1
|
Wei C, Li C, Zhang G, Li H, Li J, Zeng J. Causality Between Immune Cells, Metabolites and Breast Cancer: Mendelian Randomization and Mediation Analysis. Biochem Genet 2024:10.1007/s10528-024-10966-4. [PMID: 39514081 DOI: 10.1007/s10528-024-10966-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Previous studies have shown that immune cells and metabolites are associated with the development of breast cancer, but the causal relationship is unclear. We use Mendelian randomization (MR) to explore potential connections between them. Based on two sample MR studies, we evaluated the causal relationship between 731 immune cell traits, 1400 metabolites and breast cancer. In addition, we evaluated the mediating role of metabolites between immune cells and breast cancer using two-step MR Studies. Pooled GWAS data on 731 immune cell traits (n = 3757), 1400 metabolites (n = 8299) and breast cancer (ncase = 122,977, ncontrol = 105,974) were obtained from publicly available authoritative databases. We mainly used inverse variance weighted (IVW) method combined with Bayesian weighted MR (BWMR), MR-Egger, weighted median, simple mode, and weighted mode methods. The results of MR Studies showed that 3 immune cells and 15 metabolites were associated with an increased risk of breast cancer. 8 immune cells and 11 metabolites are associated with a reduced risk of breast cancer. Mediating MR Analysis showed that 6 metabolites, Tricosanoyl sphingomyelin (d18:1/23:0) levels(Mediated proportion:17.5%), N-palmitoyl-heptadecasphingosine (d17:1/16:0) levels(8.74%), Inosine 5'-monophosphate (IMP) to phosphate ratio(11.3%), Glutamine to asparagine ratio(5.43%), Oleoyl-linoleoyl-glycerol (18:1/18:2) [2] levels(8.48%), and Sphinganine-1-phosphate levels(8.68%), were found to mediate the relationship between immune cells and breast cancer. Our study reveals a potential causal relationship among multiple immune cells traits, metabolites, and breast cancer. It provides valuable clues and potential therapeutic targets for breast cancer biomarker discovery and breast cancer treatment.
Collapse
Affiliation(s)
- Changlong Wei
- Department of Breast Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Changwang Li
- Department of Breast Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Gongyin Zhang
- Department of Breast Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Honghui Li
- Department of Breast Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Jingsong Li
- Department of Breast Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Jinsheng Zeng
- Department of Breast Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
2
|
Ferreira Almeida C, Correia-da-Silva G, Teixeira N, Amaral C. Influence of tumor microenvironment on the different breast cancer subtypes and applied therapies. Biochem Pharmacol 2024; 223:116178. [PMID: 38561089 DOI: 10.1016/j.bcp.2024.116178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Despite the significant improvements made in breast cancer therapy during the last decades, this disease still has increasing incidence and mortality rates. Different targets involved in general processes, like cell proliferation and survival, have become alternative therapeutic options for this disease, with some of them already used in clinic, like the CDK4/6 inhibitors for luminal A tumors treatment. Nevertheless, there is a demand for novel therapeutic strategies focused not only on tumor cells, but also on their microenvironment. Tumor microenvironment (TME) is a very complex and dynamic system that, more than surrounding and supporting tumor cells, actively participates in tumor development and progression. During the last decades, it has become clear that the cellular and acellular components of TME differ between the various breast cancer subtypes and shape the differences regarding their severity and prognosis. The pivotal role of the TME in controlling tumor growth and influencing responses to therapy represents a potential source for novel targets and therapeutic strategies. In this review, we present a description of the multiple therapeutic options used for different breast cancer subtypes, as well as the influence that the TME may exert on the development of the disease and on the response to the distinct therapies, which in some cases may explain their failure by the occurrence of relapses and resistance. Furthermore, the ongoing studies focused on the use of TME components for developing potential cancer treatments are described.
Collapse
Affiliation(s)
- Cristina Ferreira Almeida
- UCIBIO, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| | - Natércia Teixeira
- UCIBIO, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Cristina Amaral
- UCIBIO, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| |
Collapse
|
3
|
Chen X, Meng C, Wang X, Wu Z, Sun X, Sun C, Zheng L, Li W, Jia W, Tang T. Exploring CCL11 in breast cancer: unraveling its anticancer potential and immune modulatory effects involving the Akt-S6 signaling. J Cancer Res Clin Oncol 2024; 150:69. [PMID: 38305920 PMCID: PMC10837270 DOI: 10.1007/s00432-023-05600-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/25/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND CCL11, a chemokine known for recruiting immune cells to the tumor microenvironment (TME), has an unclear role in the context of its expression, patient prognosis, and the presence of tumor-infiltrating immune cells (TILs) in breast cancer. METHODS The expression of CCL11 in invasive breast cancer (BRCA) was analyzed using TCGA database. Survival curve and Cox regression analysis determined the potential of CCL11 as an independent prognostic indicator. GSEA performed functional analysis on genes related to CCL11. CIBERSORT algorithm quantified the infiltration level of immune cells with varying CCL11 expression. Lastly, the correlation between CCL11 expression and anticancer drug sensitivity was examined. Immunohistochemistry (IHC) and qRT-PCR confirmed CCL11 expression in clinical tissue samples. The anti-tumor efficacy of CCL11 was investigated using CCK-8, plate formation, transwell assay, and Western blot. RESULTS CCL11 expression was elevated in BRCA tumor tissues compared to adjacent normal tissues. Recurrence-free survival (RFS) was longer in patients with high expression of CCL11. Enrichment and co-expression analyses revealed CCL11's association with numerous immune-related signaling pathways and genes. Validation studies confirmed high CCL11 expression in breast cancer tissues. In vitro experiments substantiated CCL11's anticancer effects in BRCA. CONCLUSION CCL11 expression correlates with immune cell infiltration in breast cancer, indicating its potential as a prognostic biomarker for BRCA.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chenxu Meng
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | | | - Zanhui Wu
- Anhui Medical University, Hefei, China
| | - Xinyue Sun
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chenyu Sun
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lu Zheng
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wanwan Li
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - WenJun Jia
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Tong Tang
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
4
|
Hermawan A, Putri H, Fatimah N, Prasetio HH. Transcriptomics analysis reveals distinct mechanism of breast cancer stem cells regulation in mammospheres from MCF-7 and T47D cells. Heliyon 2024; 10:e24356. [PMID: 38304813 PMCID: PMC10831612 DOI: 10.1016/j.heliyon.2024.e24356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
Luminal A breast cancer, constituting 70 % of breast cancer cases, presents a challenge due to the development of resistance and recurrence caused by breast cancer stem cells (BCSC). Luminal breast tumors are characterized by TP53 expression, a tumor suppressor gene involved in maintaining stem cell attributes in cancer. Although a previous study successfully developed mammospheres (MS) from MCF-7 (with wild-type TP53) and T47D (with mutant TP53) luminal breast cancer cells for BCSC enrichment, their transcriptomic profiles remain unclear. We aimed to elucidate the transcriptomic disparities between MS of MCF-7 and T47D cells using bioinformatics analyses of differentially expressed genes (DEGs), including the KEGG pathway, Gene Ontology (GO), drug-gene association, disease-gene association, Gene Set Enrichment Analysis (GSEA), DNA methylation analysis, correlation analysis of DEGs with immune cell infiltration, and association analysis of genes and small-molecule compounds via the Connectivity Map (CMap). Upregulated DEGs were enriched in metabolism-related KEGG pathways, whereas downregulated DEGs were enriched in the MAPK signaling pathway. Drug-gene association analysis revealed that both upregulated and downregulated DEGs were associated with fostamatinib. The KEGG pathway GSEA results indicated that the DEGs were enriched for oxidative phosphorylation, whereas the downregulated DEGs were negatively enriched for the p53 signaling pathway. Examination of DNA methylation revealed a noticeable disparity in the expression patterns of the PKM2, ERO1L, SLC6A6, EPAS1, APLP2, RPL10L, and NEDD4 genes when comparing cohorts with low- and high-risk breast cancer. Furthermore, a significant positive correlation was identified between SLC6A6 expression and macrophage presence, as well as MSN, and AKR1B1 expression and neutrophil and dentritic cell infiltration. CMap analysis unveiled SA-83851 as a potential candidate to counteract the effects of DEGs, specifically in cells harbouring mutant TP53. Further research, including in vitro and in vivo validations, is warranted to develop drugs targeting BCSCs.
