1
|
De Bartolo MI, Belvisi D, Mancinelli R, Costanzo M, Caturano C, Leodori G, Berardelli A, Fabbrini G, Vivacqua G. A systematic review of salivary biomarkers in Parkinson's disease. Neural Regen Res 2024; 19:2613-2625. [PMID: 38595280 PMCID: PMC11168506 DOI: 10.4103/nrr.nrr-d-23-01677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/25/2023] [Accepted: 01/25/2024] [Indexed: 04/11/2024] Open
Abstract
The search for reliable and easily accessible biomarkers in Parkinson's disease is receiving a growing emphasis, to detect neurodegeneration from the prodromal phase and to enforce disease-modifying therapies. Despite the need for non-invasively accessible biomarkers, the majority of the studies have pointed to cerebrospinal fluid or peripheral biopsies biomarkers, which require invasive collection procedures. Saliva represents an easily accessible biofluid and an incredibly wide source of molecular biomarkers. In the present study, after presenting the morphological and biological bases for looking at saliva in the search of biomarkers for Parkinson's disease, we systematically reviewed the results achieved so far in the saliva of different cohorts of Parkinson's disease patients. A comprehensive literature search on PubMed and SCOPUS led to the discovery of 289 articles. After screening and exclusion, 34 relevant articles were derived for systematic review. Alpha-synuclein, the histopathological hallmark of Parkinson's disease, has been the most investigated Parkinson's disease biomarker in saliva, with oligomeric alpha-synuclein consistently found increased in Parkinson's disease patients in comparison to healthy controls, while conflicting results have been reported regarding the levels of total alpha-synuclein and phosphorylated alpha-synuclein, and few studies described an increased oligomeric alpha-synuclein/total alpha-synuclein ratio in Parkinson's disease. Beyond alpha-synuclein, other biomarkers targeting different molecular pathways have been explored in the saliva of Parkinson's disease patients: total tau, phosphorylated tau, amyloid-β1-42 (pathological protein aggregation biomarkers); DJ-1, heme-oxygenase-1, metabolites (altered energy homeostasis biomarkers); MAPLC-3beta (aberrant proteostasis biomarker); cortisol, tumor necrosis factor-alpha (inflammation biomarkers); DNA methylation, miRNA (DNA/RNA defects biomarkers); acetylcholinesterase activity (synaptic and neuronal network dysfunction biomarkers); Raman spectra, proteome, and caffeine. Despite a few studies investigating biomarkers targeting molecular pathways different from alpha-synuclein in Parkinson's disease, these results should be replicated and observed in studies on larger cohorts, considering the potential role of these biomarkers in determining the molecular variance among Parkinson's disease subtypes. Although the need for standardization in sample collection and processing, salivary-based biomarkers studies have reported encouraging results, calling for large-scale longitudinal studies and multicentric assessments, given the great molecular potentials and the non-invasive accessibility of saliva.
