1
|
Correia Gomes D, Meza Alvarado JE, Zamora Briseño JA, Cano Sarmiento C, Camacho Morales A, Viveros Contreras R. Maternal Supplementation with Lacticaseibacillus rhamnosus GG Improves Glucose Tolerance and Modulates the Intestinal Microbiota of Offspring. Diseases 2024; 12:312. [PMID: 39727642 PMCID: PMC11726987 DOI: 10.3390/diseases12120312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
INTRODUCTION Consuming hypercaloric diets during pregnancy induces metabolic, immune, and maternal intestinal dysbiosis disorders. These conditions are transferred to the offspring through the placenta and breastfeeding, increasing susceptibility to metabolic diseases. We investigated the effect of L. rhamnosus GG supplementation on offspring maternally programmed with a hypercaloric diet. METHODS Our study involved sixteen female Wistar rats aged ten weeks, which were divided into four groups based on their diets: control (Ctrl), cafeteria (CAF), control + probiotic (PRO), and cafeteria + probiotic (CPRO). The control + probiotic and cafeteria + probiotic groups received a daily oral administration of 250 μL of L. rhamnosus GG cell suspension (equivalent to 109 UFC) for nine weeks. The body weight of the animals was recorded weekly, and their food intake was monitored every 24 h. An oral glucose tolerance test was conducted on the offspring at seven weeks of age. At the ninth week of age, animals were euthanized, and blood, tissues, and organs were collected. RESULTS Maternal supplementation with L. rhamnosus GG decreased food intake and the average birth weight, improved glucose sensitivity, and lowered the levels of LDL, cholesterol, triglycerides, and mesenteric adipose tissue in offspring compared with the control and cafeteria groups. CONCLUSIONS Our findings indicate that supplementing with LGG during maternal programming could protect offspring from metabolic disruptions caused by a hypercaloric maternal diet.
Collapse
Affiliation(s)
- Dayane Correia Gomes
- Centro de Investigaciones Biomédicas, Doctorado en Ciencias Biomédicas, Universidad Veracruzana, Xalapa 91190, Mexico; (D.C.G.); (J.E.M.A.)
| | - José Enrique Meza Alvarado
- Centro de Investigaciones Biomédicas, Doctorado en Ciencias Biomédicas, Universidad Veracruzana, Xalapa 91190, Mexico; (D.C.G.); (J.E.M.A.)
| | | | - Cynthia Cano Sarmiento
- Food Research and Development Unit, Technological Institute of Veracruz, National Institute of Technology of Mexico, M.A. de Quevedo 2779, Veracruz 91897, Mexico;
| | - Alberto Camacho Morales
- Faculty of Medicine, Department of Biochemistry and Molecular Medicine, Autonomous University of Nuevo León, Monterrey 66455, Mexico;
| | - Rubi Viveros Contreras
- Centro de Investigaciones Biomédicas, Doctorado en Ciencias Biomédicas, Universidad Veracruzana, Xalapa 91190, Mexico; (D.C.G.); (J.E.M.A.)
| |
Collapse
|
2
|
Perrone S, Carloni S, Dell'Orto VG, Filonzi L, Beretta V, Petrolini C, Lembo C, Buonocore G, Esposito S, Nonnis Marzano F. Hypoxic ischemic brain injury: animal models reveal new mechanisms of melatonin-mediated neuroprotection. Rev Neurosci 2024; 35:331-339. [PMID: 38153803 DOI: 10.1515/revneuro-2023-0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/24/2023] [Indexed: 12/30/2023]
Abstract
Oxidative stress (OS) and inflammation play a key role in the development of hypoxic-ischemic (H-I) induced brain damage. Following H-I, rapid neuronal death occurs during the acute phase of inflammation, and activation of the oxidant-antioxidant system contributes to the brain damage by activated microglia. So far, in an animal model of perinatal H-I, it was showed that neuroprostanes are present in all brain damaged areas, including the cerebral cortex, hippocampus and striatum. Based on the interplay between inflammation and OS, it was demonstrated in the same model that inflammation reduced brain sirtuin-1 expression and affected the expression of specific miRNAs. Moreover, through proteomic approach, an increased expression of genes and proteins in cerebral cortex synaptosomes has been revealed after induction of neonatal H-I. Administration of melatonin in the experimental treatment of brain damage and neurodegenerative diseases has produced promising therapeutic results. Melatonin protects against OS, contributes to reduce the generation of pro-inflammatory factors and promotes tissue regeneration and repair. Starting from the above cited aspects, this educational review aims to discuss the inflammatory and OS main pathways in H-I brain injury, focusing on the role of melatonin as neuroprotectant and providing current and emerging evidence.
Collapse
Affiliation(s)
- Serafina Perrone
- Neonatology Unit, Department of Medicine and Surgery, University of Parma, Pietro Barilla Children's Hospital, Via Gramsci 14, 43126 Parma, Italy
| | - Silvia Carloni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Aurelio Saffi 2, 61029 Urbino, Italy
| | - Valentina Giovanna Dell'Orto
- Neonatology Unit, Department of Medicine and Surgery, University of Parma, Pietro Barilla Children's Hospital, Via Gramsci 14, 43126 Parma, Italy
| | - Laura Filonzi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Virginia Beretta
- Neonatology Unit, Department of Medicine and Surgery, University of Parma, Pietro Barilla Children's Hospital, Via Gramsci 14, 43126 Parma, Italy
| | - Chiara Petrolini
- Neonatology Unit, Department of Medicine and Surgery, University of Parma, Pietro Barilla Children's Hospital, Via Gramsci 14, 43126 Parma, Italy
| | - Chiara Lembo
- Department of Neonatology, APHP, Necker-Enfants, Malades Hospital, 149 Rue de Sèvres, 75015 Paris, France
| | - Giuseppe Buonocore
- Department of Molecular and Developmental Medicine, University of Siena, Via Banchi di Sotto 55, 53100 Siena, Italy
| | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, Pietro Barilla Children's Hospital, Via Gramsci 14, 43126 Parma, Italy
| | - Francesco Nonnis Marzano
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| |
Collapse
|
3
|
Pérez-Armas M, Fauste E, Donis C, Rodrigo S, Rodríguez L, Álvarez-Millán JJ, Panadero MI, Otero P, Bocos C. Fructose Consumption Affects Placental Production of H 2S: Impact on Preeclampsia-Related Parameters. Nutrients 2024; 16:309. [PMID: 38276547 PMCID: PMC10820116 DOI: 10.3390/nu16020309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/03/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
H2S, a gasotransmitter that can be produced both via the transsulfuration pathway and non-enzymatically, plays a key role in vasodilation and angiogenesis during pregnancy. In fact, the involvement of H2S production on plasma levels of sFLT1, PGF, and other molecules related to preeclampsia has been demonstrated. Interestingly, we have found that maternal fructose intake (a common component of the Western diet) affects tissular H2S production. However, its consumption is allowed during pregnancy. Thus, (1) to study whether maternal fructose intake affects placental production of H2S in the offspring, when pregnant; and (2) to study if fructose consumption during pregnancy can increase the risk of preeclampsia, pregnant rats from fructose-fed mothers (10% w/v) subjected (FF) or not (FC) to a fructose supplementation were studied and compared to pregnant control rats (CC). Placental gene expression, H2S production, plasma sFLT1, and PGF were determined. Descendants of fructose-fed mothers (FC) presented an increase in H2S production. However, if they consumed fructose during their own gestation (FF), this effect was reversed so that the increase disappeared. Curiously, placental synthesis of H2S was mainly non-enzymatic. Related to this, placental expression of Cys dioxygenase, an enzyme involved in Cys catabolism (a molecule required for non-enzymatic H2S synthesis), was significantly decreased in FC rats. Related to preeclampsia, gene expression of sFLT1 (a molecule with antiangiogenic properties) was augmented in both FF and FC dams, although these differences were not reflected in their plasma levels. Furthermore, placental expression of PGF (a molecule with angiogenic properties) was decreased in both FC and FF dams, becoming significantly diminished in plasma of FC versus control dams. Both fructose consumption and maternal fructose intake induce changes in molecules that contribute to increasing the risk of preeclampsia, and these effects are not always mediated by changes in H2S production.
Collapse
Affiliation(s)
- Madelín Pérez-Armas
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, 28668 Boadilla del Monte, Madrid, Spain; (M.P.-A.); (E.F.); (C.D.); (S.R.); (L.R.); (M.I.P.); (P.O.)
| | - Elena Fauste
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, 28668 Boadilla del Monte, Madrid, Spain; (M.P.-A.); (E.F.); (C.D.); (S.R.); (L.R.); (M.I.P.); (P.O.)
| | - Cristina Donis
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, 28668 Boadilla del Monte, Madrid, Spain; (M.P.-A.); (E.F.); (C.D.); (S.R.); (L.R.); (M.I.P.); (P.O.)
| | - Silvia Rodrigo
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, 28668 Boadilla del Monte, Madrid, Spain; (M.P.-A.); (E.F.); (C.D.); (S.R.); (L.R.); (M.I.P.); (P.O.)
| | - Lourdes Rodríguez
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, 28668 Boadilla del Monte, Madrid, Spain; (M.P.-A.); (E.F.); (C.D.); (S.R.); (L.R.); (M.I.P.); (P.O.)
| | | | - María I. Panadero
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, 28668 Boadilla del Monte, Madrid, Spain; (M.P.-A.); (E.F.); (C.D.); (S.R.); (L.R.); (M.I.P.); (P.O.)
| | - Paola Otero
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, 28668 Boadilla del Monte, Madrid, Spain; (M.P.-A.); (E.F.); (C.D.); (S.R.); (L.R.); (M.I.P.); (P.O.)
| | - Carlos Bocos
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, 28668 Boadilla del Monte, Madrid, Spain; (M.P.-A.); (E.F.); (C.D.); (S.R.); (L.R.); (M.I.P.); (P.O.)
| |
Collapse
|
4
|
Panagiotidou A, Chatzakis C, Ververi A, Eleftheriades M, Sotiriadis A. The Effect of Maternal Diet and Physical Activity on the Epigenome of the Offspring. Genes (Basel) 2024; 15:76. [PMID: 38254965 PMCID: PMC10815371 DOI: 10.3390/genes15010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
The aim of this review was to examine the current literature regarding the effect of maternal lifestyle interventions (i.e., diet and physical activity) on the epigenome of the offspring. PubMed, Scopus and Cochrane-CENTRAL were screened until 8 July 2023. Only randomized controlled trials (RCTs) where a lifestyle intervention was compared to no intervention (standard care) were included. Outcome variables included DNA methylation, miRNA expression, and histone modifications. A qualitative approach was used for the consideration of the studies' results. Seven studies and 1765 mother-child pairs were assessed. The most common types of intervention were dietary advice, physical activity, and following a specific diet (olive oil). The included studies correlated the lifestyle and physical activity intervention in pregnancy to genome-wide or gene-specific differential methylation and miRNA expression in the cord blood or the placenta. An intervention of diet and physical activity in pregnancy was found to be associated with slight changes in the epigenome (DNA methylation and miRNA expression) in fetal tissues. The regions involved were related to adiposity, metabolic processes, type 2 diabetes, birth weight, or growth. However, not all studies showed significant differences in DNA methylation. Further studies with similar parameters are needed to have robust and comparable results and determine the biological role of such modifications.
Collapse
Affiliation(s)
- Anastasia Panagiotidou
- School of Medicine, Aristotle University of Thessaloniki, 546 22 Thessaloniki, Greece; (A.P.); (C.C.); (A.V.)
| | - Christos Chatzakis
- School of Medicine, Aristotle University of Thessaloniki, 546 22 Thessaloniki, Greece; (A.P.); (C.C.); (A.V.)
- Second Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, 546 22 Thessaloniki, Greece
| | - Athina Ververi
- School of Medicine, Aristotle University of Thessaloniki, 546 22 Thessaloniki, Greece; (A.P.); (C.C.); (A.V.)
- Genetic Unit, First Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, “Papageorgiou” General Hospital, 564 03 Thessaloniki, Greece
| | - Makarios Eleftheriades
- Second Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 115 28 Athens, Greece;
| | - Alexandros Sotiriadis
- School of Medicine, Aristotle University of Thessaloniki, 546 22 Thessaloniki, Greece; (A.P.); (C.C.); (A.V.)
- Second Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, 546 22 Thessaloniki, Greece
| |
Collapse
|
5
|
Gallagher LT, Wright CJ, Lehmann T, Khailova L, Zarate M, Lyttle BD, Liechty KW, Derderian SC. Angiogenic and Inflammatory microRNA Regulation in a Mouse Model of Fetal Growth Restriction. J Surg Res 2023; 292:234-238. [PMID: 37657141 DOI: 10.1016/j.jss.2023.07.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 07/05/2023] [Accepted: 07/24/2023] [Indexed: 09/03/2023]
Abstract
INTRODUCTION Fetal growth restriction (FGR) is associated with impaired angiogenesis and chronic inflammation. MicroRNAs (miRs) are short noncoding RNAs that regulate gene expression at the post-transcriptional level by targeting messenger RNA (mRNA) for degradation or by suppressing translation. We hypothesize that dysregulation of miR-15b, an antiangiogenic miR, and miR-146a, an anti-inflammatory miR, are associated with the FGR's pathogenesis. METHODS Pregnant mice were provided ad libitum access to food between E1 and E8. From E9-E18, dams received either a 50% caloric restricted diet (FGR) or continued ad libitum access (controls). Placentas were harvested at E18.5 and total RNA was extracted. Gene expression levels of miRs and mRNAs were compared between FGR and control placentas. RESULTS Placentas affected by FGR demonstrated increased expression of miR-15b. Vascular endothelial growth factor alpha, which is downregulated in response to increased levels of miR-15b, was suppressed. The anti-inflammatory miR, miR-146a, was downregulated, resulting in upregulation of proinflammatory (IL-6, IL-8, and NFkB1) and oxidative stress (HIF-1α, SOD2, and Nox2) mediators. CONCLUSIONS Aberrant angiogenesis and chronic inflammation seen in FGR appear to be associated with dysregulated miR-15b and miR-146a gene expression, respectively. This observation suggests these miRs play a post-transcriptional regulatory role in FGR, providing an insight into possible therapeutic targets.
