1
|
Abavisani M, Khoshrou A, Eshaghian S, Karav S, Sahebkar A. Overcoming antibiotic resistance: the potential and pitfalls of drug repurposing. J Drug Target 2024:1-27. [PMID: 39485073 DOI: 10.1080/1061186x.2024.2424895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/18/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024]
Abstract
Since its emergence shortly after the discovery of penicillin, antibiotic resistance has escalated dramatically, posing a significant health threat and economic burden. Drug repositioning, or drug repurposing, involves identifying new therapeutic applications for existing drugs, utilising their established safety profiles and pharmacological data to swiftly provide effective treatments against resistant pathogens. Several drugs, including otilonium bromide, penfluridol, eltrombopag, ibuprofen, and ceritinib, have demonstrated potent antibacterial activity against multidrug-resistant (MDR) bacteria. These drugs can disrupt biofilms, damage bacterial membranes, and inhibit bacterial growth. The combination of repurposed drugs with conventional antibiotics can reduce the required dosage of individual drugs, mitigate side effects, and delay the development of resistance, making it a promising strategy against MDR bacteria such as Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Escherichia coli. Despite its promise, drug repurposing faces challenges such as potential off-target effects, toxicity, and regulatory and intellectual property issues, necessitating rigorous evaluations and strategic solutions. This article aims to explore the potential of drug repurposing as a strategy to combat antibiotic resistance, examining its benefits, challenges, and future prospects. We address the legal, economic, and practical challenges associated with repurposing existing drugs, highlight successful examples, and propose solutions to enhance the efficacy and viability of this approach in combating MDR bacterial infections.
Collapse
Affiliation(s)
- Mohammad Abavisani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Khoshrou
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Souzan Eshaghian
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Falcioni S, Roht YL, Drazer G, Ippolito I. Swelling Kinetics of Hydrogel Beads in Aqueous Glycerin Solutions. J Phys Chem B 2024; 128:9598-9603. [PMID: 39303081 DOI: 10.1021/acs.jpcb.4c04248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
This study examines the swelling kinetics of polyacrylamide hydrogel beads in aqueous glycerin solutions of different concentrations. The total absorbed mass of the hydrogel beads remains nearly constant, independent of glycerin concentration, but the swelling process is markedly slower with increasing glycerin concentration in the aqueous solutions. Absorption capacity curves exhibit universal kinetics when time is rescaled using a characteristic time proportional to the viscosity of the solutions. Additionally, a novel visualization technique is employed to observe the core-shell structure of the hydrogel beads at early times in the swelling process. The evolution of the core-shell structure indicates a constant front velocity, which also reveals universal behavior with the same nondimensional time, suggesting a viscous dominated transport of the solution penetrating the beads.
Collapse
Affiliation(s)
- Sebastian Falcioni
- Universidad de Buenos Aires, Facultad de Ingeniería, Grupo de Medios Porosos, Paseo Colón 850, 1063 Buenos Aires, Argentina
| | - Yanina Lucrecia Roht
- Universidad de Buenos Aires, Facultad de Ingeniería, Grupo de Medios Porosos, Paseo Colón 850, 1063 Buenos Aires, Argentina
| | - Germán Drazer
- Mechanical and Aerospace Engineering Department, Rutgers, The State University of New Jersey, 08854, Piscataway, New Jersey, United States
| | - Irene Ippolito
- Universidad de Buenos Aires, Facultad de Ingeniería, Grupo de Medios Porosos, Paseo Colón 850, 1063 Buenos Aires, Argentina
| |
Collapse
|
3
|
Moondra P, Jimenez-Shahed J. Profiling deutetrabenazine extended-release tablets for tardive dyskinesia and chorea associated with Huntington's disease. Expert Rev Neurother 2024; 24:849-863. [PMID: 38982802 DOI: 10.1080/14737175.2024.2376107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
INTRODUCTION Tardive dyskinesia (TD) and Huntington's disease (HD)-associated chorea are persistent and disabling hyperkinetic disorders that can be treated with vesicular monoamine transporter type 2 (VMAT2) inhibitors, including the recently approved once-daily (QD) formulation of deutetrabenazine (DTBZ ER). While its efficacy and safety profile have not been directly investigated, currently available data confirms bioequivalence and similar bioavailability to the twice-daily formulation (DTBZ BID). AREAS COVERED The authors briefly review the pivotal trials establishing efficacy of DTBZ for TD and HD-associated chorea, the pharmacokinetic data for bioequivalence between QD and BID dosing of DTBZ, as well as dose proportionality evidence, titration recommendations, and safety profile for DTBZ ER. EXPERT OPINION Long-term data show that DTBZ is efficacious and well tolerated for the treatment of TD and HD-associated chorea. DTBZ ER likely demonstrates therapeutic equivalence with no new safety signals. Due to the lack of comparative clinical trial data, no evidence-based recommendation about choice of VMAT2 inhibitor or switching between VMAT2 inhibitors can be made about best practice. Ultimately, QD dosing may offer the chance of improved medication adherence, an important consideration in patients with complex treatment regimens and/or patients with cognitive decline.
Collapse
Affiliation(s)
- P Moondra
- Clinical Movement Disorders Fellow, The Mount Sinai Hospital, New York, NY, USA
| | - J Jimenez-Shahed
- Neurology and Neurosurgery, Movement Disorders Neuromodulation & Brain Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
4
|
Guidi L, Cascone MG, Rosellini E. Light-responsive polymeric nanoparticles for retinal drug delivery: design cues, challenges and future perspectives. Heliyon 2024; 10:e26616. [PMID: 38434257 PMCID: PMC10906429 DOI: 10.1016/j.heliyon.2024.e26616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
A multitude of sight-threatening retinal diseases, affecting hundreds of millions around the globe, lack effective pharmacological treatments due to ocular barriers and common drug delivery limitations. Polymeric nanoparticles (PNPs) are versatile drug carriers with sustained drug release profiles and tunable physicochemical properties which have been explored for ocular drug delivery to both anterior and posterior ocular tissues. PNPs can incorporate a wide range of drugs and overcome the challenges of conventional retinal drug delivery. Moreover, PNPs can be engineered to respond to specific stimuli such as ultraviolet, visible, or near-infrared light, and allow precise spatiotemporal control of the drug release, enabling tailored treatment regimens and reducing the number of required administrations. The objective of this study is to emphasize the therapeutic potential of light-triggered drug-loaded polymeric nanoparticles to treat retinal diseases through an exploration of ocular pathologies, challenges in drug delivery, current production methodologies and recent applications. Despite challenges, light-responsive PNPs hold the promise of substantially enhancing the treatment landscape for ocular diseases, aiming for an improved quality of life for patients.