Collapse
Affiliation(s)
| | - Daniele Belvisi
- IRCCS Neuromed, Pozzilli, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Claudia Caturano
- Department of Experimental Morphology and Microscopy -Integrated Research Center (PRAAB) -Campus Biomedico University of Rome, Rome, Italy
| | - Giorgio Leodori
- IRCCS Neuromed, Pozzilli, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Giovanni Fabbrini
- IRCCS Neuromed, Pozzilli, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Giorgio Vivacqua
- Department of Experimental Morphology and Microscopy -Integrated Research Center (PRAAB) -Campus Biomedico University of Rome, Rome, Italy
| |
Collapse
|
2
|
Azizifar N, Mohaddes G, Keyhanmanesh R, Athari SZ, Alimohammadi S, Farajdokht F. Intranasal AdipoRon Mitigated Anxiety and Depression-Like Behaviors in 6-OHDA-Induced Parkinson 's Disease Rat Model: Going Beyond Motor Symptoms. Neurochem Res 2024; 49:3030-3042. [PMID: 39096412 DOI: 10.1007/s11064-024-04223-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/02/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Depression and anxiety are prevalent neuropsychiatric conditions among patients with Parkinson's disease (PD), which may manifest prior to motor symptoms. As levodopa, a prominent treatment for PD motor symptoms, provides few benefits for mood-related abnormalities, tackling non-motor symptoms is particularly important. AdipoRon (Ad), an adiponectin agonist, has demonstrated neuroprotective effects by suppressing neuroinflammatory responses and activating the AMPK/Sirt-1 signaling pathway. This study looked at the potential advantages and underlying mechanisms of intranasal Ad in a rat model of PD induced by 6-hydroxydopamine (6-OHDA). We found that Ad at doses of 1 and 10 µg for 21 days exhibited anxiolytic- and antidepressant effects in the open field (OF) test, elevated plus maze (EPM), sucrose splash test, and forced swimming test in a PD model caused by a unilateral 6-OHDA injection into the medial forebrain bundle (MFB). The Ad also lowered the levels of corticosterone in the blood, decreased inflammasome components (NLRP3, caspase 1, and IL-1β), and increased Sirt-1 protein levels in the prefrontal cortex (PFC) of PD rats. We conclude that Ad ameliorates anxious and depressive-like behaviors in the PD rat model through stimulating the AMPK/Sirt-1 signaling and blocking the NLRP3 inflammasome pathways in the PFC.
Collapse
Affiliation(s)
- Negin Azizifar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gisou Mohaddes
- Department of Biomedical Education, College of Osteopathic Medicine, California Health Sciences University, Clovis, CA, USA
| | - Rana Keyhanmanesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Zanyar Athari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soraya Alimohammadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Al-Kuraishy HM, Al-Gareeb AI, Zaidalkiani AT, Alexiou A, Papadakis M, Bahaa MM, Al-Faraga A, Batiha GES. Calprotectin in Parkinsonian disease: Anticipation and dedication. Ageing Res Rev 2024; 93:102143. [PMID: 38008403 DOI: 10.1016/j.arr.2023.102143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 11/28/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease due to degeneration of dopaminergic neurons (DNs) in the substantia nigra pars compacta (SNpc). PD is characterized by motor and non-motor symptoms. Non-motor symptoms such as constipation and dysfunction of gastrointestinal tract (GIT) motility together with medications used in the management of PD affect gut microbiota. Alterations of gut microbiota with development of gut dyspiosis can induce momentous changes in gut barrier with subsequent systemic inflammation and induction of neuroinflammation. It has been shown that calprotectin which reflect intestinal inflammation and gut barrier injury are augmented in PD. Therefore, this review aims to elucidate the possible role of gut barrier injury and associated dysbiois in PD neuropathology, and how calprotectin reflects gut barrier injury in PD. Benefit of this review was to elucidate that high fecal calprotectin level in PD patients indicated gut dysbiosis and intestinal inflammation. Early increment of fecal calprotectin indicates the development of gut dysbiosis and/or gut-barrier injury which may precede motor symptoms by decades. Thus, fecal calprotectin could be a diagnostic and prognostic biomarker in PD. preclinical and clinical studies are warranted in this regard to emphasize the potential role of fecal calprotectin in PD neuropathology.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ayah Talal Zaidalkiani
- Department of Nutrition, Faculty of Pharmacy and Medical Sciences, University of Petra, 11196 Amman, Jordan
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia; AFNP Med, 1030 Wien, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283 Wuppertal, Germany
| | - Mostafa M Bahaa
- Pharmacy Practice Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt.
