1
|
Htike K, Yoshida K, Eguchi T, Takebe K, Li X, Qu Y, Sakai E, Tsukuba T, Okamoto K. Herbal medicine Ninjinyoeito inhibits RANKL-induced osteoclast differentiation and bone resorption activity by regulating NF-kB and MAPK pathway. J Oral Biosci 2024:S1349-0079(24)00202-0. [PMID: 39366652 DOI: 10.1016/j.job.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
OBJECTIVES Osteoporosis is a systemic bone metabolism disorder characterized by decreased bone mass and strength. Osteoclasts (OCs) are giant multinucleated cells that regulate bone homeostasis by degrading bone matrix. Excessive OC differentiation and activity can lead to serious bone metabolic disorders including osteoporosis. Current treatments, including antiresorptive drugs, exert considerable adverse effects, including jaw osteonecrosis. Herbal medicines, such as Ninjinyoeito (NYT), may also offer efficacy, but with fewer adverse effects. In this study, we investigated NYT's effects on osteoclastogenesis. METHODS Tartrate-resistant acid phosphatase (TRAP) staining and bone resorption assays were performed to examine NYT's effects on OC differentiation and function. OC-related gene expression at mRNA and protein levels was investigated to confirm NYT's inhibitory action against osteoclastogenesis. We also demonstrated involvement of signaling pathways mediated by IκBα and mitogen-activated protein kinases (MAPK) [extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38] and showed nuclear translocation of nuclear factor of activated T-cell cytoplasmic 1 (NFATc1) and nuclear factor kappa B (NF-κB) p65 during osteoclastogenesis. RESULTS TRAP staining and bone resorption assays confirmed that NYT significantly inhibited OC differentiation and function. Western blot and RT-PCR results showed that NYT ameliorated osteoclastogenesis by suppressing mRNA and protein level expression of OC-related genes. Moreover, blots and immunocytochemistry (ICC) data clarified that NYT abrogates signaling pathways mediated by IκBα and MAPK (ERK, JNK, p38), and demonstrated nuclear translocation of NFATc1 and NF-κB p65 during OC differentiation. CONCLUSIONS These findings suggest NYT is an alternative therapeutic candidate for treating osteoporosis.
Collapse
Affiliation(s)
- Kaung Htike
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Kunihiro Yoshida
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan; Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Takanori Eguchi
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan; Advanced Research Center for Oral and Craniofacial Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Katsuki Takebe
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Xueming Li
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Yaxin Qu
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Eiko Sakai
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Takayuki Tsukuba
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Kuniaki Okamoto
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| |
Collapse
|
2
|
Peng Y, Zhao H, Hu S, Ma Y, Han T, Meng C, Tong X, Zou H, Liu Z, Song R. Exploring the impact of osteoprotegerin on osteoclast and precursor fusion: Mechanisms and modulation by ATP. Differentiation 2024; 138:100789. [PMID: 38896972 DOI: 10.1016/j.diff.2024.100789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Osteoclast (OC) differentiation, vital for bone resorption, depends on osteoclast and precursor fusion. Osteoprotegerin (OPG) inhibits osteoclast differentiation. OPG's influence on fusion and mechanisms is unclear. Osteoclasts and precursors were treated with OPG alone or with ATP. OPG significantly reduced OC number, area and motility and ATP mitigated OPG's inhibition. However, OPG hardly affected the motility of precusors. OPG downregulated fusion-related molecules (CD44, CD47, DC-STAMP, ATP6V0D2) in osteoclasts, reducing only CD47 in precursors. OPG reduced Connexin43 phosphorylated forms (P1 and P2) in osteoclasts, affecting only P2 in precursors. OPG disrupted subcellular localization of CD44, CD47, DC-STAMP, ATP6V0D2, and Connexin43 in both cell types. Findings underscore OPG's multifaceted impact, inhibiting multinucleated osteoclast and mononuclear precursor fusion through distinct molecular mechanisms. Notably, ATP mitigates OPG's inhibitory effect, suggesting a potential regulatory role for the ATP signaling pathway. This study enhances understanding of intricate processes in osteoclast differentiation and fusion, offering insights into potential therapeutic targets for abnormal bone metabolism.
Collapse
Affiliation(s)
- Yunwen Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Hongyan Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Sinan Hu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Tao Han
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Chuang Meng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Jiangsu Key Lab of Zoonosis, Yangzhou University, Yangzhou, China
| | - Xishuai Tong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Jiangsu Key Lab of Zoonosis, Yangzhou University, Yangzhou, China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Jiangsu Key Lab of Zoonosis, Yangzhou University, Yangzhou, China.
| |
Collapse
|
3
|
Adjei-Sowah E, Chandrasiri I, Xiao B, Liu Y, Ackerman JE, Soto C, Nichols AEC, Nolan K, Benoit DSW, Loiselle AE. Development of a nanoparticle-based tendon-targeting drug delivery system to pharmacologically modulate tendon healing. SCIENCE ADVANCES 2024; 10:eadn2332. [PMID: 38896625 PMCID: PMC11186494 DOI: 10.1126/sciadv.adn2332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Satisfactory healing following acute tendon injury is marred by fibrosis. Despite the high frequency of tendon injuries and poor outcomes, there are no pharmacological therapies in use to enhance the healing process. Moreover, systemic treatments demonstrate poor tendon homing, limiting the beneficial effects of potential tendon therapeutics. To address this unmet need, we leveraged our existing tendon healing spatial transcriptomics dataset and identified an area enriched for expression of Acp5 (TRAP) and subsequently demonstrated robust TRAP activity in the healing tendon. This unexpected finding allowed us to refine and apply our existing TRAP binding peptide (TBP) functionalized nanoparticle (NP) drug delivery system (DDS) to facilitate improved delivery of systemic treatments to the healing tendon. To demonstrate the translational potential of this DDS, we delivered niclosamide (NEN), an S100a4 inhibitor. While systemic delivery of free NEN did not alter healing, TBP-NPNEN enhanced both functional and mechanical recovery, demonstrating the translational potential of this approach to enhance the tendon healing process.
Collapse
Affiliation(s)
- Emmanuela Adjei-Sowah
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Indika Chandrasiri
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Baixue Xiao
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Yuxuan Liu
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14623, USA
- Department of Chemical Engineering, University of Rochester, Rochester, NY 14623, USA
| | - Jessica E. Ackerman
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Celia Soto
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Anne E. C. Nichols
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Orthopaedics and Physical Performance, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Katherine Nolan
- Department of Comparative Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Danielle S. W. Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Chemical Engineering, University of Rochester, Rochester, NY 14623, USA
- Materials Science Program, University of Rochester, Rochester, NY 14623, USA
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403, USA
| | - Alayna E. Loiselle
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Orthopaedics and Physical Performance, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
4
|
Yamamoto K, Sawada SI, Shindo S, Nakamura S, Kwon YM, Kianinejad N, Vardar S, Hernandez M, Akiyoshi K, Kawai T. Cationic Glucan Dendrimer Gel-Mediated Local Delivery of Anti-OC-STAMP-siRNA for Treatment of Pathogenic Bone Resorption. Gels 2024; 10:377. [PMID: 38920924 PMCID: PMC11202495 DOI: 10.3390/gels10060377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Osteoclast stimulatory transmembrane protein (OC-STAMP) plays a pivotal role in the promotion of cell fusion during osteoclast differentiation (osteoclastogenesis) in the context of pathogenic bone resorption. Thus, it is plausible that the suppression of OC-STAMP through a bioengineering approach could lead to the development of an effective treatment for inflammatory bone resorptive diseases with minimum side effects. Here, we synthesized two types of spermine-bearing (Spe) cationic glucan dendrimer (GD) gels (with or without C12) as carriers of short interfering RNA (siRNA) to silence OC-STAMP. The results showed that amphiphilic C12-GD-Spe gel was more efficient in silencing OC-STAMP than GD-Spe gel and that the mixture of anti-OC-STAMP siRNA/C12-GD-Spe significantly downregulated RANKL-induced osteoclastogenesis. Also, local injection of anti-OC-STAMP-siRNA/C12-GD-Spe could attenuate bone resorption induced in a mouse model of periodontitis. These results suggest that OC-STAMP is a promising target for the development of a novel bone regenerative therapy and that C12-GD-Spe gel provides a new nanocarrier platform of gene therapies for osteolytic disease.
Collapse
Affiliation(s)
- Kenta Yamamoto
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (S.S.); (S.N.); (T.K.)
| | - Shin-Ichi Sawada
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 605-0981, Japan; (S.-I.S.); (K.A.)
- Synergy Institute for Futuristic Mucosal Vaccine Research and Development, Chiba University, Chiba 260-8670, Japan
| | - Satoru Shindo
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (S.S.); (S.N.); (T.K.)
| | - Shin Nakamura
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (S.S.); (S.N.); (T.K.)
| | - Young M. Kwon
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA (N.K.)
| | - Nazanin Kianinejad
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA (N.K.)
| | - Saynur Vardar
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (S.V.); (M.H.)
| | - Maria Hernandez
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (S.V.); (M.H.)
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 605-0981, Japan; (S.-I.S.); (K.A.)
| | - Toshihisa Kawai
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (S.S.); (S.N.); (T.K.)
| |
Collapse
|
5
|
Choudhury S, Sivankutty I, Jung Y, Huang A, Araten S, Kenny C, An Z, Doan R, Foijer F, Matsu E, Rosen I, Marciano J, Jain A, Sun L, Hilal N, Lee E, Walsh C, Chen M. Single-nucleus multi-omic profiling of polyploid heart nuclei identifies fusion-derived cardiomyocytes in the human heart. RESEARCH SQUARE 2024:rs.3.rs-4414468. [PMID: 38853931 PMCID: PMC11160865 DOI: 10.21203/rs.3.rs-4414468/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Understanding the mechanisms of polyploidization in cardiomyocytes is crucial for advancing strategies to stimulate myocardial regeneration. Although endoreplication has long been considered the primary source of polyploid human cardiomyocytes, recent animal work suggests the potential for cardiomyocyte fusion. Moreover, the effects of polyploidization on the genomic-transcriptomic repertoire of human cardiomyocytes have not been studied previously. We applied single-nuclei whole genome sequencing, single nuclei RNA sequencing, and multiome ATAC + gene expression (from the same nuclei) techniques to nuclei isolated from 11 healthy hearts. Utilizing post-zygotic non-inherited somatic mutations occurring during development as "endogenous barcodes," to reconstruct lineage relationships of polyploid cardiomyocytes. Of 482 cardiomyocytes from multiple healthy donor hearts 75.7% can be sorted into several developmental clades marked by one or more somatic single-nucleotide variants (SNVs). At least ~10% of tetraploid cardiomyocytes contain cells from distinct clades, indicating fusion of lineally distinct cells, whereas 60% of higher-ploidy cardiomyocytes contain fused cells from distinct clades. Combined snRNA-seq and snATAC-seq revealed transcriptome and chromatin landscapes of polyploid cardiomyocytes distinct from diploid cardiomyocytes, and show some higher-ploidy cardiomyocytes with transcriptional signatures suggesting fusion between cardiomyocytes and endothelial and fibroblast cells. These observations provide the first evidence for cell and nuclear fusion of human cardiomyocytes, raising the possibility that cell fusion may contribute to developing or maintaining polyploid cardiomyocytes in the human heart.
Collapse
|
6
|
Cohen DJ, Dennis CD, Deng J, Boyan BD, Schwartz Z. Estradiol induces bone osteolysis in triple-negative breast cancer via its membrane-associated receptor ERα36. JBMR Plus 2024; 8:ziae041. [PMID: 38644978 PMCID: PMC11032217 DOI: 10.1093/jbmrpl/ziae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/31/2024] [Accepted: 02/27/2024] [Indexed: 04/23/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is thought to be an estradiol-independent, hormone therapy-resistant cancer because of lack of estrogen receptor alpha 66 (ERα66). We identified a membrane-bound splice variant, ERα36, in TNBC cells that responds to estrogen (E2) and may contribute to bone osteolysis. We demonstrated that the MDA-MB-231 TNBC cell line, which expresses ERα36 similarly to MCF7 cells, is responsive to E2, forming osteolytic tumors in vivo. MDA-MB-231 cells activate osteoclasts in a paracrine manner. Conditioned media (CM) from MDA-MB-231 cells treated with bovine serum albumin-bound E2 (E2-BSA) increased activation of human osteoclast precursor cells; this was blocked by addition of anti-ERα36 antibody to the MDA-MB-231 cultures. Osteoclast activation and bone resorption genes were elevated in RAW 264.7 murine macrophages following treatment with E2-BSA-stimulated MDA-MB-231 CM. E2 and E2-BSA increased phospholipase C (PLC) and protein kinase C (PKC) activity in MDA-MB-231 cells. To examine the role of ERα36 signaling in bone osteolysis in TNBC, we used our bone-cancer interface mouse model in female athymic homozygous Foxn1nu mice. Mice with MDA-MB-231 tumors and treated with tamoxifen (TAM), E2, or TAM/E2 exhibited increased osteolysis, cortical bone breakdown, pathologic fracture, and tumor volume; the combined E2/TAM group also had reduced bone volume. These results suggest that E2 increased osteolytic lesions in TNBC through a membrane-mediated PLC/PKC pathway involving ERα36, which was enhanced by TAM, demonstrating the role of ERα36 and its membrane-associated signaling pathway in bone tumors. This work suggests that ERα36 may be a potential therapeutic target in patients with TNBC.