Collapse
Affiliation(s)
- Lorenzo Guidi
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122, Pisa, Italy
| | - Maria Grazia Cascone
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122, Pisa, Italy
| | - Elisabetta Rosellini
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122, Pisa, Italy
| |
Collapse
|
5
|
Rad ME, Soylukan C, Kulabhusan PK, Günaydın BN, Yüce M. Material and Design Toolkit for Drug Delivery: State of the Art, Trends, and Challenges. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55201-55231. [PMID: 37994836 DOI: 10.1021/acsami.3c10065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
The nanomaterial and related toolkit have promising applications for improving human health and well-being. Nanobased drug delivery systems use nanoscale materials as carriers to deliver therapeutic agents in a targeted and controlled manner, and they have shown potential to address issues associated with conventional drug delivery systems. They offer benefits for treating various illnesses by encapsulating or conjugating biological agents, chemotherapeutic drugs, and immunotherapeutic agents. The potential applications of this technology are vast; however, significant challenges exist to overcome such as safety issues, toxicity, efficacy, and insufficient capacity. This article discusses the latest developments in drug delivery systems, including drug release mechanisms, material toolkits, related design molecules, and parameters. The concluding section examines the limitations and provides insights into future possibilities.
Collapse
Affiliation(s)
- Monireh Esmaeili Rad
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - Caner Soylukan
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey
| | | | - Beyza Nur Günaydın
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey
| | - Meral Yüce
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
6
|
Yoshida T, Kojima H. Oral Drug Delivery Systems Applied to Launched Products: Value for the Patients and Industrial Considerations. Mol Pharm 2023; 20:5312-5331. [PMID: 37856863 DOI: 10.1021/acs.molpharmaceut.3c00482] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Drug delivery systems (DDS) control the amount, rate, and site of administration of drug substances in the body as well as their release and ADME (absorption, distribution, metabolism, excretion). Among the various types of DDS, amount-controlled DDS for solubilization and absorption increase the bioavailability. Time- and amount-controlled DDS are controlled release formulations classified as (1) membrane-type, (2) matrix-type, (3) osmotic-type, and (4) ion-exchange type. Timed-release formulations also control the time and amount of release and the absorption of drugs. Site- and amount-controlled DDS are characterized by colonic delivery and intestinal lymph-targeting to improve release and ADME of drug substances. Finally, site-, time-, and amount-controlled DDS are gastroretentive formulations and local delivery in the oral cavity to improve site retention, release, and ADME of drugs. DDS can enhance efficacy, reduce adverse effects, and optimize the dosing frequency of various drug products to increase patient value. This review focuses on patient value and industrial considerations of launched oral DDS. We provide a technological overview of candidate and marketed DDS, as well as the pros/cons of the technologies for industrialization with consideration to excipients, manufacturing, and storage stability. Moreover, to demonstrate the usefulness of the technology and support the selection and development of the best technologies for patients, we also describe patient value from clinical studies and analyses, particularly with regard to increased new medical options, higher efficacy, reduced adverse effects, reduced number of doses and clinic visits, easier administration, higher quality of life, greater adherence, and satisfaction.
Collapse
Affiliation(s)
- Takayuki Yoshida
- Pharmaceutical Research and Technology Laboratories, Astellas Pharma Inc, 180 Ozumi, Yaizu, Shizuoka 425-0072, Japan
| | - Hiroyuki Kojima
- Pharmaceutical Research and Technology Laboratories, Astellas Pharma Inc, 180 Ozumi, Yaizu, Shizuoka 425-0072, Japan
| |
Collapse
|
7
|
Ezike TC, Okpala US, Onoja UL, Nwike CP, Ezeako EC, Okpara OJ, Okoroafor CC, Eze SC, Kalu OL, Odoh EC, Nwadike UG, Ogbodo JO, Umeh BU, Ossai EC, Nwanguma BC. Advances in drug delivery systems, challenges and future directions. Heliyon 2023; 9:e17488. [PMID: 37416680 PMCID: PMC10320272 DOI: 10.1016/j.heliyon.2023.e17488] [Citation(s) in RCA: 93] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023] Open
Abstract
Advances in molecular pharmacology and an improved understanding of the mechanism of most diseases have created the need to specifically target the cells involved in the initiation and progression of diseases. This is especially true for most life-threatening diseases requiring therapeutic agents which have numerous side effects, thus requiring accurate tissue targeting to minimize systemic exposure. Recent drug delivery systems (DDS) are formulated using advanced technology to accelerate systemic drug delivery to the specific target site, maximizing therapeutic efficacy and minimizing off-target accumulation in the body. As a result, they play an important role in disease management and treatment. Recent DDS offer greater advantages when compared to conventional drug delivery systems due to their enhanced performance, automation, precision, and efficacy. They are made of nanomaterials or miniaturized devices with multifunctional components that are biocompatible, biodegradable, and have high viscoelasticity with an extended circulating half-life. This review, therefore, provides a comprehensive insight into the history and technological advancement of drug delivery systems. It updates the most recent drug delivery systems, their therapeutic applications, challenges associated with their use, and future directions for improved performance and use.
Collapse
Affiliation(s)
- Tobechukwu Christian Ezike
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Ugochukwu Solomon Okpala
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Ufedo Lovet Onoja
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Chinenye Princess Nwike
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Emmanuel Chimeh Ezeako
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Osinachi Juliet Okpara
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Charles Chinkwere Okoroafor
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Shadrach Chinecherem Eze
- Department of Clinical Pharmacy and Pharmacy Management, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Onyinyechi Loveth Kalu
- Department of Clinical Pharmacy and Pharmacy Management, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | | | - Ugochukwu Gideon Nwadike
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - John Onyebuchi Ogbodo
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
- Department of Science Laboratory Technology, Faculty of Physical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Bravo Udochukwu Umeh
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Emmanuel Chekwube Ossai
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Bennett Chima Nwanguma
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| |
Collapse
|
8
|
Sridhar GR, Pandit K, Warrier S, Birla A. Sustained-Release Vildagliptin 100 mg in Type 2 Diabetes Mellitus: A Review. Cureus 2023; 15:e39204. [PMID: 37378205 PMCID: PMC10291938 DOI: 10.7759/cureus.39204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
Dipeptidyl peptidase-4 inhibitors (DPP4Is) were introduced into the management of type 2 diabetes mellitus (T2DM) as they are insulinotropic and have no inherent risk of hypoglycemia and no effect on body weight. Currently, 11 drugs in this class are available for the management of diabetes. Although they have a similar mechanism of action, they differ from one other in their binding mechanisms, which influences their therapeutic and pharmacological profiles. Vildagliptin's overall safety and tolerability profile was comparable to placebo throughout clinical studies, and real-world data in a large group of T2DM patients corroborated this finding. Therefore, DPP4Is like vildagliptin is a secure alternative for treating patients with T2DM. Vildagliptin treatment given as a once-daily (QD) 100 mg sustained release (SR) formulation fits the criteria of adherence and compliance. This SR formulation, given once daily has the potential to provide glycemic control like the vildagliptin 50 mg twice-daily (BD) formulation. This comprehensive review discusses the journey of vildagliptin as 50 mg BD therapy as well as 100 mg SR QD therapy.