| | - Ammar Al-Faraga
- Department of Biochemistry, College of Science University of Jeddah, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira 22511, Egypt
| |
Collapse
|
4
|
Jia X, Chen Q, Zhang Y, Asakawa T. Multidirectional associations between the gut microbiota and Parkinson's disease, updated information from the perspectives of humoral pathway, cellular immune pathway and neuronal pathway. Front Cell Infect Microbiol 2023; 13:1296713. [PMID: 38173790 PMCID: PMC10762314 DOI: 10.3389/fcimb.2023.1296713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
The human gastrointestinal tract is inhabited by a diverse range of microorganisms, collectively known as the gut microbiota, which form a vast and complex ecosystem. It has been reported that the microbiota-gut-brain axis plays a crucial role in regulating host neuroprotective function. Studies have shown that patients with Parkinson's disease (PD) have dysbiosis of the gut microbiota, and experiments involving germ-free mice and fecal microbiota transplantation from PD patients have revealed the pathogenic role of the gut microbiota in PD. Interventions targeting the gut microbiota in PD, including the use of prebiotics, probiotics, and fecal microbiota transplantation, have also shown efficacy in treating PD. However, the causal relationship between the gut microbiota and Parkinson's disease remains intricate. This study reviewed the association between the microbiota-gut-brain axis and PD from the perspectives of humoral pathway, cellular immune pathway and neuronal pathway. We found that the interactions among gut microbiota and PD are very complex, which should be "multidirectional", rather than conventionally regarded "bidirectional". To realize application of the gut microbiota-related mechanisms in the clinical setting, we propose several problems which should be addressed in the future study.
Collapse
Affiliation(s)
- Xiaokang Jia
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Qiliang Chen
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yuanyuan Zhang
- Department of Acupuncture and Moxibustion, The Affiliated Traditional Chinese Medicine (TCM) Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Tetsuya Asakawa
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, the Third People’s Hospital of Shenzhen, Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Niu L, Yao C, Zhang C, Zhou C, Fu Y, Li Y, Yang H, Sun X, Yang J, Zhao P, Yi S, Wang T, Li S, Li J. Sex- and age-specific prevalence and risk factors of depressive symptoms in Parkinson's disease. J Neural Transm (Vienna) 2023; 130:1291-1302. [PMID: 37418038 DOI: 10.1007/s00702-023-02658-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/24/2023] [Indexed: 07/08/2023]
Abstract
Although depressive symptoms are common in PD, few studies investigated sex and age differences in depressive symptoms. Our study aimed to explore the sex and age differences in the clinical correlates of depressive symptoms in patients with PD. 210 PD patients aged 50-80 were recruited. Levels of glucose and lipid profiles were measured. The Hamilton Depression Rating Scale-17 (HAMD-17), the Montreal Cognitive Assessment (MoCA) and the Movement Disorder Society Unified Parkinson's Disease Rating Scale Part III (MDS-UPDRS-III) assessed depressive symptom, cognition and motor function, respectively. Male depressive PD participants had higher fasting plasma glucose (FPG) levels. Regarding the 50-59 years group, depressive patients had higher TG levels. Moreover, there were sex and age differences in the factors associated with severity of depressive symptoms. In male PD patients, FPG was an independent contributor to HAMD-17 (Beta = 0.412, t = 4.118, p < 0.001), and UPDRS-III score was still associated with HAMD-17 in female patients after controlling for confounding factors (Beta = 0.304, t = 2.961, p = 0.004). Regarding the different age groups, UPDRS-III (Beta = 0.426, t = 2.986, p = 0.005) and TG (Beta = 0.366, t = 2.561, p = 0.015) were independent contributors to HAMD-17 in PD patients aged 50-59. Furthermore, non-depressive PD patients demonstrated better performance with respect to visuospatial/executive function among the 70-80 years group. These findings suggest that sex and age are crucial non-specific factors to consider when assessing the relationship between glycolipid metabolism, PD-specific factors and depression.