Collapse
Affiliation(s)
- Adam Hermawan
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
- Laboratory of Advanced Pharmaceutical Sciences. APSLC Building, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
| | - Herwandhani Putri
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
| | - Nurul Fatimah
- Laboratory of Advanced Pharmaceutical Sciences. APSLC Building, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
| | - Heri Himawan Prasetio
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
| |
Collapse
|
5
|
Han S, Jin X, Hu T, Chi F. ARHGAP25 suppresses the development of breast cancer by an ARHGAP25/Wnt/ASCL2 feedback loop. Carcinogenesis 2023; 44:369-382. [PMID: 37326327 DOI: 10.1093/carcin/bgad042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/18/2023] [Accepted: 06/14/2023] [Indexed: 06/17/2023] Open
Abstract
Downregulation of ARHGAP25 was found in the tumor samples from breast cancer patients and five breast cancer cell lines. However, its precise role and molecular mechanisms in breast cancer remain completely unknown. Herein, we found that knockdown of ARHGAP25 in breast cancer cells promoted proliferation, migration and invasion of breast cancer cells. Mechanistically, ARHGAP25 silence facilitated the activation of the Wnt/β-catenin pathway and the upregulation of its downstream molecules (including c-Myc, Cyclin D1, PCNA, MMP2, MMP9, Snail and ASCL2) by directly regulating Rac1/PAK1 in breast cancer cells. In vivo xenograft experiments indicated ARHGAP25 silence promoted tumor growth and activated the Wnt/β-catenin pathway. In contrast, overexpression of ARHGAP25 in vitro and in vivo impeded all of the above cancer properties. Intriguingly, ASCL2, a downstream target of the Wnt/β-catenin pathway, transcriptionally repressed the expression of ARHGAP25 and therefore constituted a negative feedback loop. Moreover, bioinformatics analysis indicated that ARHGAP25 was significantly correlated with tumor immune cell infiltration and the survival of patients with different immune cell subgroups in breast cancer. Collectively, our work revealed that ARHGAP25 suppressed tumor progression of breast cancer. It provides a novel insight for the treatment of breast cancer.
Collapse
Affiliation(s)
- Sijia Han
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Xueying Jin
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Tianyu Hu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Feng Chi
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
6
|
Szpor J, Streb J, Glajcar A, Streb-Smoleń A, Łazarczyk A, Korta P, Brzuszkiewicz K, Jach R, Hodorowicz-Zaniewska D. Dendritic Cell Subpopulations Are Associated with Morphological Features of Breast Ductal Carcinoma In Situ. Int J Mol Sci 2023; 24:9918. [PMID: 37373062 DOI: 10.3390/ijms24129918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Ductal carcinoma in situ (DCIS) is the preinvasive form of breast cancer (BC). It is disputed whether all cases of DCIS require extensive treatment as the overall risk of progression to BC is estimated at 40%. Therefore, the crucial objective for researchers is to identify DCIS with significant risk of transformation into BC. Dendritic cells (DC) are professional antigen presenting cells and as such play a pivotal role in the formation of immune cells that infiltrate in breast tumors. The aim of this study was to investigate the relationship between the density of DCs with different superficial antigens (CD1a, CD123, DC-LAMP, DC-SIGN) and various histopathological characteristics of DCIS. Our evaluation indicated that CD123+ and DC-LAMP+ cells were strongly associated with maximal tumor size, grading and neoductgenesis. Together with CD1a+ cells, they were negatively correlated with hormonal receptors expression. Furthermore, the number of DC-LAMP+ cells was higher in DCIS with comedo necrosis, ductal spread, lobular cancerization as well as comedo-type tumors, while CD1a+ cells were abundant in cases with Paget disease. We concluded that different subpopulations of DCs relate to various characteristics of DCIS. Of the superficial DCs markers, DC-LAMP seems particularly promising as a target for further research in this area.
Collapse
Affiliation(s)
- Joanna Szpor
- Department of Pathomorphology, Jagiellonian University Medical College, 31-008 Cracow, Poland
- Department of Pathomorphology, University Hospital, 30-688 Cracow, Poland
| | - Joanna Streb
- Department of Oncology, Jagiellonian University Medical College, 31-008 Cracow, Poland
| | - Anna Glajcar
- Department of Pathomorphology, University Hospital, 30-688 Cracow, Poland
| | - Anna Streb-Smoleń
- Department of Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 31-115 Cracow, Poland
| | - Agnieszka Łazarczyk
- Department of Pathomorphology, Jagiellonian University Medical College, 31-008 Cracow, Poland
| | - Paulina Korta
- Department of Pathomorphology, University Hospital, 30-688 Cracow, Poland
| | - Karolina Brzuszkiewicz
- General, Oncological, and Gastrointestinal Surgery, Jagiellonian University Medical College, 31-008 Cracow, Poland
| | - Robert Jach
- Department of Gynecology and Obstetrics, Jagiellonian University Medical College, 31-008 Cracow, Poland
| | - Diana Hodorowicz-Zaniewska
- General, Oncological, and Gastrointestinal Surgery, Jagiellonian University Medical College, 31-008 Cracow, Poland
| |
Collapse
|
7
|
Shi K, Tang J, Yuan L, Zhou S, Ran W, Wang Z. Role of gene signature regulation in tumor immune microenvironment on the mechanism of uveal melanoma metastasis. Cancer Biomark 2023; 36:161-175. [PMID: 36683494 DOI: 10.3233/cbm-210427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Uveal melanoma (UM) is a rare but deadly cancer. The main cause of death from UM is liver metastasis. Though the metastasis mechanism remains unclear, it is closely related to the immune microenvironment and gene expression. OBJECTIVE This study aimed to identify the prognostic genes in primary and metastatic UM and their relationship with the immune microenvironment. METHODS Primary and metastatic UM data from the GEO database included GSE22138 and GSE44295 datasets. Kaplan-Meier analysis, Cox regression models, and ROC analysis were applied to screen genes in GSE22138. TIMER2.0 was employed to analyze the immune microenvironment from gene expression. Prognostic immune gene correlation was tested by Spearman. The results were validated in the independent dataset of cohort GSE44295. RESULTS Metastasis and primary differential gene analysis showed 107 significantly different genes associated with prognosis, and 11 of them were immune-related. ROC analysis demonstrated that our signature was predictive for UM prognosis (AUC > 0.8). Neutrophil and myeloid dendritic cells were closely associated with metastasis with scores that significantly divided patients into high-risk and low-risk groups (log-rank p< 0.05). Of these 11 genes, FABP5 and SHC4 were significantly associated with neutrophils in metastatic tumors, while ROBO1 expression was significantly correlated with myeloid dendritic cells in the primary tumors. CONCLUSIONS The present study constructed an 11-gene signature and established a model for risk stratification and prediction of overall survival in metastatic UM. Since FABP5 and SHC4 are related to neutrophil infiltration in metastatic UM, FABP5 and neutrophil regulation might be crucial in metastatic UM.