Collapse
Affiliation(s)
- Lauren T Gallagher
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine, Aurora, Colorado; Division of Pediatric Surgery, Children's Hospital Colorado, Aurora, Colorado
| | - Clyde J Wright
- Division of Pediatrics-Neonatology, Children's Hospital Colorado, Aurora, Colorado
| | - Tanner Lehmann
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine, Aurora, Colorado; Division of Pediatric Surgery, Children's Hospital Colorado, Aurora, Colorado
| | - Ludmila Khailova
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine, Aurora, Colorado; Division of Pediatric Surgery, Children's Hospital Colorado, Aurora, Colorado
| | - Miguel Zarate
- Division of Pediatrics-Neonatology, Children's Hospital Colorado, Aurora, Colorado
| | - Bailey D Lyttle
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine, Aurora, Colorado; Division of Pediatric Surgery, Children's Hospital Colorado, Aurora, Colorado
| | - Kenneth W Liechty
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine, Aurora, Colorado; Division of Pediatric Surgery, Children's Hospital Colorado, Aurora, Colorado; Division of Pediatric Surgery, University of Arizona School of Medicine, Tucson, Arizona
| | - S Christopher Derderian
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine, Aurora, Colorado; Division of Pediatric Surgery, Children's Hospital Colorado, Aurora, Colorado.
| |
Collapse
|
6
|
Perrone S, Caporilli C, Grassi F, Ferrocino M, Biagi E, Dell’Orto V, Beretta V, Petrolini C, Gambini L, Street ME, Dall’Asta A, Ghi T, Esposito S. Prenatal and Neonatal Bone Health: Updated Review on Early Identification of Newborns at High Risk for Osteopenia. Nutrients 2023; 15:3515. [PMID: 37630705 PMCID: PMC10459154 DOI: 10.3390/nu15163515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Bone health starts with maternal health and nutrition, which influences bone mass and density already in utero. The mechanisms underlying the effect of the intrauterine environment on bone health are partly unknown but certainly include the 'foetal programming' of oxidative stress and endocrine systems, which influence later skeletal growth and development. With this narrative review, we describe the current evidence for identifying patients with risk factors for developing osteopenia, today's management of these populations, and screening and prevention programs based on gestational age, weight, and morbidity. Challenges for bone health prevention include the need for new technologies that are specific and applicable to pregnant women, the foetus, and, later, the newborn. Radiofrequency ultrasound spectrometry (REMS) has proven to be a useful tool in the assessment of bone mineral density (BMD) in pregnant women. Few studies have reported that transmission ultrasound can also be used to assess BMD in newborns. The advantages of this technology in the foetus and newborn are the absence of ionising radiation, ease of use, and, above all, the possibility of performing longitudinal studies from intrauterine to extrauterine life. The use of these technologies already in the intrauterine period could help prevent associated diseases, such as osteoporosis and osteopenia, which are characterised by a reduction in bone mass and degeneration of bone structure and lead to an increased risk of fractures in adulthood with considerable social repercussions for the related direct and indirect costs.
Collapse
Affiliation(s)
- Serafina Perrone
- Neonatology Unit, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (V.D.); (V.B.); (C.P.); (L.G.)
| | - Chiara Caporilli
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (C.C.); (F.G.); (M.F.); (E.B.); (M.E.S.); (S.E.)
| | - Federica Grassi
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (C.C.); (F.G.); (M.F.); (E.B.); (M.E.S.); (S.E.)
| | - Mandy Ferrocino
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (C.C.); (F.G.); (M.F.); (E.B.); (M.E.S.); (S.E.)
| | - Eleonora Biagi
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (C.C.); (F.G.); (M.F.); (E.B.); (M.E.S.); (S.E.)
| | - Valentina Dell’Orto
- Neonatology Unit, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (V.D.); (V.B.); (C.P.); (L.G.)
| | - Virginia Beretta
- Neonatology Unit, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (V.D.); (V.B.); (C.P.); (L.G.)
| | - Chiara Petrolini
- Neonatology Unit, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (V.D.); (V.B.); (C.P.); (L.G.)
| | - Lucia Gambini
- Neonatology Unit, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (V.D.); (V.B.); (C.P.); (L.G.)
| | - Maria Elisabeth Street
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (C.C.); (F.G.); (M.F.); (E.B.); (M.E.S.); (S.E.)
| | - Andrea Dall’Asta
- Obstetric and Gynecology Unit, University Hospital of Parma, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (A.D.); (T.G.)
| | - Tullio Ghi
- Obstetric and Gynecology Unit, University Hospital of Parma, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (A.D.); (T.G.)
| | - Susanna Esposito
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (C.C.); (F.G.); (M.F.); (E.B.); (M.E.S.); (S.E.)
| |
Collapse
|
7
|
Ariani A, Ghofar IF, Khotimah H, Nurdiana N, Rahayu M. Asiatic acid in Centella asiatica extract towards morphological development in an intermittent hypoxia intrauterine embryo model and molecular prediction pathway of insulin-like growth factor-1 receptor signalling. Open Vet J 2023; 13:629-637. [PMID: 37304601 PMCID: PMC10257456 DOI: 10.5455/ovj.2023.v13.i5.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/17/2023] [Indexed: 06/13/2023] Open
Abstract
Background Hypoxia during pregnancy generates oxidative stress that alters the growth and development of the human fetus. Insulin-like growth factor-1 (IGF-1) receptors are essential for normal fetal growth. Asiatic acid in Centella asiatica (CA) has antioxidant properties to prevent growth impairment in hypoxia. Aims This study aimed to investigate the effect of asiatic acid on the morphological development of an intermittent hypoxia (IH) zebrafish embryo model and analyze molecular docking prediction in IGF-1 receptor (IGF-1R) signaling. Methods Embryos of zebrafish at 2 hours postfertilization (hpf) were assigned to control negative (C), IH, and combination IH and CA extract groups consisting of 1.25 (IHCA1), 2.5 (IHCA2), and 5 (IHCA3) µg/ml. Hypoxia treatment (conducted 4 hours/day) and CA extract were administered for 3 days (2-72 hpf). The parameters of body length and head length were evaluated at 3, 6, and 9 days postfertilization (dpf). The data were analyzed by a two-way analysis of variance (p < 0.05). Molecular docking was performed to explore the binding affinity of asiatic acid to IGF-1R by Molegro Virtual Docker ver.5 software. Results The body length and head length of embryos in the IH and treatment groups (IHCA) were shorter than those in the control group at 3 dpf (p < 0.05). However, the body length was more prolonged in the IHCA1 group, but the head length was longer in the IHCA2 group than in the IH group at 6 and 9 dpf. Molecular docking showed the reliable interaction of asiatic acid with IGF-1R signaling in an IH animal model. Conclusion The administration of CA extract benefits IH through the development and growth of zebrafish embryos at a dose of 2.5-5 µg/ml. Asiatic acid has a binding affinity for IGF-1R signaling.
Collapse
Affiliation(s)
- Ariani Ariani
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Saiful Anwar General Hospital, Malang, Indonesia
| | | | - Husnul Khotimah
- Department of Pharmacology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Nurdiana Nurdiana
- Department of Pharmacology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Masruroh Rahayu
- Department of Neurology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| |
Collapse
|
8
|
Perrone S, Grassi F, Caporilli C, Boscarino G, Carbone G, Petrolini C, Gambini LM, Di Peri A, Moretti S, Buonocore G, Esposito SMR. Brain Damage in Preterm and Full-Term Neonates: Serum Biomarkers for the Early Diagnosis and Intervention. Antioxidants (Basel) 2023; 12:antiox12020309. [PMID: 36829868 PMCID: PMC9952571 DOI: 10.3390/antiox12020309] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/14/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
The Brain is vulnerable to numerous insults that can act in the pre-, peri-, and post-natal period. There is growing evidence that demonstrate how oxidative stress (OS) could represent the final common pathway of all these insults. Fetuses and newborns are particularly vulnerable to OS due to their inability to active the antioxidant defenses. Specific molecules involved in OS could be measured in biologic fluids as early biomarkers of neonatal brain injury with an essential role in neuroprotection. Although S-100B seems to be the most studied biomarker, its use in clinical practice is limited by the complexity of brain damage etiopathogenesis and the time of blood sampling in relation to the brain injury. Reliable early specific serum markers are currently lacking in clinical practice. It is essential to determine if there are specific biomarkers that can help caregivers to monitor the progression of the disease in order to active an early neuroprotective strategy. We aimed to describe, in an educational review, the actual evidence on serum biomarkers for the early identification of newborns at a high risk of neurological diseases. To move the biomarkers from the bench to the bedside, the assays must be not only be of a high sensitivity but suitable for the very rapid processing and return of the results for the clinical practice to act on. For the best prognosis, more studies should focus on the association of these biomarkers to the type and severity of perinatal brain damage.
Collapse
Affiliation(s)
- Serafina Perrone
- Neonatology Unit, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Correspondence:
| | - Federica Grassi
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Chiara Caporilli
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Giovanni Boscarino
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Giulia Carbone
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Chiara Petrolini
- Neonatology Unit, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Lucia Maria Gambini
- Neonatology Unit, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Antonio Di Peri
- Neonatology Unit, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Sabrina Moretti
- Neonatology Unit, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Giuseppe Buonocore
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | | |
Collapse
|
9
|
Costa TJ, De Oliveira JC, Giachini FR, Lima VV, Tostes RC, Bomfim GF. Programming of Vascular Dysfunction by Maternal Stress: Immune System Implications. Front Physiol 2022; 13:787617. [PMID: 35360231 PMCID: PMC8961444 DOI: 10.3389/fphys.2022.787617] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
A growing body of evidence highlights that several insults during pregnancy impact the vascular function and immune response of the male and female offspring. Overactivation of the immune system negatively influences cardiovascular function and contributes to cardiovascular disease. In this review, we propose that modulation of the immune system is a potential link between prenatal stress and offspring vascular dysfunction. Glucocorticoids are key mediators of stress and modulate the inflammatory response. The potential mechanisms whereby prenatal stress negatively impacts vascular function in the offspring, including poor hypothalamic–pituitary–adrenal axis regulation of inflammatory response, activation of Th17 cells, renin–angiotensin–aldosterone system hyperactivation, reactive oxygen species imbalance, generation of neoantigens and TLR4 activation, are discussed. Alterations in the immune system by maternal stress during pregnancy have broad relevance for vascular dysfunction and immune-mediated diseases, such as cardiovascular disease.
Collapse
Affiliation(s)
- Tiago J. Costa
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Júlio Cezar De Oliveira
- Health Education Research Center (NUPADS), Institute of Health Sciences, Federal University of Mato Grosso, Sinop, Brazil
| | - Fernanda Regina Giachini
- Institute of Biological Sciences and Health, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Victor Vitorino Lima
- Institute of Biological Sciences and Health, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Rita C. Tostes
- Health Education Research Center (NUPADS), Institute of Health Sciences, Federal University of Mato Grosso, Sinop, Brazil
| | - Gisele Facholi Bomfim
- Health Education Research Center (NUPADS), Institute of Health Sciences, Federal University of Mato Grosso, Sinop, Brazil
- *Correspondence: Gisele Facholi Bomfim,
| |
Collapse
|
10
|
Ojeda ML, Carreras O, Nogales F. The Role of Selenoprotein Tissue Homeostasis in MetS Programming: Energy Balance and Cardiometabolic Implications. Antioxidants (Basel) 2022; 11:antiox11020394. [PMID: 35204276 PMCID: PMC8869711 DOI: 10.3390/antiox11020394] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 11/16/2022] Open
Abstract
Selenium (Se) is an essential trace element mainly known for its antioxidant, anti-inflammatory, and anti-apoptotic properties, as it is part of the catalytic center of 25 different selenoproteins. Some of them are related to insulin resistance (IR) and metabolic syndrome (MetS) generation, modulating reactive oxygen species (ROS), and the energetic sensor AMP-activated protein kinase (AMPK); they can also regulate the nuclear transcription factor kappa-B (NF-kB), leading to changes in inflammation production. Selenoproteins are also necessary for the correct synthesis of insulin and thyroid hormones. They are also involved in endocrine central regulation of appetite and energy homeostasis, affecting growth and development. MetS, a complex metabolic disorder, can appear during gestation and lactation in mothers, leading to energetic and metabolic changes in their offspring that, according to the metabolic programming theory, will produce cardiovascular and metabolic diseases later in life. However, there is a gap concerning Se tissue levels and selenoproteins’ implications in MetS generation, which is even greater during MetS programming. This narrative review also provides an overview of the existing evidence, based on experimental research from our laboratory, which strengthens the fact that maternal MetS leads to changes in Se tissue deposits and antioxidant selenoproteins’ expression in their offspring. These changes contribute to alterations in tissues’ oxidative damage, inflammation, energy balance, and tissue function, mainly in the heart. Se imbalance also could modulate appetite and endocrine energy balance, affecting pups’ growth and development. MetS pups present a profile similar to that of diabetes type 1, which also appeared when dams were exposed to low-Se dietary supply. Maternal Se supplementation should be taken into account if, during gestation and/or lactation periods, there are suspicions of endocrine energy imbalance in the offspring, such as MetS. It could be an interesting therapy to induce heart reprogramming. However, more studies are necessary.
