumor-induced immune-system activation on tumors' behavior and treatment responsiveness. In LABC candidates to NAC, baseline PET information could improve treatment planning and prognostic stratification.
Collapse
Affiliation(s)
- Silvia Taralli
- Nuclear Medicine Unit, Diagnostic Imaging and Radiation Oncology Department, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168, Rome, Italy.
| | - Armando Orlandi
- Medical Oncology Unit, Comprehensive Cancer Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Pia Clara Pafundi
- Epidemiology and Biostatistics Research Core Facility, Gemelli Generator, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Valeria Tempesta
- Nuclear Medicine Unit, Diagnostic Imaging and Radiation Oncology Department, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168, Rome, Italy
| | - Alba Di Leone
- Breast Center Unit, Health Sciences of Women, Children and Public Health Department, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Letizia Pontolillo
- Medical Oncology Unit, Comprehensive Cancer Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Lorenzo Scardina
- Breast Center Unit, Health Sciences of Women, Children and Public Health Department, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Margherita Lorusso
- Nuclear Medicine Unit, Diagnostic Imaging and Radiation Oncology Department, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168, Rome, Italy
| | - Ida Paris
- Division of Gynecologic Oncology, Department of Women and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Maria Lucia Calcagni
- Nuclear Medicine Unit, Diagnostic Imaging and Radiation Oncology Department, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168, Rome, Italy
- Nuclear Medicine Institute, University Department of Radiological and Hematological Sciences, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
6
|
Luo N, Zhang K, Li X, Hu Y, Guo L. Tanshinone IIA destabilizes SLC7A11 by regulating PIAS4-mediated SUMOylation of SLC7A11 through KDM1A, and promotes ferroptosis in breast cancer. J Adv Res 2025; 69:313-327. [PMID: 38615741 DOI: 10.1016/j.jare.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/17/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
INTRODUCTION Breast cancer (BC) is the most common malignancy in women with unfavorite prognosis. OBJECTIVES Tanshinone IIA (Tan IIA) inhibits BC progression, however, the underlying mechanism remains largely undefined. METHODS The cytotoxicity of Tan IIA was assessed by CCK-8 and LDH assays. Ferroptosis was monitored by the level of MDA, Fe2+, lipid ROS and GSH. IHC and western blot were employed to detect the localization and expression of SLC7A11, PIAS4, KDM1A and other key molecules. The SUMOylation of SLC7A11 was detected by Ni-beads pull-down assay and Co-IP. Luciferase and ChIP assays were employed to detect the direct association between KDM1A and PIAS4 promoter. The proliferative and metastatic properties of BC cells were assessed by colony formation, CCK-8 and Transwell assays, respectively. The in vitro findings were verified in xenograft and lung metastasis models. RESULTS Tan IIA promoted ferroptosis by suppressing SLC7A11 in BC cells. Silencing of PIAS4 or KDM1A inhibited cell growth and metastasis in BC. Mechanistically, PIAS4 facilitated the SUMOylation of SLC7A11 via direct binding to SLC7A11, and KDM1A acted as a transcriptional activator of PIAS4. Functional studies further revealed that Tan IIA decreased KDM1A expression, thus suppressing PIAS4 expression transcriptionally. The inhibition of PIAS4-dependent SUMOylation of SLC7A11 further induced ferroptosis, thereby inhibiting proliferation and metastasis in BC. CONCLUSION Tan IIA promoted ferroptosis and inhibited tumor growth and metastasis via suppressing KDM1A/PIAS4/SLC7A11 axis.
Collapse
Affiliation(s)
- Na Luo
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Clinical Research Center For Breast Cancer Control and Prevention in Hunan Province, China
| | - KeJing Zhang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Clinical Research Center For Breast Cancer Control and Prevention in Hunan Province, China
| | - Xin Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Clinical Research Center For Breast Cancer Control and Prevention in Hunan Province, China
| | - Yu Hu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Clinical Research Center For Breast Cancer Control and Prevention in Hunan Province, China
| | - Lei Guo
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Clinical Research Center For Breast Cancer Control and Prevention in Hunan Province, China.
| |
Collapse
|
7
|
Consoli V, Sorrenti V, Gulisano M, Spampinato M, Vanella L. Navigating heme pathways: the breach of heme oxygenase and hemin in breast cancer. Mol Cell Biochem 2025; 480:1495-1518. [PMID: 39287890 PMCID: PMC11842487 DOI: 10.1007/s11010-024-05119-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/07/2024] [Indexed: 09/19/2024]
Abstract
Breast cancer remains a significant global health challenge, with diverse subtypes and complex molecular mechanisms underlying its development and progression. This review comprehensively examines recent advances in breast cancer research, with a focus on classification, molecular pathways, and the role of heme oxygenases (HO), heme metabolism implications, and therapeutic innovations. The classification of breast cancer subtypes based on molecular profiling has significantly improved diagnosis and treatment strategies, allowing for tailored approaches to patient care. Molecular studies have elucidated key signaling pathways and biomarkers implicated in breast cancer pathogenesis, shedding light on potential targets for therapeutic intervention. Notably, emerging evidence suggests a critical role for heme oxygenases, particularly HO-1, in breast cancer progression and therapeutic resistance, highlighting the importance of understanding heme metabolism in cancer biology. Furthermore, this review highlights recent advances in breast cancer therapy, including targeted therapies, immunotherapy, and novel drug delivery systems. Understanding the complex interplay between breast cancer subtypes, molecular pathways, and innovative therapeutic approaches is essential for improving patient outcomes and developing more effective treatment strategies in the fight against breast cancer.
Collapse
Affiliation(s)
- Valeria Consoli
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
- CERNUT - Research Centre on Nutraceuticals and Health Products, University of Catania, 95125, Catania, Italy
| | - Valeria Sorrenti
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
- CERNUT - Research Centre on Nutraceuticals and Health Products, University of Catania, 95125, Catania, Italy
| | - Maria Gulisano
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| | - Mariarita Spampinato
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| | - Luca Vanella
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy.
- CERNUT - Research Centre on Nutraceuticals and Health Products, University of Catania, 95125, Catania, Italy.
| |
Collapse
|
8
|
Saha SK, Sarkar M, Srivastava M, Dutta S, Sen S. Nuclear α-actinin-4 regulates breast cancer invasiveness and EMT. Cytoskeleton (Hoboken) 2025; 82:145-157. [PMID: 39143850 DOI: 10.1002/cm.21901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a key process where cells lose their adhesion properties and augment their invasive properties. α-Actinin4 (ACTN4) is an actin crosslinking protein that responds to mechanical stimuli and is found to be elevated in breast cancer patients. While ACTN4 has been implicated in regulating cancer invasiveness by modulating cytoskeletal organization, its nuclear functions remain much less explored. Here we address this question by first establishing a correlation between nuclear localization and invasiveness in breast cancer cells. Using cancer databases, we then establish a correlation between ACTN4 expression and EMT in breast cancer. Interestingly, TGFβ-induced EMT induction in MCF10A normal mammary epithelial cells leads to increased ACTN4 expression and nuclear enrichment. We then show that ACTN4 knockdown in MDA-MB-231 breast cancer cells, which harbor sizeable fraction of nuclear ACTN4, leads to reduced invasiveness and loss of mesenchymal traits. Similar behavior was observed in knockdown cells expressing K255E ACTN4, which is primarily localized to the cytosol. Together, our findings establish a role for nuclear ACTN4 in regulating invasiveness via modulation of EMT.
Collapse
Affiliation(s)
- Sumon Kumar Saha
- Department of Biosciences & Bioengineering, IIT Bombay, Mumbai, India
| | - Madhurima Sarkar
- Department of Biosciences & Bioengineering, IIT Bombay, Mumbai, India
| | | | - Sarbajeet Dutta
- Department of Biosciences & Bioengineering, IIT Bombay, Mumbai, India
| | - Shamik Sen
- Department of Biosciences & Bioengineering, IIT Bombay, Mumbai, India
| |
Collapse
|
9
|
Cantore T, Gasperini P, Bevilacqua R, Ciani Y, Sinha S, Ruppin E, Demichelis F. PRODE recovers essential and context-essential genes through neighborhood-informed scores. Genome Biol 2025; 26:42. [PMID: 40022167 PMCID: PMC11869679 DOI: 10.1186/s13059-025-03501-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 02/05/2025] [Indexed: 03/03/2025] Open
Abstract
Gene context-essentiality assessment supports precision oncology opportunities. The variability of gene effects inference from loss-of-function screenings across models and technologies limits identifying robust hits. We propose a computational framework named PRODE that integrates gene effects with protein-protein interactions to generate neighborhood-informed essential (NIE) and neighborhood-informed context essential (NICE) scores. It outperforms the canonical gene effect approach in recovering missed essential genes in shRNA screens and prioritizing context-essential hits from CRISPR-KO screens, as supported by in vitro validations. Applied to Her2 + breast cancer tumor samples, PRODE identifies oxidative phosphorylation genes as vulnerabilities with prognostic value, highlighting new therapeutic opportunities.
Collapse
Affiliation(s)
- Thomas Cantore
- Laboratory of Computational and Functional Oncology, Department of Cellular, Computational, and Integrative Biology, University of Trento, Via Sommarive 9, Trento, 38123, Italy
| | - Paola Gasperini
- Laboratory of Computational and Functional Oncology, Department of Cellular, Computational, and Integrative Biology, University of Trento, Via Sommarive 9, Trento, 38123, Italy
| | - Riccardo Bevilacqua
- Laboratory of Computational and Functional Oncology, Department of Cellular, Computational, and Integrative Biology, University of Trento, Via Sommarive 9, Trento, 38123, Italy
| | - Yari Ciani
- Laboratory of Computational and Functional Oncology, Department of Cellular, Computational, and Integrative Biology, University of Trento, Via Sommarive 9, Trento, 38123, Italy
| | - Sanju Sinha
- Cancer Data Science Laboratory (CDSL), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
- Currently at Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Eytan Ruppin
- Cancer Data Science Laboratory (CDSL), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Francesca Demichelis
- Laboratory of Computational and Functional Oncology, Department of Cellular, Computational, and Integrative Biology, University of Trento, Via Sommarive 9, Trento, 38123, Italy.
| |
Collapse
|
10
|
Penteado MPD, Santos ACBC, Graziano MYS, da Veiga GL, Del Giglio A, Fonseca FLA, Alves BDCA. Leukemia inhibitory factor in peripheral blood as a prognostic marker in breast cancer. Cancer Treat Res Commun 2025; 43:100887. [PMID: 40023004 DOI: 10.1016/j.ctarc.2025.100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
PURPOSE Analysis of gene expression profiles in peripheral blood cells has been explored as an approach for early detection of breast cancer. Thus, we aimed to evaluate the diagnostic and prognostic potential of LIF expression in the peripheral blood of women with breast cancer. METHODS A total of 121 women over 18 years of age with breast cancer and 80 healthy women were included. Peripheral blood samples were collected from patients at diagnosis and during chemotherapy treatment, as well as samples from healthy women for comparison. LIF expression was evaluated by qPCR. RESULTS LIF expression does not differ between patients and healthy women, ruling out its use as a liquid biopsy diagnostic tool for this disease. However, LIF expression increases during treatment in patients with positive progression and luminal tumor subtype, suggesting its potential as a prognostic marker. To reinforce this result, there was a negative correlation between LIF and HIF-1α and LIF and heparanase expression in blood, and LIF blood expression and a prognostic tumor score, all known markers associated with an unfavorable prognosis. CONCLUSION An increase in LIF expression in patients with negative disease progression suggests its potential as a therapeutic response indicator, particularly for those with the luminal tumor subtype. The negative correlation between LIF, HIF-1α, and heparanase provides new insights into LIF's role in breast cancer progression, with potential clinical implications for treatment monitoring. Elevated LIF expression in blood samples may reflect its interaction in tumorigenesis, immune regulation, and the tumor microenvironment.
Collapse
Affiliation(s)
- Maria Paula Duran Penteado
- Laboratório de Análises Clínicas do Centro Universitário FMABC, Av. Príncipe de Gales, 821, 09060-650, Santo André, SP, Brazil
| | | | - Marcos Yuji Shiroma Graziano
- Laboratório de Análises Clínicas do Centro Universitário FMABC, Av. Príncipe de Gales, 821, 09060-650, Santo André, SP, Brazil
| | - Glaucia Luciano da Veiga
- Laboratório de Análises Clínicas do Centro Universitário FMABC, Av. Príncipe de Gales, 821, 09060-650, Santo André, SP, Brazil
| | - Auro Del Giglio
- Departamento de Oncologia e Hematologia do Centro Universitário FMABC, Santo André, SP, Brazil
| | - Fernando Luiz Affonso Fonseca
- Laboratório de Análises Clínicas do Centro Universitário FMABC, Av. Príncipe de Gales, 821, 09060-650, Santo André, SP, Brazil; Departamento de Ciências Farmacêuticas da Universidade Federal de São Paulo (UNIFESP), R. Prof. Artur Riedel, 275, 09972-270, Diadema, SP, Brazil
| | - Beatriz da Costa Aguiar Alves
- Laboratório de Análises Clínicas do Centro Universitário FMABC, Av. Príncipe de Gales, 821, 09060-650, Santo André, SP, Brazil.
| |
Collapse
|
11
|
Cassali GD, Nakagaki KYR, Salvi M, dos Reys MP, Rocha MAN, de Campos CB, Ferreira E, Rodrigues ACB, dos Reis DC, Damasceno KA, Estrela-Lima A. Canine, Feline, and Murine Mammary Tumors as a Model for Translational Research in Breast Cancer. Vet Sci 2025; 12:189. [PMID: 40005948 PMCID: PMC11860833 DOI: 10.3390/vetsci12020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/06/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
In veterinary medicine, mammary tumors are the most common neoplasms in female dogs and the third most frequent in cats, representing a significant challenge. Efforts have been directed toward adopting standardized diagnostic criteria to better understand tumor behavior and progression in these species. Meanwhile, the use of animal models has substantially advanced the understanding of comparative mammary carcinogenesis. These models provide critical insights into factors responsible for the disease in humans, with the expectation that such factors can be identified and controlled. In this context, this review presents a work based mainly on articles published by a research group specializing in mammary pathology (Laboratory of Comparative Pathology-Department of General Pathology-ICB/UFMG) and its collaborators, complementing their results with literature findings. The publications were categorized into animal research, experimental research, and human research. These studies addressed topics such as diagnosis, prognostic and predictive factors, tumor microenvironment, inflammation associated with tumors, treatment approaches, and factors influencing tumor growth. The conceptual network analysis underscores the importance of in vivo breast cancer models, both experimental and spontaneous, for understanding tumor progression mechanisms and therapeutic responses, offering valuable contributions to veterinary and human oncology.