Collapse
Affiliation(s)
- Kai Shi
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing, China.,Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Jiatian Tang
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lingyan Yuan
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, Guangdong, China
| | - Shengwen Zhou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing, China.,Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Wei Ran
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing, China.,Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Zhiming Wang
- PET/CT Center, Gansu Provincial Hospital, Lanzhou, Gansu, China
| |
Collapse
|
8
|
Local Breast Microbiota: A "New" Player on the Block. Cancers (Basel) 2022; 14:cancers14153811. [PMID: 35954474 PMCID: PMC9367283 DOI: 10.3390/cancers14153811] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Microbiota plays a fundamental role in the induction, training and function of the human immune system. The interactions between microbiota and immune cells have consequences in several settings, namely in carcinogenesis but also in anticancer activity. Immunotherapy, already widely used in the treatment of several solid cancers, modulates the action of the immune system, promoting antitumour effects. Recently, there has been a growing interest in studying the microbiota composition as a possible modulator of the tumour microenvironment and consequently of the response to certain therapies such as immunotherapy. Abstract The tumour microenvironment (TME) comprises a complex ecosystem of different cell types, including immune cells, cells of the vasculature and lymphatic system, cancer-associated fibroblasts, pericytes, and adipocytes. Cancer proliferation, invasion, metastasis, drug resistance and immune escape are all influenced by the dynamic interaction between cancer cells and TME. Microbes, such as bacteria, fungi, viruses, archaea and protists, found within tumour tissues, constitute the intratumour microbiota, which is tumour type-specific and distinct among patients with different clinical outcomes. Growing evidence reveals a significant relevance of local microbiota in the colon, liver, breast, lung, oral cavity and pancreas carcinogenesis. Moreover, there is a growing interest in the tumour immune microenvironment (TIME) pointed out in several cross-sectional studies on the correlation between microbiota and TME. It is now known that microorganisms have the capacity to change the density and function of anticancer and suppressive immune cells, enabling the promotion of an inflammatory environment. As immunotherapy (such as immune checkpoint inhibitors) is becoming a promising therapy using TIME as a therapeutic target, the analysis and comprehension of local microbiota and its modulating strategies can help improve cancer treatments.
Collapse
|
9
|
Anuraga G, Wang WJ, Phan NN, An Ton NT, Ta HDK, Berenice Prayugo F, Minh Xuan DT, Ku SC, Wu YF, Andriani V, Athoillah M, Lee KH, Wang CY. Potential Prognostic Biomarkers of NIMA (Never in Mitosis, Gene A)-Related Kinase (NEK) Family Members in Breast Cancer. J Pers Med 2021; 11:1089. [PMID: 34834441 PMCID: PMC8625415 DOI: 10.3390/jpm11111089] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Breast cancer remains the most common malignant cancer in women, with a staggering incidence of two million cases annually worldwide; therefore, it is crucial to explore novel biomarkers to assess the diagnosis and prognosis of breast cancer patients. NIMA-related kinase (NEK) protein kinase contains 11 family members named NEK1-NEK11, which were discovered from Aspergillus Nidulans; however, the role of NEK family genes for tumor development remains unclear and requires additional study. In the present study, we investigate the prognosis relationships of NEK family genes for breast cancer development, as well as the gene expression signature via the bioinformatics approach. The results of several integrative analyses revealed that most of the NEK family genes are overexpressed in breast cancer. Among these family genes, NEK2/6/8 overexpression had poor prognostic significance in distant metastasis-free survival (DMFS) in breast cancer patients. Meanwhile, NEK2/6 had the highest level of DNA methylation, and the functional enrichment analysis from MetaCore and Gene Set Enrichment Analysis (GSEA) suggested that NEK2 was associated with the cell cycle, G2M checkpoint, DNA repair, E2F, MYC, MTORC1, and interferon-related signaling. Moreover, Tumor Immune Estimation Resource (TIMER) results showed that the transcriptional levels of NEK2 were positively correlated with immune infiltration of B cells and CD4+ T Cell. Collectively, the current study indicated that NEK family genes, especially NEK2 which is involved in immune infiltration, and may serve as prognosis biomarkers for breast cancer progression.
Collapse
Affiliation(s)
- Gangga Anuraga
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (G.A.); (H.D.K.T.); (K.-H.L.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (F.B.P.); (D.T.M.X.); (S.-C.K.)
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia;
| | - Wei-Jan Wang
- Research Center for Cancer Biology, Department of Biological Science and Technology, China Medical University, Taichung 40604, Taiwan;
| | - Nam Nhut Phan
- Institute for Environmental Science, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam; (N.N.P.); (N.T.A.T.)
| | - Nu Thuy An Ton
- Institute for Environmental Science, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam; (N.N.P.); (N.T.A.T.)
| | - Hoang Dang Khoa Ta
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (G.A.); (H.D.K.T.); (K.-H.L.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (F.B.P.); (D.T.M.X.); (S.-C.K.)
| | - Fidelia Berenice Prayugo
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (F.B.P.); (D.T.M.X.); (S.-C.K.)
| | - Do Thi Minh Xuan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (F.B.P.); (D.T.M.X.); (S.-C.K.)
| | - Su-Chi Ku
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (F.B.P.); (D.T.M.X.); (S.-C.K.)
| | - Yung-Fu Wu
- Department of Medical Research, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Vivin Andriani
- Department of Biological Science, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia;
| | - Muhammad Athoillah
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia;
| | - Kuen-Haur Lee
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (G.A.); (H.D.K.T.); (K.-H.L.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (F.B.P.); (D.T.M.X.); (S.-C.K.)
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Yang Wang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (G.A.); (H.D.K.T.); (K.-H.L.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (F.B.P.); (D.T.M.X.); (S.-C.K.)
| |
Collapse
|
10
|
Neagu AN, Whitham D, Buonanno E, Jenkins A, Alexa-Stratulat T, Tamba BI, Darie CC. Proteomics and its applications in breast cancer. Am J Cancer Res 2021; 11:4006-4049. [PMID: 34659875 PMCID: PMC8493401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023] Open
Abstract
Breast cancer is an individually unique, multi-faceted and chameleonic disease, an eternal challenge for the new era of high-integrated precision diagnostic and personalized oncomedicine. Besides traditional single-omics fields (such as genomics, epigenomics, transcriptomics and metabolomics) and multi-omics contributions (proteogenomics, proteotranscriptomics or reproductomics), several new "-omics" approaches and exciting proteomics subfields are contributing to basic and advanced understanding of these "multiple diseases termed breast cancer": phenomics/cellomics, connectomics and interactomics, secretomics, matrisomics, exosomics, angiomics, chaperomics and epichaperomics, phosphoproteomics, ubiquitinomics, metalloproteomics, terminomics, degradomics and metadegradomics, adhesomics, stressomics, microbiomics, immunomics, salivaomics, materiomics and other biomics. Throughout the extremely complex neoplastic process, a Breast Cancer Cell Continuum Concept (BCCCC) has been modeled in this review as a spatio-temporal and holistic approach, as long as the breast cancer represents a complex cascade comprising successively integrated populations of heterogeneous tumor and cancer-associated cells, that reflect the carcinoma's progression from a "driving mutation" and formation of the breast primary tumor, toward the distant secondary tumors in different tissues and organs, via circulating tumor cell populations. This BCCCC is widely sustained by a Breast Cancer Proteomic Continuum Concept (BCPCC), where each phenotype of neoplastic and tumor-associated cells is characterized by a changing and adaptive proteomic profile detected in solid and liquid minimal invasive biopsies by complex proteomics approaches. Such a profile is created, beginning with the proteomic landscape of different neoplastic cell populations and cancer-associated cells, followed by subsequent analysis of protein biomarkers involved in epithelial-mesenchymal transition and intravasation, circulating tumor cell proteomics, and, finally, by protein biomarkers that highlight the extravasation and distant metastatic invasion. Proteomics technologies are producing important data in breast cancer diagnostic, prognostic, and predictive biomarkers discovery and validation, are detecting genetic aberrations at the proteome level, describing functional and regulatory pathways and emphasizing specific protein and peptide profiles in human tissues, biological fluids, cell lines and animal models. Also, proteomics can identify different breast cancer subtypes and specific protein and proteoform expression, can assess the efficacy of cancer therapies at cellular and tissular level and can even identify new therapeutic target proteins in clinical studies.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of IașiCarol I bvd. No. 22, Iași 700505, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Emma Buonanno
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Avalon Jenkins
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Teodora Alexa-Stratulat
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and PharmacyIndependenței bvd. No. 16-18, Iași 700021, Romania
| | - Bogdan Ionel Tamba
- Advanced Center for Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and PharmacyMihail Kogălniceanu Street No. 9-13, Iași 700454, Romania
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| |
Collapse
|
11
|
Crosstalk between Tumor-Infiltrating Immune Cells and Cancer-Associated Fibroblasts in Tumor Growth and Immunosuppression of Breast Cancer. J Immunol Res 2021; 2021:8840066. [PMID: 34337083 PMCID: PMC8294979 DOI: 10.1155/2021/8840066] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 03/04/2021] [Accepted: 06/30/2021] [Indexed: 02/08/2023] Open
Abstract
Signals from the tumor microenvironment (TME) have a profound influence on the maintenance and progression of cancers. Chronic inflammation and the infiltration of immune cells in breast cancer (BC) have been strongly associated with early carcinogenic events and a switch to a more immunosuppressive response. Cancer-associated fibroblasts (CAFs) are the most abundant stromal component and can modulate tumor progression according to their secretomes. The immune cells including tumor-infiltrating lymphocytes (TILs) (cytotoxic T cells (CTLs), regulatory T cells (Tregs), and helper T cell (Th)), monocyte-infiltrating cells (MICs), myeloid-derived suppressor cells (MDSCs), mast cells (MCs), and natural killer cells (NKs) play an important part in the immunological balance, fluctuating TME between protumoral and antitumoral responses. In this review article, we have summarized the impact of these immunological players together with CAF secreted substances in driving BC progression. We explain the crosstalk of CAFs and tumor-infiltrating immune cells suppressing antitumor response in BC, proposing these cellular entities as predictive markers of poor prognosis. CAF-tumor-infiltrating immune cell interaction is suggested as an alternative therapeutic strategy to regulate the immunosuppressive microenvironment in BC.