Collapse
Affiliation(s)
- D Joshua Cohen
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Cydney D Dennis
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Jingyao Deng
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Barbara D Boyan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, United States
- Department of Periodontics, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229United States
| |
Collapse
|
7
|
Chen Z, Encarnacion AM, Rajan RPS, Yao H, Lee S, Kim E, Lee TH. Discovery of a novel homoisoflavonoid derivative 5g for anti-osteoclastic bone loss via targeting FGFR1. Eur J Med Chem 2024; 270:116335. [PMID: 38555854 DOI: 10.1016/j.ejmech.2024.116335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 04/02/2024]
Abstract
Several flavonoids have been shown to exert anti-osteoporosis activity. However, the structure-activity relationship and the mechanism of anti-osteoporosis activity of flavonoids remain unknown. In this study, we prepared a series of novel homoisoflavonoid (HIF) derivatives to evaluate their inhibitory effects on osteoclastogenesis using TRAP-activity in vitro assay. Then, the preliminary structure-activity relationship was studied. Among the evaluated novel flavonoids, derivative 5g exerted the most inhibitory bioactivity on primary osteoclast differentiation without interfering with osteogenesis. It was hence selected for further in vitro, in vivo and mechanism of action investigation. Results show that 5g likely directly binds to the fibroblast growth factor receptor 1 (FGFR1), decreasing the activation of ERK1/2 and IκBα/NF-κB signaling pathways, which in turn blocks osteoclastogenesis in vitro and osteoclastic bone loss in vivo. Our study shows that homoisoflavonoid (HIF) derivatives 5g can serve as a potential novel candidate for treating osteoporosis via inhibition of FGFR1.
Collapse
Affiliation(s)
- Zhihao Chen
- Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Alessandra Marie Encarnacion
- Department of Interdisciplinary Program of Biomedical Engineering, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | | | - Hongyuan Yao
- Department of Interdisciplinary Program of Biomedical Engineering, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Eunae Kim
- Department of Pharmacy, College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea; Host-directed Antiviral Research Center, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Tae-Hoon Lee
- Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
8
|
Adjei-Sowah E, Chandrasiri I, Xiao B, Liu Y, Ackerman JE, Soto C, Nichols AEC, Nolan K, Benoit DSW, Loiselle AE. Development of a Nanoparticle-Based Tendon-Targeting Drug Delivery System to Pharmacologically Modulate Tendon Healing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569204. [PMID: 38076889 PMCID: PMC10705411 DOI: 10.1101/2023.11.29.569204] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Tendon regeneration following acute injury is marred by a fibrotic healing response that prevents complete functional recovery. Despite the high frequency of tendon injuries and the poor outcomes, including functional deficits and elevated risk of re-injury, there are currently no pharmacological therapies in clinical use to enhance the healing process. Several promising pharmacotherapies have been identified; however, systemic treatments lack tendon specificity, resulting in poor tendon biodistribution and perhaps explaining the largely limited beneficial effects of these treatments on the tendon healing process. To address this major unmet need, we leveraged our existing spatial transcriptomics dataset of the tendon healing process to identify an area of the healing tendon that is enriched for expression of Acp5. Acp5 encodes tartrate-resistant acid phosphatase (TRAP), and we demonstrate robust TRAP activity in the healing tendon. This unexpected finding allowed us to refine and apply our existing TRAP binding peptide (TBP) functionalized nanoparticle (NP) drug delivery system (DDS) to facilitate improved delivery of systemic treatments to the healing tendon. To demonstrate the translational potential of this drug delivery system, we delivered the S100a4 inhibitor, Niclosamide to the healing tendon. We have previously shown that genetic knockdown of S100a4 enhances tendon healing. While systemic delivery of Niclosamide did not affect the healing process, relative to controls, TBP-NP delivery of Niclosamide enhanced both functional and mechanical outcome measures. Collectively, these data identify a novel tendon-targeting drug delivery system and demonstrate the translational potential of this approach to enhance the tendon healing process.
Collapse
|
9
|
Lee S, Kim JH, Kim M, Hong S, Park H, Kim EJ, Kim EY, Lee C, Sohn Y, Jung HS. Exploring the Anti-Osteoporotic Potential of Daucosterol: Impact on Osteoclast and Osteoblast Activities. Int J Mol Sci 2023; 24:16465. [PMID: 38003654 PMCID: PMC10671633 DOI: 10.3390/ijms242216465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Osteoporosis is a debilitating condition characterized by reduced bone mass and density, leading to compromised structural integrity of the bones. While conventional treatments, such as bisphosphonates and selective estrogen receptor modulators (SERMs), have been employed to mitigate bone loss, their effectiveness is often compromised by a spectrum of adverse side effects, ranging from gastrointestinal discomfort and musculoskeletal pain to more severe concerns like atypical fractures and hormonal imbalances. Daucosterol (DC), a natural compound derived from various plant sources, has recently garnered considerable attention in the field of pharmacology. In this study, we investigated the anti-osteoporosis potential of DC by characterizing its role in osteoclasts, osteoblasts, and lipopolysaccharide (LPS)-induced osteoporosis. The inhibitory effect of DC on osteoclast differentiation was determined by tartrate-resistant acid phosphatase (TRAP) staining, F-actin ring formation by fluorescent staining, and bone resorption by pit formation assay. In addition, the calcification nodule deposition effect of osteoblasts was determined by Alizarin red S staining. The effective mechanisms of both cells were verified by Western blot and reverse transcription polymerase chain reaction (RT-PCR). To confirm the effect of DC in vivo, DC was administered to a model of osteoporosis by intraperitoneal administration of LPS. The anti-osteoporosis effect was then characterized by micro-CT and serum analysis. The results showed that DC effectively inhibited osteoclast differentiation at an early stage, promoted osteoblast activity, and inhibited LPS-induced bone density loss. The results of this study suggest that DC can treat osteoporosis through osteoclast and osteoblast regulation, and therefore may be considered as a new therapeutic alternative for osteoporosis patients in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Hyuk Sang Jung
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul 02-447, Republic of Korea; (S.L.); (J.-H.K.); (M.K.); (S.H.); (H.P.); (E.J.K.); (E.-Y.K.); (C.L.); (Y.S.)
| |
Collapse
|
10
|
Joshi H, Tuli HS, Ranjan A, Chauhan A, Haque S, Ramniwas S, Bhatia GK, Kandari D. The Pharmacological Implications of Flavopiridol: An Updated Overview. Molecules 2023; 28:7530. [PMID: 38005250 PMCID: PMC10673037 DOI: 10.3390/molecules28227530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Flavopiridol is a flavone synthesized from the natural product rohitukine, which is derived from an Indian medicinal plant, namely Dysoxylum binectariferum Hiern. A deeper understanding of the biological mechanisms by which such molecules act may allow scientists to develop effective therapeutic strategies against a variety of life-threatening diseases, such as cancer, viruses, fungal infections, parasites, and neurodegenerative diseases. Mechanistic insight of flavopiridol reveals its potential for kinase inhibitory activity of CDKs (cyclin-dependent kinases) and other kinases, leading to the inhibition of various processes, including cell cycle progression, apoptosis, tumor proliferation, angiogenesis, tumor metastasis, and the inflammation process. The synthetic derivatives of flavopiridol have overcome a few demerits of its parent compound. Moreover, these derivatives have much improved CDK-inhibitory activity and therapeutic abilities for treating severe human diseases. It appears that flavopiridol has potential as a candidate for the formulation of an integrated strategy to combat and alleviate human diseases. This review article aims to unravel the potential therapeutic effectiveness of flavopiridol and its possible mechanism of action.
Collapse
Affiliation(s)
- Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India;
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133207, India;
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, Rostov-on-Don 344090, Russia;
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Sector 125, Noida 201301, India;
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia;
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 11022801, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 13306, United Arab Emirates
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali 140413, India;
| | - Gurpreet Kaur Bhatia
- Department of Physics, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India;
| | - Divya Kandari
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India;
| |
Collapse
|
11
|
Anwar A, Sapra L, Gupta N, Ojha RP, Verma B, Srivastava RK. Fine-tuning osteoclastogenesis: An insight into the cellular and molecular regulation of osteoclastogenesis. J Cell Physiol 2023. [PMID: 37183350 DOI: 10.1002/jcp.31036] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/16/2023]
Abstract
Osteoclasts, the bone-resorbing cells, are essential for the bone remodeling process and are involved in the pathophysiology of several bone-related diseases. The extensive corpus of in vitro research and crucial mouse model studies in the 1990s demonstrated the key roles of monocyte/macrophage colony-stimulating factor, receptor activator of nuclear factor kappa B ligand (RANKL) and integrin αvβ3 in osteoclast biology. Our knowledge of the molecular mechanisms by which these variables control osteoclast differentiation and function has significantly advanced in the first decade of this century. Recent developments have revealed a number of novel insights into the fundamental mechanisms governing the differentiation and functional activity of osteoclasts; however, these mechanisms have not yet been adequately documented. Thus, in the present review, we discuss various regulatory factors including local and hormonal factors, innate as well as adaptive immune cells, noncoding RNAs (ncRNAs), etc., in the molecular regulation of the intricate and tightly regulated process of osteoclastogenesis. ncRNAs have a critical role as epigenetic controllers of osteoclast physiologic activities, including differentiation and bone resorption. The primary ncRNAs, which include micro-RNAs, circular RNAs, and long noncoding RNAs, form a complex network that affects gene transcription activities associated with osteoclast biological activity. Greater knowledge of the involvement of ncRNAs in osteoclast biological activities will contribute to the treatment and management of several skeletal diseases such as osteoporosis, osteoarthritis, rheumatoid arthritis, etc. Moreover, we further outline potential therapies targeting these regulatory pathways of osteoclastogenesis in distinct bone pathologies.
Collapse
Affiliation(s)
- Aleena Anwar
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Leena Sapra
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Navita Gupta
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Chandigarh, Punjab, India
| | - Rudra P Ojha
- Department of Zoology, Nehru Gram Bharati University, Prayagraj, Uttar Pradesh, India
| | - Bhupendra Verma
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Rupesh K Srivastava
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
12
|
Chen ZH, Wu JJ, Guo DY, Li YY, Chen MN, Zhang ZY, Yuan ZD, Zhang KW, Chen WW, Tian F, Ye JX, Li X, Yuan FL. Physiological functions of podosomes: From structure and function to therapy implications in osteoclast biology of bone resorption. Ageing Res Rev 2023; 85:101842. [PMID: 36621647 DOI: 10.1016/j.arr.2023.101842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/09/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
With increasing age, bone tissue undergoes significant alterations in composition, architecture, and metabolic functions, probably causing senile osteoporosis. Osteoporosis possess the vast majority of bone disease and associates with a reduction in bone mass and increased fracture risk. Bone loss is on account of the disorder in osteoblast-induced bone formation and osteoclast-induced bone resorption. As a unique bone resorptive cell type, mature bone-resorbing osteoclasts exhibit dynamic actin-based cytoskeletal structures called podosomes that participate in cell-matrix adhesions specialized in the degradation of mineralized bone matrix. Podosomes share many of the same molecular constitutions as focal adhesions, but they have a unique structural organization, with a central core abundant in F-actin and encircled by scaffolding proteins, kinases and integrins. Here, we conclude recent advancements in our knowledge of the architecture and the functions of podosomes. We also discuss the regulatory pathways in osteoclast podosomes, providing a reference for future research on the podosomes of osteoclasts and considering podosomes as a therapeutic target for inhibiting bone resorption.
Collapse
Affiliation(s)
- Zhong-Hua Chen
- Affiliated Hospital 3 of Nantong University, Nantong University, Jiangsu, China
| | - Jun-Jie Wu
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Dan-Yang Guo
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Yue-Yue Li
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Meng-Nan Chen
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Zhen-Yu Zhang
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Zheng-Dong Yuan
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Kai-Wen Zhang
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wei-Wei Chen
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Fan Tian
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Jun-Xing Ye
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Xia Li
- Affiliated Hospital 3 of Nantong University, Nantong University, Jiangsu, China; Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China.
| | - Feng-Lai Yuan
- Affiliated Hospital 3 of Nantong University, Nantong University, Jiangsu, China; Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China.
| |
Collapse
|
13
|
Lim S, Ihn HJ, Kim JA, Bae JS, Kim JE, Bae YC, Shin HI, Kim TH, Park EK. Suppressive effects of (-)-tubaic acid on RANKL-induced osteoclast differentiation and bone resorption. Anim Cells Syst (Seoul) 2023; 27:1-9. [PMID: 36704446 PMCID: PMC9873279 DOI: 10.1080/19768354.2023.2166107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Regulation of osteoclastogenesis and bone-resorbing activity can be an efficacious strategy for treating bone loss diseases because excessive osteoclastic bone resorption leads to the development of such diseases. Here, we investigated the role of (-)-tubaic acid, a thermal degradation product of rotenone, in osteoclast formation and function in an attempt to identify alternative natural compounds. (-)-Tubaic acid significantly inhibited receptor activator of nuclear factor-κB ligand (RANKL)-mediated osteoclast differentiation at both the early and late stages, suggesting that (-)-tubaic acid affects the commitment and differentiation of osteoclast progenitors as well as the cell-cell fusion of mononuclear osteoclasts. (-)-Tubaic acid attenuated the activation of extracellular signal-regulated kinase (ERK) and expression of nuclear factor of activated T-cells cytoplasmic 1 (NFATc1) and its target genes in response to RANKL. Furthermore, a pit-formation assay revealed that (-)-tubaic acid significantly impaired the bone-resorbing activity of osteoclasts. Our results demonstrated that (-)-tubaic acid exhibits anti-osteoclastogenic and anti-resorptive effects, indicating its therapeutic potential in the management of osteoclast-related bone diseases.