Collapse
Affiliation(s)
- G R Sridhar
- Endocrinology, Endocrine and Diabetes Centre, Visakhapatnam, IND
| | - Kaushik Pandit
- Endocrinology, Diabetes and Metabolism, Belle Vue Clinic, Kolkata, IND
- Endocrinology, Diabetes and Metabolism, Institute of Post Graduate Medical Education & Research, Kolkata, IND
| | | | | |
Collapse
|
9
|
Nassar N, Kasapis S. Fundamental advances in hydrogels for the development of the next generation of smart delivery systems as biopharmaceuticals. Int J Pharm 2023; 633:122634. [PMID: 36690133 DOI: 10.1016/j.ijpharm.2023.122634] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Recent advances in developing and applying therapeutic peptides for anticancer, antimicrobial and immunomodulatory remedies have opened a new era in therapeutics. This development has resulted in the engineering of new biologics as part of a concerted effort by the pharmaceutical industry. Many alternative routes of administration and delivery vehicles, targeting better patient compliance and optimal therapeutic bioavailability, have emerged. However, the design of drug delivery systems to protect a range of unstable macromolecules, including peptides and proteins, from high temperatures, acidic environments, and enzymatic degradation remains a priority. Herein, we give chronological insights in the development of controlled-release drug delivery systems that occurred in the last 70 years or so. Subsequently, we summarise the key physicochemical characteristics of hydrogels contributing to the development of protective delivery systems concerning drug-targeted delivery in the chronospatial domain for biopharmaceuticals. Furthermore, we shed some light on promising hydrogels that can be utilised for systemic bioactive administration.
Collapse
Affiliation(s)
- Nazim Nassar
- School of Science, RMIT University, Bundoora West Campus, Melbourne, Vic 3083, Australia.
| | - Stefan Kasapis
- School of Science, RMIT University, Bundoora West Campus, Melbourne, Vic 3083, Australia
| |
Collapse
|
10
|
Almoshari Y. Osmotic Pump Drug Delivery Systems-A Comprehensive Review. Pharmaceuticals (Basel) 2022; 15:1430. [PMID: 36422560 PMCID: PMC9697821 DOI: 10.3390/ph15111430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 07/22/2023] Open
Abstract
In the last couple of years, novel drug delivery systems (NDDS) have attracted much attention in the food and pharmaceutical industries. NDDS is a broad term that encompasses many dosage forms, one of which is osmotic pumps. Osmotic pumps are considered to be the most reliable source of controlled drug delivery, both in humans and in animals. These pumps are osmotically controlled and release active agents through osmotic pressure. To a large extent, drug release from such a system is independent of gastric fluids. Based on such unique properties and advantages, osmotic pumps have made their mark on the pharmaceutical industry. This review summarizes the available osmotic devices for implantation and osmotic tablets for oral administration.
Collapse
Affiliation(s)
- Yosif Almoshari
- The Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
11
|
Development and pharmacokinetic evaluation of osmotically controlled drug delivery system of Valganciclovir HCl for potential application in the treatment of CMV retinitis. Drug Deliv Transl Res 2022; 12:2708-2729. [PMID: 35254625 DOI: 10.1007/s13346-022-01122-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2022] [Indexed: 12/15/2022]
Abstract
Valganciclovir HCl (VGH) is the widely used drug for the treatment of cytomegalovirus (CMV) retinitis infection with an induction dose of 900 mg per oral (p.o.) twice a day and a maintenance dose of 900 mg (p.o.). This required dose of the drug also leads to multiple side effects due to repeated administration. The research was highlighted to develop, formulate, optimize, and evaluate single-core osmotic pump (SCOP) tablet of VGH with the dose of 450 mg to reduce dosing frequency and associated side effects. The decrease in dose also minimizes the hepatic and nephrotic load. The optimized batch of the formulation was subjected to comparative in vitro and in vivo evaluation. The tablet core composition is the primary influencer of the drug delivery fraction in a zero order, whereas the membrane characteristics control the drug release rate. In vivo pharmacokinetic studies revealed that the newly developed osmotic formulation has controlled zero-order release for 24 h with a single dose of 450 mg while the marketed formulation requires twice administration within 24 h to maintain the plasma concentration in the therapeutic window. The pharmacokinetic study demonstrated that the developed formulation has the area under curve (AUC) of 58.415 µg h/ml with single dose while the marketed formulation shows the AUC of about 37.903 µg h/ml and 31.983 µg h/ml for first and second dose, respectively. The large AUC demonstrates the extended release of drug with a single dose and effective plasma concentration. Hence, the developed formulation can be a promising option for the treatment of CMV retinitis with the minimum dose and dosing frequency.
Collapse
|
12
|
Barnett A, Karnes JJ, Lu J, Major DR, Oakdale JS, Grew KN, McClure JP, Molinero V. Exponential Water Uptake in Ionomer Membranes Results from Polymer Plasticization. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Adam Barnett
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - John J. Karnes
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Jibao Lu
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Dale R. Major
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - James S. Oakdale
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Kyle N. Grew
- DEVCOM Army Research Laboratory, Adelphi, Maryland 20783, United States
| | - Joshua P. McClure
- DEVCOM Army Research Laboratory, Adelphi, Maryland 20783, United States
| | - Valeria Molinero
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
13
|
Tijani AO, Garg J, Frempong D, Verana G, Kaur J, Joga R, Sabanis CD, Kumar S, Kumar N, Puri A. Sustained drug delivery strategies for treatment of common substance use disorders: Promises and challenges. J Control Release 2022; 348:970-1003. [PMID: 35752256 DOI: 10.1016/j.jconrel.2022.06.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 10/17/2022]
Abstract
Substance use disorders (SUDs) are a leading cause of death and other ill health effects in the United States and other countries in the world. Several approaches ranging from detoxification, behavioral therapy, and the use of antagonists or drugs with counter effects are currently being applied for its management. Amongst these, drug therapy is the mainstay for some drug abuse incidences, as is in place specifically for opioid abuse or alcohol dependence. The severity of the havocs observed with the SUDs has triggered constant interest in the discovery and development of novel medications as well as suitable or most appropriate methods for the delivery of these agents. The chronic need of such drugs in users warrants the need for their prolonged or sustained systemic availability. Further, the need to improve patient tolerance to medication, limit invasive drug use and overall treatment outcome are pertinent considerations for embracing sustained release designs for medications used in managing SUDs. This review aims to provide an overview on up-to-date advances made with regards to sustained delivery systems for the drugs for treatment of different types of SUDs such as opioid, alcohol, tobacco, cocaine, and cannabis use disorders. The clinical relevance, promises and the limitations of deployed sustained release approaches along with future opportunities are discussed.