Collapse
|
12
|
Lan HR, Du WL, Liu Y, Mao CS, Jin KT, Yang X. Role of immune regulatory cells in breast cancer: Foe or friend? Int Immunopharmacol 2021; 96:107627. [PMID: 33862552 DOI: 10.1016/j.intimp.2021.107627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022]
Abstract
Breast cancer (BC) is the most common cancer among women between the ages of 20 and 50, affecting more than 2.1 million people and causing the annual death of more than 627,000 women worldwide. Based on the available knowledge, the immune system and its components are involved in the pathogenesis of several malignancies, including BC. Cancer immunobiology suggests that immune cells can play a dual role and induce anti-tumor or immunosuppressive responses, depending on the tumor microenvironment (TME) signals. The most important effector immune cells with anti-tumor properties are natural killer (NK) cells, B, and T lymphocytes. On the other hand, immune and non-immune cells with regulatory/inhibitory phenotype, including regulatory T cells (Tregs), regulatory B cells (Bregs), tolerogenic dendritic cells (tDCs), tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), myeloid-derived suppressor cells (MDSCs), mesenchymal stem cells (MSCs), and regulatory natural killer cells (NKregs), can promote the growth and development of tumor cells by inhibiting anti-tumor responses, inducing angiogenesis and metastasis, as well as the expression of inhibitory molecules and suppressor mediators of the immune system. However, due to the complexity of the interaction and the modification in the immune cells' phenotype and the networking of the immune responses, the exact mechanism of action of the immunosuppressive and regulatory cells is not yet fully understood. This review article reviews the immune responses involved in BC as well as the role of regulatory and inhibitory cells in the pathogenesis of the disease. Finally, therapeutic approaches based on inhibition of immunosuppressive responses derived from regulatory cells are discussed.
Collapse
Affiliation(s)
- Huan-Rong Lan
- Department of Breast and Thyroid Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, PR China
| | - Wen-Lin Du
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, PR China; Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, PR China
| | - Yuyao Liu
- Department of Colorectal Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, PR China
| | - Chun-Sen Mao
- Department of Colorectal Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, PR China
| | - Ke-Tao Jin
- Department of Colorectal Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, PR China
| | - Xue Yang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, PR China.
| |
Collapse
|
13
|
Gordon B, Gadi VK. The Role of the Tumor Microenvironment in Developing Successful Therapeutic and Secondary Prophylactic Breast Cancer Vaccines. Vaccines (Basel) 2020; 8:vaccines8030529. [PMID: 32937885 PMCID: PMC7565925 DOI: 10.3390/vaccines8030529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/09/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022] Open
Abstract
Breast cancer affects roughly one in eight women over their lifetime and is a leading cause of cancer-related death in women. While outcomes have improved in recent years, prognosis remains poor for patients who present with either disseminated disease or aggressive molecular subtypes. Cancer immunotherapy has revolutionized the treatment of several cancers, with therapeutic vaccines aiming to direct the cytotoxic immune program against tumor cells showing particular promise. However, these results have yet to translate to breast cancer, which remains largely refractory from such approaches. Recent evidence suggests that the breast tumor microenvironment (TME) is an important and long understudied barrier to the efficacy of therapeutic vaccines. Through an improved understanding of the complex and biologically diverse breast TME, it may be possible to advance new combination strategies to render breast carcinomas sensitive to the effects of therapeutic vaccines. Here, we discuss past and present efforts to advance therapeutic vaccines in the treatment of breast cancer, the molecular mechanisms through which the TME contributes to the failure of such approaches, as well as the potential means through which these can be overcome.
Collapse
Affiliation(s)
- Benjamin Gordon
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL 60612, USA
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, IL 60612, USA
- Correspondence:
| | - Vijayakrishna K. Gadi
- Division of Hematology and Oncology, University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA;
| |
Collapse
|
14
|
Baxevanis CN, Fortis SP, Perez SA. The balance between breast cancer and the immune system: Challenges for prognosis and clinical benefit from immunotherapies. Semin Cancer Biol 2019; 72:76-89. [PMID: 31881337 DOI: 10.1016/j.semcancer.2019.12.018] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023]
Abstract
Cancer evolution is a complex process influenced by genetic factors and extracellular stimuli that trigger signaling pathways to coordinate the continuous and dynamic interaction between tumor cells and the elements of the immune system. For over 20 years now, the immune mechanisms controlling cancer progression have been the focus of intensive research. It is well established that the immune system conveys protective antitumor immunity by destroying immunogenic tumor variants, but also facilitates tumor progression by shaping tumor immunogenicity in a process called "immunoediting". It is also clear that immune-guided tumor editing is associated with tumor evasion from immune surveillance and therefore reinforcing the endogenous antitumor immunity is a desired goal in the context of cancer therapies. The tumor microenvironment (TME) is a complex network which consists of various cell types and factors having important roles regarding tumor development and progression. Tumor infiltrating lymphocytes (TILs) and other tumor infiltrating immune cells (TIICs) are key to our understanding of tumor immune surveillance based on tumor immunogenicity, whereby the densities and location of TILs and TIICs in the tumor regions, as well as their functional programs (comprising the "immunoscore") have a prominent role for prognosis and prediction for several cancers. The presence of tertiary lymphoid structures (TLS) in the TME or in peritumoral areas has an influence on the locally produced antitumor immune response, and therefore also has a significant prognostic impact. The cross-talk between elements of the immune system with tumor cells in the TME is greatly influenced by hypoxia, the gut and/or the local microbiota, and several metabolic elements, which, in a dynamic interplay, have a crucial role for tumor cell heterogeneity and reprogramming of immune cells along their activation and differentiation pathways. Taking into consideration the recent clinical success with the application immunotherapies for the treatment of several cancer types, increasing endeavors have been made to gain better insights into the mechanisms underlying phenotypic and metabolic profiles in the context of tumor progression and immunotherapy. In this review we will address (i) the role of TILs, TIICs and TLS in breast cancer (BCa); (ii) the different metabolic-based pathways used by immune and breast cancer cells; and (iii) implications for immunotherapy-based strategies in BCa.