Collapse
|
11
|
Radzicka-Mularczyk S, Zaborowski MP, Brązert J, Pietryga M. Serum visfatin as a metabolic biomarker in obese patients with gestational diabetes mellitus. Minerva Endocrinol (Torino) 2022; 46:396-405. [PMID: 35078309 DOI: 10.23736/s2724-6507.20.03280-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Visfatin is an adipokine produced and secreted by the adipose tissue. It exerts an insulin-like effect by the insulin receptor-1 and has a hypoglycemic effect. We aimed to investigate how serum visfatin changes in women with gestational diabetes mellitus (GDM), and whether it is predictive of neonatal outcomes. METHODS Visfatin levels were prospectively measured in peripheral blood serum by enzyme immunoassay in 210 pregnant women, 156 of which were diagnosed with GDM, 18 of which suffered from pregnancy-induced hypertension (PIH) and 36 healthy controls. RESULTS Patients with obesity class II (median=2.562 ng/mL) and class III (median=6.2940 ng/mL) had higher serum visfatin than overweight patients (median=0.735 ng/mL); (Mann-Whitney U test, P=0.037 and P=0.023, respectively). In GDM patients with BMI above 30, serum visfatin was associated to glycosylated hemoglobin (Spearman correlation test, R=0.26, P=0.045). Women with BMI above 25 treated with insulin had lower serum visfatin levels than those treated with diet only (Mann-Whitney U test, P=0.045). No correlation was found between visfatin and parameters of lipid profile such as HDL, LDL, or triglycerides (Spearman correlation tests, R=-0.051, -0.1, 0.0019; P=0.54, 0.29, 0.98, respectively). We observed that visfatin was not associated with birth weight (Spearman correlation test, R=-0.014, P=0.86) or adverse neonatal outcome as measured by umbilical artery pH below 7.25 (Mann-Whitney U test, P=0.55) or Apgar score below 10 (Mann-Whitney U test, P=0.21). CONCLUSIONS In GDM patients with higher BMI, serum visfatin was elevated, correlated positively with glycosylated hemoglobin, and decreased upon treatment with insulin therapy.
Collapse
Affiliation(s)
- Sandra Radzicka-Mularczyk
- Division of Obstetrics and Women's Diseases, Department of Gynecology, Obstetrics and Gynecologic Oncology, Poznan University of Medical Sciences, Poznań, Poland -
| | - Mikołaj P Zaborowski
- Division of Gynecologic Oncology, Department of Gynecology, Obstetrics and Gynecologic Oncology, Poznan University of Medical Sciences, Poznań, Poland
| | - Jacek Brązert
- Division of Obstetrics and Women's Diseases, Department of Gynecology, Obstetrics and Gynecologic Oncology, Poznan University of Medical Sciences, Poznań, Poland
| | - Marek Pietryga
- Division of Obstetrics and Women's Diseases, Department of Gynecology, Obstetrics and Gynecologic Oncology, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
12
|
Aguilera N, Salas-Pérez F, Ortíz M, Álvarez D, Echiburú B, Maliqueo M. Rodent models in placental research. Implications for fetal origins of adult disease. Anim Reprod 2022; 19:e20210134. [PMID: 35493783 PMCID: PMC9037606 DOI: 10.1590/1984-3143-ar2021-0134] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/21/2022] [Indexed: 11/22/2022] Open
|
13
|
Cannavò L, Perrone S, Viola V, Marseglia L, Di Rosa G, Gitto E. Oxidative Stress and Respiratory Diseases in Preterm Newborns. Int J Mol Sci 2021; 22:ijms222212504. [PMID: 34830385 PMCID: PMC8625766 DOI: 10.3390/ijms222212504] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 01/01/2023] Open
Abstract
Premature infants are exposed to increased generation of reactive oxygen species, and on the other hand, they have a deficient antioxidant defense system. Oxidative insult is a salient part of lung injury that begins as acute inflammatory injury in respiratory distress disease and then evolves into chronic and structural scarring leading to bronchopulmonary dysplasia. Oxidative stress is also involved in the pathogenesis of pulmonary hypertension in newborns through the modulation of the vascular tone and the response to pulmonary vasodilators, with consequent decrease in the density of the pulmonary vessels and thickening of the pulmonary arteriolar walls. Oxidative stress has been recognized as both a trigger and an endpoint for several events, including inflammation, hypoxia, hyperoxia, drugs, transfusions, and mechanical ventilation, with impairment of pulmonary function and prolonged lung damage. Redoxomics is the most fascinating new measure to address lung damage due to oxidative stress. The new challenge is to use omics data to discover a set of biomarkers useful in diagnosis, prognosis, and formulating optimal and individualized neonatal care. The aim of this review was to examine the most recent evidence on the relationship between oxidative stress and lung diseases in preterm newborns. What is currently known regarding oxidative stress-related lung injury pathogenesis and the available preventive and therapeutic strategies are also discussed.
Collapse
Affiliation(s)
- Laura Cannavò
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (L.C.); (V.V.); (L.M.); (E.G.)
| | - Serafina Perrone
- Neonatology Unity, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Correspondence: ; Tel.: +39-0521-703518
| | - Valeria Viola
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (L.C.); (V.V.); (L.M.); (E.G.)
| | - Lucia Marseglia
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (L.C.); (V.V.); (L.M.); (E.G.)
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Eloisa Gitto
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (L.C.); (V.V.); (L.M.); (E.G.)
| |
Collapse
|
14
|
Lembo C, Buonocore G, Perrone S. Oxidative Stress in Preterm Newborns. Antioxidants (Basel) 2021; 10:antiox10111672. [PMID: 34829543 PMCID: PMC8614893 DOI: 10.3390/antiox10111672] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 02/07/2023] Open
Abstract
Preterm babies are highly susceptible to oxidative stress (OS) due to an imbalance between the oxidant and antioxidant systems. The generation of free radicals (FR) induces oxidative damage to multiple body organs and systems. OS is the main factor responsible for the development of typical premature infant diseases, such as bronchopulmonary dysplasia, retinopathy of prematurity, necrotizing enterocolitis, intraventricular hemorrhage, periventricular leukomalacia, kidney damage, eryptosis, and also respiratory distress syndrome and patent ductus arteriosus. Many biomarkers have been detected to early identify newborns at risk of developing a free radical-mediated disease and to investigate new antioxidant strategies. This review reports the current knowledge on OS in the preterm newborns and the newest findings concerning the use of OS biomarkers as diagnostic tools, as well as in implementing antioxidant therapeutic strategies for the prevention and treatment of these diseases and their sequelae.
Collapse
Affiliation(s)
- Chiara Lembo
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.L.); (G.B.)
| | - Giuseppe Buonocore
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.L.); (G.B.)
| | - Serafina Perrone
- Department of Medicine and Surgery, Neonatology Unit, University of Parma, 43126 Parma, Italy
- Correspondence:
| |
Collapse
|
15
|
Fauste E, Panadero MI, Donis C, Otero P, Bocos C. Pregnancy Is Enough to Provoke Deleterious Effects in Descendants of Fructose-Fed Mothers and Their Fetuses. Nutrients 2021; 13:3667. [PMID: 34684668 PMCID: PMC8539712 DOI: 10.3390/nu13103667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 01/06/2023] Open
Abstract
The role of fructose in the global obesity and metabolic syndrome epidemic is widely recognized. However, its consumption is allowed during pregnancy. We have previously demonstrated that maternal fructose intake in rats induces detrimental effects in fetuses. However, these effects only appeared in adult descendants after a re-exposure to fructose. Pregnancy is a physiological state that leads to profound changes in metabolism and hormone response. Therefore, we wanted to establish if pregnancy in the progeny of fructose-fed mothers was also able to provoke an unhealthy situation. Pregnant rats from fructose-fed mothers (10% w/v) subjected (FF) or not (FC) to a fructose supplementation were studied and compared to pregnant control rats (CC). An OGTT was performed on the 20th day of gestation, and they were sacrificed on the 21st day. Plasma and tissues from mothers and fetuses were analyzed. Although FF mothers showed higher AUC insulin values after OGTT in comparison to FC and CC rats, ISI was lower and leptinemia was higher in FC and FF rats than in the CC group. Accordingly, lipid accretion was observed both in liver and placenta in the FC and FF groups. Interestingly, fetuses from FC and FF mothers also showed the same profile observed in their mothers on lipid accumulation, leptinemia, and ISI. Moreover, hepatic lipid peroxidation was even more augmented in fetuses from FC dams than those of FF mothers. Maternal fructose intake produces in female progeny changes that alter their own pregnancy, leading to deleterious effects in their fetuses.
Collapse
Affiliation(s)
| | | | | | | | - Carlos Bocos
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain; (E.F.); (M.I.P.); (C.D.); (P.O.)
| |
Collapse
|
16
|
Sagrillo-Fagundes L, Casagrande Paim T, Pretto L, Bertaco I, Zanatelli C, Vaillancourt C, Wink MR. The implications of the purinergic signaling throughout pregnancy. J Cell Physiol 2021; 237:507-522. [PMID: 34596240 DOI: 10.1002/jcp.30594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/26/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022]
Abstract
Purinergic signaling is a necessary mechanism to trigger or even amplify cell communication. Its ligands, notably adenosine triphosphate (ATP) and adenosine, modulate specific membrane-bound receptors in virtually all human cells. Regardless of the stage of the pregnancy, cellular communication between maternal, placental, and fetal cells is the paramount mechanism to sustain its optimal status. In this review, we describe the crucial role of purinergic signaling on the regulation of the maternal-fetal trophic exchanges, immune control, and endocrine exchanges throughout pregnancy. The nature of the modulation of both ATP and adenosine on the embryo-maternal interface, going through placental invasion until birth delivery depends on the general maternal-fetal health state and consequently on the selective activation of their specific receptors. In addition, an increasing number of studies have been demonstrating the pivotal role of ATP and adenosine in modulating deleterious effects of suboptimal conditions of pregnancy. Here, we discuss the role of purinergic signaling on the balance that coordinates the embryo-maternal exchanges and a promising therapeutic venue in the context of pregnancy disorders.
Collapse
Affiliation(s)
- Lucas Sagrillo-Fagundes
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thaís Casagrande Paim
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luiza Pretto
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Isadora Bertaco
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Carla Zanatelli
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cathy Vaillancourt
- Centre Armand Frappier Santé Biotechnologie, INRS, Laval, Quebec, Canada
| | - Márcia R Wink
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
17
|
Kuleshova ON, Teply DL, Teply DD, Semenova AS. Dependence of Free Radical Homeostasis of the Central Nervous System of Mature Male Rats on the Duration of Prenatal Stress. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421020094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Ojeda ML, Nogales F, Romero-Herrera I, Carreras O. Fetal Programming Is Deeply Related to Maternal Selenium Status and Oxidative Balance; Experimental Offspring Health Repercussions. Nutrients 2021; 13:nu13062085. [PMID: 34207090 PMCID: PMC8233903 DOI: 10.3390/nu13062085] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Nutrients consumed by mothers during pregnancy and lactation can exert permanent effects upon infant developing tissues, which could represent an important risk factor for diseases during adulthood. One of the important nutrients that contributes to regulating the cell cycle and tissue development and functionality is the trace element selenium (Se). Maternal Se requirements increase during gestation and lactation. Se performs its biological action by forming part of 25 selenoproteins, most of which have antioxidant properties, such as glutathione peroxidases (GPxs) and selenoprotein P (SELENOP). These are also related to endocrine regulation, appetite, growth and energy homeostasis. In experimental studies, it has been found that low dietary maternal Se supply leads to an important oxidative disruption in dams and in their progeny. This oxidative stress deeply affects gestational parameters, and leads to intrauterine growth retardation and abnormal development of tissues, which is related to endocrine metabolic imbalance. Childhood pathologies related to oxidative stress during pregnancy and/or lactation, leading to metabolic programing disorders like fetal alcohol spectrum disorders (FASD), have been associated with a low maternal Se status and intrauterine growth retardation. In this context, Se supplementation therapy to alcoholic dams avoids growth retardation, hepatic oxidation and improves gestational and breastfeeding parameters in FASD pups. This review is focused on the important role that Se plays during intrauterine and breastfeeding development, in order to highlight it as a marker and/or a nutritional strategy to avoid diverse fetal programming disorders related to oxidative stress.