Collapse
Affiliation(s)
- Soomin Lim
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu, Republic of Korea
| | - Hye Jung Ihn
- Cell and Matrix Research Institute (CMRI), Kyungpook National University, Daegu, Republic of Korea
| | - Ju Ang Kim
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jung-Eun Kim
- Department of Molecular Medicine, CMRI, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Yong Chul Bae
- Department of Oral Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Hong-In Shin
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu, Republic of Korea
| | - Tae Hoon Kim
- Department of Food Science and Biotechnology, Daegu University, Gyeongsan, Republic of Korea
| | - Eui Kyun Park
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu, Republic of Korea, Eui Kyun Park Department of Oral Pathology and Regenerative Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu, Republic of Korea; Tae Hoon Kim Department of Food Science and Biotechnology, Daegu University, Gyeongsan, Republic of Korea
| |
Collapse
|
14
|
Mumtaz N, Koedam M, van Leeuwen JPTM, Koopmans MPG, van der Eerden BCJ, Rockx B. Zika virus infects human osteoclasts and blocks differentiation and bone resorption. Emerg Microbes Infect 2022; 11:1621-1634. [PMID: 35670284 PMCID: PMC9225750 DOI: 10.1080/22221751.2022.2086069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bone-related complications are commonly reported following arbovirus infection. These arboviruses are known to disturb bone-remodeling and induce inflammatory bone loss via increased activity of bone resorbing osteoclasts (OCs). We previously showed that Zika virus (ZIKV) could disturb the function of bone forming osteoblasts, but the susceptibility of OCs to ZIKV infection is not known. Here, we investigated the effect of ZIKV infection on osteoclastogenesis and report that infection of pre- and early OCs with ZIKV significantly reduced the osteoclast formation and bone resorption. Interestingly, infection of pre-OCs with a low dose ZIKV infection in the presence of flavivirus cross-reacting antibodies recapitulated the phenotype observed with a high viral dose, suggesting a role for antibody-dependent enhancement in ZIKV-associated bone pathology. In conclusion, we have characterized a primary in vitro model to study the role of osteoclastogenesis in ZIKV pathogenesis, which will help to identify possible new targets for developing therapeutic and preventive measures.
Collapse
Affiliation(s)
- Noreen Mumtaz
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Marijke Koedam
- Department of Internal Medicine, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | | | - Marion P G Koopmans
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Bram C J van der Eerden
- Department of Internal Medicine, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Barry Rockx
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, the Netherlands
| |
Collapse
|
15
|
Tosun B, Wolff LI, Houben A, Nutt S, Hartmann C. Osteoclasts and Macrophages-Their Role in Bone Marrow Cavity Formation During Mouse Embryonic Development. J Bone Miner Res 2022; 37:1761-1774. [PMID: 35689447 DOI: 10.1002/jbmr.4629] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/19/2022] [Accepted: 06/04/2022] [Indexed: 11/09/2022]
Abstract
The formation of the bone marrow cavity is a prerequisite for endochondral ossification. In reviews and textbooks, it is occasionally reported that osteoclasts are essential for bone marrow cavity formation removing hypertrophic chondrocytes. Mice lacking osteoclasts or having functionally defective osteoclasts have osteopetrotic bones, yet they still form a bone marrow cavity. Here, we investigated the role of osteoclasts and macrophages in bone marrow cavity formation during embryogenesis. Macrophages can assist osteoclasts in matrix removal by phagocytosing resorption byproducts. Rank-deficient mice, lacking osteoclasts, and Pu.1-deficient mice, lacking monocytes, macrophages, and osteoclasts, displayed a delay in bone marrow cavity formation and a lengthening of the zone of hypertrophic chondrocytes. F4/80-positive monocyte/macrophage numbers increased by about fourfold in the bone marrow cavity of E18.5 Rank-deficient mice. Based on lineage-tracing experiments, the majority of the excess F4/80 cells were derived from definitive hematopoietic precursors of the fetal liver. In long bones of both Rank-/- and Pu.1-/- specimens, Mmp9-positive cells were still present. In addition to monocytes, macrophages, and osteoclasts, Ctsb-positive septoclasts were lost in Pu.1-/- specimens. The mineralization pattern was altered in Rank-/- and Pu.1-/- specimens, revealing a significant rise in transverse-oriented mineralized structures. Taken together, our findings imply that early on during bone marrow cavity formation, osteoclasts facilitate the entry of blood vessels and later the turnover of hypertrophic chondrocytes, whereas macrophages appear to play no major role. Furthermore, the absence of septoclasts in Pu.1-/- specimens suggests that septoclasts are either derived from Pu.1-dependent precursors or require PU.1 activity for their differentiation. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Benjamin Tosun
- Institute of Musculoskeletal Medicine, Department of Bone and Skeletal Research, Medical Faculty of the Westphalian Wilhelms University, Münster, Germany
| | - Lena Ingeborg Wolff
- Institute of Musculoskeletal Medicine, Department of Bone and Skeletal Research, Medical Faculty of the Westphalian Wilhelms University, Münster, Germany
| | - Astrid Houben
- Institute of Musculoskeletal Medicine, Department of Bone and Skeletal Research, Medical Faculty of the Westphalian Wilhelms University, Münster, Germany
| | - Stephen Nutt
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Christine Hartmann
- Institute of Musculoskeletal Medicine, Department of Bone and Skeletal Research, Medical Faculty of the Westphalian Wilhelms University, Münster, Germany
| |
Collapse
|
16
|
Russo S, Scotto di Carlo F, Gianfrancesco F. The Osteoclast Traces the Route to Bone Tumors and Metastases. Front Cell Dev Biol 2022; 10:886305. [PMID: 35646939 PMCID: PMC9139841 DOI: 10.3389/fcell.2022.886305] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/24/2022] [Indexed: 12/31/2022] Open
Abstract
Osteoclasts are highly specialized cells of the bone, with a unique apparatus responsible for resorption in the process of bone remodeling. They are derived from differentiation and fusion of hematopoietic precursors, committed to form mature osteoclasts in response to finely regulated stimuli produced by bone marrow-derived cells belonging to the stromal lineage. Despite a highly specific function confined to bone degradation, emerging evidence supports their relevant implication in bone tumors and metastases. In this review, we summarize the physiological role of osteoclasts and then focus our attention on their involvement in skeletal tumors, both primary and metastatic. We highlight how osteoclast-mediated bone erosion confers increased aggressiveness to primary tumors, even those with benign features. We also outline how breast and pancreas cancer cells promote osteoclastogenesis to fuel their metastatic process to the bone. Furthermore, we emphasize the role of osteoclasts in reactivating dormant cancer cells within the bone marrow niches for manifestation of overt metastases, even decades after homing of latent disseminated cells. Finally, we point out the importance of counteracting tumor progression and dissemination through pharmacological treatments based on a better understanding of molecular mechanisms underlying osteoclast lytic activity and their recruitment from cancer cells.
Collapse
Affiliation(s)
| | | | - Fernando Gianfrancesco
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, National Research Council of Italy, Naples, Italy
| |
Collapse
|
17
|
Connection between Mesenchymal Stem Cells Therapy and Osteoclasts in Osteoarthritis. Int J Mol Sci 2022; 23:ijms23094693. [PMID: 35563083 PMCID: PMC9102843 DOI: 10.3390/ijms23094693] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022] Open
Abstract
The use of mesenchymal stem cells constitutes a promising therapeutic approach, as it has shown beneficial effects in different pathologies. Numerous in vitro, pre-clinical, and, to a lesser extent, clinical trials have been published for osteoarthritis. Osteoarthritis is a type of arthritis that affects diarthritic joints in which the most common and studied effect is cartilage degradation. Nowadays, it is known that osteoarthritis is a disease with a very powerful inflammatory component that affects the subchondral bone and the rest of the tissues that make up the joint. This inflammatory component may induce the differentiation of osteoclasts, the bone-resorbing cells. Subchondral bone degradation has been suggested as a key process in the pathogenesis of osteoarthritis. However, very few published studies directly focus on the activity of mesenchymal stem cells on osteoclasts, contrary to what happens with other cell types of the joint, such as chondrocytes, synoviocytes, and osteoblasts. In this review, we try to gather the published bibliography in relation to the effects of mesenchymal stem cells on osteoclastogenesis. Although we find promising results, we point out the need for further studies that can support mesenchymal stem cells as a therapeutic tool for osteoclasts and their consequences on the osteoarthritic joint.
Collapse
|
18
|
Xue Y, Zhao C, Liu T. Interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) accelerates osteoclast formation by regulating signal transducer and activator of transcription 3 (STAT3) signalling. Bioengineered 2022; 13:2285-2295. [PMID: 35034537 PMCID: PMC8973581 DOI: 10.1080/21655979.2021.2024333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Osteoclasts (OCs), the main cause of bone resorption irregularities, may ultimately cause various bone diseases, including osteoarthritis. The objective of this study was to investigate the effect of interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) on OC formation induced by receptor activator of nuclear factor κB (NF-κB) ligand (RANKL) and to further explore its underlying mechanism. IFIT1 expression in Raw264.7 cells treated with macrophage colony-stimulating factor (M-CSF) and RANKL was determined by qRT-PCR. OC formation was detected using tartrate-resistant acid phosphatase (TRAP) staining. The effect of IFIT1 on STAT3 activation was detected using Western blotting. Additionally, Western blotting was used to measure the change in the expression of OC-specific proteins. IFIT1 was highly expressed in Raw264.7 cells after stimulation with M-CSF and RANKL. IFIT1 overexpression accelerated the formation of OCs, as evidenced by the increased number and size of multinuclear cells, and the upregulation of OC-specific proteins, and activated the STAT3 pathway, by inducing phosphorylation of JAK1 and STAT3. However, silencing of IFIT1 inhibited the formation of OCs and a STAT3 inhibitor Stattic weakened the effects of IFIT1. In conclusion, IFIT1 accelerates the formation of OCs, which is caused by RANKL by STAT3 pathway regulation. This study provides a potential basis for further research and for development of drugs for treating bone resorption-related diseases.
Collapse
Affiliation(s)
- Yuanliang Xue
- Department of Orthopedics, Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Chuanliang Zhao
- Department of Radiology, Laoling People's Hospital, Dezhou, Shandong, China
| | - Tao Liu
- Department of Pediatric Surgery, Dezhou People's Hospital of Shandong, Dezhou, Shandong, China
| |
Collapse
|
19
|
Yu J, Schilling L, Eller T, Canalis E. Hairy and enhancer of split 1 is a primary effector of NOTCH2 signaling and induces osteoclast differentiation and function. J Biol Chem 2021; 297:101376. [PMID: 34742737 PMCID: PMC8633688 DOI: 10.1016/j.jbc.2021.101376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Notch2tm1.1Ecan mice, which harbor a mutation replicating that found in Hajdu–Cheney syndrome, exhibit marked osteopenia because of increased osteoclast number and bone resorption. Hairy and enhancer of split 1 (HES1) is a Notch target gene and a transcriptional modulator that determines osteoclast cell fate decisions. Transcript levels of Hes1 increase in Notch2tm1.1Ecan bone marrow–derived macrophages (BMMs) as they mature into osteoclasts, suggesting a role in osteoclastogenesis. To determine whether HES1 is responsible for the phenotype of Notch2tm1.1Ecan mice and the skeletal manifestations of Hajdu–Cheney syndrome, Hes1 was inactivated in Ctsk-expressing cells from Notch2tm1.1Ecan mice. Ctsk encodes the protease cathepsin K, which is expressed preferentially by osteoclasts. We found that the osteopenia of Notch2tm1.1Ecan mice was ameliorated, and the enhanced osteoclastogenesis was reversed in the context of the Hes1 inactivation. Microcomputed tomography revealed that the downregulation of Hes1 in Ctsk-expressing cells led to increased bone volume/total volume in female mice. In addition, cultures of BMMs from CtskCre/WT;Hes1Δ/Δ mice displayed a decrease in osteoclast number and size and decreased bone-resorbing capacity. Moreover, activation of HES1 in Ctsk-expressing cells led to osteopenia and enhanced osteoclast number, size, and bone resorptive capacity in BMM cultures. Osteoclast phenotypes and RNA-Seq of cells in which HES1 was activated revealed that HES1 modulates cell–cell fusion and bone-resorbing capacity by supporting sealing zone formation. In conclusion, we demonstrate that HES1 is mechanistically relevant to the skeletal manifestation of Notch2tm1.1Ecan mice and is a novel determinant of osteoclast differentiation and function.
Collapse
Affiliation(s)
- Jungeun Yu
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA; UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, USA
| | - Lauren Schilling
- UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, USA
| | - Tabitha Eller
- UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, USA
| | - Ernesto Canalis
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA; UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, USA; Department of Medicine, UConn Health, Farmington, Connecticut, USA.
| |
Collapse
|
20
|
Hu Y, Zhou W, Zhu C, Zhou Y, Guo Q, Huang X, Yang B, Ren B, Cheng L. The Synergistic Effect of Nicotine and Staphylococcus aureus on Peri-Implant Infections. Front Bioeng Biotechnol 2021; 9:658380. [PMID: 34589469 PMCID: PMC8473630 DOI: 10.3389/fbioe.2021.658380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/30/2021] [Indexed: 12/02/2022] Open
Abstract
Smoking is considered a key risk factor for implant survival; however, how it interacts with the pathogens in peri-implant infections is not clear. Here, we identified that nicotine, the key component of cigarette smoking, can interact with Staphylococcus aureus and synergistically induce peri-implant infections in a rat osteolysis model. The nicotine–S. aureus combination group increased the gross bone pathology, osteolysis, periosteal reactions, and bone resorption compared to the nicotine or S. aureus single treated group (p < 0.05). Nicotine did not promote the proliferation of S. aureus both in vitro and in vivo, but it can significantly upregulate the expression of staphylococcal protein A (SpA), a key virulence factor of S. aureus. The nicotine–S. aureus combination also synergistically activated the expression of RANKL (receptor activator of nuclear factor-kappa B ligand, p < 0.05) to promote the development of peri-implant infections. The synergistic effects between nicotine and S. aureus infection can be a new target to reduce the peri-implant infections.