Collapse
Affiliation(s)
- Lichao Niu
- Laboratory of Biological Psychiatry, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China
| | - Cong Yao
- Laboratory of Biological Psychiatry, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China
| | - Chuhao Zhang
- Laboratory of Biological Psychiatry, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China
| | - Chi Zhou
- Laboratory of Biological Psychiatry, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China
| | - Yun Fu
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yanzhe Li
- Laboratory of Biological Psychiatry, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China
| | - Hechao Yang
- Laboratory of Biological Psychiatry, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China
| | - Xiaoxiao Sun
- Laboratory of Biological Psychiatry, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China
| | - Junfeng Yang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Peng Zhao
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Simin Yi
- Laboratory of Biological Psychiatry, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China
| | - Tingyun Wang
- Laboratory of Biological Psychiatry, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China
| | - Shen Li
- Laboratory of Biological Psychiatry, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China.
| | - Jie Li
- Laboratory of Biological Psychiatry, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China.
| |
Collapse
|
6
|
Lin X, Pan M, Sun J, Wang M, Huang Z, Wang G, Wang R, Gong H, Huang R, Huang F, Sun W, Liu H, Kurihara H, Li Y, Duan W, He R. Membrane phospholipid peroxidation promotes loss of dopaminergic neurons in psychological stress-induced Parkinson's disease susceptibility. Aging Cell 2023; 22:e13970. [PMID: 37622525 PMCID: PMC10577563 DOI: 10.1111/acel.13970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/15/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder associated with α-synuclein aggregation and dopaminergic neuron loss in the midbrain. There is evidence that psychological stress promotes PD progression by enhancing glucocorticoids-related oxidative damage, however, the mechanisms involved are unknown. The present study demonstrated that plasma membrane phospholipid peroxides, as determined by phospholipidomics, triggered ferroptosis in dopaminergic neurons, which in turn contributed to stress exacerbated PD-like motor disorder in mice overexpressing mutant human α-synuclein. Using hormonomics, we identified that stress stimulated corticosteroid release and promoted 15-lipoxygenase-1 (ALOX15)-mediated phospholipid peroxidation. ALOX15 was upregulated by α-synuclein overexpression and acted as a fundamental risk factor in the development of chronic stress-induced parkinsonism and neurodegeneration. Further, we demonstrated the mechanism by which corticosteroids activated the PKC pathway and induced phosphatidylethanolamine-binding protein-1 (PEBP1) to form a complex with ALOX15, thereby facilitating ALOX15 to locate on the plasma membrane phospholipids. A natural product isolated from herbs, leonurine, was screened with activities of inhibiting the ALOX15/PEBP1 interaction and thereby attenuating membrane phospholipid peroxidation. Collectively, our findings demonstrate that stress increases the susceptibility of PD by driving membrane lipid peroxidation of dopaminergic neurons and suggest the ALOX15/PEBP1 complex as a potential intervention target.
Collapse
Affiliation(s)
- Xiao‐Min Lin
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/The First Affiliated Hospital of Jinan UniversityJinan UniversityGuangzhouChina
| | - Ming‐Hai Pan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/The First Affiliated Hospital of Jinan UniversityJinan UniversityGuangzhouChina
| | - Jie Sun
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/The First Affiliated Hospital of Jinan UniversityJinan UniversityGuangzhouChina
| | - Meng Wang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/The First Affiliated Hospital of Jinan UniversityJinan UniversityGuangzhouChina
| | - Zi‐Han Huang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/The First Affiliated Hospital of Jinan UniversityJinan UniversityGuangzhouChina
| | - Guan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center of BiotherapySichuan UniversityChengduChina
| | - Rong Wang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal UtilizationYunnan University of Chinese MedicineKunmingChina
| | - Hai‐Biao Gong
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/The First Affiliated Hospital of Jinan UniversityJinan UniversityGuangzhouChina
| | - Rui‐Ting Huang
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Feng Huang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal UtilizationYunnan University of Chinese MedicineKunmingChina
| | - Wan‐Yang Sun
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/The First Affiliated Hospital of Jinan UniversityJinan UniversityGuangzhouChina
| | - Hai‐Zhi Liu
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/The First Affiliated Hospital of Jinan UniversityJinan UniversityGuangzhouChina