Collapse
|
19
|
Liu S, Zhang H, Yan B, Zhao H, Wang Y, Gao T, Liang H. Maternal high-fructose consumption provokes placental oxidative stress resulting in asymmetrical fetal growth restriction in rats. J Clin Biochem Nutr 2021; 69:68-76. [PMID: 34376916 PMCID: PMC8325765 DOI: 10.3164/jcbn.21-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 02/13/2021] [Indexed: 12/24/2022] Open
Abstract
We aimed to determine the impact of high-fructose intake during pregnancy on the fetal-placental unit in rats, which may be the initial mechanism of the programming effect of fructose. Pregnant Sprague–Dawley rats were randomly assigned to three groups and respectively provided tap water (n = 10), 10% (w/v) fructose solution (n = 10), and 10% (w/v) glucose solution (n = 10) from embryonic day 0 to 20. Compared with the control and glucose groups, significantly lower fetal length, fetal weight, placental weight, and fetus/placenta ratio were found in the fructose group on embryonic day 20 (all p<0.05). In parallel with markedly increased uric acid concentrations in the dams, significantly decreased antioxidant enzymes activities and mRNA expression levels were observed in placentas in the fructose group (all p<0.05). In the fructose group, placental mRNA and protein expression of nuclear factor erythroid 2-related factor 2 was markedly downregulated and kelch-like ECH-associated protein 1 was significantly upregulated (all p<0.05). In conclusion, high-fructose consumption during pregnancy drives augmented oxidative stress in rats. Placental insufficiency under oxidative stress contributes to asymmetrical fetal growth restriction.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, Shandong 266071, China
| | - Huaqi Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, Shandong 266071, China
| | - Bei Yan
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, Shandong 266071, China
| | - Hui Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, Shandong 266071, China
| | - Yanhui Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, Shandong 266071, China
| | - Tianlin Gao
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, Shandong 266071, China
| | - Hui Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, Shandong 266071, China
| |
Collapse
|
20
|
Cerón NA, Gutiérrez OO, Cerón OM, Ortiz RA. Complicaciones cardiovasculares en relación con la programación fetal. REPERTORIO DE MEDICINA Y CIRUGÍA 2021. [DOI: 10.31260/repertmedcir.01217273.943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Introducción: la programación fetal ofrece nuevas perspectivas sobre el origen de las enfermedades cardiovasculares, relacionando su aparición con factores perinatales. Objetivo: exponer evidencia que vincule las alteraciones gestacionales con las enfermedades cardiovasculares en la vida adulta del feto. Metodología: búsqueda en las bases de datos EBSCO, COCHRANE, MEDLINE, PROQUEST y SciELO de los artículos de revisión e investigaciones originales en inglés publicados en los últimos diez años. Se utilizaron términos MeSH para búsqueda controlada y se evaluaron los estudios con STROBE y PRISMA según correspondía. Resultados: los hallazgos sugieren que nacer con menos de 2600 k guarda relación con diabetes mellitus (OR de 1.607 IC 95% 1.324-1.951), hipertensión arterial (OR de 1.15 IC 95% 1.043-1.288) y menor función endotelial (1.94+0.37 vs 2.68+0.41, p: 0.0001) en la adultez. La prematuridad se asocia con mayores presiones arteriales sistólicas (4.2 mmHg IC 95%; 2.8 - 5.7 p 0.001) y diastólicas (2.6 mmHg IC 95%; 1.2-4.0; p 0.001). Las alteraciones nutricionales maternas y la diabetes gestacional aumentan el riesgo de síndrome metabólico (OR 1.2 IC 95% 0.9-1.7) y sobrepeso en la edad escolar (OR 1.81 IC 95% 1.18 - 2.86). Conclusión: los resultados adversos en la gestación están relacionados con el desarrollo de enfermedades cardiovasculares en la vida adulta del feto expuesto.
Collapse
|
21
|
Maternal Melatonin Deficiency Leads to Endocrine Pathologies in Children in Early Ontogenesis. Int J Mol Sci 2021; 22:ijms22042058. [PMID: 33669686 PMCID: PMC7922827 DOI: 10.3390/ijms22042058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
The review summarizes the results of experimental and clinical studies aimed at elucidating the causes and pathophysiological mechanisms of the development of endocrine pathology in children. The modern data on the role of epigenetic influences in the early ontogenesis of unfavorable factors that violate the patterns of the formation of regulatory mechanisms during periods of critical development of fetal organs and systems and contribute to the delayed development of pathological conditions are considered. The mechanisms of the participation of melatonin in the regulation of metabolic processes and the key role of maternal melatonin in the formation of the circadian system of regulation in the fetus and in the protection of the genetic program of its morphofunctional development during pregnancy complications are presented. Melatonin, by controlling DNA methylation and histone modification, prevents changes in gene expression that are directly related to the programming of endocrine pathology in offspring. Deficiency and absence of the circadian rhythm of maternal melatonin underlies violations of the genetic program for the development of hormonal and metabolic regulatory mechanisms of the functional systems of the child, which determines the programming and implementation of endocrine pathology in early ontogenesis, contributing to its development in later life. The significance of this factor in the pathophysiological mechanisms of endocrine disorders determines a new approach to risk assessment and timely prevention of offspring diseases even at the stage of family planning.
Collapse
|
22
|
Ferrante G, Carota G, Li Volti G, Giuffrè M. Biomarkers of Oxidative Stress for Neonatal Lung Disease. Front Pediatr 2021; 9:618867. [PMID: 33681099 PMCID: PMC7930002 DOI: 10.3389/fped.2021.618867] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/27/2021] [Indexed: 02/01/2023] Open
Abstract
The transition from prenatal to postnatal life causes a significant increase in arterial oxygen tension and the activation of metabolic pathways enabling the newborn's adaptation to the extra-uterine environment. The balance between pro-oxidant and anti-oxidant systems is critical to preserve cellular functions. Indeed, oxidative stress (OS) occurs when the production of free radicals is not balanced by the activity of intracellular antioxidant systems, contributing to cellular and tissue damage. Perinatal OS may have serious health consequences during the postnatal period and later in life. Namely, OS has been recognized as the major cause of lung injury in newborns, especially those preterm born, due to their immature lung and antioxidant systems. The development of OS biomarkers has gained increasing research interest since they may provide useful insights about pathophysiological pathways underlying OS-mediated pulmonary diseases in newborns. Moreover, their implementation in clinical settings may help to early identify high risk-newborns and to provide targeted treatment. Ideally, a biomarker should demonstrate ease of use, biological validity and reproducibility, high sensitivity and specificity. However, none of the clinically validated biomarkers so far have been qualified for neonatal lung disease. Additionally, the complex technical procedures and the high cost of such determinations have hampered the use of OS biomarkers in clinical practice. This review aims to evaluate the current evidence on the application of biomarkers of oxidative stress for neonatal lung disease and exploring the most relevant issues affecting their implementation in practice, as well as the associated evidence gaps and research limitations.
Collapse
Affiliation(s)
- Giuliana Ferrante
- Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica d'Eccellenza "G. D'Alessandro", Università degli Studi di Palermo, Palermo, Italy
| | - Giuseppe Carota
- Dipartimento di Scienze Biomediche e Biotecnologiche, Università degli Studi di Catania, Catania, Italy
| | - Giovanni Li Volti
- Dipartimento di Scienze Biomediche e Biotecnologiche, Università degli Studi di Catania, Catania, Italy
| | - Mario Giuffrè
- Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica d'Eccellenza "G. D'Alessandro", Università degli Studi di Palermo, Palermo, Italy
| |
Collapse
|
23
|
Jayalekshmi VS, Ramachandran S. Maternal cholesterol levels during gestation: boon or bane for the offspring? Mol Cell Biochem 2021; 476:401-416. [PMID: 32964393 DOI: 10.1007/s11010-020-03916-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/15/2020] [Indexed: 02/08/2023]
Abstract
An increase in cholesterol levels is perceived during pregnancy and is considered as a normal adaptive response to the development of the fetus. In some pregnancies, excessive increase in total cholesterol with high levels of Low-Density Lipoprotein leads to maladaptation by the fetus to cholesterol demands, resulting in a pathological condition termed as maternal hypercholesterolemia (MH). MH is considered clinically irrelevant and therefore cholesterol levels are not routinely checked during pregnancy, as a consequence of which there is scarce information on its global prevalence in pregnant women. Studies have reported that MH during pregnancy can cause atherogenesis in adults emphasizing the concept of in utero programming of fetus. Moreover, Gestational Diabetes Mellitus, obesity and Polycystic Ovary Syndrome are potential risk factors which strengthen combined pathologies in placenta and fetuses of mothers with MH. However, lack of conclusive evidence on cholesterol transport and underlying programming demand substantial research to develop population-based life style strategies for women in their childbearing years. The current review focuses on the mechanisms and outcomes of MH from existing epidemiological as well as experimental data and presents a detailed insight on this novel risk factor of cardiovascular diseases.
Collapse
Affiliation(s)
- V S Jayalekshmi
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
- PhD Program in Biotechnology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Surya Ramachandran
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
24
|
Gomez Ribot D, Diaz E, Fazio MV, Gómez HL, Fornes D, Macchi SB, Gresta CA, Capobianco E, Jawerbaum A. An extra virgin olive oil-enriched diet improves maternal, placental, and cord blood parameters in GDM pregnancies. Diabetes Metab Res Rev 2020; 36:e3349. [PMID: 32447799 DOI: 10.1002/dmrr.3349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/01/2020] [Accepted: 05/12/2020] [Indexed: 01/15/2023]
Abstract
AIMS To address the effect of a diet enriched in extra virgin olive oil (EVOO) on maternal metabolic parameters and placental proinflammatory markers in Gestational diabetes mellitus (GDM) patients. METHODS Pregnant women at 24-28 weeks of gestation were enrolled: 33 GDM patients which were randomly assigned or not to the EVOO-enriched group and 17 healthy controls. Metabolic parameters were determined. Peroxisome proliferator activated receptor (PPAR) γ and PPARα protein expression, expression of microRNA (miR)-130a and miR-518d (which respectively target these PPAR isoforms) and levels of proinflammatory markers were evaluated in term placentas. Matrix metalloproteinases (MMPs) activity was evaluated in term placentas and umbilical cord blood. RESULTS GDM patients that received the EVOO-enriched diet showed reduced pregnancy weight gain (GDM-EVOO:10.3 ± 0.9, GDM:14.2 ± 1.4, P = .03) and reduced triglyceridemia (GDM-EVOO:231 ± 14, GDM:292 ± 21, P = .02) compared to the non-EVOO-enriched GDM group. In GDM placentas, the EVOO-enriched diet did not regulate PPARγ protein expression or miR-130a expression, but prevented the reduced PPARα protein expression (P = .02 vs GDM) and the increased miR-518d expression (P = .009 vs GDM). Increased proinflammatory markers (interleukin-1β, tumour necrosis factor-α and nitric oxide overproduction) in GDM placentas were prevented by the EVOO-enriched diet (respectively P = .001, P = .001 and P = .01 vs GDM). MMPs overactivity was prevented in placenta and umbilical cord blood in the EVOO-enriched GDM group (MMP-9: respectively P = .01 and P = .001 vs GDM). CONCLUSIONS A diet enriched in EVOO in GDM patients reduced maternal triglyceridemia and weight gain and has antiinflammatory properties in placenta and umbilical cord blood, possibly mediated by the regulation of PPAR pathways.
Collapse
Affiliation(s)
- Dalmiro Gomez Ribot
- Universidad de Buenos Aires (UBA), Facultad de Medicina, Buenos Aires, Argentina
- CONICET-UBA, Laboratory of Reproduction and Metabolism, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Buenos Aires, Argentina
- Hospital General de Agudos Dr. Ignacio Pirovano, Buenos Aires, Argentina
| | - Esteban Diaz
- Hospital General de Agudos Dr. Ignacio Pirovano, Buenos Aires, Argentina
| | | | - Hebe Lorena Gómez
- Hospital General de Agudos Dr. Ignacio Pirovano, Buenos Aires, Argentina
| | - Daiana Fornes
- Universidad de Buenos Aires (UBA), Facultad de Medicina, Buenos Aires, Argentina
- CONICET-UBA, Laboratory of Reproduction and Metabolism, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Buenos Aires, Argentina
| | | | | | - Evangelina Capobianco
- Universidad de Buenos Aires (UBA), Facultad de Medicina, Buenos Aires, Argentina
- CONICET-UBA, Laboratory of Reproduction and Metabolism, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Buenos Aires, Argentina
| | - Alicia Jawerbaum
- Universidad de Buenos Aires (UBA), Facultad de Medicina, Buenos Aires, Argentina
- CONICET-UBA, Laboratory of Reproduction and Metabolism, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Buenos Aires, Argentina
| |
Collapse
|
25
|
Premature birth, low birth weight, small for gestational age and chronic non-communicable diseases in adult life: A systematic review with meta-analysis. Early Hum Dev 2020; 149:105154. [PMID: 32799034 DOI: 10.1016/j.earlhumdev.2020.105154] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND Individuals who were born prematurely (PT), with low birth weight (LBW), or small for gestational age (SGA) appear to present a set of permanent changes that make them more susceptible to develop chronic non-communicable diseases (CNCD) in adult life. AIM Investigating the association between PT birth, LBW or SGA at birth and CNCD incidence in adult life. METHODS Systematic review with meta-analysis of studies available in three databases - two of them are official (PubMed and Web of Science) and one is gray literature (OpenGrey) - based on pre-established search and eligibility criteria. RESULTS Sixty-four studies were included in the review, 93.7% of them only investigated one of the exposure variables (46.7% LBW, 35.0% PT and 18.3% SGA at birth), whereas 6.3% investigated more than one exposure variable (50.0% LBW and PT; 50.0% SGA and PT). There was association among all exposure variables in the following outcomes: cardiometabolic (CMD) and glycidic metabolism (GMD) disorders, changes in body composition and risk of developing metabolic syndrome (MS). Female sex was identified as risk factor in the exposure-outcome association. Eighteen (18) articles were included in the meta-analysis. There was positive association between LBW and incidence of CMD (OR: 1.25 [95%CI: 1.11; 1.41]; 07 studies), GMD (OR: 1.70 [95%CI: 1.25; 2.30]; 03 studies) and MS (OR: 1.75 [95%CI: 1.27; 2.40]; 02 studies) in adult life. PT was positively associated with CMD (OR: 1.38 [95%CI: 1.27; 1.51]; 05 studies). CONCLUSIONS LBW and PT are associated with CMD and GMD development, as well as with the risk of developing MS in adult life.