Collapse
Affiliation(s)
- Yao Hu
- State Key Laboratory of Oral Diseases and West China School of Stomatology and National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Wen Zhou
- State Key Laboratory of Oral Diseases and West China School of Stomatology and National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Laboratory of Fujian College and University, School of Stomatology, Fujian Medical University, Fuzhou, China
| | - Chengguang Zhu
- State Key Laboratory of Oral Diseases and West China School of Stomatology and National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Yujie Zhou
- State Key Laboratory of Oral Diseases and West China School of Stomatology and National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Qiang Guo
- State Key Laboratory of Oral Diseases and West China School of Stomatology and National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Xiaoyu Huang
- State Key Laboratory of Oral Diseases and West China School of Stomatology and National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Bina Yang
- State Key Laboratory of Oral Diseases and West China School of Stomatology and National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases and West China School of Stomatology and National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases and West China School of Stomatology and National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Huang L, Wu H, Wu Y, Song F, Zhang L, Li Z, Sun H, Huang C. Pcsk9 Knockout Aggravated Experimental Apical Periodontitis via LDLR. J Dent Res 2021; 101:83-92. [PMID: 34036816 DOI: 10.1177/00220345211015128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Apical periodontitis (AP), an inflammatory lesion around the apex of tooth roots, is mostly caused by dental pulp infection. Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a vital role in regulating cholesterol homeostasis by targeting low-density lipoprotein receptor (LDLR) and participates in bacterium-induced chronic periodontitis. However, the roles of PCSK9 in AP are unknown. Here, we investigated its role in AP by using Pcsk9-/- mice. Micro-computed tomography scanning and histological staining revealed that the periapical bone loss of Pcsk9-/- mice was greater than that of wild-type (WT) mice, and increased expression of inflammation-related factors tumor necrosis factor α (TNF-α) and interleukin (IL)-6 was also observed. Immunofluorescence staining and quantitative real-time polymerase chain reaction showed PCSK9 expression in bone marrow macrophages (BMMs) was increased after treatment with lipopolysaccharide (LPS). This finding was consistent with the in vivo results that the expression level of PCSK9 in exposed WT mice increased compared with that in unexposed WT mice. After LPS challenge, the expression levels of TNF-α, IL-1β, and IL-6 in BMMs were increased, and Pcsk9 knockout aggravated the expression of these inflammatory factors. The number of osteoclasts positive for tartrate-resistant acid phosphatase staining around the apical lesion in Pcsk9-/- mice was higher than that in WT mice. Then BMMs underwent the osteoclast differentiation. Pcsk9 knockout BMMs induced increased and larger osteoclasts. While this effect of Pcsk9 knockout was abolished by the addition of Ldlr small interfering RNA, revealing that Pcsk9 knockout increased osteoclastogenesis was dependent on the LDLR. Immunohistochemistry staining showed increased expression level of LDLR in exposed Pcsk9-/- periapical areas. In vitro experiments showed that LPS promoted the expression level of LDLR in Pcsk9-/- BMMs and increased osteoclast formation ability, indicating that LPS promoted the elevation of osteoclasteogenesis caused by the Pcsk9 knockout. In conclusion, Pcsk9 deficiency aggravated the inflammatory response and promoted the osteoclastogenesis in an LDLR-dependent manner in AP experimental mice.
Collapse
Affiliation(s)
- L Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - H Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Y Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - F Song
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - L Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Z Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - H Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - C Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
22
|
Kim H, Lee K, Kim JM, Kim MY, Kim JR, Lee HW, Chung YW, Shin HI, Kim T, Park ES, Rho J, Lee SH, Kim N, Lee SY, Choi Y, Jeong D. Selenoprotein W ensures physiological bone remodeling by preventing hyperactivity of osteoclasts. Nat Commun 2021; 12:2258. [PMID: 33859201 PMCID: PMC8050258 DOI: 10.1038/s41467-021-22565-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/18/2021] [Indexed: 11/09/2022] Open
Abstract
Selenoproteins containing selenium in the form of selenocysteine are critical for bone remodeling. However, their underlying mechanism of action is not fully understood. Herein, we report the identification of selenoprotein W (SELENOW) through large-scale mRNA profiling of receptor activator of nuclear factor (NF)-κΒ ligand (RANKL)-induced osteoclast differentiation, as a protein that is downregulated via RANKL/RANK/tumour necrosis factor receptor-associated factor 6/p38 signaling. RNA-sequencing analysis revealed that SELENOW regulates osteoclastogenic genes. SELENOW overexpression enhances osteoclastogenesis in vitro via nuclear translocation of NF-κB and nuclear factor of activated T-cells cytoplasmic 1 mediated by 14-3-3γ, whereas its deficiency suppresses osteoclast formation. SELENOW-deficient and SELENOW-overexpressing mice exhibit high bone mass phenotype and osteoporosis, respectively. Ectopic SELENOW expression stimulates cell-cell fusion critical for osteoclast maturation as well as bone resorption. Thus, RANKL-dependent repression of SELENOW regulates osteoclast differentiation and blocks osteoporosis caused by overactive osteoclasts. These findings demonstrate a biological link between selenium and bone metabolism. Selenoproteins containing selenium have a variety of physiological functions including redox homeostasis and thyroid hormone metabolism. Here, the authors show that RANKL-dependent repression of selenoprotein W regulates cell fusion during osteoclast differentiation and bone remodelling in mice.
Collapse
Affiliation(s)
- Hyunsoo Kim
- Department of Microbiology, Laboratory of Bone Metabolism and Control, Yeungnam University College of Medicine, Daegu, Korea.,Departments of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Kyunghee Lee
- Department of Microbiology, Laboratory of Bone Metabolism and Control, Yeungnam University College of Medicine, Daegu, Korea
| | - Jin Man Kim
- Department of Microbiology, Laboratory of Bone Metabolism and Control, Yeungnam University College of Medicine, Daegu, Korea
| | - Mi Yeong Kim
- Department of Microbiology, Laboratory of Bone Metabolism and Control, Yeungnam University College of Medicine, Daegu, Korea
| | - Jae-Ryong Kim
- Department of Biochemistry and Molecular Biology, Smart-aging Convergence Research Center, Yeungnam University College of Medicine, Daegu, Korea
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Youn Wook Chung
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hong-In Shin
- IHBR, Department of Oral Pathology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Taesoo Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Eui-Soon Park
- Department of Microbiology and BK21 Bio Brain Center, Chungnam National University, Daejeon, Korea
| | - Jaerang Rho
- Department of Microbiology and BK21 Bio Brain Center, Chungnam National University, Daejeon, Korea
| | - Seoung Hoon Lee
- Department of Oral Microbiology and Immunology, Wonkwang University School of Dentistry, Iksan, Korea
| | - Nacksung Kim
- National Research Laboratory for Regulation of Bone Metabolism and Disease, Chonnam National University Medical School, Gwangju, Korea
| | - Soo Young Lee
- Division of Life and Pharmaceutical Sciences, Department of Life Science, Center for Cell Signaling & Drug Discovery Research, College of Natural Sciences, Ewha Womans University, Seoul, Korea
| | - Yongwon Choi
- Departments of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Daewon Jeong
- Department of Microbiology, Laboratory of Bone Metabolism and Control, Yeungnam University College of Medicine, Daegu, Korea.
| |
Collapse
|
23
|
The Roles of FOXO1 in Periodontal Homeostasis and Disease. J Immunol Res 2021; 2021:5557095. [PMID: 33860060 PMCID: PMC8026307 DOI: 10.1155/2021/5557095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/07/2021] [Accepted: 03/13/2021] [Indexed: 02/05/2023] Open
Abstract
Periodontitis is an oral chronic inflammatory disease that is initiated by periodontal microbial communities and requires disruption of the homeostatic responses. The prevalence of periodontal disease increases with age; more than 70% of adults 65 years and older have periodontal disease. A pathogenic microbial community is required for initiating periodontal disease. Dysbiotic immune-inflammatory response and bone remodeling are characteristics of periodontitis. The transcription factor forkhead box protein O1 (FOXO1) is a key regulator of a number of cellular processes, including cell survival and differentiation, immune status, reactive oxygen species (ROS) scavenging, and apoptosis. Although accumulating evidence indicates that FOXO1 activity can be induced by periodontal pathogens, the roles of FOXO1 in periodontal homeostasis and disease have not been well documented. The present review summarizes how the FOXO1 signaling axis can regulate periodontal bacteria-epithelial interactions, immune-inflammatory response, bone remodeling, and wound healing.
Collapse
|
24
|
Zang L, Kagotani K, Nakayama H, Bhagat J, Fujimoto Y, Hayashi A, Sono R, Katsuzaki H, Nishimura N, Shimada Y. 10-Gingerol Suppresses Osteoclastogenesis in RAW264.7 Cells and Zebrafish Osteoporotic Scales. Front Cell Dev Biol 2021; 9:588093. [PMID: 33748100 PMCID: PMC7978033 DOI: 10.3389/fcell.2021.588093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
Osteoporosis is the most common aging-associated bone disease and is caused by hyperactivation of osteoclastic activity. We previously reported that the hexane extract of ginger rhizome [ginger hexane extract (GHE)] could suppress receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis in RAW264.7 cells. However, the anti-osteoclastic components in GHE have not yet been identified. In this study, we separated GHE into several fractions using silica gel column chromatography and evaluated their effects on osteoclastogenesis using a RAW264.7 cell osteoclast differentiation assay (in vitro) and the zebrafish scale model of osteoporosis (in vivo). We identified that the fractions containing 10-gingerol suppressed osteoclastogenesis in RAW264.7 cells detected by tartrate-resistant acid phosphatase (TRAP) staining. In zebrafish, GHE and 10-gingerol suppressed osteoclastogenesis in prednisolone-induced osteoporosis regenerated scales to promote normal regeneration. Gene expression analysis revealed that 10-gingerol suppressed osteoclast markers in RAW264.7 cells [osteoclast-associated immunoglobulin-like receptor, dendrocyte-expressed seven transmembrane protein, and matrix metallopeptidase-9 (Mmp9)] and zebrafish scales [osteoclast-specific cathepsin K (CTSK), mmp2, and mmp9]. Interestingly, nuclear factor of activated T-cells cytoplasmic 1, a master transcription regulator of osteoclast differentiation upstream of the osteoclastic activators, was downregulated in zebrafish scales but showed no alteration in RAW264.7 cells. In addition, 10-gingerol inhibited CTSK activity under cell-free conditions. This is the first study, to our knowledge, that has found that 10-gingerol in GHE could suppress osteoclastic activity in both in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Liqing Zang
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Japan
- Zebrafish Drug Screening Center, Mie University, Tsu, Japan
| | - Kazuhiro Kagotani
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Japan
- Tsuji Health & Beauty Science Laboratory, Mie University, Tsu, Japan
- Tsuji Oil Mills Co., Ltd., Matsusaka, Japan
| | - Hiroko Nakayama
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Japan
- Zebrafish Drug Screening Center, Mie University, Tsu, Japan
| | - Jacky Bhagat
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Japan
- Zebrafish Drug Screening Center, Mie University, Tsu, Japan
| | | | | | - Ryoji Sono
- Tsuji Oil Mills Co., Ltd., Matsusaka, Japan
| | - Hirotaka Katsuzaki
- Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Norihiro Nishimura
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Japan
- Zebrafish Drug Screening Center, Mie University, Tsu, Japan
| | - Yasuhito Shimada
- Zebrafish Drug Screening Center, Mie University, Tsu, Japan
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University, Tsu, Japan
- Department of Bioinformatics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan
| |
Collapse
|
25
|
Metabolic reprogramming of osteoclasts represents a therapeutic target during the treatment of osteoporosis. Sci Rep 2020; 10:21020. [PMID: 33273570 PMCID: PMC7713370 DOI: 10.1038/s41598-020-77892-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/17/2020] [Indexed: 11/08/2022] Open
Abstract
Osteoclasts are specialised bone resorbing cells that control both physiological and pathological bone turnover. Functional changes in the differentiation and activity of osteoclasts are accompanied by active metabolic reprogramming. However, the biological significance and the in vivo relevance of these events has remained unclear. Here we show that bone resorption of differentiated osteoclasts heavily relies on increased aerobic glycolysis and glycolysis-derived lactate production. While pharmacological inhibition of glycolysis did not affect osteoclast differentiation or viability, it efficiently blocked bone resorption in vitro and in vivo and consequently ameliorated ovariectomy-induced bone loss. Our experiments thus highlight the therapeutic potential of interfering with osteoclast-intrinsic metabolic pathways as possible strategy for the treatment of diseases characterized by accelerated bone loss.
Collapse
|
26
|
Kim SI, Kim YH, Kang BG, Kang MK, Lee EJ, Kim DY, Oh H, Oh SY, Na W, Lim SS, Kang YH. Linarin and its aglycone acacetin abrogate actin ring formation and focal contact to bone matrix of bone-resorbing osteoclasts through inhibition of αvβ3 integrin and core-linked CD44. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 79:153351. [PMID: 32987362 DOI: 10.1016/j.phymed.2020.153351] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 09/04/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Since enhanced bone resorption due to osteoclast differentiation and activation cause skeletal diseases, there is a growing need in therapeutics for combating bone-resorbing osteoclasts. Botanical antioxidants are being increasingly investigated for their health-promoting effects on bone. Edible Cirsium setidens contains various polyphenols of linarin, pectolinarin, and apigenin with antioxidant and hepatoprotective effects. PURPOSE This study aimed to determine whether linarin present in Cirsium setidens water extracts (CSE) and its aglycone acacetin inhibited osteoclastogenesis of RANKL-exposed RAW 264.7 murine macrophages for 5 days. METHODS This study assessed the osteoprotective effects of CSE, linarin and acacetin on RANKL-induced differentiation and activation of osteoclasts by using MTT assay, TRAP staining, Western blot analysis, bone resorption assay actin ring staining, adhesion assay and immunocytochemical assay. This study explored the underlying mechanisms of their osteoprotection, and identified major components present in CSE by HPLC analysis. RESULTS Linarin and pectolinarin were identified as major components of CSE. Nontoxic linarin and acacetin as well as CSE, but not pectolinarin attenuated the RANKL-induced macrophage differentiation into multinucleated osteoclasts, and curtailed osteoclastic bone resorption through reducing lacunar acidification and bone matrix degradation in the osteoclast-bone interface. Linarin and acacetin in CSE reduced the transmigration and focal contact of osteoclasts to bone matrix-mimicking RGD peptide. Such reduction was accomplished by inhibiting the induction of integrins, integrin-associated proteins of paxillin and gelsolin, cdc42 and CD44 involved in the formation of actin rings. The inhibition of integrin-mediated actin ring formation by linarin and acacetin entailed the disruption of TRAF6-c-Src-PI3K signaling of bone-resorbing osteoclasts. The functional inhibition of c-Src was involved in the loss of F-actin-enriched podosome core protein cortactin-mediated actin assembly due to linarin and acacetin. CONCLUSION These observations demonstrate that CSE, linarin and acacetin were effective in retarding osteoclast function of focal adhesion to bone matrix and active bone resorption via inhibition of diffuse cloud-associated αvβ3 integrin and core-linked CD44.