Collapse
Affiliation(s)
- Akeemat O Tijani
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614, USA.
| | - Jivesh Garg
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Dorcas Frempong
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614, USA.
| | - Gabrielle Verana
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614, USA.
| | - Jagroop Kaur
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614, USA.
| | - Ramesh Joga
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India.
| | - Chetan D Sabanis
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India.
| | - Sandeep Kumar
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India.
| | - Neeraj Kumar
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India.
| | - Ashana Puri
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614, USA.
| |
Collapse
|
14
|
Shazly T, Smith A, Uline MJ, Spinale FG. Therapeutic payload delivery to the myocardium: Evolving strategies and obstacles. JTCVS OPEN 2022; 10:185-194. [PMID: 36004211 PMCID: PMC9390211 DOI: 10.1016/j.xjon.2022.04.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Key Words
- BMC, bone marrow cell
- HF, heart failure
- ID, intracoronary delivery
- IMD, intramyocardial delivery
- IPD, intrapericardial delivery
- LV, left ventricle
- MI, myocardial infarct
- MSC, mesenchymal stem cell
- TED, transendocardial delivery
- bFGF, basic fibroblast growth factor
- biomaterial
- cardiac
- injection
- local delivery
- myocardium
- payload
Collapse
Affiliation(s)
- Tarek Shazly
- College of Engineering and Computing, School of Medicine, University of South Carolina, Columbia, SC
| | - Arianna Smith
- College of Arts and Sciences, Florida Gulf Coast University, Fort Myers, Fla
| | - Mark J. Uline
- College of Engineering and Computing, School of Medicine, University of South Carolina, Columbia, SC
| | - Francis G. Spinale
- College of Engineering and Computing, School of Medicine, University of South Carolina, Columbia, SC
- Cardiovascular Translational Research Center, School of Medicine, University of South Carolina, Columbia, SC
- Columbia VA Health Care System, Columbia, SC
| |
Collapse
|
15
|
Song Q, Jiang C, Wang C, Zhou L, Han Z, Sun N, Huang P, Wang D. Preparation and in Vitro Evaluation of Osmotic-Pump Lorcaserin-hydrochloride Controlled-Release Tablets. Chem Pharm Bull (Tokyo) 2022; 70:202-210. [PMID: 35228384 DOI: 10.1248/cpb.c21-00788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Long-term and constant-release osmotic-pump lorcaserin hydrochloride controlled-release tablets (OP LH CRTs) were prepared, to investigate the influencing factors of LH release and optimize the formulation. The mechanism of release of LH from OP LH CRTs in vitro was investigated. By establishing a high-efficiency method for measuring LH release in vitro, and optimizing it by single-factor and orthogonal experiments, the best formulation of OP LH CRTs was determined. Then, the optimal prescription of OP LH CRTs was: LH = 20.8 mg; mannitol = 100 mg, microcrystalline cellulose = 125 mg; magnesium stearate = 5 mg; cellulose acetate = 3%; polyethylene glycol 400 = 10%; dibutyl phthalate = 10%; Wetting agent and binder was 3% polyvinyl pyrrolidone (PVP) K30 ethanol solution; aperture diameter = 0.8 mm; the coating gained 3% weight. And finally, prepared OP LH CRTs were released at a constant rate in vitro and sustained for 16 h with good reproducibility between batches. Using an orthogonal experimental design, OP LH CRTs with remarkable zero-order release characteristics within 16 h were obtained, and formulation optimization was realized.
Collapse
Affiliation(s)
- Qiqi Song
- School of Pharmacy, Anhui University of Chinese Medicine
| | - Chengjun Jiang
- School of Pharmacy, Anhui University of Chinese Medicine.,Shanghai Mosim Pharmaceutical Technology CO., LTD
| | - Chongyang Wang
- School of Pharmacy, Anhui University of Chinese Medicine
| | - Li Zhou
- School of Pharmacy, Anhui University of Chinese Medicine
| | - Zhili Han
- School of Pharmacy, Anhui University of Chinese Medicine
| | - Nianxia Sun
- School of Pharmacy, Anhui University of Chinese Medicine
| | - Peng Huang
- School of Pharmacy, Anhui University of Chinese Medicine
| | - Dianlei Wang
- School of Pharmacy, Anhui University of Chinese Medicine
| |
Collapse
|
16
|
Bisphenol A-Related Effects on Bone Morphology and Biomechanical Properties in an Animal Model. TOXICS 2022; 10:toxics10020086. [PMID: 35202272 PMCID: PMC8880620 DOI: 10.3390/toxics10020086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/05/2023]
Abstract
Bisphenol A (BPA), which is contained in numerous plastic products, is known to act as an endocrine-disruptive, toxic, and carcinogenic chemical. This experimental series sought to determine the influence of BPA exposure on the femoral bone architecture and biomechanical properties of male and female Wistar rats. BPA was applied subcutaneously by using osmotic pumps. After 12 weeks, the bones were analyzed by micro-computed tomography (micro-CT) and a three-point bending test. Comparing the female low- and high-dose groups, a significantly greater marrow area (p = 0.047) was identified in the group exposed to a higher BPA concentration. In addition, the trabecular number tended to be higher in the female high-dose group when compared to the low-dose group (p > 0.05). The area moment of inertia also tended to be higher in the male high-dose group when compared to the male low-dose group (p > 0.05). Considering our results, BPA-related effects on the bone morphology in female Wistar rats are osteoanabolic after high-dose exposure, while, in male rats, a tendency toward negative effects on the bone morphology in terms of a reduced cross-sectional cortical area and total area could be demonstrated.
Collapse
|
17
|
Joy R, George J, John F. Brief Outlook on Polymeric Nanoparticles, Micelles, Niosomes, Hydrogels and Liposomes: Preparative Methods and Action. ChemistrySelect 2022. [DOI: 10.1002/slct.202104045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Reshma Joy
- Bioorganic Chemistry Laboratory Sacred Heart college (Autonomous), Thevara Kochi Kerala 682013 India
| | - Jinu George
- Bioorganic Chemistry Laboratory Sacred Heart college (Autonomous), Thevara Kochi Kerala 682013 India
| | - Franklin John
- Bioorganic Chemistry Laboratory Sacred Heart college (Autonomous), Thevara Kochi Kerala 682013 India
| |
Collapse
|
18
|
Huang L, Zhai Y, Fajardo CD, Lang D. YK-4-279 Attenuates Progression of Pre-Existing Pigmented Lesions to Nodular Melanoma in a Mouse Model. Cancers (Basel) 2021; 14:143. [PMID: 35008307 PMCID: PMC8749984 DOI: 10.3390/cancers14010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/23/2021] [Accepted: 12/26/2021] [Indexed: 11/25/2022] Open
Abstract
More options are needed for the effective treatment of melanoma. In a previous study, we discovered the small molecule drug YK-4-279 almost completely inhibited tumor progression in the BrafCA;Tyr-CreERT2;Ptenflox/flox transgenic mouse model. YK-4-279 had no effect on tumor initiation but blocked progression of invasive melanoma. Our current study was designed as a treatment model, where YK-4-279 was administered during pigmented lesion formation. The study design included the use of three groups: (1) a control group that received only DMSO without a drug (MOCK), (2) mice following our prior studies with YK-4-279 administered at the time of tumor induction (YK-4-279), and (3) mice treated during tumor initiation (YK-4-279 delay). While the MOCK mice had progression of tumors, both YK-4-279 and YK-4-279 delay groups had a significant block or delay of progression. The majority of mice in the YK-4-279 groups had a block of progression, while the YK-4-279 delay group had either a partial block (60% in male mice or 29% in females) or a delay in disease progression in females (28 days in controls to 50 days in YK-4-279 delay group). Here, we demonstrate that YK-4-279 has a significant impact on blocking or delaying tumor progression in a pre-clinical treatment model of melanoma.