Collapse
|
26
|
Effects of short-term exposure to high-fat diet on histology of male and female gonads in rats. Acta Histochem 2020; 122:151558. [PMID: 32622421 DOI: 10.1016/j.acthis.2020.151558] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/22/2020] [Accepted: 05/04/2020] [Indexed: 12/18/2022]
Abstract
Obesity, which reaches an epidemic, is characterized by alterations in metabolic and hormonal profiles. Moreover, uncontrolled obesity may lead to development of diabetes type 2, which accounts for about 90% of all diabetic cases. In obesity, besides changes in metabolism, numerous co-morbidities are reported, e.g. disruptions of reproductive functions. Additionally, sex differences in development of this disease occur. We hypothesized that short-term exposure to high-fat diet (HFD; containing 50% of total energy from fat) would alter histology of testes and ovaries, and thus contribute to reproductive disruptions in male and female rats. Adult rats were fed ad libitum with HFD for 6-7 weeks and its effects on histology of testes and ovaries (n = 4/sex and treatment group) were studied using hematoxylin-eosin staining followed by microscopic analysis and compared to control (laboratory chow fed) group. We have found that in male rats fed with HFD there were: 1) decrease in diameter of seminiferous tubules due to smaller luminar diameter, and no change in epithelium height; 2) decrease in number of Sertoli cells; 3) no changes in number of spermatogonia and in percentage of semen in seminiferous tubules. In female rats exposed to HFD we have seen: 1) decrease in diameters of corpora lutea; 2) decrease in diameter of ovarian follicles types 7 and 8, but no changes in their number; 3) no changes in number of early primary follicles, primary follicles, and secondary follicles. We concluded that relatively short-term exposure to HFD in rats leads to changes in histology of both testes and ovaries, thus affecting reproductive functions.
Collapse
|
27
|
Silvestro S, Calcaterra V, Pelizzo G, Bramanti P, Mazzon E. Prenatal Hypoxia and Placental Oxidative Stress: Insights from Animal Models to Clinical Evidences. Antioxidants (Basel) 2020; 9:E414. [PMID: 32408702 PMCID: PMC7278841 DOI: 10.3390/antiox9050414] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023] Open
Abstract
Hypoxia is a common form of intrauterine stress characterized by exposure to low oxygen concentrations. Gestational hypoxia is associated with the generation of reactive oxygen species. Increase in oxidative stress is responsible for damage to proteins, lipids and DNA with consequent impairment of normal cellular functions. The purpose of this review is to propose a summary of preclinical and clinical evidences designed to outline the correlation between fetal hypoxia and oxidative stress. The results of the studies described show that increases of oxidative stress in the placenta is responsible for changes in fetal development. Specifically, oxidative stress plays a key role in vascular, cardiac and neurological disease and reproductive function dysfunctions. Moreover, the different finding suggests that the prenatal hypoxia-induced oxidative stress is associated with pregnancy complications, responsible for changes in fetal programming. In this way, fetal hypoxia predisposes the offspring to congenital anomalies and chronic diseases in future life. Several antioxidant agents, such as melatonin, erythropoietin, vitamin C, resveratrol and hydrogen, shown potential protective effects in prenatal hypoxia. However, future investigations will be needed to allow the implementation of these antioxidants in clinical practice for the promotion of health in early intrauterine life, in fetuses and children.
Collapse
Affiliation(s)
- Serena Silvestro
- Departmnent of Experimental Neurology, IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (S.S.); (P.B.)
| | - Valeria Calcaterra
- Pediatric and Adolescent Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Gloria Pelizzo
- Department of Biomedical and Clinical Science “L. Sacco”, and Pediatric Surgery Department “V. Buzzi” Children’s Hospital, University of Milano, 20100 Milano, Italy;
| | - Placido Bramanti
- Departmnent of Experimental Neurology, IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (S.S.); (P.B.)
| | - Emanuela Mazzon
- Departmnent of Experimental Neurology, IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (S.S.); (P.B.)
| |
Collapse
|
28
|
Perrone S, Laschi E, Buonocore G. Oxidative stress biomarkers in the perinatal period: Diagnostic and prognostic value. Semin Fetal Neonatal Med 2020; 25:101087. [PMID: 32008959 DOI: 10.1016/j.siny.2020.101087] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Perinatal oxidative stress (OS) is involved in the physiopathology of many pregnancy-related disorders and is largely responsible for cellular, tissue and organ damage that occur in the perinatal period especially in preterm infants, leading to the so-called "free-radicals related diseases of the newborn". Reliable biomarkers of lipid, protein, DNA oxidation and antioxidant power in the perinatal period have been demonstrated to show specificity for the disease, to have prognostic power or to correlate with disease activity. Yet potential clinical applications of oxidative stress biomarkers in neonatology are still under study. Overcoming the technical and economic difficulties that preclude the use of OS biomarkers in the clinical practice is a challenge that needs to be overcome to identify high-risk subjects and to predict their short- and long-term outcome. Cord blood, urine and saliva represent valid and ethically acceptable biological samples for investigations in the perinatal period.
Collapse
Affiliation(s)
- Serafina Perrone
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | - Elisa Laschi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giuseppe Buonocore
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
29
|
Shared Molecular Features Linking Endometriosis and Obstetric Complications. Reprod Sci 2020; 27:1089-1096. [PMID: 32046439 DOI: 10.1007/s43032-019-00119-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/19/2019] [Indexed: 12/12/2022]
Abstract
Recent epidemiological research has shown the increased risk of adverse pregnancy outcomes in women with endometriosis compared with the general population. The aim of this review is to explore common pathophysiologic mechanisms between endometriosis and obstetric complications. A computerized literature search was performed to identify relevant studies. The search covered the period between January 2008 and October 2018. One of the potential mechanisms driving the initiation and progression of endometriosis is the accumulation of a variety of epigenetic changes in endometrial cells. Epigenetic control of gene expression which is considered to be responsible for the development of endometriosis is commonly seen in patients with preeclampsia, small for gestational age (SGA), or preterm birth. DLX5 and GATA3, paternally imprinted genes, and CDKN1C, a maternally imprinted gene, were aberrantly expressed in placenta tissues of the preeclampsia; CDKN1C, the growth inhibitor gene, was upregulated in human SGA placentas; and hypomethylation of PTGER2 would be associated with preterm birth. Preeclampsia, SGA, or preterm birth may share common epigenetic alterations with endometriosis, which raises the possibility that the occurrence of two conditions might be nonrandom. To date, however, there is a lack of evidence that links endometriosis and other obstetric complications, such as postpartum hemorrhage or placental abruption, at the epigenetic level. In conclusion, epigenetic changes may be a common hallmark of two conditions: endometriosis and obstetrical complications, such as preeclampsia, SGA, or preterm birth.
Collapse
|
30
|
Tenório MCDS, Mello CS, Santos JCDF, Oliveira ACMD. Comparison of adequacy of birth weight for gestational age according to different intrauterine growth curves. REVISTA BRASILEIRA DE SAÚDE MATERNO INFANTIL 2019. [DOI: 10.1590/1806-93042019000400011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract Objectives: to compare the assessment of the adequacy of birth weight for gestational age according to different intrauterine growth curves. Methods: across-sectional study, which analyzed gestational and neonatal information from 344 mother-newborn binomials. Birth weight data were analyzed using the International Fetal and New Born Growth Consortium for the 21st Century (INTERGROWTH-21st) and compared with the growth curves proposed by Alexander et al. and Fenton & Kim. Newborns were classified as small for gestational age (SGA), suitablefor gestational age (SUGA) or large for gestational age (LGA). Results: among the newborns, 51.2% were male, and 93.0% were born at term. Higher prevalence of SUGA and LGA and lower SGA was found by the INTERGROWTH-21st curves when compared to the references of Fenton & Kim and Alexander et al. Moderate agreement was observed in detecting birth weight by different growth curves. Conclusions: there was a lower detection of SGA infants and a higher screening, especially of LGA infants, in the INTERGROWTH-21st evaluation, when compared to the growth curves of Fenton & Kim and Alexander et al.
Collapse
|
31
|
Perrone S, Laschi E, Buonocore G. Biomarkers of oxidative stress in the fetus and in the newborn. Free Radic Biol Med 2019; 142:23-31. [PMID: 30954545 DOI: 10.1016/j.freeradbiomed.2019.03.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/18/2019] [Accepted: 03/29/2019] [Indexed: 02/06/2023]
Abstract
The dynamic field of perinatology entails ever-increasing search for molecular mechanisms of neonatal diseases, especially in the domain of fetal growth and neurodevelopmental outcome. There is an urgent need for new molecular biomarkers, to early identify newborn at high risk for developing diseases and to provide new treatment targets. The interest in biomarkers of oxidative stress in perinatal period have begun to grow in the last century, when it was evidenced the importance of the free radicals generation underlying the various disease conditions. To date, interesting researches have been carried out, representing milestones for implementation of oxidative stress biomarkers in perinatal medicine. Use of a panel of "oxidative stress biomarkers", particularly non protein bound iron, advanced oxidative protein products and isoprostanes, may provide valuable information regarding functional pathways underlying free radical mediated diseases of newborns and their early identification and prevention. Here, we will review recent advances and the current knowledge on the application of biomarkers of oxidative stress in neonatal/perinatal medicine including novel biomarker discovery, defining yet unrecognized biologic therapeutic targets, and linking of oxidative stress biomarkers to relevant standard indices and long-term outcomes.
Collapse
Affiliation(s)
- Serafina Perrone
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.
| | - Elisa Laschi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giuseppe Buonocore
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
32
|
Nikolaidou C, Karamitsos T. The shape of our hearts: The impact of early stages in life on cardiac development. Eur J Prev Cardiol 2019; 27:60-62. [PMID: 31408369 DOI: 10.1177/2047487319869579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | - Theodoros Karamitsos
- 1st Department of Cardiology, AHEPA Hospital, Aristotle University of Thessaloniki, Greece
| |
Collapse
|
33
|
Morales-Rubio RA, Alvarado-Cruz I, Manzano-León N, Andrade-Oliva MDLA, Uribe-Ramirez M, Quintanilla-Vega B, Osornio-Vargas Á, De Vizcaya-Ruiz A. In utero exposure to ultrafine particles promotes placental stress-induced programming of renin-angiotensin system-related elements in the offspring results in altered blood pressure in adult mice. Part Fibre Toxicol 2019; 16:7. [PMID: 30691489 PMCID: PMC6350404 DOI: 10.1186/s12989-019-0289-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/13/2019] [Indexed: 12/16/2022] Open
Abstract
Background Exposure to particulate matter (PM) is associated with an adverse intrauterine environment, which can promote adult cardiovascular disease (CVD) risk. Ultrafine particles (UFP) (small size and large surface area/mass ratio) are systemically distributed, induce inflammation and oxidative stress, and have been associated with vascular endothelial dysfunction and arterial vasoconstriction, increasing hypertension risk. Placental stress and alterations in methylation of promoter regions of renin-angiotensin system (RAS)-related elements could be involved in UFP exposure-related programming of hypertension. We investigated whether in utero UFP exposure promotes placental stress by inflammation and oxidative stress, alterations in hydroxysteroid dehydrogenase 11b-type 2 (HSD11B2) and programming of RAS-related elements, and result in altered blood pressure in adult offspring. UFP were collected from ambient air using an aerosol concentrator and physicochemically characterized. Pregnant C57BL/6J pun/pun female mice were exposed to collected UFP (400 μg/kg accumulated dose) by intratracheal instillation and compared to control (nonexposed) and sterile H2O (vehicle) exposed mice. Embryo reabsorption and placental stress by measurement of the uterus, placental and fetal weights, dam serum and fetal cortisol, placental HSD11B2 DNA methylation and protein levels, were evaluated. Polycyclic aromatic hydrocarbon (PAH) biotransformation (CYP1A1 and NQO1 (NAD(P)H dehydrogenase (quinone)1)) enzymes, inflammation and oxidative stress in placentas and fetuses were measured. Postnatal day (PND) 50 in male offspring blood pressure was measured. Methylation and protein expression of (RAS)-related elements, angiotensin II receptor type 1 (AT1R) and angiotensin I-converting enzyme (ACE) in fetuses and lungs of PND 50 male offspring were also assessed. Results In utero UFP exposure induced placental stress as indicated by an increase in embryo reabsorption, decreases in the uterus, placental, and fetal weights, and HSD11B2 hypermethylation and protein downregulation. In utero UFP exposure induced increases in the PAH-biotransforming enzymes, intrauterine oxidative damage and inflammation and stimulated programming and activation of AT1R and ACE, which resulted in increased blood pressure in the PND 50 male offspring. Conclusions In utero UFP exposure promotes placental stress through inflammation and oxidative stress, and programs RAS-related elements that result in altered blood pressure in the offspring. Exposure to UFP during fetal development could influence susceptibility to CVD in adulthood. Electronic supplementary material The online version of this article (10.1186/s12989-019-0289-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Russell A Morales-Rubio
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Isabel Alvarado-Cruz
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Natalia Manzano-León
- Departamento de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, México
| | - Maria-de-Los-Angeles Andrade-Oliva
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Marisela Uribe-Ramirez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Betzabet Quintanilla-Vega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | | | - Andrea De Vizcaya-Ruiz
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México.