Collapse
Affiliation(s)
- Geovanni Dantas Cassali
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Karen Yumi Ribeiro Nakagaki
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Marisa Salvi
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Marina Possa dos Reys
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Marcos André Nino Rocha
- Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia, Salvador 40170-110, Bahia, Brazil
| | | | - Enio Ferreira
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | | | - Diego Carlos dos Reis
- Division of Molecular Pathology, The Institute of Cancer Research, London SW7 3RP, UK
| | | | - Alessandra Estrela-Lima
- Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia, Salvador 40170-110, Bahia, Brazil
| |
Collapse
|
12
|
Imanparast A, Ameri AR, Attaran N, Sharifi S, Tamayol A, Sazgarnia A, Mousavi Shaegh SA. A preclinical design approach for translation of biohybrid photosensitive nanoplatform for photodynamic therapy of breast cancer. J Control Release 2025; 378:543-558. [PMID: 39701453 DOI: 10.1016/j.jconrel.2024.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Translating photodynamic therapy research into practice with high efficacy should follow characterization and optimization steps in an integrated process. In this way, integration of molecular-based simulations with in vitro and in vivo studies to produce more accurate models with higher prediction precision is inevitable. This study reports on the development a two-phase approach to design and synthesize, and characterize novel hybrid nano-photosensitizers to target breast cancer using molecular docking, microfluidic-based testing and animal studies. In the first phase, using pkCSM artificial intelligence tool and molecular docking, pharmacokinetic weaknesses of photoprotoporphyrin and its retention potential within albumin protein were identified. Biohybrid photosensitive nanoplatform were then synthesized using opto-microfluidics and characterized. In addition, an in-vivo method was used to qualitatively evaluate the opto-biological stability of the final optimized biohybrid nanoplatform. At the second phase, variables of photodynamic treatment were firstly optimized using design of experiment method for the optimized biohybrid photosensitive nanoplatform. Then, on-chip photodynamic studies were carried out in static and dynamic conditions. Results revealed that optimized biohybrid photosensitive nanoplatform as a nano-photosensitizer induced significant death of triple negative human cancer cells in static and dynamic cell cultures under optimized irradiation conditions. Consequently, the presented multiphase study that combined in-silico simulations with microfluidic-based synthesis and characterizations of nano-photosensitizers provided a more convergent model for development of efficacious cancer treatment for photodynamic therapy applications.
Collapse
Affiliation(s)
- Armin Imanparast
- Medical Physics Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Laboratory of Microfluidics and Medical Microsystems, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amir Reza Ameri
- Laboratory of Microfluidics and Medical Microsystems, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| | - Neda Attaran
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Soheil Sharifi
- Department of Physics, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Ameneh Sazgarnia
- Medical Physics Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Ali Mousavi Shaegh
- Laboratory of Microfluidics and Medical Microsystems, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Orthopedic Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran; Clinical Research Unit, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Rampogu S, Al-Antari MA, Oh TH, Shaik B. A review of six bioactive compounds from preclinical studies as potential breast cancer inhibitors. Mol Biol Rep 2025; 52:203. [PMID: 39907697 DOI: 10.1007/s11033-025-10300-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
Breast cancer is one of the predominant causes of mortality in women worldwide. Although therapeutics such as surgery, chemotherapy, hormonal therapy, and radiotherapy have been used, they are associated with adverse effects or multidrug resistance. The use of natural compounds is a promising strategy, owing to their abundance and medicinal value. This review focuses on six natural compounds, namely cinnamaldehyde, diosmin, taxifolin, phloretin, arctigenin, and eugenol, and details their mechanisms of breast cancer inhibition based on in vitro and in vivo studies. These compounds generally promote apoptosis and cell cycle arrest, hinder metastasis and invasion, and decrease tumor growth. This review reinforces the use of natural compounds as therapeutics for breast cancer from their preclinical studies. These compounds might be promising for drug development due to their abundance, high reliability, and safety.
Collapse
Affiliation(s)
| | - Mugahed A Al-Antari
- Department of Artificial Intelligence, College of Software & Convergence Technology, Daeyang AI Center, Sejong University, Seoul, 05006, Republic of Korea
| | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Baji Shaik
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
14
|
Supplitt S, Karpinski P, Sasiadek M, Laczmanski L, Kujawa D, Matkowski R, Kasprzak P, Abrahamowska M, Maciejczyk A, Iwaneczko E, Laczmanska I. The analysis of transcriptomic signature of TNBC-searching for the potential RNA-based predictive biomarkers to determine the chemotherapy sensitivity. J Appl Genet 2025; 66:171-182. [PMID: 38722458 PMCID: PMC11761126 DOI: 10.1007/s13353-024-00876-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 08/17/2024]
Abstract
Neoadjuvant chemotherapy is the foundation treatment for triple-negative breast cancer (TNBC) and frequently results in pathological complete response (pCR). However, there are large differences in clinical response and survival after neoadjuvant chemotherapy of TNBC patients. The aim was to identify genes whose expression significantly associates with the efficacy of neoadjuvant chemotherapy in patients with TNBC. Transcriptomes of 46 formalin-fixed paraffin-embedded (FFPE) tumor samples from TNBC patients were analyzed by RNA-seq by comparing 26 TNBCs with pCR versus 20 TNBCs with pathological partial remission (pPR). Subsequently, we narrowed down the list of genes to those that strongly correlated with drug sensitivity of 63 breast cancer cell lines based on Dependency Map Consortium data re-analysis. Furthermore, the list of genes was limited to those presenting specific expression in breast tumor cells as revealed in three large published single-cell RNA-seq breast cancer datasets. Finally, we analyzed which of the selected genes were significantly associated with overall survival (OS) in TNBC TCGA dataset. A total of 105 genes were significantly differentially expressed in comparison between pPR versus pCR. As revealed by PLSR analysis in breast cancer cell lines, out of 105 deregulated genes, 42 were associated with sensitivity to docetaxel, doxorubicin, paclitaxel, and/or cyclophosphamide. We found that 24 out of 42 sensitivity-associated genes displayed intermediate or strong expression in breast malignant cells using single-cell RNAseq re-analysis. Finally, 10 out of 24 genes were significantly associated with overall survival in TNBC TCGA dataset. Our RNA-seq-based findings suggest that there might be transcriptomic signature consisted of 24 genes specifically expressed in tumor malignant cells for predicting neoadjuvant response in FFPE samples from TNBC patients prior to treatment initiation. Additionally, nine out of 24 genes were potential survival predictors in TNBC. This group of 24 genes should be further investigated for its potential to be translated into a predictive test(s).
Collapse
Affiliation(s)
- Stanislaw Supplitt
- Lower Silesian Oncology, Pulmonology and Hematology Center, Hirszfelda Sq. 12, 53-413, Wroclaw, Poland
- Department of Genetics, Wroclaw Medical University, Marcinkowskiego 1, 50-368, Wroclaw, Poland
| | - Pawel Karpinski
- Department of Genetics, Wroclaw Medical University, Marcinkowskiego 1, 50-368, Wroclaw, Poland
| | - Maria Sasiadek
- Department of Genetics, Wroclaw Medical University, Marcinkowskiego 1, 50-368, Wroclaw, Poland
| | - Lukasz Laczmanski
- Laboratory of Genomics and Bioinformatics, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Dorota Kujawa
- Laboratory of Genomics and Bioinformatics, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Rafal Matkowski
- Lower Silesian Oncology, Pulmonology and Hematology Center, Hirszfelda Sq. 12, 53-413, Wroclaw, Poland
- Department of Oncology, Wroclaw Medical University, Hirszfelda 12, 53-413, Wroclaw, Poland
| | - Piotr Kasprzak
- Lower Silesian Oncology, Pulmonology and Hematology Center, Hirszfelda Sq. 12, 53-413, Wroclaw, Poland
| | - Mariola Abrahamowska
- Lower Silesian Oncology, Pulmonology and Hematology Center, Hirszfelda Sq. 12, 53-413, Wroclaw, Poland
- Department of Oncology, Wroclaw Medical University, Hirszfelda 12, 53-413, Wroclaw, Poland
| | - Adam Maciejczyk
- Lower Silesian Oncology, Pulmonology and Hematology Center, Hirszfelda Sq. 12, 53-413, Wroclaw, Poland
- Department of Oncology, Wroclaw Medical University, Hirszfelda 12, 53-413, Wroclaw, Poland
| | - Ewelina Iwaneczko
- Lower Silesian Oncology, Pulmonology and Hematology Center, Hirszfelda Sq. 12, 53-413, Wroclaw, Poland
| | - Izabela Laczmanska
- Lower Silesian Oncology, Pulmonology and Hematology Center, Hirszfelda Sq. 12, 53-413, Wroclaw, Poland.
- Department of Genetics, Wroclaw Medical University, Marcinkowskiego 1, 50-368, Wroclaw, Poland.
| |
Collapse
|
15
|
Dhiman P, Patil CN, Konimeni S, Meenu M. Triple-Negative, HER2/Neu, and Ki67 Markers in Breast Cancer Patients Undergoing Standard of Care Treatment in India: Real-World Evidence on Tumor Aggressiveness and Survival Outcomes. Cureus 2025; 17:e78798. [PMID: 40078245 PMCID: PMC11897781 DOI: 10.7759/cureus.78798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2025] [Indexed: 03/14/2025] Open
Abstract
INTRODUCTION Breast cancer is among the most prevalent cancers in women globally, with patients' survival adversely impacted by Ki67 expression and triple-negative phenotypes. In this study, we examined the relationship between HER2/neu, triple-negative, and Ki67 phenotypes and tumor aggressiveness along with the survival of breast cancer patients from India. MATERIALS AND METHODS A retrospective cohort study was performed using hospital-based data from a tertiary care center spanning January 2013 to August 2023. The study included breast cancer patients who received neoadjuvant chemotherapy based on preoperative assessment and/or adjuvant chemotherapy following postoperative evaluation. Patients with other primary cancers or those treated with investigational drugs were excluded. Data on variables such as age, parity, menopause, cancer stage and grade, estrogen receptor (ER), progesterone receptor (PR), HER2/neu, Ki67 score, and the use of biologicals, hormones, and chemoradiotherapy were analyzed using correlation and regression tests to identify factors associated with aggressive tumor behavior. Kaplan-Meier survival model and Cox-proportional hazard test were applied. RESULTS A total of 389 breast cancer patients with a mean age of 54.3 years met the eligibility criteria and were included in the analysis. A higher prevalence of hormone receptor positivity was observed among Indian patients than in Western countries. Younger, premenopausal women were more likely to present with high-grade tumors and high Ki67 scores, poorer overall survival, and the need for chemoradiotherapy. On the other hand, nulliparous patients mostly had triple-negative tumors with high Ki67 scores. Aggressive tumor behavior was linked to HER2/neu positivity, ER and PR negativity, and the requirement for both neoadjuvant and adjuvant chemotherapy. At the same time, premenopausal patients more frequently were candidates for radiation therapy. HER2/neu expression demonstrated a moderate negative correlation with co-expression of hormone receptors (ER and PR). Cancer grade was associated with Ki67 levels, nulliparity, triple-negative status, and hormone receptor expressions (ER and PR). Median survival was not reached for the study cohort. CONCLUSION Tumor aggressiveness was associated with a high Ki67 score, HER2/neu positivity, and the absence of hormone receptor expression in patients.
Collapse
Affiliation(s)
- Pravesh Dhiman
- Medical Oncology, All India Institute of Medical Sciences Bilaspur, Bilaspur, IND
| | - C N Patil
- Medical Oncology, Aster Cauvery Medical Institute (CMI) Hospital, Bengaluru, IND
| | - Sneha Konimeni
- Medical Oncology, Aster Cauvery Medical Institute (CMI) Hospital, Bengaluru, IND
| | - Meenakshi Meenu
- Pharmacology, All India Institute of Medical Sciences Bilaspur, Bilaspur, IND
| |
Collapse
|
16
|
Gallo M, Ferrari E, Brugnoli F, Terrazzan A, Ancona P, Volinia S, Bertagnolo V, Bergamini CM, Spisni A, Pertinhez TA, Bianchi N. Metabolic Profiling of Breast Cancer Cell Lines: Unique and Shared Metabolites. Int J Mol Sci 2025; 26:969. [PMID: 39940737 PMCID: PMC11816582 DOI: 10.3390/ijms26030969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Breast Cancer (BrCa) exhibits a high phenotypic heterogeneity, leading to the emergence of aggressive clones and the development of drug resistance. Considering the BrCa heterogeneity and that metabolic reprogramming is a cancer hallmark, we selected seven BrCa cell lines with diverse subtypes to provide their comprehensive metabolome characterization: five lines commonly used (SK-Br-3, T-47D, MCF-7, MDA-MB-436, and MDA-MB-231), and two patient-derived xenografts (Hbcx39 and Hbcx9). We characterized their endometabolomes using 1H-NMR spectroscopy. We found distinct metabolite profiles, with certain metabolites being common but differentially accumulated across the selected BrCa cell lines. High levels of glycine, lactate, glutamate, and formate, metabolites known to promote invasion and metastasis, were detected in all BrCa cells. In our experiment setting were identified unique metabolites to specific cell lines: xanthine and 2-oxoglutarate in SK-Br-3, 2-oxobutyrate in T-47D, cystathionine and glucose-1-phosphate in MCF-7, NAD+ in MDA-MB-436, isocitrate in MDA-MB-231, and NADP+ in Hbcx9. The unique and enriched metabolites enabled us to identify the metabolic pathways modulated in a cell-line-specific manner, which may represent potential candidate targets for therapeutic intervention. We believe this study may contribute to the functional characterization of BrCa cells and assist in selecting appropriate cell lines for drug-response studies.
Collapse
Affiliation(s)
- Mariana Gallo
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.); (E.F.)
| | - Elena Ferrari
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.); (E.F.)
| | - Federica Brugnoli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.B.); (A.T.); (P.A.); (V.B.); (N.B.)
| | - Anna Terrazzan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.B.); (A.T.); (P.A.); (V.B.); (N.B.)
| | - Pietro Ancona
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.B.); (A.T.); (P.A.); (V.B.); (N.B.)
| | - Stefano Volinia
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.B.); (A.T.); (P.A.); (V.B.); (N.B.)
| | - Valeria Bertagnolo
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.B.); (A.T.); (P.A.); (V.B.); (N.B.)
| | - Carlo M. Bergamini
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
| | - Alberto Spisni
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.); (E.F.)
| | - Thelma A. Pertinhez
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.); (E.F.)
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.B.); (A.T.); (P.A.); (V.B.); (N.B.)
| |
Collapse
|
17
|
Molina Calistro L, Arancibia Y, Olivera MA, Domke S, Torres RF. Interaction of GPER-1 with the endocrine signaling axis in breast cancer. Front Endocrinol (Lausanne) 2025; 16:1494411. [PMID: 39936103 PMCID: PMC11811623 DOI: 10.3389/fendo.2025.1494411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/06/2025] [Indexed: 02/13/2025] Open
Abstract
G Protein-Coupled Estrogen Receptor 1 (GPER-1) is a membrane estrogen receptor that has emerged as a key player in breast cancer development and progression. In addition to its direct influence on estrogen signaling, a crucial interaction between GPER-1 and the hypothalamic-pituitary-gonadal (HPG) axis has been evidenced. The novel and complex relationship between GPER-1 and HPG implies a hormonal regulation with important homeostatic effects on general organ development and reproductive tissues, but also on the pathophysiology of cancer, especially breast cancer. Recent research points to a great versatility of GPER-1, interacting with classical estrogen receptors and with signaling pathways related to inflammation. Importantly, through its activation by environmental and synthetic estrogens, GPER-1 is associated with hormone therapy resistance in breast cancer. These findings open new perspectives in the understanding of breast tumor development and raise the possibility of future applications in the design of more personalized and effective therapeutic approaches.