| | - Hiroshi Kurihara
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/The First Affiliated Hospital of Jinan UniversityJinan UniversityGuangzhouChina
| | - Yi‐Fang Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/The First Affiliated Hospital of Jinan UniversityJinan UniversityGuangzhouChina
| | - Wen‐Jun Duan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/The First Affiliated Hospital of Jinan UniversityJinan UniversityGuangzhouChina
| | - Rong‐Rong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/The First Affiliated Hospital of Jinan UniversityJinan UniversityGuangzhouChina
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal UtilizationYunnan University of Chinese MedicineKunmingChina
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| |
Collapse
|
7
|
Jurcau A, Andronie-Cioara FL, Nistor-Cseppento DC, Pascalau N, Rus M, Vasca E, Jurcau MC. The Involvement of Neuroinflammation in the Onset and Progression of Parkinson's Disease. Int J Mol Sci 2023; 24:14582. [PMID: 37834030 PMCID: PMC10573049 DOI: 10.3390/ijms241914582] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
Parkinson's disease is a neurodegenerative disease exhibiting the fastest growth in incidence in recent years. As with most neurodegenerative diseases, the pathophysiology is incompletely elucidated, but compelling evidence implicates inflammation, both in the central nervous system and in the periphery, in the initiation and progression of the disease, although it is not yet clear what triggers this inflammatory response and where it begins. Gut dysbiosis seems to be a likely candidate for the initiation of the systemic inflammation. The therapies in current use provide only symptomatic relief, but do not interfere with the disease progression. Nonetheless, animal models have shown promising results with therapies that target various vicious neuroinflammatory cascades. Translating these therapeutic strategies into clinical trials is still in its infancy, and a series of issues, such as the exact timing, identifying biomarkers able to identify Parkinson's disease in early and pre-symptomatic stages, or the proper indications of genetic testing in the population at large, will need to be settled in future guidelines.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Felicia Liana Andronie-Cioara
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Delia Carmen Nistor-Cseppento
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Nicoleta Pascalau
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Marius Rus
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Elisabeta Vasca
- Department of Oral Rehabilitation, Faculty of Medicine “Vasile Goldis” Arad, 310025 Arad, Romania
| | | |
Collapse
|
8
|
Bougea A, Stefanis L, Chrousos G. Stress system and related biomarkers in Parkinson's disease. Adv Clin Chem 2022; 111:177-215. [DOI: 10.1016/bs.acc.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
9
|
Dolatshahi M, Sabahi M, Aarabi MH. Pathophysiological Clues to How the Emergent SARS-CoV-2 Can Potentially Increase the Susceptibility to Neurodegeneration. Mol Neurobiol 2021; 58:2379-2394. [PMID: 33417221 PMCID: PMC7791539 DOI: 10.1007/s12035-020-02236-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/25/2020] [Indexed: 12/20/2022]
Abstract
Along with emergence of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in late 2019, a myriad of neurologic symptoms, associated with structural brain changes, were reported. In this paper, we provide evidence to critically discuss the claim that the survived patients could possibly be at increased risk for neurodegenerative diseases via various mechanisms. This virus can directly invade the brain through olfactory bulb, retrograde axonal transport from peripheral nerve endings, or via hematogenous or lymphatic routes. Infection of the neurons along with peripheral leukocytes activation results in pro-inflammatory cytokine increment, rendering the brain to neurodegenerative changes. Also, occupation of the angiotensin-converting enzyme 2 (ACE-2) with the virus may lead to a decline in ACE-2 activity, which acts as a neuroprotective factor. Furthermore, acute respiratory distress syndrome (ARDS) and septicemia induce hypoxemia and hypoperfusion, which are locally exacerbated due to the hypercoagulable state and micro-thrombosis in brain vessels, leading to oxidative stress and neurodegeneration. Common risk factors for COVID-19 and neurodegenerative diseases, such as metabolic risk factors, genetic predispositions, and even gut microbiota dysbiosis, can contribute to higher occurrence of neurodegenerative diseases in COVID-19 survivors. However, it should be considered that severity of the infection, the extent of neurologic symptoms, and the persistence of viral infection consequences are major determinants of this association. Importantly, whether this pandemic will increase the overall incidence of neurodegeneration is not clear, as a high percentage of patients with severe form of COVID-19 might probably not survive enough to develop neurodegenerative diseases.