Collapse
Affiliation(s)
- Constantin N Baxevanis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras Ave., 11522, Athens, Greece.
| | - Sotirios P Fortis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras Ave., 11522, Athens, Greece
| | - Sonia A Perez
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras Ave., 11522, Athens, Greece
| |
Collapse
|
15
|
López C, Bosch R, Orero G, Korzynska A, García-Rojo M, Bueno G, Fernández-Carrobles MDM, Gibert-Ramos A, Roszkowiak L, Callau C, Fontoura L, Salvadó MT, Álvaro T, Jaén J, Roso-Llorach A, Llobera M, Gil J, Onyos M, Plancoulaine B, Baucells J, Lejeune M. The Immune Response in Nonmetastatic Axillary Lymph Nodes Is Associated with the Presence of Axillary Metastasis and Breast Cancer Patient Outcome. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 190:660-673. [PMID: 31866348 DOI: 10.1016/j.ajpath.2019.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 10/22/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023]
Abstract
Tumor cells can modify the immune response in primary tumors and in the axillary lymph nodes with metastasis (ALN+) in breast cancer (BC), influencing patient outcome. We investigated whether patterns of immune cells in the primary tumor and in the axillary lymph nodes without metastasis (ALN-) differed between patients diagnosed without ALN+ (diagnosed-ALN-) and with ALN+ (diagnosed-ALN+) and the implications for clinical outcome. Eleven immune markers were studied using immunohistochemistry, tissue microarray, and digital image analysis in 141 BC patient samples (75 diagnosed-ALN+ and 66 diagnosed-ALN-). Two logistic regression models were derived to identify the clinical, pathologic, and immunologic variables associated with the presence of ALN+ at diagnosis. There are immune patterns in the ALN- associated with the presence of ALN+ at diagnosis. The regression models revealed a small subgroup of diagnosed-ALN+ with ALN- immune patterns that were more similar to those of the ALN- of the diagnosed-ALN-. This small subgroup also showed similar clinical behavior to that of the diagnosed-ALN-. Another small subgroup of diagnosed-ALN- with ALN- immune patterns was found whose members were more similar to those of the ALN- of the diagnosed-ALN+. This small subgroup had similar clinical behavior to the diagnosed-ALN+. These data suggest that the immune response present in ALN- at diagnosis could influence the clinical outcome of BC patients.
Collapse
Affiliation(s)
- Carlos López
- Department of Pathology, Hospital de Tortosa Verge de la Cinta, Catalan Institute of Health, Pere Virgili Institute, Tortosa, Spain; Nursing Department, Campus Terres de l'Ebre, Universitat Rovira i Virgili, Tortosa, Spain.
| | - Ramon Bosch
- Department of Pathology, Hospital de Tortosa Verge de la Cinta, Catalan Institute of Health, Pere Virgili Institute, Tortosa, Spain
| | - Guifre Orero
- Department of Pathology, Hospital de Tortosa Verge de la Cinta, Catalan Institute of Health, Pere Virgili Institute, Tortosa, Spain
| | - Anna Korzynska
- Laboratory of Processing and Analysis of Microscopic Images, Nalęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences (IBIB PAN), Warsaw, Poland
| | - Marcial García-Rojo
- Department of Pathology, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Gloria Bueno
- VISILAB, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | | | - Albert Gibert-Ramos
- Department of Pathology, Hospital de Tortosa Verge de la Cinta, Catalan Institute of Health, Pere Virgili Institute, Tortosa, Spain
| | - Lukasz Roszkowiak
- Laboratory of Processing and Analysis of Microscopic Images, Nalęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences (IBIB PAN), Warsaw, Poland
| | - Cristina Callau
- Department of Pathology, Hospital de Tortosa Verge de la Cinta, Catalan Institute of Health, Pere Virgili Institute, Tortosa, Spain
| | - Laia Fontoura
- Department of Pathology, Hospital de Tortosa Verge de la Cinta, Catalan Institute of Health, Pere Virgili Institute, Tortosa, Spain
| | - Maria-Teresa Salvadó
- Department of Pathology, Hospital de Tortosa Verge de la Cinta, Catalan Institute of Health, Pere Virgili Institute, Tortosa, Spain; Nursing Department, Campus Terres de l'Ebre, Universitat Rovira i Virgili, Tortosa, Spain
| | - Tomás Álvaro
- Department of Pathology, Hospital de Tortosa Verge de la Cinta, Catalan Institute of Health, Pere Virgili Institute, Tortosa, Spain
| | - Joaquín Jaén
- Department of Pathology, Hospital de Tortosa Verge de la Cinta, Catalan Institute of Health, Pere Virgili Institute, Tortosa, Spain
| | - Albert Roso-Llorach
- Institut Universitari d'Investigació en Atenció Primària Jordi Gol, Barcelona, Spain
| | - Montserrat Llobera
- Department of Oncology, Hospital de Tortosa Verge de la Cinta, Catalan Institute of Health, Pere Virgili Institute, Tortosa, Spain
| | - Julia Gil
- Department of Surgery, Hospital Universitari de Girona Dr. Josep Trueta, ICS, Girona, Spain
| | - Montserrat Onyos
- Department of Gynaecology, Hospital del Vendrell, Tarragona, Spain
| | - Benoît Plancoulaine
- Baclesse Center, Normandy University, Unicaen, Inserm, Interdisciplinary Research Unit for Cancer Prevention and Treatment, Caen, France
| | - Jordi Baucells
- Informatics Department, Hospital de Tortosa Verge de la Cinta, Catalan Institute of Health, Pere Virgili Institute, Tortosa, Spain
| | - Marylène Lejeune
- Department of Pathology, Hospital de Tortosa Verge de la Cinta, Catalan Institute of Health, Pere Virgili Institute, Tortosa, Spain; Nursing Department, Campus Terres de l'Ebre, Universitat Rovira i Virgili, Tortosa, Spain.
| |
Collapse
|
16
|
Sigal D, Przedborski M, Sivaloganathan D, Kohandel M. Mathematical modelling of cancer stem cell-targeted immunotherapy. Math Biosci 2019; 318:108269. [DOI: 10.1016/j.mbs.2019.108269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/17/2019] [Accepted: 10/05/2019] [Indexed: 12/15/2022]
|
17
|
Antohe M, Nedelcu RI, Nichita L, Popp CG, Cioplea M, Brinzea A, Hodorogea A, Calinescu A, Balaban M, Ion DA, Diaconu C, Bleotu C, Pirici D, Zurac SA, Turcu G. Tumor infiltrating lymphocytes: The regulator of melanoma evolution. Oncol Lett 2019; 17:4155-4161. [PMID: 30944610 PMCID: PMC6444298 DOI: 10.3892/ol.2019.9940] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/27/2018] [Indexed: 02/06/2023] Open
Abstract
Melanoma is the most severe type of skin cancer and its incidence has increased in the last decades. In the United States, it is the 6th most common cancer in both men and women. Prognosis for patients with melanoma depends on the stage of the disease at the time of diagnosis and it can be influenced by the immunologic response. Melanoma has been historically considered an immunogenic malignancy. It often contains great amount of immune cells (different subsets of T-cells, dendritic cells, macrophages, neutrophils, mast cells, B lymphocytes), which may reflect a continuous intercommunication between host and tumor. It is not established if tumor-infiltrating lymphocytes (TILs) are induced by tumor cells or by other components of the microenvironment or when they are a host direct immunologic reaction. It has been observed that in many cases, the presence of a dense TIL is associated with good prognosis. The pattern and activation state of the cells which constitute TIL is variable and modulates the clinical outcome. An important step in the understanding of tumor immunobiology is the analysis of the populations and subsets of immune cells that form TIL. Besides its prognostic significance, after approval of cytotoxic T lymphocyte antigen 4, programmed cell death-1 and programmed death-1 ligand antibodies for the treatment of melanoma, the assessment of immune infiltrate composition has become even more captivating, as it could provide new target molecules and new biomarkers for predicting the effect of the treatment and disease outcome in patients treated with immunotherapy. In this review we discuss current state of knowledge in the field of immune cells that infiltrate melanoma, resuming the potential of TIL components to become prognostic markers for natural evolution, for response to drugs or valuable targets for new medication.