Collapse
Affiliation(s)
| | - Yennyfer Arancibia
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Puerto Montt, Chile
| | | | - Sigrid Domke
- Facultad de Ciencias para el cuidado de la salud, Universidad San Sebastián, Puerto Montt, Chile
| | | |
Collapse
|
18
|
Ma J, Wang H, Gui Z, Yang Y. Unveiling the role of SYNGR4 in breast cancer development: a novel target for immunotherapy. Front Oncol 2025; 14:1490073. [PMID: 39902127 PMCID: PMC11788336 DOI: 10.3389/fonc.2024.1490073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/26/2024] [Indexed: 02/05/2025] Open
Abstract
Introduction SYNGR4 is considered to be one of the causative genes for amyotrophic lateral sclerosis, but its role in breast cancer development has not been revealed. Methods The expression of SYNGR4 in a variety of malignancies including breast cancer was analyzed using Genotype Tissue Expression (GTEx) and the Cancer Genome Atlas (TCGA) databases and verified by specimens collected from our center. The effect of SYNGR4 on breast cancer prognosis was analyzed using bioinformatics and possible pathways by which this molecule affects breast cancer prognosis were explored. The effect of SYNGR4 on immune infiltration of breast cancer was analyzed using GSVA, and the effects of SYNGR4 on breast cancer proliferation, migration, and tumor-associated macrophage polarization in cancer foci were verified by cellular and animal experiments, respectively. Results SYNGR4 is highly expressed in a variety of malignant tumors, including breast cancer, and affects the prognosis of breast cancer patients. This may be a volatile effect through Organelle fission, chromosome segregation, nuclear division, etc. SYNGR4 overexpression affects breast cancer proliferation, migration, and tumor immune infiltration, and promotes breast cancer tumor-associated macrophage polarization toward M2. Discussion SYNGR4 overexpression can affect the prognosis of breast cancer patients by promoting M2 polarization of tumor-associated macrophages in breast cancer, and this molecule may be a novel target for breast cancer immunotherapy.
Collapse
Affiliation(s)
- Jie Ma
- Department of Mammary, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, China
| | - Hongtao Wang
- Department of Pharmacy, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, China
| | - Zhengwei Gui
- Department of Thyroid and Breast Surgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuanrong Yang
- Department of Pharmacy, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
19
|
Leng F, Huang J, Wu L, Zhang J, Lin X, Deng R, Zhu J, Li Z, Li Z, Wang Y, Zhang H, Lu D, Kipps TJ, Zhang S. Targeting ROR2 homooligomerization disrupts ROR2-dependent signaling and suppresses stem-like cell properties of human breast adenocarcinoma. iScience 2025; 28:111589. [PMID: 39829682 PMCID: PMC11742321 DOI: 10.1016/j.isci.2024.111589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 10/29/2024] [Accepted: 11/13/2024] [Indexed: 01/22/2025] Open
Abstract
Breast cancer stem-like cells (CSCs) are enriched following treatment with chemotherapy, and posited as having a high level of plasticity and enhanced tumor-initiation capacity, which can enable cancer relapse. Here, we show that such features are shared by breast cancer (BCA) cells that express receptor tyrosine kinase-like orphan receptor (ROR2), which is expressed primarily during embryogenesis and by various cancers. We find that Wnt5a can induce ROR2 homooligomerization to activate noncanonical Wnt signaling and enhance tumor-initiation capacity of BCA cells. Molecular analysis reveals that the cysteine-rich domain and transmembrane domain are required for ROR2 homooligomerization to activate ROR2. Treatment with a newly generated monoclonal antibody (mAb) specific for ROR2 can block Wnt5a-induced ROR2 homooligomerization, ROR2-dependent noncanonical Wnt signaling, and impair the capacity of BCA patient-derived xenografts to initiate tumor in immune-deficient mice. Collectively, these results indicate that targeting ROR2 (e.g., using mAb) suppresses BCA stemness and, thereby, may prevent BCA relapse.
Collapse
Affiliation(s)
- Feng Leng
- Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, School of Basic Medical Sciences, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jiajia Huang
- State Key Laboratory of Oncology in South China, Department of Medical Oncology, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Liufeng Wu
- Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, School of Basic Medical Sciences, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jianchao Zhang
- Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, School of Basic Medical Sciences, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Xinxin Lin
- Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, School of Basic Medical Sciences, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Ruhuan Deng
- Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, School of Basic Medical Sciences, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jinhang Zhu
- Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, School of Basic Medical Sciences, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Zhen Li
- Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, School of Basic Medical Sciences, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Zhenghao Li
- Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, School of Basic Medical Sciences, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Yimeng Wang
- Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, School of Basic Medical Sciences, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Han Zhang
- Xenta Biomedical Science Co., Ltd, Guangzhou 510060, China
| | - Desheng Lu
- Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, School of Basic Medical Sciences, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Thomas J. Kipps
- Moores Cancer Center, University of California, San Diego, San Diego, CA 92037, USA
| | - Suping Zhang
- Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, School of Basic Medical Sciences, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
- Moores Cancer Center, University of California, San Diego, San Diego, CA 92037, USA
| |
Collapse
|
20
|
Rios-Hoyo A, Xiong K, Dai J, Yau C, Marczyk M, García-Milian R, Wolf DM, Huppert LA, Nanda R, Hirst GL, Cobain EF, van ‘t Veer LJ, Esserman LJ, Pusztai L. Hormone Receptor-Positive HER2-Negative/MammaPrint High-2 Breast Cancers Closely Resemble Triple-Negative Breast Cancers. Clin Cancer Res 2025; 31:403-413. [PMID: 39561272 PMCID: PMC11747811 DOI: 10.1158/1078-0432.ccr-24-1553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/16/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024]
Abstract
PURPOSE The MammaPrint (MP) prognostic assay categorizes breast cancers into high- and low-risk subgroups, and the high-risk group can be further subdivided into high-1 (MP-H1), and very high-risk high-2 (MP-H2). The aim of this analysis was to assess clinical and molecular differences between the hormone receptor-positive (HR+)/HER2-negative MP-H1, -H2, and triple-negative (TN) MP-H1 and -H2 cancers. EXPERIMENTAL DESIGN Pretreatment gene expression data from 742 HER2-negative breast cancers enrolled in the I-SPY2 neoadjuvant trial were used. Prognostic risk categories were assigned using the MP assay. Transcriptional similarities across the four receptor and prognostic groups were assessed using principal component analyses and by identifying differentially expressed genes. We also examined pathologic complete response rates and event-free survivals by risk group. RESULTS Principal component analysis showed that HR+/MP-H2 tumors clustered with TN/MP-H2 cancers. Only 125 genes showed differential expression between the HR+/MP-H2 and TN/MP-H2 cancers, whereas 1,465 genes were differentially expressed between HR+/MP-H2 and -H1. Gene set analysis revealed similarly high expression of cell cycle, DNA repair, and immune infiltration-related pathways in HR+/MP-H2 and TN/MP-H2 cancers. HR+/MP-H2 cancers also showed low estrogen receptor-related gene expression. Pathologic complete response rates were similarly high in TN/MP-H2 and HR+/MP-H2 cancers (42% vs. 30.5%; P = 0.11), and MP-H2 cancers with residual cancer had similarly poor event-free survival regardless of estrogen receptor status. CONCLUSIONS In conclusion, HR+/MP-H2 cancers closely resemble TN breast cancers in transcriptional and clinical features and benefit from similar treatment strategies.
Collapse
Affiliation(s)
- Alejandro Rios-Hoyo
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, USA
- To be considered as first authors
| | - Kaitlyn Xiong
- Yale School of Medicine, New Haven, Connecticut, USA
- To be considered as first authors
| | - Jiawei Dai
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Christina Yau
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michal Marczyk
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Rolando García-Milian
- Bioinformatics Support Program, Research and Education Services, Cushing/Whitney Medical Library, Yale University, New Haven, CT, United States of America
| | - Denise M. Wolf
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Laura A. Huppert
- University of California San Francisco Comprehensive Cancer Center, San Francisco, CA, USA
| | - Rita Nanda
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medicine & Biological Sciences, Chicago, IL, USA
| | - Gillian L. Hirst
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Laura J. van ‘t Veer
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Laura J. Esserman
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lajos Pusztai
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
21
|
Alradwan I, Zhi P, Zhang T, Lip H, Zetrini A, He C, Henderson JT, Rauth AM, Wu XY. Nanoparticulate drug combination inhibits DNA damage repair and PD-L1 expression in BRCA-mutant and wild type triple-negative breast cancer. J Control Release 2025; 377:661-674. [PMID: 39615752 DOI: 10.1016/j.jconrel.2024.11.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/23/2024]
Abstract
The high mortality rate associated with metastatic breast cancer presents a significant global challenge. Inherent and chemotherapy-induced DNA damage repair, alongside immunosuppression, drastically contribute to triple-negative breast cancer (TNBC) relapse and metastasis. While poly (ADP-ribose) polymerase (PARP) inhibitors such as olaparib show effectiveness against BRCA1-mutant TNBC, they may lead to drug resistance and reduced efficacy due to increased programmed death-ligand 1 (PD-L1) expression. Our study explored the use of polymer-lipid nanoparticles (PLN) loaded with doxorubicin (DOX) and oligomeric hyaluronic acid (oHA), functionalized iRGD-peptide for integrins targeting (iRGD-DOX-oHA-PLN), to prevent TNBC immunosuppression, DNA repair, and metastasis. The results demonstrate that the iRGD-DOX-oHA-PLNs efficiently downregulated single and double-strand DNA repair proteins and enhanced DNA damage while decreasing PD-L1 expression compared to olaparib. Accordingly, iRGD-DOX-oHA-PLN treatment showed significantly higher efficiency in reducing levels of primary tumor growth and numbers of metastases to the lung and liver compared to olaparib in vitro and in vivo in both BRCA1-mutant and wild type TNBC orthotopic xenograft models.
Collapse
Affiliation(s)
- Ibrahim Alradwan
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto M5S 3M2, Ontario, Canada; Advanced Diagnostics and Therapeutics Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11461, Saudi Arabia
| | - Pei Zhi
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto M5S 3M2, Ontario, Canada
| | - Tian Zhang
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto M5S 3M2, Ontario, Canada
| | - HoYin Lip
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto M5S 3M2, Ontario, Canada
| | - Abdulmottaleb Zetrini
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto M5S 3M2, Ontario, Canada
| | - Chunsheng He
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto M5S 3M2, Ontario, Canada
| | - Jeffrey T Henderson
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto M5S 3M2, Ontario, Canada
| | - Andrew M Rauth
- Departments of Medical Biophysics and Radiation Oncology, University of Toronto, 610 University Ave, Toronto M5G 2M9, Ontario, Canada
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto M5S 3M2, Ontario, Canada.
| |
Collapse
|
22
|
Yılmaz C, Zengel B, Üreyen O, Adıbelli ZH, Taşlı F, Yılmaz HT, Özdemir Ö, Kocatepe Çavdar D, Mollamehmetoğlu H, Çakıroğlu U, İmren Y, Yakan S, İlhan E. A Comprehensive Analysis of Neoadjuvant Chemotherapy in Breast Cancer: Adverse Events, Clinical Response Rates, and Surgical and Pathological Outcomes-Bozyaka Experience. Cancers (Basel) 2025; 17:163. [PMID: 39857945 PMCID: PMC11763700 DOI: 10.3390/cancers17020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 12/30/2024] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
Objectives: To evaluate the neoadjuvant chemotherapy (NACTx) process in breast cancer (BC), its significant treatment-related adverse events (trAEs), tumor clinical response rates, and surgical and pathological outcomes, and to analyze factors influencing cavity shaving and axillary lymph node dissection (ALND) following sentinel lymph node biopsy (SLNB). Methods: A comprehensive retrospective study was conducted at a single center on patients who received NACTx for BC between 2015 and 2021. Results: Medical records of 242 patients were reviewed. Approximately one-fifth encountered grade ≥ 3 trAEs (21.5%), leading 3.3% to discontinue chemotherapy. Anthracycline cardiotoxicity (2.2%) caused one death (mortality rate = 0.4%). For clinical response and surgical and pathological outcomes, 229 patients were eligible. Clinical progression occurred in 3.9% of the patients (14% in triple-negative BC, p = 0.004). Breast-conserving surgery (BCS) was performed in 55% of the patients. There was no significant difference between the type of breast surgery (BCS vs. mastectomy) and molecular subtype, histology, tumor size, or tumor's pathological response degree. Cavity shaving was required in one-fifth of the patients who underwent BCS (n = 134) due to an invasive tumor at the surgical margin (SM). Tumor histology (invasive ductal vs. invasive lobular carcinoma; OR: 4.962, 95% CI 1.007-24.441, p = 0.049) and tumor SUVMax value (OR: 0.866, 95% CI 0.755-0.993, p = 0.039) had significant independent efficacy on SM positivity. Initially, 75% underwent SLNB, but nearly half of them needed ALND. ALND rates were significantly higher in the luminal A and LB-HER2(-) groups (87% vs. 69%) than in the HER2(+) and TN groups (43% to 50%) (p = 0.001). All luminal A patients and those with lobular histology required ALND after SLNB, but no patients in the HER2-enriched group required ALND. ER positivity and higher PR expression levels were associated with an increased need for ALND after SLNB, whereas HER2 positivity and higher SUVMax values of LN(s) were associated with a significantly reduced need for ALND. About 27% of the patients achieved overall pCR. No pCR was achieved in the LA group. Conclusions: The BC NACTx process requires close monitoring due to severe AEs and disease progression. NACTx decisions must be made on experienced multidisciplinary tumor boards, considering tumor characteristics and expected targets.
Collapse
Affiliation(s)
- Cengiz Yılmaz
- Bozyaka Education and Research Hospital, University of Health Sciences Turkey, 35170 Izmir, Turkey; (B.Z.); (O.Ü.)
- Department of Medical Oncology, Izmir City Hospital, 35540 Izmir, Turkey
| | - Baha Zengel
- Bozyaka Education and Research Hospital, University of Health Sciences Turkey, 35170 Izmir, Turkey; (B.Z.); (O.Ü.)
- General Surgery Clinic, MedicalPoint International Hospital, Izmir University of Economics, 35575 Izmir, Turkey
| | - Orhan Üreyen
- Bozyaka Education and Research Hospital, University of Health Sciences Turkey, 35170 Izmir, Turkey; (B.Z.); (O.Ü.)
- Department of General Surgery, Izmir Faculty of Medicine, University of Health Sciences Turkey, 35540 Izmir, Turkey
| | - Zehra Hilal Adıbelli
- Bozyaka Education and Research Hospital, University of Health Sciences Turkey, 35170 Izmir, Turkey; (B.Z.); (O.Ü.)
- Department of Radiology, Izmir Faculty of Medicine, University of Health Sciences Turkey, 35540 Izmir, Turkey
| | - Funda Taşlı
- Bozyaka Education and Research Hospital, University of Health Sciences Turkey, 35170 Izmir, Turkey; (B.Z.); (O.Ü.)
- Department of Pathology, Izmir Faculty of Medicine, University of Health Sciences Turkey, 35540 Izmir, Turkey
| | | | - Özlem Özdemir
- Bozyaka Education and Research Hospital, University of Health Sciences Turkey, 35170 Izmir, Turkey; (B.Z.); (O.Ü.)
- Department of Medical Oncology, Izmir City Hospital, 35540 Izmir, Turkey
| | - Demet Kocatepe Çavdar
- Bozyaka Education and Research Hospital, University of Health Sciences Turkey, 35170 Izmir, Turkey; (B.Z.); (O.Ü.)
- Department of Pathology, Izmir City Hospital, 35540 Izmir, Turkey
| | - Hülya Mollamehmetoğlu
- Bozyaka Education and Research Hospital, University of Health Sciences Turkey, 35170 Izmir, Turkey; (B.Z.); (O.Ü.)