Collapse
Affiliation(s)
| | | | | | - Deborah Lang
- Department of Dermatology, Boston University, Boston, MA 02118, USA; (L.H.); (Y.Z.); (C.D.F.)
| |
Collapse
|
19
|
Sharma K, Porat Z, Gedanken A. Designing Natural Polymer-Based Capsules and Spheres for Biomedical Applications-A Review. Polymers (Basel) 2021; 13:4307. [PMID: 34960858 PMCID: PMC8708131 DOI: 10.3390/polym13244307] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Natural polymers, such as polysaccharides and polypeptides, are potential candidates to serve as carriers of biomedical cargo. Natural polymer-based carriers, having a core-shell structural configuration, offer ample scope for introducing multifunctional capabilities and enable the simultaneous encapsulation of cargo materials of different physical and chemical properties for their targeted delivery and sustained and stimuli-responsive release. On the other hand, carriers with a porous matrix structure offer larger surface area and lower density, in order to serve as potential platforms for cell culture and tissue regeneration. This review explores the designing of micro- and nano-metric core-shell capsules and porous spheres, based on various functions. Synthesis approaches, mechanisms of formation, general- and function-specific characteristics, challenges, and future perspectives are discussed. Recent advances in protein-based carriers with a porous matrix structure and different core-shell configurations are also presented in detail.
Collapse
Affiliation(s)
- Kusha Sharma
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel;
| | - Ze’ev Porat
- Department of Civil and Environmental Engineering, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
- Department of Chemistry, Nuclear Research Center-Negev, Be’er Sheva 84190, Israel
| | - Aharon Gedanken
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel;
| |
Collapse
|
20
|
The evolution of commercial drug delivery technologies. Nat Biomed Eng 2021; 5:951-967. [PMID: 33795852 DOI: 10.1038/s41551-021-00698-w] [Citation(s) in RCA: 498] [Impact Index Per Article: 166.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023]
Abstract
Drug delivery technologies have enabled the development of many pharmaceutical products that improve patient health by enhancing the delivery of a therapeutic to its target site, minimizing off-target accumulation and facilitating patient compliance. As therapeutic modalities expanded beyond small molecules to include nucleic acids, peptides, proteins and antibodies, drug delivery technologies were adapted to address the challenges that emerged. In this Review Article, we discuss seminal approaches that led to the development of successful therapeutic products involving small molecules and macromolecules, identify three drug delivery paradigms that form the basis of contemporary drug delivery and discuss how they have aided the initial clinical successes of each class of therapeutic. We also outline how the paradigms will contribute to the delivery of live-cell therapies.
Collapse
|
21
|
NANDI S, BANERJEE A, REZA KH. Formulation and Evaluation of Enteric Coated Elementary Osmotic Tablets of Aceclofenac. Turk J Pharm Sci 2021; 18:498-509. [PMID: 34496557 PMCID: PMC8430416 DOI: 10.4274/tjps.galenos.2020.03443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/16/2020] [Indexed: 12/01/2022]
Abstract
Objectives This study aimed to develop a controlled drug delivery device for aceclofenac, a non-steroidal anti-inflammatory drug. Therefore, the agent was projected to develop an osmotic pump with enteric coating. The strength of the semipermeable membrane was improved by optimizing the formulation of the device, which can control the drug release over a prolonged period of time. Materials and Methods The formulations were designed and optimized by using the statistical design of experiment followed by 32 factorial design to discover the best formulation. Several evaluation tests were performed to assess the physical parameters of the formulations. The percentage drug release of the formulations was observed for up to 9 h. Results The model 3D graph analysis indicated that as an osmogen, a higher percentage of potassium chloride was utilized more effectively than mannitol for the rapid dissolution of osmotic tablets. The optimized formulation can release 88.60±0.02% up to 9 h. The accelerated stability study confirmed that the optimized formulation was stable. Conclusion The formulated osmotic tablets of aceclofenac were therapeutically safe and effective and did not release any drug content in the simulated gastric medium for a predetermined time.
Collapse
Affiliation(s)
- Shankhadip NANDI
- Eminent College of Pharmaceutical Technology, Department of Pharmaceutics, Kolkata, India
| | - Ayan BANERJEE
- Bengal School of Technology, Department of Pharmaceutics, Chinsurah, India
| | | |
Collapse
|
22
|
Juszczyk E, Kisło K, Żero P, Tratkiewicz E, Wieczorek M, Paszkowska J, Banach G, Wiater M, Hoc D, Garbacz G, Sczodrok J, Danielak D. Development and Bio-Predictive Evaluation of Biopharmaceutical Properties of Sustained-Release Tablets with a Novel GPR40 Agonist for a First-in-Human Clinical Trial. Pharmaceutics 2021; 13:804. [PMID: 34071286 PMCID: PMC8227174 DOI: 10.3390/pharmaceutics13060804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022] Open
Abstract
Sustained-release (SR) formulations may appear advantageous in first-in-human (FIH) study of innovative medicines. The newly developed SR matrix tablets require prolonged maintenance of API concentration in plasma and should be reliably assessed for the risk of uncontrolled release of the drug. In the present study, we describe the development of a robust SR matrix tablet with a novel G-protein-coupled receptor 40 (GPR40) agonist for first-in-human studies and introduce a general workflow for the successful development of SR formulations for innovative APIs. The hydrophilic matrix tablets containing the labeled API dose of 5, 30, or 120 mg were evaluated with several methods: standard USP II dissolution, bio-predictive dissolution tests, and the texture and matrix formation analysis. The standard dissolution tests allowed preselection of the prototypes with the targeted dissolution rate, while the subsequent studies in physiologically relevant conditions revealed unwanted and potentially harmful effects, such as dose dumping under an increased mechanical agitation. The developed formulations were exceptionally robust toward the mechanical and physicochemical conditions of the bio-predictive tests and assured a comparable drug delivery rate regardless of the prandial state and dose labeled. In conclusion, the introduced development strategy, when implemented into the development cycle of SR formulations with innovative APIs, may allow not only to reduce the risk of formulation-related failure of phase I clinical trial but also effectively and timely provide safe and reliable medicines for patients in the trial and their further therapy.