Collapse
Affiliation(s)
- Mahsa Dolatshahi
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran. .,NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Mohammadmahdi Sabahi
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Neurosurgery Research Group (NRG), Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Hadi Aarabi
- Department of Neuroscience, University of Padova, Padova, Italy.,Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| |
Collapse
|
10
|
Peña-Bautista C, Casas-Fernández E, Vento M, Baquero M, Cháfer-Pericás C. Stress and neurodegeneration. Clin Chim Acta 2020; 503:163-168. [PMID: 31987795 DOI: 10.1016/j.cca.2020.01.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases are a great concern because of aging worldwide population. Despite substantial effort to advance our understanding of the etiology and potential treatment of neurodegeneration, there remains a paucity of information with respect to this complex disease process. Interestingly, stress has been implicated among the potential mechanisms implicated in neurodegenerative pathology. Given the increase in chronic stress in modern society, this premise warrants further investigation. The aim of this review is to evaluate the influence of stress on neurodegeneration, the effect of neurodegenerative diseases diagnosis on stress, and therapeutic strategies for neurodegenerative diseases with a special focus on stress reduction. Neurodegenerative disorders such as Alzheimer's, Parkinson's and Huntington's Disease showed an acceleration in disease progression and a worsening of symptoms under stress. Some therapies (e.g., yoga, meditation) focused on reducing stress showed beneficial effects against neurodegeneration. Nevertheless, more studies are necessary in order to completely understand the implications of stress in neurodegeneration and the usefulness of stress reduction in the treatment thereof.
Collapse
Affiliation(s)
| | | | - Máximo Vento
- Health Research Institute La Fe, Valencia, Spain
| | - Miguel Baquero
- Division of Neurology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | | |
Collapse
|
11
|
Costa CM, Oliveira GLD, Fonseca ACS, Lana RDC, Polese JC, Pernambuco AP. Levels of cortisol and neurotrophic factor brain-derived in Parkinson’s disease. Neurosci Lett 2019; 708:134359. [DOI: 10.1016/j.neulet.2019.134359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 01/01/2023]
|
12
|
Sancho Cantus D, Santiesteban López N, Cuerda Ballester M, Solera Gómez S, de la Rubia Ortí JE. Stress in Parkinson's disease. Cortisol and amylase biomarkers. Systematic review. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.sedeng.2018.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
El estrés en la enfermedad de Parkinson. Biomarcadores cortisol y amilasa. Revisión sistemática. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.sedene.2018.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Soares NM, Pereira GM, Altmann V, de Almeida RMM, Rieder CRM. Cortisol levels, motor, cognitive and behavioral symptoms in Parkinson's disease: a systematic review. J Neural Transm (Vienna) 2018; 126:219-232. [PMID: 30374595 DOI: 10.1007/s00702-018-1947-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/22/2018] [Indexed: 12/19/2022]
Abstract
Parkinson's disease (PD) is a progressive and multifactorial neurodegenerative disease. It has been suggested that a dysregulation of the hypothalamic-pituitary-adrenal axis (HPA) occurs in PD. Furthermore, this dysregulation may be involved in triggering, exacerbation or progression of disease. The objective of this study was to systematically review the literature regarding cortisol levels and their relation with motor, cognitive and behavioral symptoms in patients with PD. A systematic search was performed in PubMed and Embase databases, according to PRISMA norms. Twenty-one studies were included, which evaluated baseline levels of cortisol and motor, cognitive, behavioral symptoms, drugs administration or deep brain stimulation to PD treatment. Sample size ranged from 7 to 249 individuals. In 14 studies that assessed cortisol levels in PD patients, seven showed elevation of cortisol levels. In relation to symptomatology, high levels of cortisol were associated with worst functional scores evaluated by UPDRS, depression and behavior in risk preference. Medication interactions showed an influence on the regulation of cortisol release, mainly, conventional drugs used in the PD's treatment, such as levodopa. The results found in this review point to a possible relationship between cortisol levels and symptoms in PD, indicating that an HPA axis dysfunction related to cortisol level occurs in PD.