Collapse
Affiliation(s)
- Soo-Il Kim
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Yun-Ho Kim
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Beom Goo Kang
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Min-Kyung Kang
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Eun-Jung Lee
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Dong Yeon Kim
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Hyeongjoo Oh
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Su Yeon Oh
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Woojin Na
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Soon Sung Lim
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Young-Hee Kang
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea.
| |
Collapse
|
27
|
N-[2-(4-Acetyl-1-Piperazinyl)Phenyl]-2-(3-Methylphenoxy)Acetamide (NAPMA) Inhibits Osteoclast Differentiation and Protects against Ovariectomy-Induced Osteoporosis. Molecules 2020; 25:molecules25204855. [PMID: 33096734 PMCID: PMC7587973 DOI: 10.3390/molecules25204855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 12/29/2022] Open
Abstract
Osteoclasts are large, multinucleated cells responsible for bone resorption and are induced in response to the regulatory activity of receptor activator of nuclear factor-kappa B ligand (RANKL). Excessive osteoclast activity causes pathological bone loss and destruction. Many studies have investigated molecules that specifically inhibit osteoclast activity by blocking RANKL signaling or bone resorption. In recent years, we screened compounds from commercial libraries to identify molecules capable of inhibiting RANKL-induced osteoclast differentiation. Consequently, we reported some compounds that are effective at attenuating osteoclast activity. In this study, we found that N-[2-(4-acetyl-1-piperazinyl)phenyl]-2-(3-methylphenoxy)acetamide (NAPMA) significantly inhibited the formation of multinucleated tartrate-resistant acid phosphatase (TRAP)-positive cells from bone marrow-derived macrophages in a dose-dependent manner, without cytotoxic effects. NAPMA downregulated the expression of osteoclast-specific markers, such as c-Fos, NFATc1, DC-STAMP, cathepsin K, and MMP-9, at the transcript and protein levels. Accordingly, bone resorption and actin ring formation were decreased in response to NAPMA treatment. Furthermore, we demonstrated the protective effect of NAPMA against ovariectomy-induced bone loss using micro-CT and histological analysis. Collectively, the results showed that NAPMA inhibited osteoclast differentiation and attenuated bone resorption. It is thus a potential drug candidate for the treatment of osteoporosis and other bone diseases associated with excessive bone resorption.
Collapse
|
28
|
Wang J, Wang B, Lv X, Wang L. NIK inhibitor impairs chronic periodontitis via suppressing non-canonical NF-κB and osteoclastogenesis. Pathog Dis 2020; 78:ftaa045. [PMID: 32860691 DOI: 10.1093/femspd/ftaa045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022] Open
Abstract
Periodontitis is an inflammatory disease that causes damages to periodontium and alveolar bone. Overactivation and formation of osteoclasts can cause bone destruction, which contributes to periodontitis development. Receptor activator of nuclear factor κB ligand (RANKL)-mediated NF-κB signaling plays an essential role in osteoclasts differentiation. We aimed to study the effects of NIK-SMI1, an NF-κB-inducing kinase (NIK) inhibitor, on the osteoclastogenesis in vitro and periodontitis progression in vivo. A ligature-induced mice model of periodontitis was incorporated to test the potential therapeutic effect of NIK-SMI1 on periodontitis. The target protein and mRNA expression levels were determined by Western blot assay and real-time PCR assay, respectively. We found that the administration of NIK-SMI1 strongly inhibited the RANKL-stimulated non-canonical NF-κB signaling as demonstrated by decreased nuclear p52 expression and activity. Blocking NIK activity also resulted in reduced osteoclasts specific genes expression and enhanced IFN-β expression. NIK-SMI1 treatment resulted in attenuated periodontitis progression and pro-inflammatory cytokines expression in vivo. Our study suggested that NIK-SMI1 exerts beneficial effects on the mitigation of osteoclastogenesis in vitro and periodontitis progression in vivo. Application of NIK-SMI1 may serve as a potential therapeutic approach for periodontitis.
Collapse
Affiliation(s)
- Jiang Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, The Hospital of Stomatology, The Fourth Military Medical University, Shaanxi 710000, China
| | - Bo Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Digital Center, The Hospital of Stomatology, The Fourth Military Medical University, Shaanxi 710000, China
| | - Xin Lv
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, The Hospital of Stomatology, The Fourth Military Medical University, Shaanxi 710000, China
| | - Lei Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, The Hospital of Stomatology, The Fourth Military Medical University, Shaanxi 710000, China
| |
Collapse
|
29
|
Gemble S, Basto R. CHRONOCRISIS: When Cell Cycle Asynchrony Generates DNA Damage in Polyploid Cells. Bioessays 2020; 42:e2000105. [PMID: 32885500 DOI: 10.1002/bies.202000105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/19/2020] [Indexed: 12/16/2022]
Abstract
Polyploid cells contain multiple copies of all chromosomes. Polyploidization can be developmentally programmed to sustain tissue barrier function or to increase metabolic potential and cell size. Programmed polyploidy is normally associated with terminal differentiation and poor proliferation capacity. Conversely, non-programmed polyploidy can give rise to cells that retain the ability to proliferate. This can fuel rapid genome rearrangements and lead to diseases like cancer. Here, the mechanisms that generate polyploidy are reviewed and the possible challenges upon polyploid cell division are discussed. The discussion is framed around a recent study showing that asynchronous cell cycle progression (an event that is named "chronocrisis") of different nuclei from a polyploid cell can generate DNA damage at mitotic entry. The potential mechanisms explaining how mitosis in non-programmed polyploid cells can generate abnormal karyotypes and genetic instability are highlighted.
Collapse
Affiliation(s)
- Simon Gemble
- Biology of Centrosomes and Genetic Instability Lab, Institut Curie, PSL Research University, CNRS UMR144, 12 rue Lhomond, Paris, 75005, France
| | - Renata Basto
- Biology of Centrosomes and Genetic Instability Lab, Institut Curie, PSL Research University, CNRS UMR144, 12 rue Lhomond, Paris, 75005, France
| |
Collapse
|
30
|
Fusion Potential of Human Osteoclasts In Vitro Reflects Age, Menopause, and In Vivo Bone Resorption Levels of Their Donors-A Possible Involvement of DC-STAMP. Int J Mol Sci 2020; 21:ijms21176368. [PMID: 32887359 PMCID: PMC7504560 DOI: 10.3390/ijms21176368] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 12/28/2022] Open
Abstract
It is well established that multinucleation is central for osteoclastic bone resorption. However, our knowledge on the mechanisms regulating how many nuclei an osteoclast will have is limited. The objective of this study was to investigate donor-related variations in the fusion potential of in vitro-generated osteoclasts. Therefore, CD14+ monocytes were isolated from 49 healthy female donors. Donor demographics were compared to the in vivo bone biomarker levels and their monocytes’ ability to differentiate into osteoclasts, showing that: (1) C-terminal telopeptide of type I collagen (CTX) and procollagen type I N-terminal propeptide (PINP) levels increase with age, (2) the number of nuclei per osteoclast in vitro increases with age, and (3) there is a positive correlation between the number of nuclei per osteoclast in vitro and CTX levels in vivo. Furthermore, the expression levels of the gene encoding dendritic cell-specific transmembrane protein (DCSTAMP) of osteoclasts in vitro correlated positively with the number of nuclei per osteoclast, CTX levels in vivo, and donor age. Our results furthermore suggest that these changes in gene expression may be mediated through age-related changes in DNA methylation levels. We conclude that both intrinsic factors and age-induced increase in fusion potential of osteoclasts could be contributing factors for the enhanced bone resorption in vivo, possibly caused by increased expression levels of DCSTAMP.
Collapse
|
31
|
Liu X, Fan J, Hu J, Li F, Yi R, Tan F, Zhao X. Lactobacillus Fermentum ZS40 prevents secondary osteoporosis in Wistar Rat. Food Sci Nutr 2020; 8:5182-5191. [PMID: 32994978 PMCID: PMC7500759 DOI: 10.1002/fsn3.1824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/02/2022] Open
Abstract
Using retinoic acid to inducer, we successfully established a rat model of secondary osteoporosis and verified the preventive effect of Lactobacillus fermentum ZS40 (ZS40) on secondary osteoporosis. Serum biochemical indicators showed that ZS40 can effectively slow down bone resorption caused by retinoic acid, increase blood content of calcium, phosphorus, bone alkaline phosphatase, bone gla protein, and insulin-like growth factor 1, and decrease blood content of tartrate-resistant acid phosphatase (TRAP) 5b. qRT-PCR results showed that ZS40 could upregulate mRNA expressions of β-catenin, Wnt10b, Lrp5, Lrp6, Runx2, ALP, RANKL, and OPG, and downregulate mRNA expression of DKK1, RANK, TRACP, and CTSK in the rats' spinal cord. Results following TRAP staining showed that ZS40 could slow down retinoic acid-induced formation of osteoclasts. Micro-CT results showed that ZS40 could reduce Tb.Sp, increase BV/TV, Tb.N, Tb.Th, and ultimately increase bone mineral density of rats in vivo. These findings indicate that ZS40 might have a potential role in preventing retinoic acid-induced secondary osteoporosis in vivo.
Collapse
Affiliation(s)
- Xinhong Liu
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Research Center of Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Laboratory for ResearchDevelopment of Functional FoodChongqing University of EducationChongqingChina
- College of Biological and Chemical EngineeringChongqing University of EducationChongqingChina
| | - Jian‐Bo Fan
- Department of OrthopedicsChengdu Qingbaijiang District Traditional Chinese Medicine HospitalChengduChina
| | - Jing Hu
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Research Center of Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Laboratory for ResearchDevelopment of Functional FoodChongqing University of EducationChongqingChina
| | - Fang Li
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Research Center of Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Laboratory for ResearchDevelopment of Functional FoodChongqing University of EducationChongqingChina
- College of Biological and Chemical EngineeringChongqing University of EducationChongqingChina
| | - Ruokun Yi
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Research Center of Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Laboratory for ResearchDevelopment of Functional FoodChongqing University of EducationChongqingChina
| | - Fang Tan
- Department of Public HealthOur Lady of Fatima UniversityValenzuela CityPhilippines
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Research Center of Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Laboratory for ResearchDevelopment of Functional FoodChongqing University of EducationChongqingChina
| |
Collapse
|
32
|
Liu W, Zhou J, Niu F, Pu F, Wang Z, Huang M, Zhao X, Yang L, Tao P, Xia P, Feng J. Mycobacterium tuberculosis infection increases the number of osteoclasts and inhibits osteoclast apoptosis by regulating TNF-α-mediated osteoclast autophagy. Exp Ther Med 2020; 20:1889-1898. [PMID: 32782497 PMCID: PMC7401307 DOI: 10.3892/etm.2020.8903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023] Open
Abstract
Osteoarticular tuberculosis, a chronic inflammatory disease characterized by Mycobacterium tuberculosis (M.tb) infection, has become a serious problem in China. The present study was conducted to determine the mechanism of action of tumor necrosis factor (TNF)-α in the pathogenesis of osteoarticular tuberculosis. The number of osteoclasts in osteoarticular tuberculosis tissue samples was detected by tartrate-resistant acid phosphatase staining. Autophagy and apoptosis of osteoclasts were detected by western blotting, reverse transcription-quantitative PCR, transmission electron microscopy and TUNEL staining. The results showed that autophagy and the number of osteoclasts increased in the lesions of patients with osteoarticular tuberculosis compared with osteoarthritis samples. Moreover, activation of osteoclast autophagy inhibited the apoptosis of osteoclasts infected with M.tb, and increased the expression level of TNF-α. The results showed that TNF-α enhanced the autophagic activity of M.tb-infected osteoclasts and inhibited cell apoptosis. These findings indicated that M.tb infection induced osteoclast production and inhibited osteoclast apoptosis by regulating TNF-α-mediated osteoclast autophagy, revealing a new mechanism for TNF-α in the pathogenesis of osteoarticular tuberculosis.
Collapse
Affiliation(s)
- Wei Liu
- Department of Orthopaedics, First Hospital of Wuhan, Wuhan, Hubei 430022, P.R. China
| | - Juan Zhou
- Department of Orthopaedics, First Hospital of Wuhan, Wuhan, Hubei 430022, P.R. China
| | - Fei Niu
- Department of Orthopaedics, First Hospital of Wuhan, Wuhan, Hubei 430022, P.R. China
| | - Feifei Pu
- Department of Orthopaedics, First Hospital of Wuhan, Wuhan, Hubei 430022, P.R. China
| | - Zhiwei Wang
- Department of Orthopaedics, First Hospital of Wuhan, Wuhan, Hubei 430022, P.R. China
| | - Mi Huang
- Department of Orthopaedics, First Hospital of Wuhan, Wuhan, Hubei 430022, P.R. China
| | - Xiaolong Zhao
- Department of Orthopaedics, First Hospital of Wuhan, Wuhan, Hubei 430022, P.R. China
| | - Lin Yang
- Department of Orthopaedics, First Hospital of Wuhan, Wuhan, Hubei 430022, P.R. China
| | - Pengfei Tao
- Department of Orthopaedics, First Hospital of Wuhan, Wuhan, Hubei 430022, P.R. China
| | - Ping Xia
- Department of Orthopaedics, First Hospital of Wuhan, Wuhan, Hubei 430022, P.R. China
| | - Jing Feng
- Department of Orthopaedics, First Hospital of Wuhan, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
33
|
Nishimi M, Nakamura K, Hisada A, Endo K, Ushimura S, Yoshimura Y, Yawaka Y. Effects of N-acetylcysteine on root resorption after tooth replantation. PEDIATRIC DENTAL JOURNAL 2020. [DOI: 10.1016/j.pdj.2020.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
Fang JY, Yang Z, Han B. Switch of macrophage fusion competency by 3D matrices. Sci Rep 2020; 10:10348. [PMID: 32587271 PMCID: PMC7316750 DOI: 10.1038/s41598-020-67056-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
Foreign body reaction reflects the integration between biomaterials and host cells. At the implantation microenvironment, macrophages usually fuse into multinuclear cells, also known as foreign body giant cells, to respond to the biomaterial implants. To understand the biomaterial-induced macrophage fusion, we examined whether biomaterial alone can initiate and control the fusion rate without exogenous cytokines and chemicals. We introduced a collagen-based 3D matrix to embed Raw264.7 cell line and primary rat bone marrow-derived macrophages. We found the biomaterial-stimuli interacted regional macrophages and altered the overall fusogenic protein expressions to regulate the macrophage fusion rate. The fusion rate could be altered by modulating the cell-matrix and cell-cell adhesions. The fused macrophage morphologies, the nuclei number in the fused macrophage, and the fusion rates were matrix dependent. The phenomena were also observed in the in vivo models. These results suggest that the biomaterial-derived stimuli exert similar functions as cytokines to alter the competency of macrophage fusion as well as their drug sensitivity in the biomaterial implanted tissue environment. Furthermore, this in vitro 3D-matrix model has the potential to serve as a toolbox to predict the host tissue response on implanted biomaterials.