- LaMED View Central, 35220 Izmir, Turkey
| | - Umut Çakıroğlu
- Bozyaka Education and Research Hospital, University of Health Sciences Turkey, 35170 Izmir, Turkey; (B.Z.); (O.Ü.)
- Department of Medical Oncology, Izmir City Hospital, 35540 Izmir, Turkey
| | - Yaşar İmren
- Bozyaka Education and Research Hospital, University of Health Sciences Turkey, 35170 Izmir, Turkey; (B.Z.); (O.Ü.)
- Nuclear Medicine Clinic, Cigli Regional Education Hospital, Bakırcay University, 35620 Izmir, Turkey
| | - Savaş Yakan
- Bozyaka Education and Research Hospital, University of Health Sciences Turkey, 35170 Izmir, Turkey; (B.Z.); (O.Ü.)
- Department of General Surgery, Izmir Faculty of Medicine, University of Health Sciences Turkey, 35540 Izmir, Turkey
| | - Enver İlhan
- Bozyaka Education and Research Hospital, University of Health Sciences Turkey, 35170 Izmir, Turkey; (B.Z.); (O.Ü.)
- Department of General Surgery, Izmir Faculty of Medicine, University of Health Sciences Turkey, 35540 Izmir, Turkey
| |
Collapse
|
23
|
Paul ED, Huraiová B, Valková N, Matyasovska N, Gábrišová D, Gubová S, Ignačáková H, Ondris T, Gala M, Barroso L, Bendíková S, Bíla J, Buranovská K, Drobná D, Krchňáková Z, Kryvokhyzha M, Lovíšek D, Mamoilyk V, Mancikova V, Vojtaššáková N, Ristová M, Comino-Méndez I, Andrašina I, Morozov P, Tuschl T, Pareja F, Kather JN, Čekan P. The spatially informed mFISHseq assay resolves biomarker discordance and predicts treatment response in breast cancer. Nat Commun 2025; 16:226. [PMID: 39747865 PMCID: PMC11696812 DOI: 10.1038/s41467-024-55583-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
Current assays fail to address breast cancer's complex biology and accurately predict treatment response. On a retrospective cohort of 1082 female breast tissues, we develop and validate mFISHseq, which integrates multiplexed RNA fluorescent in situ hybridization with RNA-sequencing, guided by laser capture microdissection. This technique ensures tumor purity, unbiased whole transcriptome profiling, and explicitly quantifies intratumoral heterogeneity. Here we show mFISHseq has 93% accuracy compared to immunohistochemistry. Our consensus subtyping and risk groups mitigate single sample discordance, provide early and late prognostic information, and identify high risk patients with enriched immune signatures, which predict response to neoadjuvant immunotherapy in the multicenter, phase II, prospective I-SPY2 trial. We identify putative antibody-drug conjugate (ADC)-responsive patients, as evidenced by a 19-feature T-DM1 classifier, validated on I-SPY2. Deploying mFISHseq as a research-use only test on 48 patients demonstrates clinical feasibility, revealing insights into the efficacy of targeted therapies, like CDK4/6 inhibitors, immunotherapies, and ADCs.
Collapse
Affiliation(s)
- Evan D Paul
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia.
- MultiplexDX, Inc, Rockville, MD, USA.
| | - Barbora Huraiová
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc, Rockville, MD, USA
| | - Natália Valková
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc, Rockville, MD, USA
| | - Natalia Matyasovska
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc, Rockville, MD, USA
- Institute of Clinical Biochemistry and Diagnostics, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Daniela Gábrišová
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc, Rockville, MD, USA
| | - Soňa Gubová
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc, Rockville, MD, USA
| | - Helena Ignačáková
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc, Rockville, MD, USA
| | - Tomáš Ondris
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc, Rockville, MD, USA
| | - Michal Gala
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc, Rockville, MD, USA
| | - Liliane Barroso
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc, Rockville, MD, USA
| | - Silvia Bendíková
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc, Rockville, MD, USA
| | - Jarmila Bíla
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc, Rockville, MD, USA
| | - Katarína Buranovská
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc, Rockville, MD, USA
| | - Diana Drobná
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc, Rockville, MD, USA
| | - Zuzana Krchňáková
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc, Rockville, MD, USA
| | - Maryna Kryvokhyzha
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc, Rockville, MD, USA
| | - Daniel Lovíšek
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc, Rockville, MD, USA
| | - Viktoriia Mamoilyk
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc, Rockville, MD, USA
| | - Veronika Mancikova
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc, Rockville, MD, USA
| | - Nina Vojtaššáková
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc, Rockville, MD, USA
| | - Michaela Ristová
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc, Rockville, MD, USA
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - Iñaki Comino-Méndez
- Hospital Universitario Virgen de la Victoria, The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), Málaga, Spain
| | - Igor Andrašina
- Department of Radiotherapy and Oncology, East Slovakia Institute of Oncology, Košice, Slovakia
| | - Pavel Morozov
- Laboratory for RNA Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Thomas Tuschl
- Laboratory for RNA Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Fresia Pareja
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Jakob N Kather
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany.
- Department of Medicine I, University Hospital Dresden, Dresden, Germany.
- Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany.
| | - Pavol Čekan
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia.
- MultiplexDX, Inc, Rockville, MD, USA.
| |
Collapse
|
24
|
Verma R, Kumar K, Bhatt S, Yadav M, Kumar M, Tagde P, Rajinikanth PS, Tiwari A, Tiwari V, Nagpal D, Mittal V, Kaushik D. Untangling Breast Cancer: Trailing Towards Nanoformulations-based Drug Development. RECENT PATENTS ON NANOTECHNOLOGY 2025; 19:76-98. [PMID: 37519201 DOI: 10.2174/1872210517666230731091046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
All over the world, cancer death and prevalence are increasing. Breast cancer (BC) is the major cause of cancer mortality (15%) which makes it the most common cancer in women. BC is defined as the furious progression and quick division of breast cells. Novel nanotechnology-based approaches helped in improving survival rate, metastatic BC is still facing obstacles to treat with an expected overall 23% survival rate. This paper represents epidemiology, classification (non-invasive, invasive and metastatic), risk factors (genetic and non-genetic) and treatment challenges of breast cancer in brief. This review paper focus on the importance of nanotechnology-based nanoformulations for treatment of BC. This review aims to deliver elementary insight and understanding of the novel nanoformulations in BC treatment and to explain to the readers for enduring designing novel nanomedicine. Later, we elaborate on several types of nanoformulations used in tumor therapeutics such as liposomes, dendrimers, polymeric nanomaterials and many others. Potential research opportunities for clinical application and current challenges related to nanoformulations utility for the treatment of BC are also highlighted in this review. The role of artificial intelligence is elaborated in detail. We also confer the existing challenges and perspectives of nanoformulations in effective tumor management, with emphasis on the various patented nanoformulations approved or progression of clinical trials retrieved from various search engines.
Collapse
Affiliation(s)
- Ravinder Verma
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, Haryana, 127021, India
| | - Kuldeep Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Shailendra Bhatt
- Shrinathji Institute of Pharmacy, Shrinathji Society for Higher Education, Upali Oden, Nathdwara, Rajasmand, Rajasthan, India
| | - Manish Yadav
- Department of Pharmacy, G.D. Goenka University, Sohna Road, Gurugram, 122103, India
| | - Manish Kumar
- School of Pharmaceutical Sciences, CT University, Ludhiana, 142024, Punjab, India
| | - Priti Tagde
- Bhabha Pharmacy Research Institute, Bhabha University Bhopal, 462026, Madhya Pradesh, India
- PRISAL Foundation, Pharmaceutical Royal International Society, New Dehli, India
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Amebdkar University, Lucknow, India
| | - Abhishek Tiwari
- Pharmacy Academy, IFTM University, Lodhipur Rajput, Moradabad, U.P., 244102, India
| | - Varsha Tiwari
- Pharmacy Academy, IFTM University, Lodhipur Rajput, Moradabad, U.P., 244102, India
| | - Diksha Nagpal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
25
|
Jang W, Lee J, Park KH, Kim A, Lee SH, Ahn S. Molecular Classification of Breast Cancer Using Weakly Supervised Learning. Cancer Res Treat 2025; 57:116-125. [PMID: 38938010 PMCID: PMC11729310 DOI: 10.4143/crt.2024.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024] Open
Abstract
PURPOSE The molecular classification of breast cancer is crucial for effective treatment. The emergence of digital pathology has ushered in a new era in which weakly supervised learning leveraging whole-slide images has gained prominence in developing deep learning models because this approach alleviates the need for extensive manual annotation. Weakly supervised learning was employed to classify the molecular subtypes of breast cancer. MATERIALS AND METHODS Our approach capitalizes on two whole-slide image datasets: one consisting of breast cancer cases from the Korea University Guro Hospital (KG) and the other originating from The Cancer Genomic Atlas dataset (TCGA). Furthermore, we visualized the inferred results using an attention-based heat map and reviewed the histomorphological features of the most attentive patches. RESULTS The KG+TCGA-trained model achieved an area under the receiver operating characteristics value of 0.749. An inherent challenge lies in the imbalance among subtypes. Additionally, discrepancies between the two datasets resulted in different molecular subtype proportions. To mitigate this imbalance, we merged the two datasets, and the resulting model exhibited improved performance. The attentive patches correlated well with widely recognized histomorphologic features. The triple-negative subtype has a high incidence of high-grade nuclei, tumor necrosis, and intratumoral tumor-infiltrating lymphocytes. The luminal A subtype showed a high incidence of collagen fibers. CONCLUSION The artificial intelligence (AI) model based on weakly supervised learning showed promising performance. A review of the most attentive patches provided insights into the predictions of the AI model. AI models can become invaluable screening tools that reduce costs and workloads in practice.
Collapse
Affiliation(s)
- Wooyoung Jang
- Department of Pathology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Jonghyun Lee
- Department of Medical and Digital Engineering, Hanyang University College of Engineering, Seoul, Korea
- Department of Pathology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Kyong Hwa Park
- Division of Oncology/Hematology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Aeree Kim
- Department of Pathology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Sung Hak Lee
- Department of Hospital Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sangjeong Ahn
- Department of Pathology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
- Artificial Intelligence Center, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
- Department of Medical Informatics, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
26
|
Karouji K, Tominari T, Abe R, Sugasaki M, Ikeda K, Matsumoto C, Miyaura C, Miyata S, Nomura Y, Itoh Y, Hirata M, Inada M. Loss of ERα involved-HER2 induction mediated by the FOXO3a signaling pathway in fulvestrant-resistant breast cancer. Biochem Biophys Res Commun 2025; 742:151056. [PMID: 39626368 DOI: 10.1016/j.bbrc.2024.151056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/16/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024]
Abstract
Patients with estrogen receptor alpha (ERα)-positive breast cancer are commonly treated with anti-estrogen drugs as an initial treatment strategy. Fulvestrant, an estrogen receptor antagonist, effectively blocks ERα signaling; however, long-term fulvestrant treatment induces drug resistance in the absence of ERα. In this study, we investigated the molecular mechanism underlying the loss of ERα, FOXO3a, and induction of HER2 in fulvestrant-resistant breast cancer. Short-term fulvestrant treatment degraded ERα proteins via the ubiquitin-proteasome degradation pathway in MCF7 cells. MCF7 cells turn into highly proliferative cells (fulvestrant-resistant cells: Ful-R) after long-term fulvestrant treatment. These cells exhibit markedly suppressed estrogen and progesterone receptor levels. The phosphorylation of EGFR, HER2, and ERK was induced in Ful-R, and these phosphorylation inhibitors suppressed cell proliferation in Ful-R. FOXO3a, a transcriptional regulator of ERα was decreased in Ful-R, and a ubiquitin-proteasome inhibitor restored the expression of FOXO3a. These results suggest that the suppression of FOXO3a and ERα led to the increased expression of TGF-α, EGFR, and HER2 and subsequent cell proliferation in Ful-R. This study highlights the potential development of therapeutic drugs targeting FOXO3a for the treatment of HER2-positive, estrogen, and progesterone receptor-negative her2-type proliferative breast cancers.
Collapse
Affiliation(s)
- Kento Karouji
- Cooperative Major in Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Tsukasa Tominari
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Reika Abe
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Moe Sugasaki
- Cooperative Major in Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Keisuke Ikeda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Chiho Matsumoto
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Chisato Miyaura
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Shinji Miyata
- Inada Research Team, Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Yoshihiro Nomura
- Inada Research Team, Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Yoshifumi Itoh
- Inada Research Team, Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan; Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7FY, UK
| | - Michiko Hirata
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Masaki Inada
- Cooperative Major in Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan; Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan; Inada Research Team, Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
27
|
Rios-Hoyo A, Shan NL, Karn PL, Pusztai L. Clinical Implications of Breast Cancer Intrinsic Subtypes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:435-448. [PMID: 39821037 DOI: 10.1007/978-3-031-70875-6_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Estrogen receptor-positive (ER+) and estrogen receptor-negative (ER-) breast cancers have different genomic architecture and show large-scale gene expression differences consistent with different cellular origins, which is reflected in the luminal (i.e., ER+) versus basal-like (i.e., ER-) molecular class nomenclature. These two major molecular subtypes have distinct epidemiological risk factors and different clinical behaviors. Luminal cancers can be subdivided further based on proliferative activity and ER signaling. Those with a high expression of proliferation-related genes and a low expression of ER-associated genes, called luminal B, have a high risk of early recurrence (i.e., within 5 years), derive significant benefit from adjuvant chemotherapy, and may benefit from adding immunotherapy to chemotherapy. This subset of luminal cancers is identified as the genomic high-risk ER+ cancers by the MammaPrint, Oncotype DX Recurrence Score, EndoPredict, Prosigna, and several other molecular prognostic assays. Luminal A cancers are characterized by low proliferation and high ER-related gene expression. They tend to have excellent prognosis with adjuvant endocrine therapy. Adjuvant chemotherapy may not improve their outcome further. These cancers correspond to the genomic low-risk categories. However, these cancers remain at risk for distant recurrence for extended periods of time, and over 50% of distant recurrences occur after 5 years. Basal-like cancers are uniformly highly proliferative and tend to recur within 3-5 years of diagnosis. In the absence of therapy, basal-like breast cancers have the worst survival, but these also include many highly chemotherapy-sensitive cancers. Basal-like cancers are often treated with preoperative chemotherapy combined with an immune checkpoint inhibitor which results in 60-65% pathologic complete response rates that herald excellent long-term survival. Patients with residual cancer after neoadjuvant therapy can receive additional postoperative chemotherapy that improves their survival. Currently, there is no clinically actionable molecular subclassification for basal-like cancers, although cancers with high androgen receptor (AR)-related gene expression and those with high levels of immune infiltration have better prognosis, but currently their treatment is not different from basal-like cancers in general. A clinically important, minor subset of breast cancers are characterized by frequent HER2 gene amplification and high expression of a few dozen genes, many residing on the HER2 amplicon. This is an important subset because of the highly effective HER2 targeted therapies which are synergistic with endocrine therapy and chemotherapy. The clinical behavior of HER2-enriched cancers is dominated by the underlying ER subtype. ER+/HER2-enriched cancers tend to have more indolent course and lesser chemotherapy sensitivity than their ER counterparts.