| |
Collapse
|
34
|
Vieira LD, Farias JS, de Queiroz DB, Cabral EV, Lima-Filho MM, Sant'Helena BR, Aires RS, Ribeiro VS, Santos-Rocha J, Xavier FE, Paixão AD. Oxidative stress induced by prenatal LPS leads to endothelial dysfunction and renal haemodynamic changes through angiotensin II/NADPH oxidase pathway: Prevention by early treatment with α-tocopherol. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3577-3587. [DOI: 10.1016/j.bbadis.2018.09.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/04/2018] [Accepted: 09/17/2018] [Indexed: 11/16/2022]
|
35
|
Olaya-C M, Garrido M, Hernandez-Losa J, Sesé M, Ayala-Ramirez P, Somoza R, Vargas MJ, Ramón Y Cajal S. The umbilical cord, preeclampsia and the VEGF family. Int J Womens Health 2018; 10:783-795. [PMID: 30568515 PMCID: PMC6276640 DOI: 10.2147/ijwh.s174734] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction The VEGF family has been identified as abnormal in preeclampsia (PE). Hypertensive disorders of pregnancy (HDP) are major contributors to maternal and neonatal morbidity and mortality worldwide; likewise, umbilical cord anatomical abnormalities (UCAA) are linked to poor neonatal outcomes. Based on the relationship described between PE and UCAA and the role of the VEGF family in PE, this study explored VEGF expression in placental and UC tissued from patients with PE and with UCAA. Methods We performed an observational, analytical study on placentas, comparing protein and mRNA expression in four groups: patients with PE, patients with UC abnormalities, patients with both, and patients with none of them. Using immunohistochemistry, we studied VEGF A, VEGF R1 (FLT1), MMP1, and PLGF. With quantitative reverse transcription polymerase chain reaction we described mRNA expression of PLGF, VEGF and sFLT1, and sFLT1/PLGF ratio. Results Forty newborns were included. Sixty-seven percent of mothers and 45% of newborns developed no complications. Immunohistochemistry was performed on UC and placental disc paraffin-embedded tissue; in the latter, the mRNA of the VEGF family was also measured. Statistically significant differences were observed among different expressions in both HDP and UCAA groups. Interestingly, the UCAA group exhibited lower levels of sFLT1 and VEGF-A in comparison with other groups, with significant P-value for sFLT1 (P=0000.1). Conclusion The origin of UCAA abnormalities and their relation with HDP are still unknown. VEGF family alterations could be involved in both. This study provides the first approach related to molecules linked to UCAA.
Collapse
Affiliation(s)
- Mercedes Olaya-C
- Department of Pathology, Institute of Human Genetics, The Medical School, Pontificia Universidad Javeriana - Hospital Universitario San Ignacio, Bogota, Colombia,
| | - Marta Garrido
- Pathology Department, Vall d'Hebron Hospital, Barcelona, Spain
| | - Javier Hernandez-Losa
- Institute of Human Genetics, The Medical School, Pontificia Universidad Javeriana, Bogota, Colombia.,Institute of Human Genetics, The Medical School, Pontificia Universidad Javeriana, Bogota, Colombia.,Institute of Human Genetics, The Medical School, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Marta Sesé
- Institute of Human Genetics, The Medical School, Pontificia Universidad Javeriana, Bogota, Colombia.,Institute of Human Genetics, The Medical School, Pontificia Universidad Javeriana, Bogota, Colombia.,Institute of Human Genetics, The Medical School, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Paola Ayala-Ramirez
- Institute of Human Genetics, The Medical School, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Rosa Somoza
- Institute of Human Genetics, The Medical School, Pontificia Universidad Javeriana, Bogota, Colombia.,Institute of Human Genetics, The Medical School, Pontificia Universidad Javeriana, Bogota, Colombia.,Institute of Human Genetics, The Medical School, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Magda Jimena Vargas
- Department of Pathology, The Medical School, Pontificia Universidad Javeriana - Hospital Universitario San Ignacio, Bogota, Colombia
| | - Santiago Ramón Y Cajal
- Institute of Human Genetics, The Medical School, Pontificia Universidad Javeriana, Bogota, Colombia.,Institute of Human Genetics, The Medical School, Pontificia Universidad Javeriana, Bogota, Colombia.,Institute of Human Genetics, The Medical School, Pontificia Universidad Javeriana, Bogota, Colombia
| |
Collapse
|
36
|
Bruckner TA, Catalano R. Selection in utero and population health: Theory and typology of research. SSM Popul Health 2018; 5:101-113. [PMID: 29928686 PMCID: PMC6008283 DOI: 10.1016/j.ssmph.2018.05.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 01/05/2023] Open
Abstract
Public health researchers may assume, based on the fetal origins literature, that "scarring" of birth cohorts describes the population response to modern-day stressors. We contend, based on extensive literature concerned with selection in utero, that this assumption remains questionable. At least a third and likely many more of human conceptions fail to yield a live birth. Those that survive to birth, moreover, do not represent their conception cohort. Increasing data availability has led to an improved understanding of selection in utero and its implications for population health. The literature describing selection in utero, however, receives relatively little attention from social scientists. We aim to draw attention to the rich theoretical and empirical literature on selection in utero by offering a typology that organizes this diverse work along dimensions we think important, if not familiar, to those studying population health. We further use the typology to identify important gaps in the literature. This work should interest social scientists for two reasons. First, phenomena of broad scholarly interest (i.e., social connectivity, bereavement) affect the extent and timing of selection in utero. Second, the life-course health of a cohort depends in part on the strength of such selection. We conclude by identifying new research directions and with a reconciliation of the apparent contradiction between the "fetal origins" literature and that describing selection in utero.
Collapse
Affiliation(s)
- Tim A. Bruckner
- Program in Public Health, University of California, Irvine, 653 E. Peltason Dr. Suite 2046, 2nd Floor, Irvine, CA 92697-3957, USA
| | - Ralph Catalano
- School of Public Health, University of California, Berkeley, 15 University Hall, Berkeley, CA 94720, USA
| |
Collapse
|
37
|
Cai C, Ahmad T, Valencia GB, Aranda JV, Xu J, Beharry KD. Intermittent hypoxia suppression of growth hormone and insulin-like growth factor-I in the neonatal rat liver. Growth Horm IGF Res 2018; 41:54-63. [PMID: 29544682 PMCID: PMC6064669 DOI: 10.1016/j.ghir.2018.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Extremely low gestational age neonates with chronic lung disease requiring oxygen therapy frequently experience fluctuations in arterial oxygen saturation or intermittent hypoxia (IH). These infants are at risk for multi-organ developmental delay, reduced growth, and short stature. The growth hormone (GH)/insulin-like growth factor-I (IGF-1) system, an important hormonal regulator of lipid and carbohydrate metabolism, promotes neonatal growth and development. We tested the hypothesis that increasing episodes of IH delay neonatal growth by influencing the GH/IGF-I axis. DESIGN Newborn rats were exposed to 2, 4, 6, 8, 10, or 12 hypoxic episodes (12% O2) during hyperoxia (50% O2) from P0-P7, P0-P14 (IH), or allowed to recover from P7-P21 or P14-P21 (IHR) in room air (RA). RA littermates at P7, P14, and P21 served as RA controls; and groups exposed to hyperoxia only (50% O2) served as zero IH controls. Histopathology of the liver; hepatic levels of GH, GHBP, IGF-I, IGFBP-3, and leptin; and immunoreactivities of GH, GHR, IGF-I and IGF-IR were determined. RESULTS Pathological findings of the liver, including cellular swelling, steatosis, necrosis and focal sinusoid congestion were seen in IH, and were particularly severe in the P7 animals. Hepatic GH levels were significantly suppressed in the IH groups exposed to 6-12 hypoxic episodes per day and were not normalized during IHR. Deficits in the GH levels were associated with reduced body length and increase body weight during IHR suggesting increased adiposity and catchup fat. Catchup fat was also associated with elevations in GHBP, IGF-I, leptin. CONCLUSIONS IH significantly impairs hepatic GH/IGF-1 signaling during the first few weeks of life, which is likely responsible for hepatic GH resistance, increased body fat, and hepatic steatosis. These hormonal perturbations may contribute to long-term organ and body growth impairment, and metabolic dysfunction in preterm infants experiencing frequent IH and/or apneic episodes.
Collapse
Affiliation(s)
- Charles Cai
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Taimur Ahmad
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Gloria B Valencia
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Jacob V Aranda
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA; Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY, USA; SUNY Eye Institute, NY, NY, USA
| | - Jiliu Xu
- Department of Pediatrics, Richmond University Medical Center, Staten Island, NY, USA
| | - Kay D Beharry
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA; Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY, USA; SUNY Eye Institute, NY, NY, USA.
| |
Collapse
|
38
|
The Free Radical Diseases of Prematurity: From Cellular Mechanisms to Bedside. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7483062. [PMID: 30140369 PMCID: PMC6081521 DOI: 10.1155/2018/7483062] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/28/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022]
Abstract
During the perinatal period, free radicals (FRs) are involved in several physiological roles such as the cellular responses to noxia, the defense against infectious agents, the regulation of cellular signaling function, and the induction of a mitogenic response. However, the overproduction of FRs and the insufficiency of an antioxidant mechanism result in oxidative stress (OS) which represents a deleterious process and an important mediator of damage to the placenta and the developing fetus. After birth, OS can be magnified by other predisposing conditions such as hypoxia, hyperoxia, ischemia, hypoxia ischemia-reperfusion, inflammation, and high levels of nonprotein-bound iron. Newborns are particularly susceptible to OS and oxidative damage due to the increased generation of FRs and the lack of adequate antioxidant protection. This impairment of the oxidative balance has been thought to be the common factor of the so-called “free radical related diseases of prematurity,” including retinopathy of prematurity, bronchopulmonary dysplasia, intraventricular hemorrhage, periventricular leukomalacia, necrotizing enterocolitis, kidney damage, and oxidative hemolysis. In this review, we provide an update focused on the factors influencing these diseases refining the knowledge about the role of OS in their pathogenesis and the current evidences of such relationship. Mechanisms governing FR formation and subsequent OS may represent targets for counteracting tissue damage.
Collapse
|
39
|
Kulkarni A, Garcia-Cañadilla P, Khan A, Lorenzo JM, Beckerman K, Valenzuela-Alcaraz B, Cruz-Lemini M, Gomez O, Gratacos E, Crispi F, Bijnens B. Remodeling of the cardiovascular circulation in fetuses of mothers with diabetes: A fetal computational model analysis. Placenta 2018; 63:1-6. [PMID: 29486850 DOI: 10.1016/j.placenta.2017.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 12/25/2017] [Accepted: 12/30/2017] [Indexed: 10/18/2022]
Abstract
AIMS Myocardial structural and functional abnormalities are known to occur in fetuses of mothers with diabetes mellitus (FMDM). The main aim of this investigation was to explore the cardiovascular circulatory patterns in FMDM using a validated lumped computational model of the cardiovascular system. METHODS This was a multi-institutional study involving FMDM compared to fetuses of maternal controls (FC). Fetal echocardiographic Doppler data from left and right ventricular outflow tracts, aortic isthmus, middle cerebral and umbilical arteries were fitted into a validated fetal circulation computational model to estimate patient-specific placental and vascular properties. Non-parametric comparisons were made between resistances, compliances and flows in the brain and placenta in FMDM and FC. RESULTS Data from 23 FMDM and 31 FC were fitted into the model. In FMDM, compared to FC, placental relative resistance was lower (0.59 ± 0.50 versus 0.91 ± 0.41; p < .05) with higher brain relative resistance (2.36 ± 1.65 versus 1.60 ± 0.85; p < .05). Middle cerebral artery flow was lower in FMDM than FC (0.12 ± 0.14 vs. 0.27 ± 0.21 ml/min; p 0.04) with a lower cerebral-placental flow ratio. Combined stroke volume was lower in FMDM (3.65 ± 2.05 ml) than FC (4.97 ± 2.45 ml) (p 0.04). CONCLUSIONS Blood flow is redistributed in FMDM to the placenta, away from the brain. This alteration may play a role in the postnatal health of these fetuses.