Collapse
Affiliation(s)
- Nayron Medeiros Soares
- Medical Science Post Graduation Program, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2400, Porto Alegre, RS, Brazil.
- Institute of Psychology, Laboratory of Psychology, Neuroscience and Behavior (LPNeC), Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre, RS, Brazil.
- Hospital de Clinicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Porto Alegre, RS, Brazil.
- Federal University of Health Science of Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, RS, Brazil.
| | - Gabriela Magalhães Pereira
- Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2400, Porto Alegre, RS, Brazil
- Institute of Psychology, Laboratory of Psychology, Neuroscience and Behavior (LPNeC), Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre, RS, Brazil
| | - Vivian Altmann
- Institute of Biosciences, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, RS, Brazil
- Hospital de Clinicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Porto Alegre, RS, Brazil
| | - Rosa Maria Martins de Almeida
- Institute of Psychology, Laboratory of Psychology, Neuroscience and Behavior (LPNeC), Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre, RS, Brazil
| | - Carlos R M Rieder
- Medical Science Post Graduation Program, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2400, Porto Alegre, RS, Brazil
- Hospital de Clinicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Porto Alegre, RS, Brazil
- Federal University of Health Science of Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, RS, Brazil
| |
Collapse
|
15
|
Li H, Zhang C, Shen H, Shen Z, Wu L, Mo F, Li M. Physiological stress-induced corticosterone increases heme uptake via KLF4-HCP1 signaling pathway in hippocampus neurons. Sci Rep 2017; 7:5745. [PMID: 28720846 PMCID: PMC5515979 DOI: 10.1038/s41598-017-06058-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/07/2017] [Indexed: 11/10/2022] Open
Abstract
Iron overload has attracted much attention because of its adverse effect in increasing the risk of developing several neurodegenerative disorders. Under various pathologic conditions, a lot of heme are released. The aggregation of heme is more neurotoxic than that of iron released from the heme breakdown. Our previous studies demonstrated that psychological stress (PS) is a risk factor of cerebral iron metabolism disorders, thus causing iron accumulation in rat brains. In the present study, we found PS could increase heme uptake via heme carrier protein 1 (HCP1) in rat brains. We demonstrated that Glucocorticoid (GC), which is largely secreted under stress, could up-regulate HCP1 expression, thus promoting heme uptake in neurons. We also ascertained that HCP1 expression can be induced by GC through a transcription factor, Krüppel-like factor 4 (KLF4). These results may gain new insights into the etiology of heme uptake and iron accumulation in PS rats, and find new therapeutic targets of iron accumulation in Parkinson’s disease or Alzheimer’s disease.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Ship Hygiene, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Caixia Zhang
- Department of Ship Hygiene, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China.,Department of Nursing, People's Libration Army of 266 Hospital, Chengde City, Hubei, 067000, China
| | - Hui Shen
- Department of Ship Hygiene, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Zhilei Shen
- Department of Ship Hygiene, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Lusha Wu
- Department of Ship Hygiene, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Fengfeng Mo
- Department of Ship Hygiene, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China.
| | - Min Li
- Department of Ship Hygiene, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|