Collapse
Affiliation(s)
| | - Naing-Lin Shan
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | | | - Lajos Pusztai
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
28
|
Hermán-Sánchez N, G-García ME, Jiménez-Vacas JM, Yubero-Serrano EM, López-Sánchez LM, Romero-Martín S, Raya-Povedano JL, Álvarez-Benito M, Castaño JP, Luque RM, Gahete MD. The splicing machinery is dysregulated and represents a therapeutic vulnerability in breast cancer. Cell Mol Life Sci 2024; 82:18. [PMID: 39725737 DOI: 10.1007/s00018-024-05515-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/27/2024] [Accepted: 11/15/2024] [Indexed: 12/28/2024]
Abstract
Breast cancer (BCa) is a highly prevalent pathological condition (̴30% in women) with limited and subtype-dependent prognosis and therapeutic options. Therefore, BCa management might benefit from the identification of novel molecular elements with clinical potential. Since splicing process is gaining a great relevance in cancer, this work analysed the expression of multiple Spliceosome Components (SCs = 17) and Splicing Factors (SFs = 26) and found a drastic dysregulation in BCa (n = 69) vs. control (negative biopsies; n = 50) samples. Among all the components analysed, we highlight the upregulation of ESRP1 and down-regulation of PRPF8 and NOVA1 in BCa vs. control samples. Indeed, ESRP1 was specially overexpressed in triple-negative BCa (TNBCa) and associated with worse prognosis (i.e., higher BCa grade and lower overall survival), suggesting an association of ESRP1 with BCa aggressiveness. On the other hand, PRPF8 expression was generally downregulated in BCa with no associations to clinical characteristics, while NOVA1 expression was lower in TNBCa patients and highly aggressive tumours. Consistently, NOVA1 overexpression in vitro reduced functional parameters of aggressiveness in ER-/PR- cell lines (MDA-MB-231 and BT-549) but not in ER+/PR+ cells (MCF7), suggesting a critical role of NOVA1 in subtype-specific BCa. Finally, the in vitro pharmacological inhibition of splicing machinery using pladienolide B decreased aggressiveness features in all the BCa cell lines, showing a subtype-independent inhibitory potential, but being relatively innocuous in normal-like breast cells. These results demonstrate the profound dysregulation of the splicing machinery in BCa and their potential as source of promising diagnosis/prognosis markers, as well as valuable therapeutic targets for BCa.
Collapse
Affiliation(s)
- Natalia Hermán-Sánchez
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), IMIBIC building. Av. Menéndez Pidal s/n, Córdoba, 14004, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, 14004, Spain
- Reina Sofía University Hospital, Córdoba, 14004, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain
| | - Miguel E G-García
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), IMIBIC building. Av. Menéndez Pidal s/n, Córdoba, 14004, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, 14004, Spain
- Reina Sofía University Hospital, Córdoba, 14004, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain
| | - Juan M Jiménez-Vacas
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), IMIBIC building. Av. Menéndez Pidal s/n, Córdoba, 14004, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, 14004, Spain
- Reina Sofía University Hospital, Córdoba, 14004, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain
| | - Elena M Yubero-Serrano
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), IMIBIC building. Av. Menéndez Pidal s/n, Córdoba, 14004, Spain
- Reina Sofía University Hospital, Córdoba, 14004, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain
- Lipids and Atherosclerosis Unit, Reina Sofía University Hospital, Córdoba, Spain
| | - Laura M López-Sánchez
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), IMIBIC building. Av. Menéndez Pidal s/n, Córdoba, 14004, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, 14004, Spain
- Reina Sofía University Hospital, Córdoba, 14004, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain
| | - Sara Romero-Martín
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), IMIBIC building. Av. Menéndez Pidal s/n, Córdoba, 14004, Spain
- Reina Sofía University Hospital, Córdoba, 14004, Spain
- Mammary Gland Unit, Reina Sofía University Hospital, Córdoba, Spain
| | - Jose L Raya-Povedano
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), IMIBIC building. Av. Menéndez Pidal s/n, Córdoba, 14004, Spain
- Reina Sofía University Hospital, Córdoba, 14004, Spain
- Mammary Gland Unit, Reina Sofía University Hospital, Córdoba, Spain
| | - Marina Álvarez-Benito
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), IMIBIC building. Av. Menéndez Pidal s/n, Córdoba, 14004, Spain
- Reina Sofía University Hospital, Córdoba, 14004, Spain
- Mammary Gland Unit, Reina Sofía University Hospital, Córdoba, Spain
| | - Justo P Castaño
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), IMIBIC building. Av. Menéndez Pidal s/n, Córdoba, 14004, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, 14004, Spain.
- Reina Sofía University Hospital, Córdoba, 14004, Spain.
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain.
| | - Raúl M Luque
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), IMIBIC building. Av. Menéndez Pidal s/n, Córdoba, 14004, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, 14004, Spain.
- Reina Sofía University Hospital, Córdoba, 14004, Spain.
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain.
| | - Manuel D Gahete
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), IMIBIC building. Av. Menéndez Pidal s/n, Córdoba, 14004, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, 14004, Spain.
- Reina Sofía University Hospital, Córdoba, 14004, Spain.
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain.
| |
Collapse
|
29
|
Giffoni de Mello Morais Mata D, Pezo RC, Chan KKW, Menjak I, Eisen A, Trudeau M. A Real-World Comparison Between Adjuvant Docetaxel with Cyclophosphamide (TC) and Anthracycline-Taxane Chemotherapy in Early HER-2 Negative Breast Cancer. Curr Oncol 2024; 32:6. [PMID: 39851922 PMCID: PMC11764166 DOI: 10.3390/curroncol32010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Anthracycline-taxane chemotherapy is the gold standard in high-risk breast cancer (BC), despite the potential risk of congestive heart failure (CHF). A suitable alternative for anthracycline-sparing chemotherapy is through the combination of docetaxel and cyclophosphamide (TC). METHODS Through a retrospective study of stage I-III HER2-negative BC, using administrative databases, we analyzed a total of 10,634 women treated with adjuvant chemotherapy in Ontario, Canada, between 2009 and 2017. We compared TC versus standardized anthracycline-taxane chemotherapies (ACT and FEC-D). We investigated the overall survival (OS), and explored the incidence of CHF, emergency department (ED) visits and febrile neutropenia. RESULTS With a median follow-up of 5.5 years, the 5-year analysis showed an increased OS in patients treated with TC, versus those treated with ACT, HR 0.77 (0.63-0.95, p = 0.015). Among ER+ BC, there was an increased OS in patients treated with ACT and FEC-D, versus those treated with TC, HR 0.70 (0.52-0.95, p = 0.021) and HR 0.71 (0.56-0.91, p = 0.007), respectively. There were no substantial differences in CHF, between TC and anthracycline-based treatments. Patients treated with TC and FEC-D had more ED visits, compared to those treated with ACT. CONCLUSION Our study shows that anthracycline-taxane regimens were the most commonly prescribed adjuvant chemotherapy options in HER2-negative BC. Women who received ACT had the lowest OS, likely due to their unfavorable pathology.
Collapse
Affiliation(s)
- Danilo Giffoni de Mello Morais Mata
- Division of Medical Oncology, Verspeeten Family Cancer Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
- ICES Western, London, ON N6A 5W9, Canada
| | - Rossanna C. Pezo
- Division of Medical Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; (R.C.P.); (K.K.W.C.); (I.M.)
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Kelvin K. W. Chan
- Division of Medical Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; (R.C.P.); (K.K.W.C.); (I.M.)
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Cancer Program, ICES, Toronto, ON M4N 3M5, Canada
| | - Ines Menjak
- Division of Medical Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; (R.C.P.); (K.K.W.C.); (I.M.)
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Andrea Eisen
- Division of Medical Oncology, Juravinski Cancer Centre, Hamilton, ON L8V 1C3, Canada;
- Hamilton Health Sciences, Hamilton, ON L8V 1C3, Canada
| | - Maureen Trudeau
- Division of Medical Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; (R.C.P.); (K.K.W.C.); (I.M.)
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
30
|
Bhattarai S, Sugita BM, Nunes-Souza E, Fonseca AS, Chandrashekar DS, Bhargava M, Cavalli LR, Aneja R. Dysregulated miRNA Expression and Androgen Receptor Loss in Racially Distinct Triple-Negative Breast Cancer. Int J Mol Sci 2024; 25:13679. [PMID: 39769441 PMCID: PMC11679545 DOI: 10.3390/ijms252413679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/23/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Androgen receptor (AR)-negative triple-negative breast cancer (TNBC), often termed quadruple-negative breast cancer (QNBC), disproportionately impacts women of African descent, leading to poorer overall survival (OS). MiRNAs regulate the expression of gene drivers involved in critical signaling pathways in TNBC, such as the AR gene, and their expression varies across races and breast cancer subtypes. This study investigates whether differentially expressed miRNAs influence AR transcription, potentially contributing to the observed disparities between African American (AA) and European American (EA) QNBC patients. Race-annotated TNBC samples (n = 129) were analyzed for AR expression status and revealed the prevalence of QNBC in AA patients compared to EA (76.6% vs. 57.7%) and a significant association of AR loss with poor survival among AAs. The Cancer Genome Atlas (TCGA) RNA-seq data showed that AAs with TNBC (n = 32) had lower AR mRNA levels than EAs (n = 67). Among TCGA patients in the AR-low group, AAs had significantly poorer OS than EAs. In our cohort, 46 miRNAs exhibited differential expression between AAs and EAs with QNBC. Ten of these miRNAs (miR-1185-5p, miR-1305, miR-3161, miR-3690, miR-494-3p, miR-509-3-5p, miR-619-3p, miR-628-3p, miR-873-5p, and miR-877-5p) were predicted to target the AR gene/signaling. The loss of AR expression is linked to poorer prognoses in AA women. The understanding of the specific miRNAs involved and their regulatory mechanisms on AR expression could provide valuable insights into why AA women are more prone to QNBC.
Collapse
Affiliation(s)
- Shristi Bhattarai
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA
| | - Bruna M. Sugita
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (B.M.S.)
| | - Emanuelle Nunes-Souza
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (B.M.S.)
| | - Aline S. Fonseca
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (B.M.S.)
| | - Darshan Shimoga Chandrashekar
- Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Mahak Bhargava
- Department of Nutrition Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Luciane R. Cavalli
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (B.M.S.)
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA
- Department of Nutrition Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
31
|
McDonough E, Barroso M, Ginty F, Corr DT. Modeling intratumor heterogeneity in breast cancer. Biofabrication 2024; 17:10.1088/1758-5090/ad9b50. [PMID: 39642392 PMCID: PMC11740194 DOI: 10.1088/1758-5090/ad9b50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 12/06/2024] [Indexed: 12/08/2024]
Abstract
Reduced therapy response in breast cancer has been correlated with heterogeneity in biomarker composition, expression level, and spatial distribution of cancer cells within a patient tumor. Thus, there is a need for models to replicate cell-cell, cell-stromal, and cell-microenvironment interactions during cancer progression. Traditional two-dimensional (2D) cell culture models are convenient but cannot adequately represent tumor microenvironment histological organization,in vivo3D spatial/cellular context, and physiological relevance. Recently, three-dimensional (3D)in vitrotumor models have been shown to provide an improved platform for incorporating compositional and spatial heterogeneity and to better mimic the biological characteristics of patient tumors to assess drug response. Advances in 3D bioprinting have allowed the creation of more complex models with improved physiologic representation while controlling for reproducibility and accuracy. This review aims to summarize the advantages and challenges of current 3Din vitromodels for evaluating therapy response in breast cancer, with a particular emphasis on 3D bioprinting, and addresses several key issues for future model development as well as their application to other cancers.
Collapse
Affiliation(s)
- Elizabeth McDonough
- Department of Biomedical Engineering, Rensselaer
Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
- GE HealthCare Technology & Innovation Center, 1
Research Circle, Niskayuna, New York 12309, United States
| | - Margarida Barroso
- Department of Molecular and Cellular Physiology, Albany
Medical College, Albany, NY 12208, United States
| | - Fiona Ginty
- GE HealthCare Technology & Innovation Center, 1
Research Circle, Niskayuna, New York 12309, United States
| | - David T. Corr
- Department of Biomedical Engineering, Rensselaer
Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| |
Collapse
|
32
|
Acharya R, Deb PK, Venugopala KN, Pattanayak SP. An Azomethine Derivative, BCS3, Targets XIAP and cIAP1/2 to Arrest Breast Cancer Progression Through MDM2-p53 and Bcl-2-Caspase Signaling Modulation. Pharmaceuticals (Basel) 2024; 17:1645. [PMID: 39770487 PMCID: PMC11678930 DOI: 10.3390/ph17121645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/21/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Breast cancer influences more than 2 million women worldwide annually. Since apoptotic dysregulation is a cancer hallmark, targeting apoptotic regulators encompasses strategic drug development for cancer therapy. One such class of apoptotic regulators is inhibitors of apoptosis proteins (IAP) which are a class of E3 ubiquitin ligases that actively function to support cancer growth and survival. Methods: The current study reports design, synthesis, docking analysis (based on binding to IAP-BIR3 domains), anti-proliferative and anti-tumor potential of the azomethine derivative, 1-(4-chlorophenyl)-N-(4-ethoxyphenyl)methanimine (BCS3) on breast cancer (in vitro and in vivo) and its possible mechanisms of action. Results: Strong selective cytotoxic activity was observed in MDA-MB-231, MCF-7, and MDA-MB-468 breast cancer cell lines that exhibited IC50 values, 1.554 µM, 5.979 µM, and 6.462 µM, respectively, without affecting normal breast cells, MCF-10A. For the evaluation of the cytotoxic potential of BCS3, immunofluorescence, immunoblotting, and FACS (apoptosis and cell cycle) analyses were conducted. BCS3 antagonized IAPs, thereby causing MDM2-p53 and Bcl-2-Caspase-mediated intrinsic and extrinsic apoptosis. It also modulated p53 expression causing p21-CDK1/cyclin B1-mediated cell cycle arrest at S and G2/M phases. The in vitro findings were consistent with in vivo findings as observed by reduced tumor volume and apoptosis initiation (TUNEL assay) by IAP downregulation. BCS3 also produced potent synergistic effects with doxorubicin on tumor inhibition. Conclusions: Having witnessed the profound anti-proliferative potential of BCS3, the possible adverse effects related to anti-cancer therapy were examined following OECD 407 guidelines which confirmed its systemic safety profile and well tolerability. The results indicate the promising effect of BCS3 as an IAP antagonist for breast cancer therapy with fewer adverse effects.
Collapse
Affiliation(s)
- Reetuparna Acharya
- Division of Advanced Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology (BIT), Mesra, Ranchi 835215, India;
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology (BIT), Mesra, Ranchi 835215, India
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4001, South Africa
| | - Shakti Prasad Pattanayak
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Woods Building, W437, 2109 Adelbert Road, Cleaveland, OH 44106, USA
| |
Collapse
|
33
|
Dai R, Bao X, Liu C, Yin X, Zhu Z, Zheng Z, Wang B, Yang K, Wen H, Li W, Zhu H, Du Q, Liu J. Drug discovery of N-methyl-pyrazole derivatives as potent selective estrogen receptor degrader (SERD) for the treatment of breast cancer. Eur J Med Chem 2024; 279:116894. [PMID: 39357315 DOI: 10.1016/j.ejmech.2024.116894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024]
Abstract
Nowadays, ERα is considered to be a primary target for the treatment of breast cancer, and selective estrogen receptor degraders (SERDs) are emerging as promising antitumor agents. By analysing ERα-SERDs complexes, the pharmacophore features of SERDs and the crucial protein-ligand interactions were identified. Then, by utilizing the scaffold-hopping and bioisosteres strategy, 23 novel derivatives were designed, synthesized and biologically evaluated. Among these derivatives, A20 exhibited potent ERα binding affinity (IC50 = 24.0 nM), degradation ability (EC50 = 5.3 nM), excellent ER selectivity, and outstanding anti-proliferative effects on MCF-7 cells (IC50 = 0.28 nM). Further biological studies revealed that A20 could degrade ERα through proteasome-mediated pathway, suppress signal transduction of MCF-7 cells, and arrest the cell cycle in G1 phase. Moreover, A20 showed excellent antitumor effect (TGI = 92.98 %, 30 mg kg-1 day-1) in the MCF-7 xenograft model in vivo with good safety and favorable pharmacokinetics (F = 39.6 %), making it a promising candidate for the treatment of breast cancer.