Collapse
Affiliation(s)
- Aparna Kulkarni
- Division of Pediatric Cardiology, Bronx Lebanon Hospital Center, Bronx, NY, USA.
| | - Patricia Garcia-Cañadilla
- Physense, DTIC, Universitat Pompeu Fabra, Barcelona, Spain; BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Fetal i+D Fetal Medicine Research Center, Institut Clinic de Ginecologia, Obstetricia i Neonatologia, IDIBAPS, CIBER-ER, University of Barcelona, Spain
| | - Abdullah Khan
- Division of Pediatric Cardiology, Bronx Lebanon Hospital Center, Bronx, NY, USA
| | - Jose Miguel Lorenzo
- Division of Pediatric Cardiology, Bronx Lebanon Hospital Center, Bronx, NY, USA
| | - Karen Beckerman
- Department of Obstetrics, Bronx Lebanon Hospital Center, Bronx, NY, USA
| | - Brenda Valenzuela-Alcaraz
- BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Fetal i+D Fetal Medicine Research Center, Institut Clinic de Ginecologia, Obstetricia i Neonatologia, IDIBAPS, CIBER-ER, University of Barcelona, Spain
| | - Monica Cruz-Lemini
- BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Fetal i+D Fetal Medicine Research Center, Institut Clinic de Ginecologia, Obstetricia i Neonatologia, IDIBAPS, CIBER-ER, University of Barcelona, Spain
| | - Olga Gomez
- BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Fetal i+D Fetal Medicine Research Center, Institut Clinic de Ginecologia, Obstetricia i Neonatologia, IDIBAPS, CIBER-ER, University of Barcelona, Spain
| | - Eduard Gratacos
- BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Fetal i+D Fetal Medicine Research Center, Institut Clinic de Ginecologia, Obstetricia i Neonatologia, IDIBAPS, CIBER-ER, University of Barcelona, Spain
| | - Fatima Crispi
- BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Fetal i+D Fetal Medicine Research Center, Institut Clinic de Ginecologia, Obstetricia i Neonatologia, IDIBAPS, CIBER-ER, University of Barcelona, Spain
| | - Bart Bijnens
- Physense, DTIC, Universitat Pompeu Fabra, Barcelona, Spain; ICREA, Barcelona, Spain
| |
Collapse
|
40
|
The effect of oxidative stress induced by tert-butylhydroperoxide under distinct folic acid conditions: An in vitro study using cultured human trophoblast-derived cells. Reprod Toxicol 2018; 77:33-42. [PMID: 29425713 DOI: 10.1016/j.reprotox.2018.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 12/14/2022]
Abstract
Preeclampsia is a pregnancy disorder characterized by high maternal blood pressure, fetal growth restriction and intrauterine hypoxia. Folic acid is a vitamin required during pregnancy. In this work, we investigated the relationship between preeclampsia and the intake of distinct doses of folic acid during pregnancy. Considering that preeclampsia is associated with increased placental oxidative stress levels, we investigated the effect of oxidative stress induced by tert-butylhydroperoxide (TBH) in human trophoblast-derived cells cultured upon deficient/low, physiological and supra-physiological folic acid levels. The negative effect of TBH upon thiobarbituric acid reactive substances (TBARS), total, reduced and oxidized glutathione, cell viability, cell proliferation, culture growth and cell migration was more marked under folic acid excess. This study suggests more attention on the dose administered, and ultimately, on the overall folic acid levels during pregnancy, in the context of preeclampsia risk.
Collapse
|
41
|
Whiteman VE, Goswami A, Salihu HM. Telomere length and fetal programming: A review of recent scientific advances. Am J Reprod Immunol 2018; 77. [PMID: 28500672 DOI: 10.1111/aji.12661] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/08/2017] [Indexed: 02/06/2023] Open
Abstract
We sought to synthesize a comprehensive literature review comprising recent research linking fetal programming to fetal telomere length. We also explored the potential effects fetal telomere length shortening has on fetal phenotypes. Utilizing the PubMed database as our primary search engine, we retrieved and reviewed 165 articles of published research. The inclusion criteria limited the articles to those that appeared within the last ten years, were pertinent to humans, and without restriction to language of publication. Our results showed that socio-demographic factors like age, sex, genetic inheritance, and acquired disease impact telomere length. Further, we found several maternal characteristics to be associated with fetal telomere length shortening, and these include maternal chemical exposure (eg, tobacco smoke), maternal stress during pregnancy, maternal nutritional and sleeping disorders during pregnancy as well as maternal disease status. Due to paucity of data, our review could not synthesize evidence directly linking fetal phenotypes to telomere length shortening. Although the research summarized in this review shows some association between determinants of intrauterine programming and fetal telomere length, there is still significant work that needs to be done to delineate the direct relationship of telomere attrition with specific fetal phenotypes.
Collapse
Affiliation(s)
- Valerie E Whiteman
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, USF Morsani College of Medicine, Tampa, FL, USA
| | - Anjali Goswami
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, USF Morsani College of Medicine, Tampa, FL, USA
| | - Hamisu M Salihu
- Department of Family and Community Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
42
|
Marciniak A, Patro-Małysza J, Kimber-Trojnar Ż, Marciniak B, Oleszczuk J, Leszczyńska-Gorzelak B. Fetal programming of the metabolic syndrome. Taiwan J Obstet Gynecol 2017; 56:133-138. [PMID: 28420495 DOI: 10.1016/j.tjog.2017.01.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2017] [Indexed: 12/14/2022] Open
Abstract
Prenatal development is currently recognized as a critical period in the etiology of human diseases. This is particularly so when an unfavorable environment interacts with a genetic predisposition. The fetal programming concept suggests that maternal nutritional imbalance and metabolic disturbances may have a persistent and intergenerational effect on the health of offspring and on the risk of diseases such as obesity, diabetes, and cardiovascular diseases.
Collapse
Affiliation(s)
- Aleksandra Marciniak
- Department of Obstetrics and Perinatology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Jolanta Patro-Małysza
- Department of Obstetrics and Perinatology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Żaneta Kimber-Trojnar
- Department of Obstetrics and Perinatology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland.
| | - Beata Marciniak
- Department of Obstetrics and Perinatology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Jan Oleszczuk
- Department of Obstetrics and Perinatology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Bożena Leszczyńska-Gorzelak
- Department of Obstetrics and Perinatology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| |
Collapse
|
43
|
Al-Saleh I, Al-Rouqi R, Elkhatib R, Abduljabbar M, Al-Rajudi T. Risk assessment of environmental exposure to heavy metals in mothers and their respective infants. Int J Hyg Environ Health 2017; 220:1252-1278. [PMID: 28869188 DOI: 10.1016/j.ijheh.2017.07.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 12/17/2022]
Abstract
Exposure to heavy metals can cause renal injury, which has been well documented in occupational exposure. Studies of low exposure in the general population, however, are still scarce, particularly for vulnerable populations such as mothers and young children. This study evaluated exposure to heavy metals, and biomarkers of renal function and oxidative stress in 944 lactating mothers and their infants and investigated the role of the interaction between heavy metals and oxidative stress in altering renal function. Mother and infant urine samples were analyzed to measure mercury (Hg), cadmium (Cd), and lead (Pb) concentrations for determining body-burden exposure; N-acetyl-β-d-glucosaminidase (NAG), α1-microglobulin (α1-MG), albumin (ALB), and creatinine (Cr) concentrations for determining early renal injury; and 8-hydroxy-2-deoxyguanosine (8-OHdG) and malondialdehyde (MDA) concentrations for determining oxidative stress. The median concentrclearlyations in mothers presented as μg/g Cr (infants as μg/l) for Hg, Cd, and Pb were 0.695 (0.716), 0.322 (0.343), and 3.97 (5.306) respectively. The mothers and their infants had clearly been exposed to heavy metals and had levels higher than the reference values reported for the general populations of USA, Germany, and Canada. Multiple regression analyses clearly demonstrated associations between urinary heavy metals in quartiles and several renal and oxidative biomarkers in mothers and to a lesser extent their infants. ß coefficients for urinary excretions of MDA, 8-OHdG, ALB, α1-MG, NAG, and Cr in mothers were high in the highest quartile of Hg (1.183-51.29μg/g Cr or 1.732-106.95μg/l), Cd (0.565-765.776μg/g Cr or 0.785-1347.0μg/l), and Pb (6.606-83.937μg/g Cr or 9.459-80.826μg/l), except Pb was not associated with ALB. Infants in the highest Pb quartile (9.293-263.098μg/l) had the highest ß coefficients of urinary excretion of MDA, 8-OHdG, ALB, NAG, and Cr. Significant increasing trend in biomarkers across the quartiles of the three metals was seen in both mothers and infants (ptrend <0.001). A receiver operating characteristic analysis supported the predictive abilities of the four renal biomarkers in discriminating between low versus high metal quartiles. The interaction between heavy metals and oxidative stress contributed to the high excretions of renal biomarkers, but the mechanism remains unclear. These findings add to the limited evidence that low exposure to heavy metals in the general population is associated with alterations in renal function that could eventually progress to renal damage if exposure continues and that children are more susceptible due to the immaturity of their body organs.
Collapse
Affiliation(s)
- Iman Al-Saleh
- Environmental Health Program, Research Centre, King Faisal Specialist Hospital and Research Centre, P.O. Box: 3354, Riyadh 11211, Saudi Arabia.
| | - Reem Al-Rouqi
- Environmental Health Program, Research Centre, King Faisal Specialist Hospital and Research Centre, P.O. Box: 3354, Riyadh 11211, Saudi Arabia
| | - Rola Elkhatib
- Environmental Health Program, Research Centre, King Faisal Specialist Hospital and Research Centre, P.O. Box: 3354, Riyadh 11211, Saudi Arabia
| | - Mai Abduljabbar
- Environmental Health Program, Research Centre, King Faisal Specialist Hospital and Research Centre, P.O. Box: 3354, Riyadh 11211, Saudi Arabia
| | - Tahreer Al-Rajudi
- Environmental Health Program, Research Centre, King Faisal Specialist Hospital and Research Centre, P.O. Box: 3354, Riyadh 11211, Saudi Arabia
| |
Collapse
|
44
|
Pu Y, Veiga-Lopez A. PPARγ agonist through the terminal differentiation phase is essential for adipogenic differentiation of fetal ovine preadipocytes. Cell Mol Biol Lett 2017; 22:6. [PMID: 28536637 PMCID: PMC5415806 DOI: 10.1186/s11658-017-0037-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/10/2017] [Indexed: 01/07/2023] Open
Abstract
Background Although the 3T3-L1 preadipocyte cell line represents an informative model for in vitro adipogenesis research, primary cultured cells are often needed to understand particular human or animal metabolic phenotypes. As demonstrated by in vitro cultured preadipocytes from large mammalian species, primary cultured cells require specific adipogenic differentiation conditions different to that of the 3T3-L1 cell line. These conditions are also species-specific and require optimization steps. However, efficient protocols to differentiate primary preadipocytes using alternative species to rodents are scarce. Sheep represent an amenable animal model for fetal biology and developmental origins of health and disease studies. In this work, we present with the first detailed procedure to efficiently differentiate primary fetal and adult ovine preadipocytes. Methods Fetal and adult ovine adipose and skin tissue harvest, preadipocyte and fibroblast isolation, proliferation, and standardization and optimization of a new adipogenic differentiation protocol. Use of commercial cell lines (3T3-L1 and NIH-3T3) for validation purposes. Oil red O stain and gene expression were used to validate adipogenic differentiation. ANOVA and Fisher’s exact test were used to determine statistical significance. Results Our optimized adipogenic differentiation method included a prolonged adipogenic cocktail exposure time from 2 to 8 days, higher insulin concentration, and supplementation with the peroxisome proliferator-activated receptor gamma (PPARγ) agonist, rosiglitazone. This protocol was optimized for both, fetal and adult preadipocytes. Conclusions Our protocol enables successful adipogenic differentiation of fetal and adult ovine preadipocytes. This work demonstrates that compared to the 3T3-L1 cell line, fetal ovine preadipocytes require a longer exposure to the differentiation cocktail, and the need for IMBX, dexamethasone, and/or the PPARγ agonist rosiglitazone through the terminal differentiation phase. They also require higher insulin concentration during differentiation to enhance lipid accumulation and similar to human primary preadipocytes, PPARγ agonist supplementation is also required for ovine adipogenic differentiation. This work highlights species-specific differences requirements for adipogenic differentiation and the need to develop standardized methods to investigate comparative adipocyte biology.
Collapse
Affiliation(s)
- Yong Pu
- Department of Animal Science, Michigan State University, 474 S. Shaw Lane Rm 1230 F, East Lansing, MI 48824 USA
| | - Almudena Veiga-Lopez
- Department of Animal Science, Michigan State University, 474 S. Shaw Lane Rm 1230 F, East Lansing, MI 48824 USA
| |
Collapse
|
45
|
de Wijs-Meijler DP, Duncker DJ, Tibboel D, Schermuly RT, Weissmann N, Merkus D, Reiss IK. Oxidative injury of the pulmonary circulation in the perinatal period: Short- and long-term consequences for the human cardiopulmonary system. Pulm Circ 2017; 7:55-66. [PMID: 28680565 PMCID: PMC5448552 DOI: 10.1086/689748] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/22/2016] [Indexed: 01/09/2023] Open
Abstract
Development of the pulmonary circulation is a complex process with a spatial pattern that is tightly controlled. This process is vulnerable for disruption by various events in the prenatal and early postnatal periods. Disruption of normal pulmonary vascular development leads to abnormal structure and function of the lung vasculature, causing neonatal pulmonary vascular diseases. Premature babies are especially at risk of the development of these diseases, including persistent pulmonary hypertension and bronchopulmonary dysplasia. Reactive oxygen species play a key role in the pathogenesis of neonatal pulmonary vascular diseases and can be caused by hyperoxia, mechanical ventilation, hypoxia, and inflammation. Besides the well-established short-term consequences, exposure of the developing lung to injurious stimuli in the perinatal period, including oxidative stress, may also contribute to the development of pulmonary vascular diseases later in life, through so-called "fetal or perinatal programming." Because of these long-term consequences, it is important to develop a follow-up program tailored to adolescent survivors of neonatal pulmonary vascular diseases, aimed at early detection of adult pulmonary vascular diseases, and thereby opening the possibility of early intervention and interfering with disease progression. This review focuses on pathophysiologic events in the perinatal period that have been shown to disrupt human normal pulmonary vascular development, leading to neonatal pulmonary vascular diseases that can extend even into adulthood. This knowledge may be particularly important for ex-premature adults who are at risk of the long-term consequences of pulmonary vascular diseases, thereby contributing disproportionately to the burden of adult cardiovascular disease in the future.