Collapse
Affiliation(s)
- Josephine Y Fang
- Nimni-Cordoba Tissue Engineering and Drug Discovery Laboratory, Division of Plastic and Reconstructive Surgery, Departments of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
- Center of Craniofacial Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States
| | - Zhi Yang
- Nimni-Cordoba Tissue Engineering and Drug Discovery Laboratory, Division of Plastic and Reconstructive Surgery, Departments of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
| | - Bo Han
- Nimni-Cordoba Tissue Engineering and Drug Discovery Laboratory, Division of Plastic and Reconstructive Surgery, Departments of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States.
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Souther California, Los Angeles, California, United States.
| |
Collapse
|
35
|
Guardiola CJDA, Clemente-Napimoga JT, Martinez EF, Abdalla HB, Peruzzo DC, Joly JC, Napimoga MH. DC-STAMP and TACE Levels are Higher in Patients with Periodontitis. Braz Dent J 2020; 31:122-126. [PMID: 32556010 DOI: 10.1590/0103-6440202002939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/25/2019] [Indexed: 11/22/2022] Open
Abstract
Although periodontitis is one of the commonest infectious inflammatory diseases in humans, the mechanisms involved with its immunopathology remain ill understood. Numerous molecules may induce inflammation and lead to bone resorption, secondary to activation of monocytes into osteoclasts. TACE (TNF-α converting enzyme) and DC-STAMP (dendritic cell-specific transmembrane protein) appear to play a role on bone resorption since TACE induces the release of sRANKL (soluble receptor activator of nuclear factor kappa-β ligand) whereas DC-STAMP is a key factor in osteoclast induction. The present study evaluated the levels of TACE and DC-STAMP in patients with and without periodontitis. Twenty individuals were selected: 10 periodontally healthy participants undergoing gingivectomy for esthetic reasons and 10 diagnosed with periodontitis. Protein levels of such molecules in gingival tissue were established using Western blotting. Protein levels of both TACE and DC-STAMP were higher in the periodontitis group than in the control group (p<0.05; Student t-test). In conclusion, TACE and DC-STAMP protein levels are elevated in patients with periodontitis, favoring progression of bone resorption.
Collapse
Affiliation(s)
- Cyro José de Almeida Guardiola
- Periodontics and Implantology, Instituto de Pesquisas São Leopoldo Mandic, Faculdade São Leopoldo Mandic, Campinas, SP, Brazil
| | - Juliana Trindade Clemente-Napimoga
- Laboratory of Neuroimmune Interface of Pain Research Instituto de Pesquisas São Leopoldo Mandic, Faculdade São Leopoldo Mandic, Campinas, SP, Brazil
| | - Elizabeth Ferreira Martinez
- Periodontics and Implantology, Instituto de Pesquisas São Leopoldo Mandic, Faculdade São Leopoldo Mandic, Campinas, SP, Brazil
| | - Henrique Balassini Abdalla
- Laboratory of Neuroimmune Interface of Pain Research Instituto de Pesquisas São Leopoldo Mandic, Faculdade São Leopoldo Mandic, Campinas, SP, Brazil
| | - Daiane Cristina Peruzzo
- Periodontics and Implantology, Instituto de Pesquisas São Leopoldo Mandic, Faculdade São Leopoldo Mandic, Campinas, SP, Brazil
| | - Júlio César Joly
- Periodontics and Implantology, Instituto de Pesquisas São Leopoldo Mandic, Faculdade São Leopoldo Mandic, Campinas, SP, Brazil
| | - Marcelo Henrique Napimoga
- Laboratory of Neuroimmune Interface of Pain Research Instituto de Pesquisas São Leopoldo Mandic, Faculdade São Leopoldo Mandic, Campinas, SP, Brazil
| |
Collapse
|
36
|
Alahdal M, Duan L, Ouyang H, Wang D. The role of indoleamine 2,3 dioxygenase 1 in the osteoarthritis. Am J Transl Res 2020; 12:2322-2343. [PMID: 32655775 PMCID: PMC7344072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease and a leading cause of disability. It involves articular cartilage destruction and a whole joint inflammation. In spite of OA pathogenesis is still unclear, new studies on the OA pathophysiological aetiology and immunomodulation therapy continuously achieve significant advances with new concepts. Here, we focus on the indoleamine-2,3-dioxygenase1 (IDO1) activity in the osteoarthritis (OA), which is one of the noticeable enzymes in the synovial fluid of arthritis patients. It was recognized as an essential mediator of autoreactive B and T cell responses in rheumatoid arthritis (RA) and an interesting therapeutic target against RA. However, the role IDO1 plays in the OA pathogenesis hasn't been discussed. The new OA experimental analysis evidenced IDO1 overexpression in the synovial fluid of OA patients, and recent studies reported that IDO1 metabolites were found higher in the OA synovial fluid than RA and spondyloarthropathies (SpA) patients. Moreover, the positive relation of IDO1 metabolites with OA pain and joint stiffness has been confirmed. Thus, the IDO1 plays a pivotal role in the pathogenesis of OA. In this review, the role IDO1 plays in the OA pathogenesis has been deeply discussed. It could be a promising target in the immunotherapy of OA disease.
Collapse
Affiliation(s)
- Murad Alahdal
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center)Shenzhen 518035, P. R. China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of MedicineHangzhou, P. R. China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic TechnologyShenzhen 518035, P. R. China
| | - Li Duan
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center)Shenzhen 518035, P. R. China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic TechnologyShenzhen 518035, P. R. China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of MedicineHangzhou, P. R. China
| | - Daping Wang
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center)Shenzhen 518035, P. R. China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic TechnologyShenzhen 518035, P. R. China
| |
Collapse
|
37
|
Kitano VJF, Ohyama Y, Hayashida C, Ito J, Okayasu M, Sato T, Ogasawara T, Tsujita M, Kakino A, Shimada J, Sawamura T, Hakeda Y. LDL uptake-dependent phosphatidylethanolamine translocation to the cell surface promotes fusion of osteoclast-like cells. J Cell Sci 2020; 133:jcs243840. [PMID: 32295848 DOI: 10.1242/jcs.243840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/25/2020] [Indexed: 11/20/2022] Open
Abstract
Osteoporosis is associated with vessel diseases attributed to hyperlipidemia, and bone resorption by multinucleated osteoclasts is related to lipid metabolism. In this study, we generated low-density lipoprotein receptor (LDLR)/lectin-like oxidized LDL receptor-1 (LOX-1, also known as Olr1) double knockout (dKO) mice. We found that, like LDLR single KO (sKO), LDLR/LOX-1 dKO impaired cell-cell fusion of osteoclast-like cells (OCLs). LDLR/LOX-1 dKO and LDLR sKO preosteoclasts exhibited decreased uptake of LDL. The cell surface cholesterol levels of both LDLR/LOX-1 dKO and LDLR sKO osteoclasts were lower than the levels of wild-type OCLs. Additionally, the amount of phosphatidylethanolamine (PE) on the cell surface was attenuated in LDLR/LOX-1 dKO and LDLR sKO preosteoclasts, whereas the PE distribution in wild-type OCLs was concentrated on the filopodia in contact with neighboring cells. Abrogation of the ATP binding cassette G1 (ABCG1) transporter, which transfers PE to the cell surface, caused decreased PE translocation to the cell surface and subsequent cell-cell fusion. The findings of this study indicate the involvement of a novel cascade (LDLR∼ABCG1∼PE translocation to cell surface∼cell-cell fusion) in multinucleation of OCLs.
Collapse
Affiliation(s)
- Victor J F Kitano
- Division of Oral Anatomy, Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan
- Division of Oral and Maxillofacial Surgery, Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan
| | - Yoko Ohyama
- Division of Oral Anatomy, Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan
- Division of Oral and Maxillofacial Surgery, Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan
| | - Chiyomi Hayashida
- Division of Oral Anatomy, Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan
| | - Junta Ito
- Josai University, Faculty of Pharmacy and Pharmaceutical Sciences, Department of Clinical Dietetics and Human Nutrition, Sakado, Saitama 350-0295, Japan
| | - Mari Okayasu
- Division of Oral-maxillofacial Surgery, Dentistry and Orthodontics, The University of Tokyo Hospital, Hongo, Tokyo 113-8655, Japan
| | - Takuya Sato
- Division of Oral Anatomy, Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan
| | - Toru Ogasawara
- Division of Oral-maxillofacial Surgery, Dentistry and Orthodontics, The University of Tokyo Hospital, Hongo, Tokyo 113-8655, Japan
| | - Maki Tsujita
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Akemi Kakino
- Department of Physiology, Shinshu University School of Medicine, Matsumoto, Nagano 390-8621, Japan
| | - Jun Shimada
- Division of Oral and Maxillofacial Surgery, Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan
| | - Tatsuya Sawamura
- Department of Physiology, Shinshu University School of Medicine, Matsumoto, Nagano 390-8621, Japan
| | - Yoshiyuki Hakeda
- Division of Oral Anatomy, Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan
| |
Collapse
|
38
|
Endogenous Collagenases Regulate Osteoclast Fusion. Biomolecules 2020; 10:biom10050705. [PMID: 32370054 PMCID: PMC7277558 DOI: 10.3390/biom10050705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 12/26/2022] Open
Abstract
The precise regulation of osteoclast differentiation and function is crucial for the maintenance of healthy bone. Despite several reports of collagenase expression in bone tissues, the precise isoform expression as well as the role in osteoclasts are still unclear. In the present report, the expression of matrix metalloprotease (MMP)8 and MMP13 was confirmed in mouse bone marrow macrophage osteoclast precursors. The mRNA and protein expressions of both collagenases were significantly reduced by receptor activator of nuclear factor κB ligand (RANKL) stimulation. Notably, either inhibition of MMP expression by siRNA or treatment of cells with collagenase inhibitor Ro 32-3555 significantly augmented osteoclast fusion and resorption activity without affecting the osteoclast number. The inhibition of collagenase by Ro 32-3555 increased the expression of osteoclast fusion genes, Atp6v0d2 and Dcstamp, without affecting nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) protein expression. The enhanced osteoclast fusion by collagenase inhibition appears to be mediated through an extracellular signal regulated kinase (ERK)-dependent pathway. Collectively, these data provide novel information on the regulation of osteoclast fusion process.
Collapse
|
39
|
Mira-Pascual L, Tran AN, Andersson G, Näreoja T, Lång P. A Sub-Clone of RAW264.7-Cells Form Osteoclast-Like Cells Capable of Bone Resorption Faster than Parental RAW264.7 through Increased De Novo Expression and Nuclear Translocation of NFATc1. Int J Mol Sci 2020; 21:E538. [PMID: 31947698 PMCID: PMC7013577 DOI: 10.3390/ijms21020538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 12/30/2022] Open
Abstract
The murine macrophage cell line RAW264.7 is extensively used as a progenitor to study osteoclast (OC) differentiation. RAW264.7 is a heterogeneous cell line, containing sub-clones with different abilities to form OCs. The aim of this study was to identify characteristics within the heterogeneous RAW264.7 cells that define sub-clones with an augmented ability to form bone-resorbing OCs (H9), as well as sub-clones representing non-OCs (J8). RAW264.7 sub-clones were isolated by single cell cloning. Selection was based on TRAP/cathepsin K expression in sub-clone cultures without added RANKL. Sub-clones before and after differentiation with RANKL were assayed for multiple OC-characteristics. Sub-clone H9 cells presented a higher expression of OC-markers in cultures without added RANKL compared to the parental RAW264.7. After 6 days of RANKL stimulation, sub-clone H9 cells had equal expression levels of OC-markers with RAW264.7 and formed OCs able to demineralize hydroxyapatite. However, sub-clone H9 cells displayed rapid differentiation of OC already at Day 2 compared to Day 4 from parental RAW264.7, and when cultured on plastic and on bone they were more efficient in resorption. This rapid differentiation was likely due to high initial expression/nuclear translocation of OC master transcription factor, NFATc1. In contrast to H9, J8 cells expressed initially very low levels of OC-markers, and they did not respond to RANKL-stimulation by developing OC-characteristics/OC-marker expression. Hence, H9 is an additional clone suitable for experimental setup requiring rapid differentiation of large numbers of OCs.
Collapse
Affiliation(s)
- Laia Mira-Pascual
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Alfred Nobels Allé, 8, SE-141 52 Stockholm, Sweden; (L.M.-P.); (A.N.T.); (G.A.)
| | - Anh N. Tran
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Alfred Nobels Allé, 8, SE-141 52 Stockholm, Sweden; (L.M.-P.); (A.N.T.); (G.A.)