Collapse
Affiliation(s)
- Rupeng Dai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xueting Bao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chao Liu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210029, China; School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xunkai Yin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhenzhen Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhe Zheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Bo Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Kundi Yang
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Hongmei Wen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Wei Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Haohao Zhu
- The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China.
| | - Qianming Du
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China; Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Jian Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
34
|
Laczmanska I, Matkowski R, Supplitt S, Karpinski P, Abrahamowska M, Laczmanski L, Maciejczyk A, Czykalko E, Iwaneczko E, Kasprzak P, Szynglarewicz B, Sasiadek M. Alterations in the expression of homologous recombination repair (HRR) genes in breast cancer tissues considering germline BRCA1/2 mutation status. Breast Cancer Res Treat 2024; 208:501-510. [PMID: 39080120 PMCID: PMC11522089 DOI: 10.1007/s10549-024-07441-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/18/2024] [Indexed: 10/30/2024]
Abstract
INTRODUCTION Homologous recombination (HR) is a crucial DNA-repair mechanism, and its disruption can lead to the accumulation of mutations that initiate and promote cancer formation. The key HR genes, BRCA1 and BRCA2, are particularly significant as their germline pathogenic variants are associated with a hereditary predisposition to breast and/or ovarian cancer. MATERIALS AND METHODS The study was performed on 45 FFPE breast cancer tissues obtained from 24 and 21 patients, with and without the germline BRCA1/2 mutation, respectively. The expression of 11 genes: BRCA1, BRCA2, ATM, BARD1, FANCA, FANCB, FANCI, RAD50, RAD51D, BRIP1, and CHEK2 was assessed using Custom RT2 PCR Array (Qiagen), and results were analysed using R. RESULTS Cancer tissues from patients with BRCA1 or BRCA2 germline mutations displayed no significant differences in the expression of the selected HR genes compared to BRCA1 or BRCA2 wild-type cancer tissues. In BRCA1mut cancer tissues, BRCA1 expression was significantly higher than in BRCA2mut and BRCA wild-type cancer tissues. CONCLUSIONS In cancer tissues harbouring either BRCA1 or BRCA2 germline mutations, no significant differences in expression were observed at the mRNA level of any tested HR genes, except BRCA1. However, the significant differences observed in BRCA1 expression between germline BRCA1mut, germline BRCA2mut and BRCA1/2wt tissues may indicate a compensatory mechanism at the mRNA level to mitigate the loss of BRCA1 function in the cells.
Collapse
Affiliation(s)
- Izabela Laczmanska
- Department of Genetics, Faculty of Medicine, Wroclaw Medical University, Marcinkowskiego 1, 50-368, Wroclaw, Poland
- Lower Silesian Oncology, Pulmonology and Hematology Center, Hirszfeld Sq. 12, 53-413, Wroclaw, Poland
| | - Rafal Matkowski
- Lower Silesian Oncology, Pulmonology and Hematology Center, Hirszfeld Sq. 12, 53-413, Wroclaw, Poland.
- Department of Oncology, Faculty of Medicine, Wroclaw Medical University, Hirszfeld Sq. 12, 53-413, Wroclaw, Poland.
| | - Stanislaw Supplitt
- Department of Genetics, Faculty of Medicine, Wroclaw Medical University, Marcinkowskiego 1, 50-368, Wroclaw, Poland
| | - Pawel Karpinski
- Department of Genetics, Faculty of Medicine, Wroclaw Medical University, Marcinkowskiego 1, 50-368, Wroclaw, Poland
| | - Mariola Abrahamowska
- Lower Silesian Oncology, Pulmonology and Hematology Center, Hirszfeld Sq. 12, 53-413, Wroclaw, Poland
- Department of Oncology, Faculty of Medicine, Wroclaw Medical University, Hirszfeld Sq. 12, 53-413, Wroclaw, Poland
| | - Lukasz Laczmanski
- Laboratory of Genomics and Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| | - Adam Maciejczyk
- Lower Silesian Oncology, Pulmonology and Hematology Center, Hirszfeld Sq. 12, 53-413, Wroclaw, Poland
- Department of Oncology, Faculty of Medicine, Wroclaw Medical University, Hirszfeld Sq. 12, 53-413, Wroclaw, Poland
| | - Ewelina Czykalko
- Lower Silesian Oncology, Pulmonology and Hematology Center, Hirszfeld Sq. 12, 53-413, Wroclaw, Poland
| | - Ewelina Iwaneczko
- Lower Silesian Oncology, Pulmonology and Hematology Center, Hirszfeld Sq. 12, 53-413, Wroclaw, Poland
| | - Piotr Kasprzak
- Lower Silesian Oncology, Pulmonology and Hematology Center, Hirszfeld Sq. 12, 53-413, Wroclaw, Poland
| | - Bartłomiej Szynglarewicz
- Lower Silesian Oncology, Pulmonology and Hematology Center, Hirszfeld Sq. 12, 53-413, Wroclaw, Poland
- Department of Oncology, Faculty of Medicine, Wroclaw Medical University, Hirszfeld Sq. 12, 53-413, Wroclaw, Poland
| | - Maria Sasiadek
- Department of Genetics, Faculty of Medicine, Wroclaw Medical University, Marcinkowskiego 1, 50-368, Wroclaw, Poland
| |
Collapse
|
35
|
Li YS, Jiang HC. Integrative analysis of homologous recombination repair patterns unveils prognostic signatures and immunotherapeutic insights in breast cancer. J Appl Genet 2024; 65:823-838. [PMID: 38478326 PMCID: PMC11561031 DOI: 10.1007/s13353-024-00848-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/15/2024] [Accepted: 02/22/2024] [Indexed: 11/14/2024]
Abstract
Globally, breast cancer (BC) is the leading cause of female death and morbidity. Homologous recombination repair (HRR) is critical in BC. However, the prognostic role and immunotherapy response of HRR in BC remains to be clarified. Firstly, we identified HRR types in BC samples from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) dataset (GSE42568) based on 65 HRR genes (HRRGs). A differentially expressed gene (DEG) list for different HRR types was generated. Then, the influences of gene sets composed of these DEGs on biological pathways and BC prognosis were explored. Next, we identified gene clusters based on gene sets composed of DEGs. Genes associated with prognosis for DEGs were identified using univariate Cox regression. Finally, the HRR score was constructed based on genes associated with prognosis. We analyzed how HRR score correlates with tumor mutation burden (TMB), immune cell infiltration (ICI), and immunotherapy response. Three HRR clusters were discovered. HRR subtype A demonstrated decreased infiltration and a high number of immunosuppressive cells with a poor prognosis. DEGs among various HRR types were predominantly enriched in cell cycle and genomic stability-related pathways. The prognostic model based on sixteen DEGs accurately predicted BC prognosis. The HRRGs were differentially expressed in three DEG clusters. TMB, ICI, and immunotherapy responses differed significantly between the high and low HRR groups (HSG, LSG). The HSG was distinguished by a high degree of ICI and low TMB. LSG had a better response to anti-PD-1 or anti-PD-1 and anti-CTLA4 combination therapy. This work revealed that HRR patterns would contribute to predicting prognosis and immunotherapy response in BC, which may benefit patients.
Collapse
Affiliation(s)
- Yan-Shuang Li
- Department of Breast Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Hong-Chuan Jiang
- Department of Breast Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
36
|
Püsküllüoğlu M, Pieniążek M, Las-Jankowska M, Streb J, Ziobro M, Pacholczak-Madej R, Kilian-Van Miegem P, Rudzińska A, Grela-Wojewoda A, Łacko A, Jarząb M, Polakiewicz-Gilowska A. Sacituzumab Govitecan for Second and Subsequent Line Palliative Treatment of Patients with Triple-Negative Breast Cancer: A Polish Real-World Multicenter Cohort Study. Oncol Ther 2024; 12:787-801. [PMID: 39331319 PMCID: PMC11573939 DOI: 10.1007/s40487-024-00307-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
INTRODUCTION Sacituzumab govitecan (SG) is approved for patients with previously treated metastatic or locally advanced triple-negative breast cancer (TNBC), as per the ASCENT trial results. Real-world studies (RWSs) cover more diverse patients than clinical trials, offering crucial data for healthcare policies. This study aimed to investigate the safety and efficacy of SG in real-world Polish patients with previously treated metastatic TNBC. METHODS In this ambispective multicenter cohort study, we collected demographic and clinical data. Premedication, adjustments in SG dosage, and treatment regimen adhered to the product's characteristics. RESULTS We included 79 female patients. The median age at SG initiation was 53 years; 32% of patients were initially diagnosed with a non-TNBC subtype. The median number of previous palliative lines was 2. Seven patients presented with brain metastases. The median overall survival was 10.3 months, and the median progression-free survival (PFS) was 4.4 months. The overall response rate was 35%, with a median time to response of 2 months. SG was discontinued by 70% of patients, primarily due to disease progression (95%). Treatment delays due to adverse events (AEs) occurred in 67% and dose reductions in 25% of patients, with neutropenia being the most common. Grade ≥ 2 AEs included neutropenia (43%), anemia (10.1%), and diarrhea (4%). A longer interval between breast cancer diagnosis and SG initiation or between metastasis diagnosis and SG initiation correlated with improved PFS, likely reflecting the disease's biological aggressiveness rather than treatment efficacy. CONCLUSION In this RWS, SG demonstrated effectiveness and safety in patients with previously treated metastatic TNBC, consistent with ASCENT trial outcomes. Further research is needed to explore the efficacy of SG in different patient populations and healthcare systems.
Collapse
Affiliation(s)
- Miroslawa Püsküllüoğlu
- Department of Clinical Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Kraków Branch, Kraków, Poland.
| | - Małgorzata Pieniążek
- Department of Oncology, Wrocław Medical University, Plac Hirszfelda 12, 53-413, Wrocław, Poland
- Lower Silesian Comprehensive Cancer Center, Plac Hirszfelda 12, 53-413, Wrocław, Poland
| | - Manuela Las-Jankowska
- Surgical Oncology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Oncology Centre, Nicolaus Copernicus University in Torun, 85-067, Bydgoszcz, Poland
- Department of Clinical Oncology, Oncology Center-Prof Franciszek Lukaszczyk Memorial Hospital, 85-796, Bydgoszcz, Poland
| | - Joanna Streb
- Department of Oncology, Jagiellonian University Medical College, 31-008, Kraków, Poland
| | - Marek Ziobro
- Department of Clinical Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Kraków Branch, Kraków, Poland
| | - Renata Pacholczak-Madej
- Department of Anatomy, Jagiellonian University Medical College, Świętej Anny 12, 31-008, Kraków, Poland
- Department of Gynecological Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Garncarska Street 11, Krakow Branch, 31-115, Kraków, Poland
- Department of Chemotherapy, The District Hospital, Szpitalna Street 22, 34-200, Sucha Beskidzka, Poland
| | - Paulina Kilian-Van Miegem
- Chemotherapy Outpatient Clinic, Oncology Center Prof. F. Łukaszczyk in Bydgoszcz, 85-796, Bydgoszcz, Poland
| | - Agnieszka Rudzińska
- Department of Clinical Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Kraków Branch, Kraków, Poland
| | - Aleksandra Grela-Wojewoda
- Department of Clinical Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Kraków Branch, Kraków, Poland
| | - Aleksandra Łacko
- Department of Oncology, Wrocław Medical University, Plac Hirszfelda 12, 53-413, Wrocław, Poland
- Lower Silesian Comprehensive Cancer Center, Plac Hirszfelda 12, 53-413, Wrocław, Poland
| | - Michał Jarząb
- Breast Cancer Unit, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102, Gliwice, Poland
| | - Anna Polakiewicz-Gilowska
- Breast Cancer Unit, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102, Gliwice, Poland
| |
Collapse
|
37
|
Eren E, Das J, Tollefsbol TO. Polyphenols as Immunomodulators and Epigenetic Modulators: An Analysis of Their Role in the Treatment and Prevention of Breast Cancer. Nutrients 2024; 16:4143. [PMID: 39683540 PMCID: PMC11644657 DOI: 10.3390/nu16234143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Breast cancer poses a substantial health challenge for women globally. Recently, there has been a notable increase in scholarly attention regarding polyphenols, primarily attributed to not only the adverse effects associated with conventional treatments but also their immune-preventive impacts. Polyphenols, nature-derived substances present in vegetation, including fruits and vegetables, have received considerable attention in various fields of science due to their probable wellness merits, particularly in the treatment and hindrance of cancer. This review focuses on the immunomodulatory effects of polyphenols in breast cancer, emphasizing their capacity to influence the reaction of adaptive and innate immune cells within the tumor-associated environment. Polyphenols are implicated in the modulation of inflammation, the enhancement of antioxidant defenses, the promotion of epigenetic modifications, and the support of immune functions. Additionally, these compounds have been shown to influence the activity of critical immune cells, including macrophages and T cells. By targeting pathways involved in immune evasion, polyphenols may augment the capacity of the defensive system to detect and eliminate tumors. The findings suggest that incorporating polyphenol-rich foods into the diet could offer a promising, collaborative (integrative) approach to classical breast cancer remedial procedures by regulating how the defense mechanism interacts with the disease.
Collapse
Affiliation(s)
- Esmanur Eren
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.E.); (J.D.)
| | - Jyotirmoyee Das
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.E.); (J.D.)
| | - Trygve O. Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.E.); (J.D.)
- Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Research, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
38
|
Mussa A, Ismail NH, Hamid M, Al-Hatamleh MAI, Bragoli A, Hajissa K, Mokhtar NF, Mohamud R, Uskoković V, Hassan R. Understanding the role of TNFR2 signaling in the tumor microenvironment of breast cancer. J Exp Clin Cancer Res 2024; 43:312. [PMID: 39609700 PMCID: PMC11603874 DOI: 10.1186/s13046-024-03218-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed malignancy among women. It is characterized by a high level of heterogeneity that emerges from the interaction of several cellular and soluble components in the tumor microenvironment (TME), such as cytokines, tumor cells and tumor-associated immune cells. Tumor necrosis factor (TNF) receptor 2 (TNFR2) appears to play a significant role in microenvironmental regulation, tumor progression, immune evasion, drug resistance, and metastasis of many types of cancer, including BC. However, the significance of TNFR2 in BC biology is not fully understood. This review provides an overview of TNFR2 biology, detailing its activation and its interactions with important signaling pathways in the TME (e.g., NF-κB, MAPK, and PI3K/Akt pathways). We discuss potential therapeutic strategies targeting TNFR2, with the aim of enhancing the antitumor immune response to BC. This review provides insights into role of TNFR2 as a major immune checkpoint for the future treatment of patients with BC.