Collapse
Affiliation(s)
- Daphne P. de Wijs-Meijler
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Division of Neonatology, Department of Pediatrics, Sophia Children’s Hospital, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dirk J. Duncker
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dick Tibboel
- Intensive Care Unit, Department of Pediatric Surgery, Sophia Children’s Hospital, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ralph T. Schermuly
- University of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Systems (ECCPS), Department of Internal Medicine, Members of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany
| | - Norbert Weissmann
- University of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Systems (ECCPS), Department of Internal Medicine, Members of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Irwin K.M. Reiss
- Division of Neonatology, Department of Pediatrics, Sophia Children’s Hospital, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
46
|
Sunkara N, H. Ahsan C. Hypertension in diabetes and the risk of cardiovascular disease. Cardiovasc Endocrinol 2017; 6:33-38. [PMID: 31646117 PMCID: PMC6768529 DOI: 10.1097/xce.0000000000000114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 01/11/2017] [Indexed: 12/19/2022] Open
Abstract
Hypertension (HTN) is an important risk factor for cardiovascular disease and its many manifestations. It shares pathogenic pathways with diabetes and is part of a common metabolic entity, the metabolic syndrome. When combined with diabetes, HTN has been shown to predict and promote increased risk for cardiovascular disease events over and above each risk factor alone. Of the components of this metabolic syndrome, HTN is relatively easy to diagnose and thereby more accessible for implementing preventive and treatment strategies. The recent release of Joint National Committee-8 guidelines for the treatment of HTN has fueled a debate on treatment target goals.
Collapse
Affiliation(s)
- Nirmal Sunkara
- Fellow in Vascular Medicine and Advanced Endovascular and Structural Heart Interventions, Wellmont CVA Heart Institute Kingsport, Kingsport, Tennessee
| | - Chowdhury H. Ahsan
- Clinical Professor, Director of Cardiac Catheterization Laboratory and Cardiovascular Research, School of Medicine, University of Nevada, Las Vegas, Nevada, USA
| |
Collapse
|
47
|
Koneva LA, Vyas AK, McEachin RC, Puttabyatappa M, H-S W, Sartor MA, Padmanabhan V. Developmental programming: Interaction between prenatal BPA and postnatal overfeeding on cardiac tissue gene expression in female sheep. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:4-18. [PMID: 28079927 PMCID: PMC5730970 DOI: 10.1002/em.22071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 05/23/2023]
Abstract
Epidemiologic studies and studies in rodents point to potential risks from developmental exposure to BPA on cardiometabolic diseases. Furthermore, it is becoming increasingly evident that the manifestation and severity of adverse outcomes is the result of interaction between developmental insults and the prevailing environment. Consistent with this premise, recent studies in sheep found prenatal BPA treatment prevented the adverse effects of postnatal obesity in inducing hypertension. The gene networks underlying these complex interactions are not known. mRNA-seq of myocardium was performed on four groups of four female sheep to assess the effects of prenatal BPA exposure, postnatal overfeeding and their interaction on gene transcription, pathway perturbations and functional effects. The effects of prenatal exposure to BPA, postnatal overfeeding, and prenatal BPA with postnatal overfeeding all resulted in transcriptional changes (85-141 significant differentially expressed genes). Although the effects of prenatal BPA and postnatal overfeeding did not involve dysregulation of many of the same genes, they affected a remarkably similar set of biological pathways. Furthermore, an additive or synergistic effect was not found in the combined treatment group, but rather prenatal BPA treatment led to a partial reversal of the effects of overfeeding alone. Many genes previously known to be affected by BPA and involved in obesity, hypertension, or heart disease were altered following these treatments, and AP-1, EGR1, and EGFR were key hubs affected by BPA and/or overfeeding. Environ. Mol. Mutagen. 58:4-18, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- LA Koneva
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor MI
| | - AK Vyas
- Department of Pediatrics, Texas Tech Health Sciences Permian Basin, Odessa, TX
| | - RC McEachin
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor MI
| | - M Puttabyatappa
- Department of Pediatrics, University of Michigan, Ann Arbor MI
| | - Wang H-S
- Department of Environmental Health, University of Cincinnati, Cincinnati OH
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, Cincinnati OH
| | - MA Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor MI
| | - V Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor MI
| |
Collapse
|
48
|
Koneva LA, Vyas AK, McEachin RC, Puttabyatappa M, Wang HS, Sartor MA, Padmanabhan V. Developmental programming: Interaction between prenatal BPA and postnatal overfeeding on cardiac tissue gene expression in female sheep. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:4-18. [PMID: 28079927 DOI: 10.1002/em] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 05/23/2023]
Abstract
Epidemiologic studies and studies in rodents point to potential risks from developmental exposure to BPA on cardiometabolic diseases. Furthermore, it is becoming increasingly evident that the manifestation and severity of adverse outcomes is the result of interaction between developmental insults and the prevailing environment. Consistent with this premise, recent studies in sheep found prenatal BPA treatment prevented the adverse effects of postnatal obesity in inducing hypertension. The gene networks underlying these complex interactions are not known. mRNA-seq of myocardium was performed on four groups of four female sheep to assess the effects of prenatal BPA exposure, postnatal overfeeding and their interaction on gene transcription, pathway perturbations and functional effects. The effects of prenatal exposure to BPA, postnatal overfeeding, and prenatal BPA with postnatal overfeeding all resulted in transcriptional changes (85-141 significant differentially expressed genes). Although the effects of prenatal BPA and postnatal overfeeding did not involve dysregulation of many of the same genes, they affected a remarkably similar set of biological pathways. Furthermore, an additive or synergistic effect was not found in the combined treatment group, but rather prenatal BPA treatment led to a partial reversal of the effects of overfeeding alone. Many genes previously known to be affected by BPA and involved in obesity, hypertension, or heart disease were altered following these treatments, and AP-1, EGR1, and EGFR were key hubs affected by BPA and/or overfeeding. Environ. Mol. Mutagen. 58:4-18, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- L A Koneva
- Departments of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - A K Vyas
- Department of Pediatrics, Texas Tech Health Sciences Permian Basin, Odessa, Texas
| | - R C McEachin
- Departments of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - M Puttabyatappa
- Departments of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - H-S Wang
- Departments of Environmental Health, University of Cincinnati, Cincinnati, Ohio
- Departments of Pharmacology and Cell Biophysics, University of Cincinnati, Cincinnati, Ohio
| | - M A Sartor
- Departments of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - V Padmanabhan
- Departments of Pediatrics, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
49
|
Alcántara-Alonso V, Panetta P, de Gortari P, Grammatopoulos DK. Corticotropin-Releasing Hormone As the Homeostatic Rheostat of Feto-Maternal Symbiosis and Developmental Programming In Utero and Neonatal Life. Front Endocrinol (Lausanne) 2017; 8:161. [PMID: 28744256 PMCID: PMC5504167 DOI: 10.3389/fendo.2017.00161] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 06/23/2017] [Indexed: 12/30/2022] Open
Abstract
A balanced interaction between the homeostatic mechanisms of mother and the developing organism during pregnancy and in early neonatal life is essential in order to ensure optimal fetal development, ability to respond to various external and internal challenges, protection from adverse programming, and safeguard maternal care availability after parturition. In the majority of pregnancies, this relationship is highly effective resulting in successful outcomes. However, in a number of pathological settings, perturbations of the maternal homeostasis disrupt this symbiosis and initiate adaptive responses with unpredictable outcomes for the fetus or even the neonate. This may lead to development of pathological phenotypes arising from developmental reprogramming involving interaction of genetic, epigenetic, and environmental-driven pathways, sometimes with acute consequences (e.g., growth impairment) and sometimes delayed (e.g., enhanced susceptibility to disease) that last well into adulthood. Most of these adaptive mechanisms are activated and controlled by hormones of the hypothalamo-pituitary adrenal axis under the influence of placental steroid and peptide hormones. In particular, the hypothalamic peptide corticotropin-releasing hormone (CRH) plays a key role in feto-maternal communication by orchestrating and integrating a series of neuroendocrine, immune, metabolic, and behavioral responses. CRH also regulates neural networks involved in maternal behavior and this determines efficiency of maternal care and neonate interactions. This review will summarize our current understanding of CRH actions during the perinatal period, focusing on the physiological roles for both mother and offspring and also how external challenges can alter CRH actions and potentially impact on fetus/neonate health.
Collapse
Affiliation(s)
- Viridiana Alcántara-Alonso
- Translational Medicine, Warwick Medical School, Coventry, United Kingdom
- Laboratory of Molecular Neurophysiology, Department of Neurosciences Research, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Pamela Panetta
- Translational Medicine, Warwick Medical School, Coventry, United Kingdom
| | - Patricia de Gortari
- Laboratory of Molecular Neurophysiology, Department of Neurosciences Research, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Dimitris K. Grammatopoulos
- Translational Medicine, Warwick Medical School, Coventry, United Kingdom
- Clinical Biochemistry, Coventry and Warwickshire Pathology Service, UHCW NHS Trust, Coventry, United Kingdom
- *Correspondence: Dimitris K. Grammatopoulos,
| |
Collapse
|
50
|
Jonscher KR, Stewart MS, Alfonso-Garcia A, DeFelice BC, Wang XX, Luo Y, Levi M, Heerwagen MJR, Janssen RC, de la Houssaye BA, Wiitala E, Florey G, Jonscher RL, Potma EO, Fiehn O, Friedman JE. Early PQQ supplementation has persistent long-term protective effects on developmental programming of hepatic lipotoxicity and inflammation in obese mice. FASEB J 2016; 31:1434-1448. [PMID: 28007783 DOI: 10.1096/fj.201600906r] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/12/2016] [Indexed: 12/13/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is widespread in adults and children. Early exposure to maternal obesity or Western-style diet (WD) increases steatosis and oxidative stress in fetal liver and is associated with lifetime disease risk in the offspring. Pyrroloquinoline quinone (PQQ) is a natural antioxidant found in soil, enriched in human breast milk, and essential for development in mammals. We investigated whether a supplemental dose of PQQ, provided prenatally in a mouse model of diet-induced obesity during pregnancy, could protect obese offspring from progression of NAFLD. PQQ treatment given pre- and postnatally in WD-fed offspring had no effect on weight gain but increased metabolic flexibility while reducing body fat and liver lipids, compared with untreated obese offspring. Indices of NAFLD, including hepatic ceramide levels, oxidative stress, and expression of proinflammatory genes (Nos2, Nlrp3, Il6, and Ptgs2), were decreased in WD PQQ-fed mice, concomitant with increased expression of fatty acid oxidation genes and decreased Pparg expression. Notably, these changes persisted even after PQQ withdrawal at weaning. Our results suggest that supplementation with PQQ, particularly during pregnancy and lactation, protects offspring from WD-induced developmental programming of hepatic lipotoxicity and may help slow the advancing epidemic of NAFLD in the next generation.-Jonscher, K. R., Stewart, M. S., Alfonso-Garcia, A., DeFelice, B. C., Wang, X. X., Luo, Y., Levi, M., Heerwagen, M. J. R., Janssen, R. C., de la Houssaye, B. A., Wiitala, E., Florey, G., Jonscher, R. L., Potma, E. O., Fiehn, O. Friedman, J. E. Early PQQ supplementation has persistent long-term protective effects on developmental programming of hepatic lipotoxicity and inflammation in obese mice.
Collapse
Affiliation(s)
- Karen R Jonscher
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA;
| | - Michael S Stewart
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado USA
| | | | - Brian C DeFelice
- West Coast Metabolomics Center, University of California, Davis, Davis, CA USA
| | - Xiaoxin X Wang
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Yuhuan Luo
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Moshe Levi
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Margaret J R Heerwagen
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado USA
| | - Rachel C Janssen
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado USA
| | - Becky A de la Houssaye
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado USA
| | - Ellen Wiitala
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado USA
| | - Garrett Florey
- Department of Integrative Biology, University of Colorado, Denver, Denver, Colorado, USA; and
| | - Raleigh L Jonscher
- Department of Integrative Biology, University of Colorado, Denver, Denver, Colorado, USA; and
| | - Eric O Potma
- Beckman Laser Institute, and.,Department of Biomedical Engineering,University of California, Irvine, Irvine, California, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis, Davis, CA USA.,Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jacob E Friedman
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado USA
| |
Collapse
|