Collapse
Affiliation(s)
- Ewelina Juszczyk
- Research and Development Center, Celon Pharma S.A., Marymoncka 15, 05-052 Kazuń Nowy, Poland; (E.J.); (K.K.); (P.Ż.); (E.T.); (M.W.)
| | - Kamil Kisło
- Research and Development Center, Celon Pharma S.A., Marymoncka 15, 05-052 Kazuń Nowy, Poland; (E.J.); (K.K.); (P.Ż.); (E.T.); (M.W.)
| | - Paweł Żero
- Research and Development Center, Celon Pharma S.A., Marymoncka 15, 05-052 Kazuń Nowy, Poland; (E.J.); (K.K.); (P.Ż.); (E.T.); (M.W.)
| | - Ewa Tratkiewicz
- Research and Development Center, Celon Pharma S.A., Marymoncka 15, 05-052 Kazuń Nowy, Poland; (E.J.); (K.K.); (P.Ż.); (E.T.); (M.W.)
| | - Maciej Wieczorek
- Research and Development Center, Celon Pharma S.A., Marymoncka 15, 05-052 Kazuń Nowy, Poland; (E.J.); (K.K.); (P.Ż.); (E.T.); (M.W.)
| | - Jadwiga Paszkowska
- Physiolution Polska sp. z o.o., 74 Piłsudskiego St., 50-020 Wrocław, Poland; (J.P.); (G.B.); (M.W.); (D.H.); (G.G.)
| | - Grzegorz Banach
- Physiolution Polska sp. z o.o., 74 Piłsudskiego St., 50-020 Wrocław, Poland; (J.P.); (G.B.); (M.W.); (D.H.); (G.G.)
| | - Marcela Wiater
- Physiolution Polska sp. z o.o., 74 Piłsudskiego St., 50-020 Wrocław, Poland; (J.P.); (G.B.); (M.W.); (D.H.); (G.G.)
| | - Dagmara Hoc
- Physiolution Polska sp. z o.o., 74 Piłsudskiego St., 50-020 Wrocław, Poland; (J.P.); (G.B.); (M.W.); (D.H.); (G.G.)
| | - Grzegorz Garbacz
- Physiolution Polska sp. z o.o., 74 Piłsudskiego St., 50-020 Wrocław, Poland; (J.P.); (G.B.); (M.W.); (D.H.); (G.G.)
- Physiolution GmbH, Walther Rathenau Strasse 49a, 17489 Greifswald, Germany;
| | - Jaroslaw Sczodrok
- Physiolution GmbH, Walther Rathenau Strasse 49a, 17489 Greifswald, Germany;
| | - Dorota Danielak
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznań, Poland
| |
Collapse
|
23
|
Abbasnezhad N, Kebdani M, Shirinbayan M, Champmartin S, Tcharkhtchi A, Kouidri S, Bakir F. Development of a Model Based on Physical Mechanisms for the Explanation of Drug Release: Application to Diclofenac Release from Polyurethane Films. Polymers (Basel) 2021; 13:1230. [PMID: 33920267 PMCID: PMC8069626 DOI: 10.3390/polym13081230] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, we present a method for prediction of the drug-release profile based on the physical mechanisms that can intervene in drug release from a drug-carrier. The application presented here incorporates the effects of drug concentration and Reynolds number defining the circulating flow in the testing vein. The experimental data used relate to the release of diclofenac from samples of non-degradable polyurethane subjected to static and continuous flow. This case includes simultaneously three mechanisms: burst-release, diffusion and osmotic pressure, identified beforehand here as being able to contribute to the drug liberation. For this purpose, authors coded the Sequential Quadratic Programming Algorithm to solve the problem of non-linear optimization. The experimental data used to develop the mathematical model obtained from release studies carried out in water solution at 37 °C, for three concentrations of diclofenac and two water flow rates. We discuss the contribution of mechanisms and kinetics by considering two aforementioned parameters and, following that, we obtain the specific-model and compare the calculated results with the experimental results for the reserved cases. The results showed that drug percentage mostly affect the burst release, however flow rate has affected the osmotic release. In addition, release kinetics of all the mechanisms have increased by increasing the values of two considered parameters.
Collapse
Affiliation(s)
- Navideh Abbasnezhad
- Arts et Metiers Institute of Technology, CNAM, LIFSE, HESAM University, F-75013 Paris, France; (M.K.); (M.S.); (S.C.); (S.K.); (F.B.)
- Arts et Metiers Institute of Technology, CNAM, PIMM, HESAM University, F-75013 Paris, France;
| | - Mohamed Kebdani
- Arts et Metiers Institute of Technology, CNAM, LIFSE, HESAM University, F-75013 Paris, France; (M.K.); (M.S.); (S.C.); (S.K.); (F.B.)
| | - Mohammadali Shirinbayan
- Arts et Metiers Institute of Technology, CNAM, LIFSE, HESAM University, F-75013 Paris, France; (M.K.); (M.S.); (S.C.); (S.K.); (F.B.)
- Arts et Metiers Institute of Technology, CNAM, PIMM, HESAM University, F-75013 Paris, France;
| | - Stéphane Champmartin
- Arts et Metiers Institute of Technology, CNAM, LIFSE, HESAM University, F-75013 Paris, France; (M.K.); (M.S.); (S.C.); (S.K.); (F.B.)
| | - Abbas Tcharkhtchi
- Arts et Metiers Institute of Technology, CNAM, PIMM, HESAM University, F-75013 Paris, France;
| | - Smaine Kouidri
- Arts et Metiers Institute of Technology, CNAM, LIFSE, HESAM University, F-75013 Paris, France; (M.K.); (M.S.); (S.C.); (S.K.); (F.B.)
| | - Farid Bakir
- Arts et Metiers Institute of Technology, CNAM, LIFSE, HESAM University, F-75013 Paris, France; (M.K.); (M.S.); (S.C.); (S.K.); (F.B.)
| |
Collapse
|
24
|
Farooqi S, Yousuf RI, Shoaib MH, Ahmed K, Ansar S, Husain T. Quality by Design (QbD)-Based Numerical and Graphical Optimization Technique for the Development of Osmotic Pump Controlled-Release Metoclopramide HCl Tablets. Drug Des Devel Ther 2020; 14:5217-5234. [PMID: 33273807 PMCID: PMC7705261 DOI: 10.2147/dddt.s278918] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/20/2020] [Indexed: 01/15/2023] Open
Abstract
PURPOSE To develop the osmotically controlled-release gastroprokinetic metoclopramide HCl tablets, using quality by design (QbD)-numerical and graphical optimization technique for the treatment of gastroparesis and prophylaxis of delayed nausea and vomiting induced by low-high emetogenic chemotherapy. METHODS Formulations were designed by central composite design using Design Expert version 11.0.0, with osmogen concentration (X1), orifice size (X2), and tablet weight gain after coating (X3) as input and in-vitro drug release at 1hr. (Y1), 6 hrs. (Y2), and 12 hrs. (Y3), and the regression coefficient of drug release data fitted to zero-order, RSQ zero (Y4) as output variables. Core tablets prepared by direct compression were coated with Opadry® CA. The experimental design was validated by the polynomial equation. A correlation between predicted and observed values was evaluated by random checkpoint analysis. The optimized formulations were characterized for drug release, pH effect, osmolarity, agitation intensity, surface morphology, and stability study, and were subjected to accelerated studies according to ICH guidelines. RESULTS The interaction charts and response surface plots deduced a significant simultaneous effect of X variables on in vitro drug release and RSQ zero. The numerical optimization model predicted >90% drug release with X1 (13.30%), X2 (0.6 mm), and X3 (7.96%). Random checkpoint analysis showed a good correlation between predicted and observed values. The optimized formulation followed zero-order kinetics (r2=0.9703) drug release. Shelf life calculated was 2.8 years as per ICH guidelines. CONCLUSION The QbD-based approach was found successful in developing controlled release osmotic tablets of metoclopramide HCl, for reducing the dosage frequency, better emetic control, and improve patient compliance.