Collapse
Affiliation(s)
- Ali Mussa
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia
- Department of Biology, Faculty of Education, Omdurman Islamic University, P.O. Box 382, Omdurman, Sudan
| | - Nor Hayati Ismail
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia
| | - Mahasin Hamid
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Hunan Province, Changsha, 410013, China
- Department of Zoology, Faculty of Sciences and Information Technology, University of Nyala, Nyala, 63311, Sudan
| | - Mohammad A I Al-Hatamleh
- Division of Hematology and Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Anthony Bragoli
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Khalid Hajissa
- Department of Zoology, Faculty of Science and Technology, Omdurman Islamic University, P.O. Box 382, Omdurman, Sudan
| | - Noor Fatmawati Mokhtar
- Institute for Research in Molecular Medicine (iNFORMM), Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia.
| | - Vuk Uskoković
- TardigradeNano LLC, Irvine, CA, 92604, USA
- Division of Natural Sciences, Fullerton College, Fullerton, CA, 92832, USA
| | - Rosline Hassan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia.
| |
Collapse
|
39
|
Rodrigues I, Fernandes R, Ferreira A, Pereira D, Fernandes R, Soares R, Luís C. Is Progesterone Receptor a Neglected Feature in Breast Cancer? A Retrospective Study Analysing the Clinicopathological Characteristics of Breast Cancer Based on Progesterone Receptor Status. Clin Breast Cancer 2024:S1526-8209(24)00332-X. [PMID: 39706710 DOI: 10.1016/j.clbc.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/23/2024]
Abstract
PURPOSE The aim of this study is to analyse PR independently and its relationship with demographic and clinicopathological information. INTRODUCTION Steroid hormones, particularly estrogen and progesterone, play a crucial role in breast cancer (BC) etiology. Research attention has focused mainly on estrogen while the progesterone impact on breast cancer has yet to be fully uncover. Hormone receptors, including those for estrogen and progesterone, are crucial in BC molecular classification, shaping prognosis and treatment strategies. Beyond its metabolic effects, progesterone and its receptor (PR) have significant clinical implications, impacting clinical outcomes. MATERIALS AND METHODS The study comprised 2223 women who were diagnosed with BC at the Comprehensive Cancer Centre in Portugal (IPO-Porto) between 2012 and 2016. Variables, including age at diagnosis, body mass index (BMI), laterality, topographic localization, histological type, differentiation grade, tumor stage, estrogen receptor (ER) and Human Epidermal growth factor Receptor 2 (HER2) expression, were stratified according to the expression of Progesterone Receptor. Statistical analysis included Pearson's Chi-squared test, binary and multinomial regression, and Cox proportional hazard model. Statistical significance was set for P < .05. RESULTS The results reveal a statistical association between PR and BMI, histological type, differentiation grade, tumour stage, ER and HER2. Progesterone receptor negativity is associated with adverse clinical outcomes, including advanced tumor stages, and diminished overall survival. CONCLUSION Further research is needed to elucidate the precise contributions of progesterone to breast cancer progression and to optimize therapeutic approaches for improved patient outcomes.
Collapse
Affiliation(s)
- Ilda Rodrigues
- Biochemistry Unit, Department of Biomedicine, Faculty of Medicine, University of Porto (FMUP), Porto, Portugal; i3S ‑ Instituto de Inovação e Investigação em Saúde, University of Porto, Porto, Portugal
| | - Rute Fernandes
- Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Ana Ferreira
- Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal; ICBAS - Abel Salazar Institute of Biomedical Sciences, Porto, Portugal
| | - Deolinda Pereira
- Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Rúben Fernandes
- Faculty of Health Sciences, University Fernando Pessoa, Fernando Pessoa Hospital-School (FCS/HEFP/UFP), Porto, Portugal
| | - Raquel Soares
- Biochemistry Unit, Department of Biomedicine, Faculty of Medicine, University of Porto (FMUP), Porto, Portugal; i3S ‑ Instituto de Inovação e Investigação em Saúde, University of Porto, Porto, Portugal
| | - Carla Luís
- Biochemistry Unit, Department of Biomedicine, Faculty of Medicine, University of Porto (FMUP), Porto, Portugal; i3S ‑ Instituto de Inovação e Investigação em Saúde, University of Porto, Porto, Portugal; Faculty of Health Sciences, University Fernando Pessoa, Fernando Pessoa Hospital-School (FCS/HEFP/UFP), Porto, Portugal.
| |
Collapse
|
40
|
Palaniappan M. Current Therapeutic Opportunities for Estrogen Receptor Mutant Breast Cancer. Biomedicines 2024; 12:2700. [PMID: 39767607 PMCID: PMC11673253 DOI: 10.3390/biomedicines12122700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Estrogen receptor α (ERα) drives two out of three breast cancers and therefore ERα is a major therapeutic target for ER-positive breast cancer patients. Drugs that inhibit ERα activity or block estrogen synthesis in the body are currently being used in the clinic to treat ER-positive breast cancer and have been quite successful in controlling breast cancer progression for the majority of patients. However, ER-positive breast cancer often becomes resistant to these endocrine therapies, leading to endocrine-resistant metastatic breast cancer, a very aggressive cancer that leads to death. Recent large-scale genomic studies have revealed a series of activating somatic mutations in the ERα gene (ESR1) in endocrine-resistant metastatic breast cancer patients. Of these, Y537S and D538G mutations are found at a much higher rate in patients with metastatic breast cancer. Remarkably, these mutations produce an ERα with much higher transcriptional activity than wild type in the absence of estradiol, and traditional endocrine therapy has poor efficacy against ER mutants. Therefore, the development of new drugs that target ER mutants is an unmet clinical need for endocrine-resistant metastatic breast cancer. This review summarizes the recent preclinical and clinical trials targeting estrogen receptor mutant breast cancer.
Collapse
Affiliation(s)
- Murugesan Palaniappan
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA;
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
41
|
Yohannes M, Desalegn Z, Bauer M, Stückrath K, Anberbir E, Bekuretsion Y, Assefa M, Wakuma T, Worku Y, Santos PSC, Taylor L, Adissie A, Wickenhauser C, Massa C, Vetter M, Kantelhardt EJ, Seliger B, Abebe T. Immune landscape of the tumour microenvironment in Ethiopian breast cancer patients. Breast Cancer Res 2024; 26:162. [PMID: 39587630 PMCID: PMC11587711 DOI: 10.1186/s13058-024-01916-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 11/06/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND The clinical management of breast cancer (BC) is mainly based on the assessment of receptor expression by tumour cells. However, there is still an unmet need for novel biomarkers important for prognosis and therapy. The tumour immune microenvironment (TIME) is thought to play a key role in prognosis and therapy selection, therefore this study aimed to describe the TIME in Ethiopian BC patients. METHODS RNA was isolated from formalin-fixed paraffin-embedded (FFPE) tissue from 82 women with BC. Expression of PAM50 and 54 immune genes was analysed using the Nanostring platform and differentially expressed genes (DEGs) were determined using ROSALIND®. The abundance of different cell populations was estimated using Nanostring's cell type profiling module, while tumour infiltrating lymphocytes (TILs) were analysed using haematoxylin and eosin (H&E) staining. In addition, the PIK3CA gene was genotyped for three hotspot mutations using qPCR. Kaplan-Meier survival analysis and log-rank test were performed to compare the prognostic relevance of immune subgroups. RESULTS Four discrete immune phenotypes (IP1-4) were identified through hierarchical clustering of immune gene expression data. These IPs were characterized by DEGs associated with both immune activation and inhibition as well as variations in the extent of immune infiltration. However, there were no significant differences regarding PIK3CA mutations between the IPs. A downregulation of immune suppressive and activating genes and the lowest number of infiltrating immune cells were found in IP2, which was associated with luminal tumours. In contrast, IP4 displayed an active TME chracterized by an upregulation of cytotoxic genes and the highest density of immune cell infiltrations, independent of the specific intrinsic subtype. IP1 and IP3 exhibited intermediate characteristics. The IPs had a prognostic relevance and patients with an active TME had improved overall survival compared to IPs with a significant downregulation of the majority of immune genes. CONCLUSION Immune gene expression profiling identified four distinct immune contextures of the TME with unique gene expression patterns and immune infiltration. The classification into distinct immune subgroups may provide important information regarding prognosis and the selection of patients undergoing conventional treatments or immunotherapies.
Collapse
Affiliation(s)
- Meron Yohannes
- Department of Microbiology, Immunology & Parasitology, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Medical Laboratory Science, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Global and Planetary Health Working Group, Institute of Medical Epidemiology, Biometrics and Informatics, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Zelalem Desalegn
- Department of Microbiology, Immunology & Parasitology, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
- Global and Planetary Health Working Group, Institute of Medical Epidemiology, Biometrics and Informatics, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Marcus Bauer
- Global and Planetary Health Working Group, Institute of Medical Epidemiology, Biometrics and Informatics, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
- Institute of Pathology, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Kathrin Stückrath
- University Clinic and Polyclinic for Gynecology, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Endale Anberbir
- Department of Surgery, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Yonas Bekuretsion
- Department of Pathology, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mathewos Assefa
- Department of Oncology, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Yasin Worku
- School of Medicine, Wollo University, Wollo, Ethiopia
| | - Pablo S C Santos
- Global and Planetary Health Working Group, Institute of Medical Epidemiology, Biometrics and Informatics, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Lesley Taylor
- City of Hope National Medical Center, Duarte, CA, USA
| | - Adamu Adissie
- Global and Planetary Health Working Group, Institute of Medical Epidemiology, Biometrics and Informatics, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
- School of Public Health, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Chiara Massa
- Medical Faculty, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Martina Vetter
- University Clinic and Polyclinic for Gynecology, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Eva Johanna Kantelhardt
- Global and Planetary Health Working Group, Institute of Medical Epidemiology, Biometrics and Informatics, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
- University Clinic and Polyclinic for Gynecology, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Barbara Seliger
- Medical Faculty, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- Medical School Theodor Fontane, Faculty of Health Research Institute for Translational Immunology, Brandenburg an der Havel, Germany
| | - Tamrat Abebe
- Department of Microbiology, Immunology & Parasitology, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia.
- Global and Planetary Health Working Group, Institute of Medical Epidemiology, Biometrics and Informatics, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
42
|
Das A, Barry MM, Ernst CA, Dahiya R, Kim M, Rosario SR, Lo HC, Yu C, Dai T, Gugala Z, Zhang J, Dasgupta S, Wang H. Differential bone morphology and hypoxia activity in skeletal metastases of ER + and ER - breast cancer. Commun Biol 2024; 7:1545. [PMID: 39572705 PMCID: PMC11582807 DOI: 10.1038/s42003-024-07247-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024] Open
Abstract
Bone metastases occur in the majority of advanced breast cancer patients, and the most common complications are osteolytic bone metastases. However, due to the limitations of models and methodologies for bone metastasis studies, the intricacies of bone metastasis have not been fully acknowledged and revealed in prior work. Our earlier study indicated that certain breast cancer cells undergo a pre-osteolytic stage before the establishment of overt metastatic lesions. Here, we further identify a differential bone morphology between ER (estrogen receptor)+ and ER- breast cancer. Specifically, we observe a more pronounced osteolytic phenotype in the bone metastatic lesions of ER- cells investigated, linked to elevated hypoxia signaling that stimulates the secretion of osteolytic inducers from cancer cells. In the in vivo mouse model, the application of the hypoxia-inducible factor (HIF) inhibitor 2-methoxyestradiol demonstrates a promising efficacy in suppressing tumor growth and osteoclast differentiation in the bone lesions established by bone-tropic subpopulation of ER- MDA-MB-231 cell. Overall, our findings explore the complexity of phenotype and morphology in bone metastatic lesions of ER+ and ER- breast cancer, which offers a compelling rationale for leveraging HIF inhibitors to the treatment targeting skeletal complications of breast cancer bone metastases, especially for ER- tumors.
Collapse
Affiliation(s)
- Anindita Das
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Megan M Barry
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Cheyenne A Ernst
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Renuka Dahiya
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Minhyung Kim
- Comparative Oncology Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Spencer R Rosario
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Hin Ching Lo
- Lester and Sue Smith Breast Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Cuijuan Yu
- Lester and Sue Smith Breast Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Tao Dai
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Zbigniew Gugala
- Department of Orthopedic Surgery & Rehabilitation, University of Texas Medical Branch, Galveston, TX, USA
| | - Jianmin Zhang
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Cell and Cancer Biology, University of Toledo, Toledo, OH, USA
| | - Subhamoy Dasgupta
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Hai Wang
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
43
|
Shang Y, Wang J, Feng Y, Liu Z, Lu J, Deng S, Li L, Zhang H, Li L, Wang Z, Yang Z. A dual-targeted trinity of antibody-peptide-drug delivery consortium to combat HER2+ tumor. Chem Commun (Camb) 2024; 60:13742-13745. [PMID: 39494544 DOI: 10.1039/d4cc05115g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
We pioneered a dual-targeted trinity of antibody-peptide-drug delivery consortium to combat HER2+ tumors. This innovative approach leverages the self-assembly of peptides with high affinity to antibodies to create nanofibers for antibody encapsulation, offering a novel strategy in antibody drug delivery.
Collapse
Affiliation(s)
- Yuna Shang
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Jiayu Wang
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Yinyin Feng
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Zhengyu Liu
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Jiayi Lu
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Sijia Deng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P. R. China.
| | - Li Li
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Hongxu Zhang
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Liantao Li
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P. R. China.
| | - Zhongyan Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China.
| | - Zhimou Yang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China.
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P. R. China.
| |
Collapse
|
44
|
Goel B, Virmani T, Jain V, Kumar G, Sharma A, Al Noman A. Unveiling the Link Between Breast Cancer Treatment and Osteoporosis: Implications for Anticancer Therapy and Bone Health. BIOMED RESEARCH INTERNATIONAL 2024; 2024:5594542. [PMID: 39574432 PMCID: PMC11581800 DOI: 10.1155/2024/5594542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/19/2024] [Accepted: 10/07/2024] [Indexed: 11/24/2024]
Abstract
Background: The interplay between breast cancer treatment and osteoporosis has important consequences for anticancer therapy and patient bone health. Many breast cancer therapies involve hormonal treatments that lower estrogen levels, which can lead to an increased risk of osteoporosis due to reduced bone mineral density. Aromatase inhibitors, chemotherapy, and surgeries such as oophorectomy can further aggravate bone loss, highlighting the necessity of prioritizing bone health during cancer treatment. Objective: This review is aimed at investigating the complex relationship between breast cancer therapies and bone health by examining the molecular and cellular mechanisms through which anticancer treatments lead to bone loss. It also seeks to assess the effects of various treatment options, such as selective estrogen receptor modulators (SERMs) and bisphosphonates, on reducing bone loss and maintaining bone health during cancer therapy. Method: The review explores the mechanisms underlying bone loss in breast cancer patients undergoing treatment, focusing on factors such as estrogen depletion, inflammatory cytokines, and changes in bone remodelling processes. Additionally, it evaluates the efficacy of different therapeutic interventions, including pharmacological treatments like bisphosphonates and third-generation SERMs, in mitigating bone-related side effects. Results: The findings indicate a critical need to balance the effectiveness of breast cancer treatments with the preservation of bone health. Pharmacological treatments like bisphosphonates and denosumab have been identified as essential for managing bone health in breast cancer patients. Furthermore, third-generation SERMs show potential in reducing bone loss associated with cancer therapy.