Collapse
Affiliation(s)
- Mihaela Antohe
- Department of Pathophysiology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, Derma 360° Clinic, 011274 Bucharest, Romania
| | - Roxana Ioana Nedelcu
- Department of Pathophysiology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, Derma 360° Clinic, 011274 Bucharest, Romania
| | - Luciana Nichita
- Department of Pathology, Colentina Clinical Hospital, 021103 Bucharest, Romania
| | | | - Mirela Cioplea
- Department of Pathology, Colentina Clinical Hospital, 021103 Bucharest, Romania
| | - Alice Brinzea
- Department of Pathophysiology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
- National Institute for Infectious Diseases ‘Prof. Dr. Matei Balș’, Ambulatory Service, 021105 Bucharest, Romania
| | - Anastasia Hodorogea
- Department of Pathophysiology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, Colentina Clinical Hospital, 021103 Bucharest, Romania
| | - Andreea Calinescu
- Department of Dermatology, Colentina Clinical Hospital, 021103 Bucharest, Romania
- Department of Physiology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Mihaela Balaban
- Department of Dermatology, Derma 360° Clinic, 011274 Bucharest, Romania
- Department of Biochemistry, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Daniela Adriana Ion
- Department of Pathophysiology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Carmen Diaconu
- Department of Cellular and Molecular Pathology, ‘Stefan S. Nicolau’ Institute of Virology, 030304 Bucharest, Romania
| | - Coralia Bleotu
- Department of Cellular and Molecular Pathology, ‘Stefan S. Nicolau’ Institute of Virology, 030304 Bucharest, Romania
| | - Daniel Pirici
- Department of Pathology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Sabina Andrada Zurac
- Department of Pathology, Colentina Clinical Hospital, 021103 Bucharest, Romania
- Department of Pathology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Gabriela Turcu
- Department of Dermatology, Derma 360° Clinic, 011274 Bucharest, Romania
- Department of Dermatology, Colentina Clinical Hospital, 021103 Bucharest, Romania
- Department of Dermatology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
18
|
Englinger B, Pirker C, Heffeter P, Terenzi A, Kowol CR, Keppler BK, Berger W. Metal Drugs and the Anticancer Immune Response. Chem Rev 2018; 119:1519-1624. [DOI: 10.1021/acs.chemrev.8b00396] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bernhard Englinger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Christine Pirker
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Alessio Terenzi
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Christian R. Kowol
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Bernhard K. Keppler
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
Li Z, Qiu Y, Lu W, Jiang Y, Wang J. Immunotherapeutic interventions of Triple Negative Breast Cancer. J Transl Med 2018; 16:147. [PMID: 29848327 PMCID: PMC5977468 DOI: 10.1186/s12967-018-1514-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/09/2018] [Indexed: 02/06/2023] Open
Abstract
Triple Negative Breast Cancer (TNBC) is a highly heterogeneous subtype of breast cancer that lacks the expression of oestrogen receptors, progesterone receptors and human epidermal growth factor receptor 2. Although TNBC is sensitive to chemotherapy, the overall outcomes of TNBC are worse than for other breast cancers, and TNBC is still one of the most fatal diseases for women. With the discovery of antigens specifically expressed in TNBC cells and the developing technology of monoclonal antibodies, chimeric antigen receptors and cancer vaccines, immunotherapy is emerging as a novel promising option for TNBC. This review is mainly focused on the tumour microenvironment and host immunity, Triple Negative Breast Cancer and the clinical treatment of TNBC, novel therapies for cancer and immunotherapy for TNBC, and the future outlook for the treatment for TNBC and the interplay between the therapies, including immune checkpoint inhibitors, combination of immune checkpoint inhibitors with targeted treatments in TNBC, adoptive cell therapy, cancer vaccines. The review also highlights recent reports on the synergistic effects of immunotherapy and chemotherapy, antibody-drug conjugates, and exosomes, as potential multifunctional therapeutic agents in TNBC.
Collapse
Affiliation(s)
- Zehuan Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032 People’s Republic of China
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508 People’s Republic of China
| | - Yiran Qiu
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032 People’s Republic of China
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508 People’s Republic of China
| | - Weiqi Lu
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032 People’s Republic of China
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508 People’s Republic of China
| | - Ying Jiang
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032 People’s Republic of China
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508 People’s Republic of China
| | - Jin Wang
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508 People’s Republic of China
| |
Collapse
|
20
|
Zins K, Heller G, Mayerhofer M, Schreiber M, Abraham D. Differential prognostic impact of interleukin-34 mRNA expression and infiltrating immune cell composition in intrinsic breast cancer subtypes. Oncotarget 2018; 9:23126-23148. [PMID: 29796177 PMCID: PMC5955405 DOI: 10.18632/oncotarget.25226] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 04/05/2018] [Indexed: 12/14/2022] Open
Abstract
Interleukin-34 (IL-34) is a ligand for the CSF-1R and has also two additional receptors, PTPRZ1 and syndecan-1. IL-34 plays a role in innate immunity, inflammation, and cancer. However, the role of IL-34 in breast cancer is still ill-defined. We analyzed IL-34 mRNA expression in breast cancer cell lines and breast cancer patients and applied established computational approaches (CIBERSORT, ESTIMATE, TIMER, TCIA), to analyze gene expression data from The Cancer Genome Atlas (TCGA). Expression of IL-34 was associated with a favorable prognosis in luminal and HER2 but not basal breast cancer patients. Gene expression of CSF-1 and CSF-1R was strongly associated with myeloid cell infiltration, while we found no or only weak correlations between IL-34, PTPRZ1, syndecan-1 and myeloid cells. In vitro experiments showed that tyrosine phosphorylation of CSF-1R, ERK, and FAK and cell migration are differentially regulated by IL-34 and CSF-1 in breast cancer cell lines. Collectively, our data suggest that correlation of IL-34 gene expression with survival is dependent on the molecular breast cancer subtype. Furthermore, IL-34 is not associated with myeloid cell infiltration and directly regulates breast cancer cell migration and signaling.
Collapse
Affiliation(s)
- Karin Zins
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Gerwin Heller
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, A-1090 Vienna, Austria.,Comprehensive Cancer Center Vienna, A-1090 Vienna, Austria
| | - Mathias Mayerhofer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Martin Schreiber
- Department of Obstetrics and Gynecology, Medical University of Vienna, A-1090 Vienna, Austria.,Comprehensive Cancer Center Vienna, A-1090 Vienna, Austria
| | - Dietmar Abraham
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria.,Comprehensive Cancer Center Vienna, A-1090 Vienna, Austria
| |
Collapse
|
21
|
Massa C, Seliger B. The tumor microenvironment: Thousand obstacles for effector T cells. Cell Immunol 2017; 343:103730. [PMID: 29249298 DOI: 10.1016/j.cellimm.2017.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 12/24/2022]
Abstract
The immune system is endowed with the capability to recognize and destroy transformed cells, but even in the presence of an immune infiltrate many tumors do progress. In the last decades new discoveries have shed light into (some of) the underlying mechanisms. Immune effector cells are not only under the influence of immune suppressive cell subsets, but also intrinsically regulated by immune check point molecules that under physiological condition avoid attach of healthy tissue. Moreover, tumor cells are modifying the surrounding microenvironment through secretion of immune modulators as well as via their own metabolism, thus further impairing the development of immune effector functions. Different approaches are currently being evaluated in the clinic to overcome those regulatory mechanisms and to unleash effector T cells.