Collapse
Affiliation(s)
- Sadaf Farooqi
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi75270, Pakistan
| | - Rabia Ismail Yousuf
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi75270, Pakistan
| | - Muhammad Harris Shoaib
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi75270, Pakistan
| | - Kamran Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi75270, Pakistan
| | - Sabah Ansar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh11433, Saudi Arabia
| | - Tazeen Husain
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi75270, Pakistan
| |
Collapse
|
25
|
Jamaledin R, Makvandi P, Yiu CKY, Agarwal T, Vecchione R, Sun W, Maiti TK, Tay FR, Netti PA. Engineered Microneedle Patches for Controlled Release of Active Compounds: Recent Advances in Release Profile Tuning. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000171] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rezvan Jamaledin
- Department of Chemical, Materials & Industrial Production Engineering University of Naples Federico II Naples 80125 Italy
- Center for Advanced Biomaterials for Health Care (iit@CRIB) Italian Institute of Technology Naples 80125 Italy
| | - Pooyan Makvandi
- Center for Micro‐BioRobotics Istituto Italiano di Tecnologia (IIT) Viale R. Piaggio 34, 56025 Pontedera Pisa Italy
| | - Cynthia K. Y. Yiu
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, Prince Philip Dental Hospital The University of Hong Kong Hong Kong SAR China
| | - Tarun Agarwal
- Department of Biotechnology Indian Institute of Technology Kharagpur 721302 India
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for Health Care (iit@CRIB) Italian Institute of Technology Naples 80125 Italy
| | - Wujin Sun
- Department of Bioengineering Center for Minimally Invasive Therapeutics University of California, Los Angeles Los Angeles CA 90095 USA
| | - Tapas Kumar Maiti
- Department of Biotechnology Indian Institute of Technology Kharagpur 721302 India
| | | | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Health Care (iit@CRIB) Italian Institute of Technology Naples 80125 Italy
| |
Collapse
|
26
|
Whittaker AL, Hickman DL. The Impact of Social and Behavioral Factors on Reproducibility in Terrestrial Vertebrate Models. ILAR J 2020; 60:252-269. [PMID: 32720675 DOI: 10.1093/ilar/ilaa005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 01/30/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
The use of animal models remains critical in preclinical and translational research. The reliability of the animal models and aspects of their validity is likely key to effective translation of findings to medicine. However, despite considerable uniformity in animal models brought about by control of genetics, there remain a number of social as well as innate and acquired behavioral characteristics of laboratory animals that may impact on research outcomes. These include the effects of strain and genetics, age and development, sex, personality and affective states, and social factors largely brought about by housing and husbandry. In addition, aspects of the testing environment may also influence research findings. A number of considerations resulting from the animals' innate and acquired behavioral characteristics as well as their social structures are described. Suggestions for minimizing the impact of these factors on research are provided.
Collapse
Affiliation(s)
- Alexandra L Whittaker
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy Campus, South Australia, Australia
| | - Debra L Hickman
- Laboratory Animal Resource Center, Indiana University, Indianapolis, Indiana
| |
Collapse
|
27
|
Mohamed MI, Al-Mahallawi AM, Awadalla SM. Development and optimization of osmotically controlled drug delivery system for poorly aqueous soluble diacerein to improve its bioavailability. Drug Dev Ind Pharm 2020; 46:814-825. [DOI: 10.1080/03639045.2020.1757696] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Magdy I. Mohamed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Abdulaziz M. Al-Mahallawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October University for Modern Science and Arts (MSA), Giza, Egypt
| | - Sami M. Awadalla
- Department of Pharmaceutics, Faculty of Pharmacy, Khartoum University, Khartoum, Sudan
| |
Collapse
|
28
|
Layek B, Mandal S. Natural polysaccharides for controlled delivery of oral therapeutics: a recent update. Carbohydr Polym 2020; 230:115617. [DOI: 10.1016/j.carbpol.2019.115617] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 11/28/2022]
|
29
|
Coutant T, Laniesse D, Sykes JM. Advances in Therapeutics and Delayed Drug Release. Vet Clin North Am Exot Anim Pract 2019; 22:501-520. [PMID: 31395328 DOI: 10.1016/j.cvex.2019.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Reducing the frequency of drug administration in the treatment of exotic pets is advantageous because it may decrease handling frequency and thus potential stress and injury risk for the animal, increase owner compliance with the prescribed treatment, and decrease need for general anesthesia in patients that cannot be handled safely. Increasing efficient drug plasma concentration using sustained-released delivery systems is an appealing solution. Potential candidates that could provide a promising solution have been investigated in exotic pets. In this article, the technologies that are the closest to being integrated in exotic pet medicine are reviewed: osmotic pumps, nanoparticles, and hydrogels.
Collapse
Affiliation(s)
- Thomas Coutant
- Service NAC, CHV Fregis, 43 Avenue Aristide Briand, Arcueil 94110, France.
| | - Delphine Laniesse
- Eläinsairaala Evidensia Tammisto Vantaa, Tammiston Kauppatie 29, Vantaa 01510, Finland
| | - John M Sykes
- Wildlife Conservation Society, Zoological Health Program, 2300 Southern Boulevard, Bronx, NY 10460, USA
| |
Collapse
|
30
|
Affiliation(s)
- Jihong Min
- Andrew and Peggy Cherng Department of Medical EngineeringDivision of Engineering and Applied ScienceCalifornia Institute of Technology Pasadena CA 91125 USA
| | - Yiran Yang
- Andrew and Peggy Cherng Department of Medical EngineeringDivision of Engineering and Applied ScienceCalifornia Institute of Technology Pasadena CA 91125 USA
| | - Zhiguang Wu
- Andrew and Peggy Cherng Department of Medical EngineeringDivision of Engineering and Applied ScienceCalifornia Institute of Technology Pasadena CA 91125 USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical EngineeringDivision of Engineering and Applied ScienceCalifornia Institute of Technology Pasadena CA 91125 USA
| |
Collapse
|
31
|
Ampholytic and Polyelectrolytic Starch as Matrices for Controlled Drug Delivery. Pharmaceutics 2019; 11:pharmaceutics11060253. [PMID: 31159403 PMCID: PMC6631206 DOI: 10.3390/pharmaceutics11060253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/18/2019] [Accepted: 05/20/2019] [Indexed: 12/28/2022] Open
Abstract
The potential of the polyampholytic and polyelectrolytic starch compounds as excipients for drug controlled release was investigated using various tracers differing in terms of solubility and permeability. Ampholytic trimethylaminecarboxymethylstarch (TMACMS) simultaneously carrying trimethylaminehydroxypropyl (TMA) cationic groups and carboxymethyl (CM) anionic groups was obtained in one-step synthesis in aqueous media. Trimethylaminestarch (TMAS) and carboxymethylstarch (CMS) powders were also synthesized separately and then homogenized at equal proportions in liquid phase for co-processing by spray drying (SD) to obtain polyelectrolytic complexes TMAS-CMS (SD). Similarly, equal amounts of TMAS and CMS powders were dry mixed (DM) to obtain TMAS:CMS (DM). Monolithic tablets were obtained by direct compression of excipient/API mixes with 60% or 80% drug loads. The in vitro dissolution tests showed that ampholytic (TMACMS) and co-processed TMAS-CMS (SD) with selected tracers (one from each class of Biopharmaceutical Classification System (BCS)), were able to control the release even at very high loading (80%). The presence of opposite charges located at adequate distances may impact the polymeric chain organisation, their self-assembling, and implicitly the control of drug release. In conclusion, irrespective of preparation procedure, ampholytic and polyelectrolytic starch materials exhibited similar behaviours. Electrostatic interactions generated polymeric matrices conferring good mechanical features of tablets even at high drug loading.