- Musculoskeletal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB 252ZD, UK
| | - Göran Andersson
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Alfred Nobels Allé, 8, SE-141 52 Stockholm, Sweden; (L.M.-P.); (A.N.T.); (G.A.)
| | - Tuomas Näreoja
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Alfred Nobels Allé, 8, SE-141 52 Stockholm, Sweden; (L.M.-P.); (A.N.T.); (G.A.)
| | - Pernilla Lång
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Alfred Nobels Allé, 8, SE-141 52 Stockholm, Sweden; (L.M.-P.); (A.N.T.); (G.A.)
| |
Collapse
|
40
|
Goodman SB, Gallo J. Periprosthetic Osteolysis: Mechanisms, Prevention and Treatment. J Clin Med 2019; 8:E2091. [PMID: 31805704 PMCID: PMC6947309 DOI: 10.3390/jcm8122091] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023] Open
Abstract
Clinical studies, as well as in vitro and in vivo experiments have demonstrated that byproducts from joint replacements induce an inflammatory reaction that can result in periprosthetic osteolysis (PPOL) and aseptic loosening (AL). Particle-stimulated macrophages and other cells release cytokines, chemokines, and other pro-inflammatory substances that perpetuate chronic inflammation, induce osteoclastic bone resorption and suppress bone formation. Differentiation, maturation, activation, and survival of osteoclasts at the bone-implant interface are under the control of the receptor activator of nuclear factor kappa-Β ligand (RANKL)-dependent pathways, and the transcription factors like nuclear factor κB (NF-κB) and activator protein-1 (AP-1). Mechanical factors such as prosthetic micromotion and oscillations in fluid pressures also contribute to PPOL. The treatment for progressive PPOL is only surgical. In order to mitigate ongoing loss of host bone, a number of non-operative approaches have been proposed. However, except for the use of bisphosphonates in selected cases, none are evidence based. To date, the most successful and effective approach to preventing PPOL is usage of wear-resistant bearing couples in combination with advanced implant designs, reducing the load of metallic and polymer particles. These innovations have significantly decreased the revision rate due to AL and PPOL in the last decade.
Collapse
Affiliation(s)
- Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University, 450 Broadway St. M/C 6342, Redwood City, CA 94063, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Jiri Gallo
- Department of Orthopaedics, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic;
| |
Collapse
|
41
|
Bao T, Yang K, Long Z, Zeng L, Li Y. Systematic Pharmacological Methodology to Explore the Pharmacological Mechanism of Siwu Decoction for Osteoporosis. Med Sci Monit 2019; 25:8152-8171. [PMID: 31666500 PMCID: PMC6844540 DOI: 10.12659/msm.917393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/08/2019] [Indexed: 02/05/2023] Open
Abstract
Osteoporosis is an important health problem worldwide. Siwu decoction (SWD) and its modification have a good clinical effect on osteoporosis. However, the molecular mechanism of SWD on osteoporosis has not been thoroughly explained. A systematic pharmacological methodology was utilized to predict the active compounds and potential targets of SWD, collect the genes of osteoporosis and the known targets of SWD, and analyze the osteoporosis and SWD's network. Five networks were constructed and analyzed: (1) Osteoporosis genes' protein-protein interaction (PPI) network; (2) Compound-compound target network of SWD; (3) SWD-osteoporosis PPI network; (4) Compound-known target network of SWD; and (5) SWD known target- osteoporosis PPI network. Several osteoporosis and treatment-related targets (eg.,. HSP90AB1, FGFR1, HRAS, GRB2, and PGF), clusters, biological processes, and signaling pathways (e.g., PI3K-Akt signaling pathway, insulin signaling pathway, MAPK signaling pathway and FoxO signaling pathway) were found. The therapeutic effect of SWD on osteoporosis may be achieved by interfering with the biological processes and signaling pathways related to the development of osteoporosis.
Collapse
Affiliation(s)
- Tingting Bao
- Beijing University of Chinese Medicine, Beijing, P.R. China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, P.R. China
| | - Kailin Yang
- Capital Medical University, Beijing, P.R. China
- Beijing Anzhen Hospital, Capital Medical University, Beijing, P.R. China
| | - Zhiyong Long
- Shantou University Medical College, Shantou, Guangdong, P.R. China
- Department of Rehabilitation Medicine, Guangdong Geriatric Institute, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, P.R. China
| | - Liuting Zeng
- Hunan University of Chinese Medicine, Changsha, Hunan, P.R. China
| | - Yuehua Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, P.R. China
| |
Collapse
|
42
|
Søe K, Andersen TL, Hinge M, Rolighed L, Marcussen N, Delaisse JM. Coordination of Fusion and Trafficking of Pre-osteoclasts at the Marrow-Bone Interface. Calcif Tissue Int 2019; 105:430-445. [PMID: 31236622 DOI: 10.1007/s00223-019-00575-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/14/2019] [Indexed: 12/16/2022]
Abstract
Fusion is the final osteoclast differentiation step leading to bone resorption. In healthy trabecular bone, osteoclast fusion is restricted to bone surfaces undergoing resorption, and necessarily requires site-specific recruitment of mononucleated pre-osteoclasts originating from the bone marrow. However, the spatiotemporal mechanism coordinating recruitment and fusion is poorly investigated. Herein we identify a collagen/vascular network as a likely structure supporting this mechanism. We therefore used multiplex immunohistochemistry and electron microscopy on human iliac crest bone samples, in combination with functional assays performed in vitro with osteoclasts generated from healthy blood donors. First, we found that putative pre-osteoclasts are in close vicinity of a network of collagen fibers associated with vessels and bone remodeling compartment canopies. Based on 3D-reconstructions of serial sections, we propose that this network may serve as roads leading pre-osteoclasts to resorption sites, as reported for cell migration in other tissues. Importantly, almost all these bone marrow pre-osteoclasts, but only some osteoclasts, express the collagen receptor OSCAR, which is reported to induce fusion competence. Furthermore, differentiating osteoclasts cultured on collagen compared to mineral show higher fusion rates, higher expression of fusogenic cytokines, and a CD47 plasma membrane distribution pattern reported to be typical of a pre-fusion state-thus collectively supporting collagen-induced fusion competence. Finally, these in vitro assays show that collagen induces high cell mobility. The present data lead to a model where collagen fibers/vasculature support the coordination between traffic and fusion of pre-osteoclasts, by serving as a physical road and inducing fusion competence as well as cell mobility.
Collapse
Affiliation(s)
- Kent Søe
- Clinical Cell Biology, Department of Regional Health Research, Vejle Hospital - Lillebaelt Hospital, University of Southern Denmark, Beriderbakken 4, 7100, Vejle, Denmark.
- Clinical Cell Biology, Department of Pathology, Odense University Hospital - Department of Clinical Research, University of Southern Denmark, J. B. Winsløvs Vej 25, 1st floor, 5000, Odense C, Denmark.
| | - Thomas Levin Andersen
- Clinical Cell Biology, Department of Regional Health Research, Vejle Hospital - Lillebaelt Hospital, University of Southern Denmark, Beriderbakken 4, 7100, Vejle, Denmark.
- Clinical Cell Biology, Department of Pathology, Odense University Hospital - Department of Clinical Research, University of Southern Denmark, J. B. Winsløvs Vej 25, 1st floor, 5000, Odense C, Denmark.
| | - Maja Hinge
- Clinical Cell Biology, Department of Regional Health Research, Vejle Hospital - Lillebaelt Hospital, University of Southern Denmark, Beriderbakken 4, 7100, Vejle, Denmark
- Department of Internal Medicine, Section of Hematology, Vejle Hospital - Lillebaelt Hospital, Beriderbakken 4, 7100, Vejle, Denmark
| | - Lars Rolighed
- Breast and Endocrine Section, Department of Surgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Niels Marcussen
- Department of Pathology, Odense University Hospital, J. B. Winsløws Vej 15, 5000, Odense, Denmark
| | - Jean-Marie Delaisse
- Clinical Cell Biology, Department of Regional Health Research, Vejle Hospital - Lillebaelt Hospital, University of Southern Denmark, Beriderbakken 4, 7100, Vejle, Denmark
- Clinical Cell Biology, Department of Pathology, Odense University Hospital - Department of Clinical Research, University of Southern Denmark, J. B. Winsløvs Vej 25, 1st floor, 5000, Odense C, Denmark
| |
Collapse
|
43
|
Coudert AE, Redelsperger F, Chabbi-Achengli Y, Vernochet C, Marty C, Decrouy X, Heidmann T, de Vernejoul MC, Dupressoir A. Role of the captured retroviral envelope syncytin-B gene in the fusion of osteoclast and giant cell precursors and in bone resorption, analyzed ex vivo and in vivo in syncytin-B knockout mice. Bone Rep 2019; 11:100214. [PMID: 31360740 PMCID: PMC6637224 DOI: 10.1016/j.bonr.2019.100214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/09/2019] [Indexed: 12/23/2022] Open
Abstract
Syncytin-A and -B are envelope genes of retroviral origin that have been captured in evolution for a role in placentation. They trigger cell-cell fusion and were shown to be essential for the formation of the syncytiotrophoblast layer during mouse placenta formation. Syncytin-A and -B expression has been described in other tissues and their highly fusogenic properties suggested that they might be involved in the fusion of other cell types. Here, taking advantage of mice knocked out for syncytin-B, SynB-/- mice, we investigated the potential role of syncytin-B in the fusion of cells from the monocyte/macrophage lineage into multinucleated osteoclasts (OCs) -in bone- or multinucleated giant cells -in soft tissues. In ex vivo experiments, a significant reduction in fusion index and in the number of multinucleated OCs and giant cells was observed as soon as Day3 in SynB-/- as compared to wild-type cell cultures. Interestingly, the number of nuclei per multinucleated OC or giant cell remained unchanged. These results, together with the demonstration that syncytin-B expression is maximal in the first 2 days of OC differentiation, argue for syncytin-B playing a role in the fusion of OC and giant cell mononucleated precursors, at initial stages. Finally, ex vivo, the observed reduction in multinucleated OC number had no impact on the expression of OC differentiation markers, and a dentin resorption assay did not evidence any difference in the osteoclastic resorption activity, suggesting that syncytin-B is not required for OC activity. In vivo, syncytin-B was found to be expressed in the periosteum of embryos at embryonic day 16.5, where TRAP-positive cells were observed. Yet, in adults, no significant reduction in OC number or alteration in bone phenotype was observed in SynB-/- mice. In addition, SynB-/- mice did not show any change in the number of foreign body giant cells (FBGCs) that formed in response to implantation of foreign material, as compared to wild-type mice. Altogether the results suggest that in addition to its essential role in placenta formation, syncytin-B plays a role in OCs and macrophage fusion; yet it is not essential in vivo for OC and FBGC formation, or maintenance of bone homeostasis, at least under the conditions tested.
Collapse
Affiliation(s)
- Amélie E Coudert
- BIOSCAR, Unité Mixte de Recherche 1132, Institut National de la Santé et de la Recherche Médicale, Hôpital Lariboisière, Paris 75010, France.,Laboratoire de Physiopathologie Orale Moléculaire, INSERM U1138, Centre de recherche des Cordeliers, UFR d'Odontologie Garancire, Université Paris Diderot, Paris 75006, France
| | - François Redelsperger
- Unité Physiologie et Pathologie Moléculaires des Rétrovirus Endogènes et Infectieux, Unité Mixte de Recherche 9196, Centre National de la Recherche Scientifique, Gustave Roussy, Villejuif, 94805, and Université Paris-Sud, Orsay, 91405, France
| | - Yasmine Chabbi-Achengli
- BIOSCAR, Unité Mixte de Recherche 1132, Institut National de la Santé et de la Recherche Médicale, Hôpital Lariboisière, Paris 75010, France
| | - Cécile Vernochet
- Unité Physiologie et Pathologie Moléculaires des Rétrovirus Endogènes et Infectieux, Unité Mixte de Recherche 9196, Centre National de la Recherche Scientifique, Gustave Roussy, Villejuif, 94805, and Université Paris-Sud, Orsay, 91405, France
| | - Caroline Marty
- BIOSCAR, Unité Mixte de Recherche 1132, Institut National de la Santé et de la Recherche Médicale, Hôpital Lariboisière, Paris 75010, France
| | - Xavier Decrouy
- Inserm, U955, Plateforme d'imagerie, Créteil, 9400, France and Université Paris Est, Faculté de médecine, Créteil, 94000, France
| | - Thierry Heidmann
- Unité Physiologie et Pathologie Moléculaires des Rétrovirus Endogènes et Infectieux, Unité Mixte de Recherche 9196, Centre National de la Recherche Scientifique, Gustave Roussy, Villejuif, 94805, and Université Paris-Sud, Orsay, 91405, France
| | - Marie-Christine de Vernejoul
- BIOSCAR, Unité Mixte de Recherche 1132, Institut National de la Santé et de la Recherche Médicale, Hôpital Lariboisière, Paris 75010, France
| | - Anne Dupressoir
- Unité Physiologie et Pathologie Moléculaires des Rétrovirus Endogènes et Infectieux, Unité Mixte de Recherche 9196, Centre National de la Recherche Scientifique, Gustave Roussy, Villejuif, 94805, and Université Paris-Sud, Orsay, 91405, France
| |
Collapse
|
44
|
Madel MB, Ibáñez L, Wakkach A, de Vries TJ, Teti A, Apparailly F, Blin-Wakkach C. Immune Function and Diversity of Osteoclasts in Normal and Pathological Conditions. Front Immunol 2019; 10:1408. [PMID: 31275328 PMCID: PMC6594198 DOI: 10.3389/fimmu.2019.01408] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/04/2019] [Indexed: 12/31/2022] Open
Abstract
Osteoclasts (OCLs) are key players in controlling bone remodeling. Modifications in their differentiation or bone resorbing activity are associated with a number of pathologies ranging from osteopetrosis to osteoporosis, chronic inflammation and cancer, that are all characterized by immunological alterations. Therefore, the 2000s were marked by the emergence of osteoimmunology and by a growing number of studies focused on the control of OCL differentiation and function by the immune system. At the same time, it was discovered that OCLs are much more than bone resorbing cells. As monocytic lineage-derived cells, they belong to a family of cells that displays a wide heterogeneity and plasticity and that is involved in phagocytosis and innate immune responses. However, while OCLs have been extensively studied for their bone resorption capacity, their implication as immune cells was neglected for a long time. In recent years, new evidence pointed out that OCLs play important roles in the modulation of immune responses toward immune suppression or inflammation. They unlocked their capacity to modulate T cell activation, to efficiently process and present antigens as well as their ability to activate T cell responses in an antigen-dependent manner. Moreover, similar to other monocytic lineage cells such as macrophages, monocytes and dendritic cells, OCLs display a phenotypic and functional plasticity participating to their anti-inflammatory or pro-inflammatory effect depending on their cell origin and environment. This review will address this novel vision of the OCL, not only as a phagocyte specialized in bone resorption, but also as innate immune cell participating in the control of immune responses.