Collapse
Affiliation(s)
- Chiara Massa
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Barbara Seliger
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
22
|
Wang J, Song L, Yang S, Zhang W, Lu P, Li S, Li H, Wang L. HPK1 positive expression associated with longer overall survival in patients with estrogen receptor-positive invasive ductal carcinoma‑not otherwise specified. Mol Med Rep 2017; 16:4634-4642. [PMID: 28765906 PMCID: PMC5647019 DOI: 10.3892/mmr.2017.7131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 04/19/2017] [Indexed: 12/27/2022] Open
Abstract
Hematopoietic progenitor kinase 1 (HPK1) belongs to the mitogen activated protein kinase kinase kinase kinase (MAP4K) family of serine/threonine kinases, which have been associated with the incidence and progression of a variety of gastrointestinal malignant tumors in humans. However, the potential association between HPK1 expression and breast cancer, particularly invasive ductal carcinoma-not otherwise specified (IDC-NOS) development, has not yet been examined. To address this gap, the present study aimed to evaluate HPK1 expression in IDC-NOS samples and to determine a relationship with clinical prognostic indicators, such as the expression levels of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2), as well as overall survival of the patients with IDC-NOS. HPK1 mRNA and protein expression in samples from 148 patients with IDC-NOS were detected using immunohistochemistry, western blotting and reverse transcription-quantitative polymerase chain reaction. A total of 54 out of 148 (36.5%) samples were HPK1-positive, and 100 out of 148 (67.6%) were ER-positive. Of the latter, 28% (28/100) were HPK1-positive, and a significant negative association of HPK1 expression with ER positivity was observed (P=0.002; r=−0.254). In addition, 43.2% (64/148) and 32.4% (48/100) of IDC-NOS tissues were PR- or HER2-positive, respectively; however, neither indicator correlated with HPK1 (P=0.109 and P=0.558, respectively). HPK1 expression, axillary lymph node metastasis and tumor-node-metastasis (TNM) stage were identified as independent factors of overall survival (OS) in the ER-positive group (P<0.05), and HPK1 positivity was associated with increased OS (P=0.048). HPK1 mRNA levels did not differ between IDC-NOS and normal adjacent breast tissues, whereas HPK1 protein levels were lower in IDC-NOS (P<0.05). These results suggested that HPK1 protein may be a potentially effective IDC-NOS therapeutic target.
Collapse
Affiliation(s)
- Jiaojiao Wang
- Department of Ultrasonography, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Lijie Song
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Sen Yang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Weijie Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Pengwei Lu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Shenglei Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Huixiang Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Liuxing Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
23
|
Wang M, Zhang C, Song Y, Wang Z, Wang Y, Luo F, Xu Y, Zhao Y, Wu Z, Xu Y. Mechanism of immune evasion in breast cancer. Onco Targets Ther 2017; 10:1561-1573. [PMID: 28352189 PMCID: PMC5359138 DOI: 10.2147/ott.s126424] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Breast cancer (BC) is the most common malignant tumor among women, with high morbidity and mortality. Its onset, development, metastasis, and prognosis vary among individuals due to the interactions between tumors and host immunity. Many diverse mechanisms have been associated with BC, with immune evasion being the most widely studied to date. Tumor cells can escape from the body’s immune response, which targets abnormal components and foreign bodies, using different approaches including modification of surface antigens and modulation of the surrounding environment. In this review, we summarize the mechanisms and factors that impact the immunoediting process and analyze their functions in detail.
Collapse
Affiliation(s)
| | - Changwang Zhang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yongxi Song
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | | | | | | | - Yi Zhao
- Department of Breast Surgery
| | - Zhonghua Wu
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | | |
Collapse
|
24
|
Faustino-Rocha AI, Ferreira R, Gama A, Oliveira PA, Ginja M. Antihistamines as promising drugs in cancer therapy. Life Sci 2017; 172:27-41. [DOI: 10.1016/j.lfs.2016.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/11/2016] [Accepted: 12/13/2016] [Indexed: 12/28/2022]
|
25
|
Targeting the angio-proteostasis network: Combining the forces against cancer. Pharmacol Ther 2016; 167:1-12. [DOI: 10.1016/j.pharmthera.2016.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/14/2016] [Indexed: 01/24/2023]
|
26
|
da Cunha A, Antoniazi Michelin M, Cândido Murta EF. Phenotypic profile of dendritic and T cells in the lymph node of Balb/C mice with breast cancer submitted to dendritic cells immunotherapy. Immunol Lett 2016; 177:25-37. [PMID: 27423825 DOI: 10.1016/j.imlet.2016.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 06/01/2016] [Accepted: 07/12/2016] [Indexed: 11/25/2022]
Abstract
Breast cancer (BC) is the most common malignant neoplasm and the cause of death by cancer among women worldwide. Its development influenced by various mutations that occur in the tumor cell and by the immune system's status, which has a direct influence on the tumor microenvironment and, consequently, on interactions with non-tumor cells involved in the immunological response. Strategies using dendritic cells (DCs) or antigen-presenting cells (APCs), therapeutic mode, in cancer have been developed for some time. The proper interaction between DCs and T cells upon antigen presentation is of greatest importance for an antitumor immune response activation. Thus, various receptors on the surface of T cells must be able to recognize ligands that are located on the surface of APCs. However, little is known about the real behavior and interaction forms of CDs and T cells after vaccination. Due to the crucial importance of DCs in an effective anti-tumor immune response activation and the search for compliant results in inducing this response by immunotherapies with DCs, the phenotypic profile of DCs and T cells in lymph nodes obtained from female Balb/C mice with breast cancer induced by 4T1 cells and DCs treated with vaccines was investigated. We evaluated through flow cytometry based on the surface and intracellular molecules marking; as well as the presence of cytokines and chemokines, IL-2, IL-4, IL-10, IL-12, IFN-γ, TNF-α and TGF-β in the supernatant of the culture of Balb/C lymph nodes by ELISA. The results show that the vaccination with DCs, in the maturation parameters used in this study, was able to stimulate the secretion of cytokines such as IFN-γ and IL-12 and inhibit the secretion of TGF-β and IL-10 in nodal lymph infiltrates, as well as co-stimulatory activating (CD86) and adhesion molecules in DCs and T cells LFA-1/ICAM-1 and inhibit the secretion of CTLA-4 present in lymph nodes. Facts that led to aTh1 profile polarization, immuno competent in relation to breast cancer. We indirectly evaluated the interaction between DCs and T cells dependent on the vaccination with DCs in tumor draining lymph nodes, in breast cancer in Balb/C mice and we believe that, this way, we will be able to achieve a model vaccine protocol in the future, based on the correct interaction between cells that enable the induction of anti-tumor effective response. Breast cancer (BC) is the most common malignant neoplasm and the cause of death by cancer among women worldwide. Its development influenced by various mutations that occur in the tumor cell and by the immune system's status, which has a direct influence on the tumor microenvironment and, consequently, on interactions with non-tumor cells involved in the immunological response. Strategies using dendritic cells (DCs) or antigen-presenting cells (APCs), therapeutic mode, in cancer have been developed for some time. The proper interaction between DCs and T cells upon antigen presentation is of greatest importance for an antitumor immune response activation. Thus, various receptors on the surface of T cells must be able to recognize ligands that are located on the surface of APCs. However, little is known about the real behavior and interaction forms of DCs and T cells after vaccination. Due to the crucial importance of DCs in an effective anti-tumor immune response activation and the search for compliant results in inducing this response by immunotherapies with DCs, the phenotypic profile of DCs and T cells in lymph nodes obtained from female Balb/C mice with breast cancer induced by 4T1 cells and DCs treated with vaccines was investigated. We evaluated through flow cytometry based on the surface and intracellular molecules marking; as well as the presence of cytokines and chemokines, IL-2, IL-4, IL-10, IL-12, IFN-γ, TNF-α and TGF-β in the supernatant of the culture of Balb/C lymph nodes by ELISA. The results show that the vaccination with DCs, in the maturation parameters used in this study, was able to stimulate the secretion of cytokines such as IFN-γ and IL-12 and inhibit the secretion of TGF-β and IL-10 in nodal lymph infiltrates, as well as co-stimulatory activating (CD86) and adhesion molecules in DCs and T cells LFA-1/ICAM-1 and inhibit the secretion of CTLA-4 present in lymph nodes. Facts that led to aTh1 profile polarization, immuno competent in relation to breast cancer. We indirectly evaluated the interaction between DCs and T cells dependent on the vaccination with DCs in tumor draining lymph nodes, in breast cancer in Balb/C mice and we believe that, this way, we will be able to achieve a model vaccine protocol in the future, based on the correct interaction between cells that enable the induction of anti-tumor effective response.