Collapse
Affiliation(s)
- Bhawna Goel
- School of Pharmaceutical Sciences, MVN University 121102, Palwal, Haryana, India
| | - Tarun Virmani
- Amity Institute of Pharmacy, Amity University, Greater Noida 2011308, Uttar Pradesh, India
| | - Vikas Jain
- Department of Pharmacy, JSS College of Pharmacy, Sri Shivarathreeshwara Nagara 570015, Mysuru, Karnataka, India
| | - Girish Kumar
- Amity Institute of Pharmacy, Amity University, Greater Noida 2011308, Uttar Pradesh, India
| | - Ashwani Sharma
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences Research University, Delhi, India
| | | |
Collapse
|
45
|
Bhattarai S, Rupji M, Chao HP, Xu Q, Saini G, Rida P, Aleskandarany MA, Green AR, Ellis IO, Janssen EA, Jonsdottir K, Rakha E, Kowalski J, Aneja R. Cell cycle traverse rate predicts long-term outcomes in a multi-institutional cohort of patients with triple-negative breast cancer. BJC REPORTS 2024; 2:87. [PMID: 39537757 PMCID: PMC11561184 DOI: 10.1038/s44276-024-00097-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/02/2024] [Accepted: 08/28/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Ki67 index (KI) and mitotic index (MI) are proliferation markers with established prognostic value in breast carcinomas. While KI is evaluated immunohistochemically and reported as a percentage, MI is determined visually and reflects total mitotic cells in 10 high-power fields. Our objective was to integrate KI and MI into a novel metric; the cell cycle traverse rate (CCTR). Given the lack of prognostic and predictive biomarkers in TNBC, we sought to assess the potential of CCTR as a risk-stratification tool for chemotherapy-treated TNBC patients from two independent cohorts: the Nottingham group (n = 124) and the Norway group (n = 71). METHODS We evaluated the ability of CCTR to predict survival after adjuvant chemotherapy for TNBC patients (n = 195) in two independent cohorts. Using immunohistochemistry and RNA sequencing, we determined the differences in immunohistochemical biomarkers, gene ontologies, molecular pathways and immune cell fractions based on CCTR. RESULTS TNBC shows a significantly lower median CCTR compared to luminal A (p < 0.01), luminal B (p < 0.01), and HER2+ samples (p < 0.01). CCTR outperformed both KI and MI in effectively risk-stratifying TNBC patients suggesting that combining KI and MI into a single metric, namely CCTR, could serve as a superior prognostic marker for Breast Cancer Specific Survival (BCSS) (p = 0.041). CCTR-high group exhibited enriched expression of various oncogenic signatures, including angiogenesis, epithelial-to-mesenchymal transition (EMT), Hedgehog signaling, hypoxia, Notch signaling, PI3K-AKT-mTOR signaling, TGFβ signaling, p53 signaling, and TNFα signaling via NFκB. These findings suggest the potential involvement of these pathways in the aggressiveness and clinical outcomes of TNBC patients. CONCLUSIONS Collectively, these findings suggest that CCTR offers superior predictive information compared to KI and MI alone with respect to long-term outcomes from adjuvant chemotherapy in patients with TNBC that may guide treatment decision making.
Collapse
Affiliation(s)
- Shristi Bhattarai
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Manali Rupji
- Biostatistics Shared Resource, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Hsueh-Ping Chao
- Department of Oncology and Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX, USA
| | - Qi Xu
- Department of Oncology and Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX, USA
| | - Geetanjali Saini
- Department of Nutrition Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Mohammed A Aleskandarany
- Division of Biomedical and Forensic Sciences, School of Human Science, University of Derby, Derby, UK
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, Academic Unit for Translational Medical Sciences, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Ian O Ellis
- Nottingham Breast Cancer Research Centre, Academic Unit for Translational Medical Sciences, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Emiel A Janssen
- Department of Pathology, Stavanger University Hospital, Stavanger, Norway
| | - Kristin Jonsdottir
- Department of Pathology, Stavanger University Hospital, Stavanger, Norway
| | - Emad Rakha
- Nottingham Breast Cancer Research Centre, Academic Unit for Translational Medical Sciences, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK.
| | - Jeanne Kowalski
- Department of Oncology and Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX, USA.
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA, USA.
- Department of Nutrition Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
46
|
Sankarapandian V, Rajendran RL, Miruka CO, Sivamani P, Maran BAV, Krishnamoorthy R, Gangadaran P, Ahn BC. A review on tyrosine kinase inhibitors for targeted breast cancer therapy. Pathol Res Pract 2024; 263:155607. [PMID: 39326367 DOI: 10.1016/j.prp.2024.155607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/09/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Abstract
Breast cancer is a heterogeneous disease with complex molecular pathogenesis. Overexpression of several tyrosine kinase receptors is associated with poor prognosis, therefore, they can be key targets in breast cancer therapy. Tyrosine kinase inhibitors (TKIs) have emerged as leading agents in targeted cancer therapy due to their effectiveness in disrupting key molecular pathways involved in tumor growth. TKIs target various tyrosine kinases, including the human epidermal growth factor receptor 2 (HER2), epidermal growth factor receptor (EGFR), Vascular endothelial growth factor receptor (VEGFR), anaplastic lymphoma kinase (ALK), vascular endothelial growth factor receptor (VEGFR)-associated multi-targets, rearranged during transfection (RET), fibroblast growth factor receptor (FGFR), receptor tyrosine kinase-like orphan signal 1 (ROS1), Mitogen-activated protein kinase (MAPK), and tropomyosin receptor kinase (TRK). These drugs target the tyrosine kinase domain of receptor tyrosine kinases and play a vital role in proliferation and migration of breast cancer cells. Several TKIs, including lapatinib, neratinib, and tucatinib, have been developed and are currently used in clinical settings, often in combination with chemotherapy, endocrine therapy, or other targeted agents. TKIs have demonstrated remarkable benefits in enhancing progression-free and overall survival in patients with breast cancer and have become a standard of care for this population. This review provides an overview of TKIs currently being examined in preclinical studies and clinical trials, especially in combination with drugs approved for breast cancer treatment. TKIs have emerged as a promising therapeutic option for patients with breast cancer and hold potential for treating other breast cancer subtypes. The development of new TKIs and their integration into personalized treatment strategies will continue to shape the future of breast cancer therapy.
Collapse
Affiliation(s)
- Vidya Sankarapandian
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Box 20000, Uganda
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Conrad Ondieki Miruka
- Department of Biochemistry, Kampala International University, Western Campus, Box 20000, Uganda
| | - Poornima Sivamani
- Department of Pharmacology and Clinical pharmacology, Christian Medical College, Vellore 632004, India
| | - Balu Alagar Venmathi Maran
- Graduate School of Integrated Science and Technology, Nagasaki University, 1-14 Bunkyomachi, Nagasaki 852-8521, Japan
| | - Rajapandiyan Krishnamoorthy
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea..
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, Republic of Korea; Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea..
| |
Collapse
|
47
|
Papalexis P, Georgakopoulou VE, Drossos PV, Thymara E, Nonni A, Lazaris AC, Zografos GC, Spandidos DA, Kavantzas N, Thomopoulou GE. Precision medicine in breast cancer (Review). Mol Clin Oncol 2024; 21:78. [PMID: 39246849 PMCID: PMC11375768 DOI: 10.3892/mco.2024.2776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 08/07/2024] [Indexed: 09/10/2024] Open
Abstract
Precision medicine in breast cancer is a revolutionary approach that customizes diagnosis and treatment based on individual and tumor characteristics, departing from the traditional one-size-fits-all approach. Breast cancer is diverse, with various subtypes driven by distinct genetic mutations. Understanding this diversity is crucial for tailored treatment strategies that target specific vulnerabilities in each tumor. Genetic testing, particularly for mutations in breast cancer gene (BRCA) DNA repair-associated genes, helps assess hereditary risks and influences treatment decisions. Molecular subtyping guides personalized treatments, such as hormonal therapies for receptor-positive tumors and human epidermal growth factor receptor 2 (HER2)-targeted treatments. Targeted therapies, including those for HER2-positive and hormone receptor-positive breast cancers, offer more effective and precise interventions. Immunotherapy, especially checkpoint inhibitors, shows promise, particularly in certain subtypes such as triple-negative breast cancer, with ongoing research aiming to broaden its effectiveness. Integration of big data and artificial intelligence enhances personalized treatment strategies, while liquid biopsies provide real-time insights into tumor dynamics, aiding in treatment monitoring and modification. Challenges persist, including accessibility and tumor complexity, but emerging technologies and precision prevention offer hope for improved outcomes. Ultimately, precision medicine aims to optimize treatment efficacy, minimize adverse effects and enhance the quality of life for patients with breast cancer.
Collapse
Affiliation(s)
- Petros Papalexis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece
| | | | - Panagiotis V Drossos
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece
| | - Eirini Thymara
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Aphrodite Nonni
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Andreas C Lazaris
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George C Zografos
- Department of Propedeutic Surgery, Hippokration Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Nikolaos Kavantzas
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Georgia Eleni Thomopoulou
- Cytopathology Department, 'Attikon' University General Hospital, School of Medicine, National and Kapodistrian University of Athens, 12461 Athens, Greece
| |
Collapse
|
48
|
Saunders HI, Holloran SM, Trinca GM, Artigues A, Villar M, Tinoco JC, Dias WB, Werner LR, Chowanec EI, Heard A, Chalise P, Slawson C, Hagan CR. Site-specific O-GlcNAcylation of progesterone receptor (PR) supports PR attenuation of interferon stimulated genes (ISGs) and tumor growth in breast cancer. J Biol Chem 2024; 300:107886. [PMID: 39395796 PMCID: PMC11609360 DOI: 10.1016/j.jbc.2024.107886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/23/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024] Open
Abstract
Hormone receptor positive (HR+) breast cancer, defined by expression of estrogen receptor (ER) and/or progesterone receptor (PR), is the most commonly diagnosed type of breast cancer. PR alters the transcriptional landscape to support tumor growth in concert with, or independent of, ER. Understanding the mechanisms regulating PR function is critical to developing new strategies to treat HR+ breast cancer. O-linked β-N-acetylglucosamine (O-GlcNAc) is a posttranslational modification responsible for nutrient sensing that modulates protein function. Although PR is heavily posttranslationally modified, through both phosphorylation and O-GlcNAcylation, specific sites of O-GlcNAcylation on PR and how they regulate PR action have not been investigated. Using established PR-expressing breast cancer cell lines, we mapped several sites of O-GlcNAcylation on PR. RNA-sequencing after PR O-GlcNAc site mutagenesis revealed site-specific O-GlcNAcylation of PR is critical for ligand-independent suppression of interferon signaling, a regulatory function of PR in breast cancer. Furthermore, O-GlcNAcylation of PR enhances PR-driven tumor growth in vivo. Herein, we have delineated one contributing mechanism to PR function in breast cancer that impacts tumor growth and provided additional insight into the mechanism through which PR attenuates interferon signaling.
Collapse
Affiliation(s)
- Harmony I Saunders
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sean M Holloran
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Gloria M Trinca
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Antonio Artigues
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Maite Villar
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Julio C Tinoco
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Wagner Barbosa Dias
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA; Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lauryn R Werner
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Eilidh I Chowanec
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Amanda Heard
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Prabhakar Chalise
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Chad Slawson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| | - Christy R Hagan
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
49
|
Saastad SA, Skjervold AH, Ytterhus B, Engstrøm MJ, Bofin AM. PD-L1 protein expression in breast cancer. J Clin Pathol 2024; 77:730-736. [PMID: 37553245 DOI: 10.1136/jcp-2023-208942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023]
Abstract
AIMS The immune checkpoint marker, Programmed cell death-ligand 1 (PD-L1), is expressed by both cancer epithelial cells and tumour-infiltrating immune cells (TICs) thus constituting a potential target for immunotherapy. This is of particular interest in triple negative breast cancer. In this study, we assessed the prognostic value of PD-L1 expression in tumour epithelial cells and TICs in a series of patients with breast cancer with long-term follow-up, and associations between PD-L1 expression and histopathological type and grade, proliferation and molecular subtype. METHODS Using immunohistochemistry for PD-L1 in tissue microarrays, we assessed PD-L1 expression in 821 tumours. Expression of PD-L1 was assessed separately in the epithelial and stromal compartments and classified as <1%, ≥1% to <10% or ≥10% positive staining cells. We correlated PD-L1 expression in tumour epithelial cells and TICs with tumour characteristics using Pearson's χ2 test, and prognosis by cumulative incidence of death from breast cancer and Cox regression analyses. RESULTS We found membranous staining in ≥1% of tumour epithelial cells in 53/821 cases (6.5%). Of these, 21 (2.6%) were ≥10%. Among TICs, staining (≥1%) was seen in 144/821 cases (17.6%). Of these, 62 were ≥10% (7.6%). PD-L1 was associated with high histopathological grade and proliferation, and the medullary and metaplastic patterns. In TICs, PD-L1 ≥1% found in 22/34 (34.4%) human epidermal growth factor receptor 2 type and 29/58 (50%) basal phenotype. An independent association between PD-L1 expression and prognosis was not observed. CONCLUSIONS PD-L1 is expressed more frequently in TICs than tumour epithelial cells. Expression in TICs is associated with aggressive tumour characteristics and non-luminal tumours but not with prognosis.
Collapse
Affiliation(s)
- Sigurd A Saastad
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anette H Skjervold
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Borgny Ytterhus
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Monica Jernberg Engstrøm
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Sugrery, St. Olav's Hospital Trondheim University Hospital, Trondheim, Norway
| | - Anna M Bofin
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
50
|
Kalaimani K, Balachandran S, Boopathy LK, Roy A, Jayachandran B, Sankaranarayanan S, Arumugam MK. Recent advancements in small interfering RNA based therapeutic approach on breast cancer. Eur J Pharmacol 2024; 981:176877. [PMID: 39128807 DOI: 10.1016/j.ejphar.2024.176877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/23/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Breast cancer (BC) is the most common and malignant tumor diagnosed in women, with 2.9 million cases in 2023 and the fifth highest cancer-causing mortality worldwide. Recent developments in targeted therapy options for BC have demonstrated the promising potential of small interfering RNA (siRNA)-based cancer therapeutic approaches. As BC continues to be a global burden, siRNA therapy emerges as a potential treatment strategy to regulate disease-related genes in other types of cancers, including BC. siRNAs are tiny RNA molecules that, by preventing their expression, can specifically silence genes linked to the development of cancer. In order to increase the stability and effectiveness of siRNA delivery to BC cells, minimize off-target effects, and improve treatment efficacy, advanced delivery technologies such as lipid nanoparticles and nanocarriers have been created. Additionally, combination therapies, such as siRNAs that target multiple pathways are used in conjunction with conventional chemotherapy agents, have shown synergistic effects in various preclinical studies, opening up new treatment options for breast cancer that are personalized and precision medicine-oriented. Targeting important genes linked to BC growth, metastasis, and chemo-resistance has been reported in BC research using siRNA-based therapies. This study reviews recent reports on therapeutic approaches to siRNA for advanced treatment of BC. Furthermore, this review evaluates the role and mechanisms of siRNA in BC and demonstrates the potential of exploiting siRNA as a novel target for BC therapy.
Collapse
Affiliation(s)
- Kathirvel Kalaimani
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Shana Balachandran
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Lokesh Kumar Boopathy
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Anitha Roy
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India
| | - Bhuvaneshwari Jayachandran
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Sangamithra Sankaranarayanan
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Madan Kumar Arumugam
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India.
| |
Collapse
|