Collapse
|
32
|
Pons-Faudoa FP, Ballerini A, Sakamoto J, Grattoni A. Advanced implantable drug delivery technologies: transforming the clinical landscape of therapeutics for chronic diseases. Biomed Microdevices 2019; 21:47. [PMID: 31104136 PMCID: PMC7161312 DOI: 10.1007/s10544-019-0389-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chronic diseases account for the majority of all deaths worldwide, and their prevalence is expected to escalate in the next 10 years. Because chronic disorders require long-term therapy, the healthcare system must address the needs of an increasing number of patients. The use of new drug administration routes, specifically implantable drug delivery devices, has the potential to reduce treatment-monitoring clinical visits and follow-ups with healthcare providers. Also, implantable drug delivery devices can be designed to maintain drug concentrations in the therapeutic window to achieve controlled, continuous release of therapeutics over extended periods, eliminating the risk of patient non-compliance to oral treatment. A higher local drug concentration can be achieved if the device is implanted in the affected tissue, reducing systemic adverse side effects and decreasing the challenges and discomfort of parenteral treatment. Although implantable drug delivery devices have existed for some time, interest in their therapeutic potential is growing, with a global market expected to reach over $12 billion USD by 2018. This review discusses implantable drug delivery technologies in an advanced stage of development or in clinical use and focuses on the state-of-the-art of reservoir-based implants including pumps, electromechanical systems, and polymers, sites of implantation and side effects, and deployment in developing countries.
Collapse
Affiliation(s)
- Fernanda P Pons-Faudoa
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Avenida Eugenio Garza Sada 2501, 64849, Monterrey, NL, Mexico
| | - Andrea Ballerini
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA
- Department of Oncology and Onco-Hematology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Jason Sakamoto
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA.
- Department of Surgery, Houston Methodist Hospital, 6550 Fannin Street, Houston, TX, 77030, USA.
- Department of Radiation Oncology, Houston Methodist Hospital, 6550 Fannin Street, Houston, TX, 77030, USA.
| |
Collapse
|
33
|
Ahmed K, Shoaib MH, Yousuf RI, Qazi F, Anwer S, Nasiri MI, Mahmood ZA. Use of Opadry®CA-A cellulose acetate/polyethylene glycol system for rate-controlled osmotic drug delivery of highly soluble antispastic agent Eperisone HCl. ADVANCES IN POLYMER TECHNOLOGY 2018. [DOI: 10.1002/adv.21946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kamran Ahmed
- Department of Pharmaceutics; Faculty of Pharmacy & Pharmaceutical Sciences; University of Karachi; Karachi Pakistan
| | - Muhammad Harris Shoaib
- Department of Pharmaceutics; Faculty of Pharmacy & Pharmaceutical Sciences; University of Karachi; Karachi Pakistan
| | - Rabia Ismail Yousuf
- Department of Pharmaceutics; Faculty of Pharmacy & Pharmaceutical Sciences; University of Karachi; Karachi Pakistan
| | - Faaiza Qazi
- Department of Pharmaceutics; Faculty of Pharmacy & Pharmaceutical Sciences; University of Karachi; Karachi Pakistan
| | - Sohail Anwer
- Department of Pharmaceutics; Faculty of Pharmacy & Pharmaceutical Sciences; University of Karachi; Karachi Pakistan
| | - Muhammad Iqbal Nasiri
- Department of Pharmaceutics; Faculty of Pharmacy & Pharmaceutical Sciences; University of Karachi; Karachi Pakistan
| | - Zafar Alam Mahmood
- Department of Pharmaceutics; Faculty of Pharmacy & Pharmaceutical Sciences; University of Karachi; Karachi Pakistan
| |
Collapse
|
34
|
Affiliation(s)
| | - Kevin Beaumont
- Medicine Design, Pfizer Inc., Cambridge, Massachusetts 02139, United States
| | - Tristan S. Maurer
- Medicine Design, Pfizer Inc., Cambridge, Massachusetts 02139, United States
| | - Li Di
- Medicine Design, Pfizer Inc., Groton, Connecticut 06340, United States
| |
Collapse
|
35
|
Application of Box–Behnken Design to Optimize the Osmotic Drug Delivery System of Metoprolol Succinate and its In Vivo Evaluation in Beagle Dogs. J Pharm Innov 2016. [DOI: 10.1007/s12247-016-9245-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chem Rev 2016; 116:2602-63. [PMID: 26854975 PMCID: PMC5509216 DOI: 10.1021/acs.chemrev.5b00346] [Citation(s) in RCA: 1600] [Impact Index Per Article: 200.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nazila Kamaly
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Basit Yameen
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jun Wu
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Omid C. Farokhzad
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
37
|
Sonkar A, Kumar A, Pathak K. Cellulose Acetate 398-10 Asymmetric Membrane Capsules for Osmotically Regulated Delivery of Acyclovir. JOURNAL OF PHARMACEUTICS 2016; 2016:8471520. [PMID: 26981319 PMCID: PMC4766346 DOI: 10.1155/2016/8471520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/04/2016] [Accepted: 01/13/2016] [Indexed: 11/18/2022]
Abstract
The study was aimed at developing cellulose acetate asymmetric membrane capsules (AMCs) of acyclovir for its controlled delivery at the absorption site. The AMCs were prepared by phase inversion technique using wet process. A 2(3) full factorial design assessed the effect of independent variables (level(s) of polymer, pore former, and osmogen) on the cumulative drug release from AMCs. The buoyant optimized formulation F7 (low level of cellulose acetate; high levels of both glycerol and sodium lauryl sulphate) displayed maximum drug release of 97.88 ± 0.77% in 8 h that was independent of variation in agitational intensity and intentional defect on the cellulose acetate AMC. The in vitro data best fitted zero-order kinetics (r (2) = 0.9898). SEM micrograph of the transverse section confirmed the asymmetric nature of the cellulose acetate capsular membrane. Statistical analysis by Design Expert software indicated no interaction between the independent variables confirming the efficiency of the design in estimating the effects of variables on drug release. The optimized formulation F7 (desirability = 0.871) displayed sustenance of drug release over the drug packed in AMC in pure state proving the superiority of osmotically active formulation. Conclusively the AMCs have potential for controlled release of acyclovir at its absorption site.
Collapse
Affiliation(s)
- Alka Sonkar
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh 281001, India
| | - Anil Kumar
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh 281001, India
| | - Kamla Pathak
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh 281001, India
| |
Collapse
|