Collapse
Affiliation(s)
- Maria-Bernadette Madel
- CNRS, Laboratoire de PhysioMédecine Moléculaire, Faculté de Médecine, UMR7370, Nice, France.,Faculé de Médecine, Université Côte d'Azur, Nice, France
| | - Lidia Ibáñez
- Department of Pharmacy, Cardenal Herrera-CEU University, València, Spain
| | - Abdelilah Wakkach
- CNRS, Laboratoire de PhysioMédecine Moléculaire, Faculté de Médecine, UMR7370, Nice, France.,Faculé de Médecine, Université Côte d'Azur, Nice, France
| | - Teun J de Vries
- Department of Periodontology, Academic Centre of Dentistry Amsterdam, University of Amsterdam and Vrije Univeristeit, Amsterdam, Netherlands
| | - Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - Claudine Blin-Wakkach
- CNRS, Laboratoire de PhysioMédecine Moléculaire, Faculté de Médecine, UMR7370, Nice, France.,Faculé de Médecine, Université Côte d'Azur, Nice, France
| |
Collapse
|
45
|
Lan Y, Xie H, Shi Y, Jin Q, Zhang X, Wang Y, Xie Z. NEMO‑binding domain peptide ameliorates inflammatory bone destruction in a Staphylococcus aureus‑induced chronic osteomyelitis model. Mol Med Rep 2019; 19:3291-3297. [PMID: 30816459 DOI: 10.3892/mmr.2019.9975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 01/17/2019] [Indexed: 11/05/2022] Open
Abstract
Osteomyelitis, which is characterized by progressive inflammatory bone destruction and resorption, is a difficult‑to‑treat infection. Staphylococcus aureus (S. aureus) is one of the major causes of this disease. This pathogenic microorganism possesses several characteristics, which facilitate its involvement in the occurrence and progression of osteomyelitis. A cell‑permeable peptide inhibitor of the IκB kinase complex, the nuclear factor (NF)‑κB essential modulator‑binding domain (NBD) peptide, has been reported to block osteoclastogenesis and may be considered a potential strategy for preventing inflammatory bone resorption. However, it remains to be determined as to whether the NBD peptide can regulate inflammation and bone resorption in S. aureus‑induced osteomyelitis. In order to investigate the role of NBD in S. aureus‑induced osteomyelitis, the present study obtained the NBD peptide, and confirmed that it inhibited receptor activator of NF‑κB ligand‑induced osteoclastogenesis in vitro. Subsequently, a bone defect was generated and S. aureus was injected into the mandible of experimental animals, in order to establish an in vivo osteomyelitis model. The present study analyzed the following three experimental groups: Untreated, treated with debridement, and treated with debridement plus NBD peptide administration. The results revealed that treatment with the NBD peptide reduced the bone defect in a 3‑dimensional manner, and reduced bone resorption. To the best of our knowledge, the present study is the first to demonstrate that, in a model of osteomyelitis caused by S. aureus, the NBD peptide serves a role in inhibiting osteolysis and promoting bone remodeling in the direction of osteogenesis. The effects were better than those produced by debridement alone, thus suggesting that it may have promising therapeutic potential in osteomyelitis.
Collapse
Affiliation(s)
- Yanhua Lan
- Department of Oral Medicine, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Huizhi Xie
- Department of Oral Medicine, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Yang Shi
- Department of Oral Medicine, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Qianrui Jin
- Department of Oral Medicine, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Xiaolei Zhang
- Department of General Dentistry, Hangzhou Dental Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Yu Wang
- Department of Implantology, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Zhijian Xie
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
46
|
Bae SJ, Shin MW, Son T, Lee HS, Chae JS, Jeon S, Oh GT, Kim KW. Ninjurin1 positively regulates osteoclast development by enhancing the survival of prefusion osteoclasts. Exp Mol Med 2019; 51:1-16. [PMID: 30700695 PMCID: PMC6353902 DOI: 10.1038/s12276-018-0201-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 01/20/2023] Open
Abstract
Osteoclasts (OCs) are bone-resorbing cells that originate from hematopoietic stem cells and develop through the fusion of mononuclear myeloid precursors. Dysregulation of OC development causes bone disorders such as osteopetrosis, osteoporosis, and rheumatoid arthritis. Although the molecular mechanisms underlying osteoclastogenesis have been well established, the means by which OCs maintain their survival during OC development remain unknown. We found that Ninjurin1 (Ninj1) expression is dynamically regulated during osteoclastogenesis and that Ninj1-/- mice exhibit increased trabecular bone volume owing to impaired OC development. Ninj1 deficiency did not alter OC differentiation, transmigration, fusion, or actin ring formation but increased Caspase-9-dependent intrinsic apoptosis in prefusion OCs (preOCs). Overexpression of Ninj1 enhanced the survival of mouse macrophage/preOC RAW264.7 cells in osteoclastogenic culture, suggesting that Ninj1 is important for the survival of preOCs. Finally, analysis of publicly available microarray data sets revealed a potent correlation between high NINJ1 expression and destructive bone disorders in humans. Our data indicate that Ninj1 plays an important role in bone homeostasis by enhancing the survival of preOCs.
Collapse
Affiliation(s)
- Sung-Jin Bae
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea.,Korean Medicine Research Center for Healthy Aging, Pusan National University, Yangsan, 50612, Korea
| | - Min Wook Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea.,RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Taekwon Son
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Hye Shin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Ji Soo Chae
- Department of Life Sciences and Technology, PerkinElmer, Seoul, 06702, Korea
| | - Sejin Jeon
- Department of Life Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Goo Taeg Oh
- Department of Life Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Kyu-Won Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea. .,Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang, 25354, Korea.
| |
Collapse
|
47
|
Zhang Q, Tang X, Liu Z, Song X, Peng D, Zhu W, Ouyang Z, Wang W. Hesperetin Prevents Bone Resorption by Inhibiting RANKL-Induced Osteoclastogenesis and Jnk Mediated Irf-3/c-Jun Activation. Front Pharmacol 2018; 9:1028. [PMID: 30254586 PMCID: PMC6142014 DOI: 10.3389/fphar.2018.01028] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/24/2018] [Indexed: 12/13/2022] Open
Abstract
Bone homeostasis and resorption is regulated by the proper activation of osteoclasts, whose stimulation largely depends on the receptor activator of nuclear factor κB ligand (RANKL)-RANK signaling. Herein, for the first time, we showed that interferon regulatory factor (Irf)-3 was intimately involved in RANKL-induced osteoclast formation. In addition, hesperetin (Hes) derived from citrus fruit could inhibit RANKL-induced osteoclast differentiation and maturation among three types of osteoclast precursors with inhibited formation of F-actin rings and resorption pits on bone slices. More importantly, by using SP600125, a selective Jnk inhibitor, we showed that Hes was able to significantly attenuate the Jnk downstream expression of Irf-3 and c-Jun, thereby inactivating NF-κB/MAPK signaling and transcriptional factor NFATc-1, leading to suppression of osteoclast-specific genes, which resulted in impaired osteoclastogenesis and functionality. An ovariectomized (OVX) osteoporosis mouse model demonstrated that Hes could increase trabecular bone volume fractions (BV/TV), trabecular thickness, and trabecular number, whereas it decreased trabecular separation in OVX mice with well-preserved trabecular bone architecture and decreased levels of TRAP-positive osteoclasts. This is further evidenced by the diminished serum expression of bone resorption marker CTX and enhanced production of osteoblastic ALP in vivo. Taken together, these results suggested that Hes could inhibit Jnk-mediated Irf-3/c-Jun activation, thus attenuating RANKL-induced osteoclast formation and function both in vitro and in vivo.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xinqiao Tang
- Department of Orthopedics, Xiangtan Central Hospital, Xiangtan, China
| | - Zhong Liu
- Department of Orthopedics, Xiangtan Central Hospital, Xiangtan, China
| | - Xiaoxia Song
- Department of Respiratory Medicine, Xiangtan Central Hospital, Xiangtan, China
| | - Dan Peng
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhengxiao Ouyang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wanchun Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
48
|
Koduru SV, Sun BH, Walker JM, Zhu M, Simpson C, Dhodapkar M, Insogna KL. The contribution of cross-talk between the cell-surface proteins CD36 and CD47-TSP-1 in osteoclast formation and function. J Biol Chem 2018; 293:15055-15069. [PMID: 30082316 DOI: 10.1074/jbc.ra117.000633] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 07/27/2018] [Indexed: 01/16/2023] Open
Abstract
Antibody-mediated blockade of cluster of differentiation 47 (CD47)-thrombospondin-1 (TSP-1) interactions blocks osteoclast formation in vitro and attenuates parathyroid hormone (PTH)-induced hypercalcemia in vivo in mice. Hypercalcemia in this model reflects increased bone resorption. TSP-1 has two cell-associated binding partners, CD47 and CD36. The roles of these two molecules in mediating the effects of TSP1 in osteoclasts are unclear. Osteoclast formation was attenuated but not absent when preosteoclasts isolated from CD47-/- mice were cocultured with WT osteoblasts. Suppressing CD36 in osteoclast progenitors also attenuated osteoclast formation. The hypercalcemic response to a PTH infusion was blunted in CD47-/-/CD36-/- (double knockout (DKO)) female mice but not CD47-/- mice or CD36-/- animals, supporting a role for both CD47 and CD36 in mediating this effect. Consistent with this, DKO osteoclasts had impaired resorptive activity when analyzed in vitro Inhibition of nitric oxide (NO) signaling is known to promote osteoclastogenesis, and TSP-1 suppresses NO production and signaling. An anti-TSP-1 antibody increased NO production in osteoclasts, and the inhibitory effect of anti-TSP-1 on osteoclastogenesis was completely rescued by l-nitroarginine methyl ester (l-NAME), a competitive NO synthase inhibitor. Supportive of an important role for CD36 in mediating the pro-osteoclastogenic effects of TSP-1, engaging CD36 with a synthetic agonist, p907, suppressed NO production in anti-TSP-1-treated cultures, allowing osteoclast maturation to occur. These results establish that CD36 and CD47 both participate in mediating the actions of TSP-1 in osteoclasts and establish a physiologically relevant cross-talk in bone tissue between these two molecules.
Collapse
Affiliation(s)
| | - Ben-Hua Sun
- Department of Medicine (Endocrinology), Yale School of Medicine, New Haven, Connecticut 06520
| | - Joanne M Walker
- Department of Medicine (Endocrinology), Yale School of Medicine, New Haven, Connecticut 06520
| | - Meiling Zhu
- Department of Medicine (Endocrinology), Yale School of Medicine, New Haven, Connecticut 06520
| | - Christine Simpson
- Department of Medicine (Endocrinology), Yale School of Medicine, New Haven, Connecticut 06520
| | - Madhav Dhodapkar
- From the Departments of Medicine (Hematology) and Immunobiology and
| | - Karl L Insogna
- Department of Medicine (Endocrinology), Yale School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
49
|
Abstract
Polyploid cells, which contain multiple copies of the typically diploid genome, are widespread in plants and animals. Polyploidization can be developmentally programmed or stress induced, and arises from either cell-cell fusion or a process known as endoreplication, in which cells replicate their DNA but either fail to complete cytokinesis or to progress through M phase entirely. Polyploidization offers cells several potential fitness benefits, including the ability to increase cell size and biomass production without disrupting cell and tissue structure, and allowing improved cell longevity through higher tolerance to genomic stress and apoptotic signals. Accordingly, recent studies have uncovered crucial roles for polyploidization in compensatory cell growth during tissue regeneration in the heart, liver, epidermis and intestine. Here, we review current knowledge of the molecular pathways that generate polyploidy and discuss how polyploidization is used in tissue repair and regeneration.
Collapse
Affiliation(s)
| | - Bruce A Edgar
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
| |
Collapse
|
50
|
Hu Z, Chen Y, Song L, Yik JHN, Haudenschild DR, Fan S. Flavopiridol Protects Bone Tissue by Attenuating RANKL Induced Osteoclast Formation. Front Pharmacol 2018; 9:174. [PMID: 29773986 PMCID: PMC5944179 DOI: 10.3389/fphar.2018.00174] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 02/15/2018] [Indexed: 01/23/2023] Open
Abstract
Bone resorption and homeostasis is carried out by osteoclasts, whose differentiation and activity are regulated by the RANK/RANKL axis. Our previous studies using a mouse model of joint injury show that joint trauma induces local inflammation followed by bone remodeling. The transcription factor cyclin-dependent kinase 9 (CDK9) is the major regulator of inflammation, as CDK9 inhibitor flavopiridol effectively suppress injury-induced inflammatory response. The objective of this study was to investigate the underlying mechanism through which flavopiridol regulates bone resorption. The effects of CDK9 inhibition, by the specific-inhibitor flavopiridol, on bone resorption were determined in vivo using two distinct and clinically relevant bone remodeling models. The first model involved titanium particle-induced acute osteolysis, and the second model was ovariectomy-induced chronic osteoporosis. The effects and mechanism of CDK9 inhibition on osteoclastogenesis were examined using in vitro culture of bone marrow macrophages (BMMs). Our results indicated that flavopiridol potently suppressed bone resorption in both in vivo bone-remodeling models. In addition, CDK9 inhibition suppressed in vitro osteoclastogenesis of BMM and reduced their expression of osteoclast-specific genes. Finally, we determined that flavopiridol suppressed RANKL signaling pathway via inhibition of p65 phosphorylation and nuclear translocation of NF-κB. Summary, CDK9 is a potential therapeutic target to prevent osteolysis and osteoporosis by flavopiridol treatment.
Collapse
Affiliation(s)
- Zi'ang Hu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yilei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lijiang Song
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jasper H N Yik
- Lawrence J. Ellison Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of California, Davis, Davis, CA, United States
| | - Dominik R Haudenschild
- Lawrence J. Ellison Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of California, Davis, Davis, CA, United States
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|