Collapse
Affiliation(s)
- Alessandra da Cunha
- Research Oncology Institute (IPON), Federal University of the Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, 38025-440, Brazil
| | - Marcia Antoniazi Michelin
- Discipline of Immunology, Federal University of the Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, 38025-440, Brazil
| | - Eddie Fernando Cândido Murta
- Discipline of Gynecology and Obstetrics, Federal University of the Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, 38025-440, Brazil.
| |
Collapse
|
27
|
Abstract
Experimental oncology research and preclinical drug development both substantially require specific, clinically relevant in vitro and in vivo tumor models. The increasing knowledge about the heterogeneity of cancer requested a substantial restructuring of the test systems for the different stages of development. To be able to cope with the complexity of the disease, larger panels of patient-derived tumor models have to be implemented and extensively characterized. Together with individual genetically engineered tumor models and supported by core functions for expression profiling and data analysis, an integrated discovery process has been generated for predictive and personalized drug development.Improved “humanized” mouse models should help to overcome current limitations given by xenogeneic barrier between humans and mice. Establishment of a functional human immune system and a corresponding human microenvironment in laboratory animals will strongly support further research.Drug discovery, systems biology, and translational research are moving closer together to address all the new hallmarks of cancer, increase the success rate of drug development, and increase the predictive value of preclinical models.
Collapse
|
28
|
Muenst S, Läubli H, Soysal SD, Zippelius A, Tzankov A, Hoeller S. The immune system and cancer evasion strategies: therapeutic concepts. J Intern Med 2016; 279:541-62. [PMID: 26748421 DOI: 10.1111/joim.12470] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The complicated interplay between cancer and the host immune system has been studied for decades. New insights into the human immune system as well as the mechanisms by which tumours evade immune control have led to the new and innovative therapeutic strategies that are considered amongst the medical breakthroughs of the last few years. Here, we will review the current understanding of cancer immunology in general, including immune surveillance and immunoediting, with a detailed look at immune cells (T cells, B cells, natural killer cells, macrophages and dendritic cells), immune checkpoints and regulators, sialic acid-binding immunoglobulin-like lectins (Siglecs) and other mechanisms. We will also present examples of new immune therapies able to reverse immune evasion strategies of tumour cells. Finally, we will focus on therapies that are already used in daily oncological practice such as the blockade of immune checkpoints cytotoxic T-lymphocyte antigen 4 (CTLA-4) and programmed death-1 (PD-1) in patients with metastatic melanoma or advanced lung cancer, or therapies currently being tested in clinical trials such as adoptive T-cell transfer.
Collapse
Affiliation(s)
- S Muenst
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - H Läubli
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, Cancer Immunology Laboratory, University of Basel, Basel, Switzerland
| | - S D Soysal
- Department of Surgery, University Hospital Basel, Basel, Switzerland
| | - A Zippelius
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, Cancer Immunology Laboratory, University of Basel, Basel, Switzerland
| | - A Tzankov
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - S Hoeller
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
29
|
Abstract
PURPOSE Alarmins are constitutively present endogenous molecules that essentially act as early warning signals for the immune system. We provide a brief overview of major alarmins and highlight their roles in tumor immunity. METHODS We searched PubMed up to January 10, 2016, using alarmins and/or damage-associated molecular patterns (DAMPs), as key words. We selected and reviewed articles that focused on the discovery and functions of alarmin and their roles in tumor immunity. FINDINGS Alarmins are essentially endogenous immunostimulatory DAMP molecules that are exposed in response to danger (eg, infection or tissue injury) as a result of degranulation, cell death, or induction. They are sensed by chemotactic receptors and pattern recognition receptors to induce immune responses by promoting the recruitment and activation of leukocytes, particularly antigen-presenting cells. IMPLICATIONS Accumulating data suggest that certain alarmins, High-mobility group nucleosome-binding protein 1 (HMGN1) in particular, contribute to the generation of antitumor immunity. Some alarmins can also be used as cancer biomarkers. Therefore, alarmins can potentially be applied for our fight against cancers.
Collapse
Affiliation(s)
- Yingjie Nie
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland; Guizhou Provincial Peoples' Hospital, Guiyang, Guizhou Province, China
| | - De Yang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland; Basic Research Program, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Joost J Oppenheim
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland.
| |
Collapse
|
30
|
Sharma SH, Thulasingam S, Nagarajan S. Chemopreventive agents targeting tumor microenvironment. Life Sci 2016; 145:74-84. [DOI: 10.1016/j.lfs.2015.12.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/01/2015] [Accepted: 12/05/2015] [Indexed: 02/07/2023]
|
31
|
Kajihara M, Takakura K, Ohkusa T, Koido S. The impact of dendritic cell-tumor fusion cells on cancer vaccines - past progress and future strategies. Immunotherapy 2015; 7:1111-22. [PMID: 26507578 DOI: 10.2217/imt.15.73] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells (DCs) are potent antigen-presenting cells that can be used in cancer vaccines. Thus, various strategies have been developed to deliver tumor-associated antigens via DCs. One strategy includes administering DC-tumor fusion cells (DC-tumor FCs) to induce antitumor immune responses in cancer patients. However, clinical trials using this strategy have fallen short of expectations. Several factors might limit the efficacy of these anticancer vaccines. To induce efficient antitumor immune responses and enhance potential clinical benefits, DC-tumor FC-based cancer vaccines require manipulations that improve immunogenicity for both DCs and whole tumor cells. This review addresses recent progress in improving clinical outcomes using DC-tumor FC-based cancer vaccines.
Collapse
Affiliation(s)
- Mikio Kajihara
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazuki Takakura
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Toshifumi Ohkusa
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Shigeo Koido
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
32
|
Soysal SD, Tzankov A, Muenst SE. Role of the Tumor Microenvironment in Breast Cancer. Pathobiology 2015; 82:142-52. [DOI: 10.1159/000430499] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
33
|
Review on the Applications and Molecular Mechanisms of Xihuang Pill in Tumor Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:854307. [PMID: 26170886 PMCID: PMC4479127 DOI: 10.1155/2015/854307] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/16/2015] [Accepted: 05/21/2015] [Indexed: 12/17/2022]
Abstract
Xihuang pill (XH) is a complementary and alternative medicine that has been used in traditional Chinese medicine (TCM) for the treatment of tumors since the 18th century. XH has clinical effects on non-Hodgkin lymphoma, breast cancer, gastric cancer, liver cancer, and bone metastasis. XH can also inhibit the growth of tumor cells and cancer stem cells, prevent tumor invasion and angiogenesis, and regulate the tumor microenvironment. XH is composed of Ru Xiang (olibanum), Mo Yao (Commiphora myrrha), She Xiang (Moschus), and Niu Huang (Calculus bovis). Some of the compounds found in these ingredients exert multiple antitumor effects and may synergize with the other ingredients. We aimed to summarize the clinical applications and molecular mechanisms of XH and its chemical composition. This review will provide potential new strategies and alternative perspectives for tumor treatments and basic research into complementary and alternative medicine.
Collapse
|
34
|
Dushyanthen S, Savas P, Willard-Gallo K, Denkert C, Salgado R, Loi S. Tumour-Infiltrating Lymphocytes (TILs) in Breast Cancer: a Predictive or a Prognostic Marker? CURRENT BREAST CANCER REPORTS 2015. [DOI: 10.1007/s12609-014-0178-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|