1
|
Pais ML, Martins J, Castelo‐Branco M, Gonçalves J. Increased susceptibility to kainate-induced seizures in a mouse model of tuberous sclerosis complex: Importance of sex and circadian cycle. Epilepsia Open 2024; 9:1710-1722. [PMID: 39010669 PMCID: PMC11450656 DOI: 10.1002/epi4.12955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/15/2024] [Accepted: 04/26/2024] [Indexed: 07/17/2024] Open
Abstract
OBJECTIVE Comorbidity of epilepsy and autism in tuberous sclerosis complex 2 (TSC2) is very frequent, but the link between these conditions is still poorly understood. To study neurological problems related to autism, the scientific community has been using an animal model of TSC2, Tsc2+/- mice. However, it is still unknown whether this model has the propensity to exhibit increased seizure susceptibility. Further, the importance of sex and/or the circadian cycle in this biological process has never been addressed. This research aimed to determine whether male and female Tsc2+/- mice have altered seizure susceptibility at light and dark phases. METHODS We assessed seizure susceptibility and progression in a Tsc2+/- mouse model using the chemical convulsant kainic acid (KA), a potent agonist of the AMPA/kainate class of glutamate receptors. Both male and female animals at adult age were evaluated during non-active and active periods. Seizure severity was determined by integrating individual scores per mouse according to a modified Racine scale. Locomotor behavior was monitored during control and after KA administration. RESULTS We found increased seizure susceptibility in Tsc2+/- mice with a significant influence of sex and circadian cycle on seizure onset, progression, and behavioral outcomes. While, compared to controls, Tsc2+/- males overall exhibited higher susceptibility independently of circadian cycle, Tsc2+/- females were more susceptible during the dark and post-ovulatory phase. Interestingly, sexual dimorphisms related to KA susceptibility were always reported during light phase independently of the genetic background, with females being the most vulnerable. SIGNIFICANCE The enhanced susceptibility in the Tsc2 mouse model suggests that other neurological alterations, beside brain lesions, may be involved in seizure occurrence for TSC. Importantly, our work highlighted the importance of considering biological sex and circadian cycle for further studies of TSC-related epilepsy research. PLAIN LANGUAGE SUMMARY Tuberous sclerosis complex (TSC) is a rare genetic disorder. It causes brain lesions and is linked to epilepsy, intellectual disability, and autism. We wanted to investigate epilepsy in this model. We found that these mice have more induced seizures than control animals. Our results show that these mice can be used in future epilepsy research for this disorder. We also found that sex and time of day can influence the results. This must be considered in this type of research.
Collapse
Affiliation(s)
- Mariana L. Pais
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), R. Santa CombaUniversity of CoimbraCoimbraPortugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), R. Santa CombaUniversity of CoimbraCoimbraPortugal
| | - João Martins
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), R. Santa CombaUniversity of CoimbraCoimbraPortugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), R. Santa CombaUniversity of CoimbraCoimbraPortugal
| | - Miguel Castelo‐Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), R. Santa CombaUniversity of CoimbraCoimbraPortugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), R. Santa CombaUniversity of CoimbraCoimbraPortugal
- Institute of Physiology, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
| | - Joana Gonçalves
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), R. Santa CombaUniversity of CoimbraCoimbraPortugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), R. Santa CombaUniversity of CoimbraCoimbraPortugal
- Institute of Physiology, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
| |
Collapse
|
2
|
Barón-Mendoza I, Martínez-Marcial M, García-Juárez M, Mejía-Hernández M, Cortés-Sánchez Y, Zamora-Sánchez CJ, García-Rebollar JO, Chavira-Ramírez R, Ordaz-Rosado D, Camacho-Arroyo I, Tecamachalzi-Silvarán MB, Montes-Narváez O, González-Flores O, García-Becerra R, González-Arenas A. Disruptions in reproductive health, sex hormonal profiles, and hypothalamic hormone receptors content in females of the C58/J mouse model of autism. Horm Behav 2024; 164:105593. [PMID: 38909429 DOI: 10.1016/j.yhbeh.2024.105593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
Autism Spectrum Disorder (ASD) is characterized by differences in social communication and interaction, as well as areas of focused interests and/or repetitive behaviors. Recent studies have highlighted a higher prevalence of endocrine and reproductive disturbances among females on the autism spectrum, hinting at potential disruptions within the hypothalamus-pituitary-ovary (HPO) axis. This research aims to explore the reproductive health disparities in ASD using an animal model of autism, the C58/J inbred mouse strain, with a focus on reproductive performance and hormonal profiles compared to the C57BL/6J control strain. Our findings revealed that the estrous cycle in C58/J females is disrupted, as evidenced by a lower frequency of complete cycles and a lack of cyclical release of estradiol and progesterone compared to control mice. C58/J females also exhibited poor performance in several reproductive parameters, including reproductive lifespan and fertility index. Furthermore, estrogen receptor alpha content showed a marked decrease in the hypothalamus of C58/J mice. These alterations in the estrous cycle, hormonal imbalances, and reduced reproductive function imply dysregulation in the HPO axis. Additionally, our in-silico study identified a group of genes involved in infertility carrying single-nucleotide polymorphisms (SNPs) in the C58/J strain, which also have human orthologs associated with autism. These findings could offer valuable insights into the molecular underpinnings of neuroendocrine axis disruption and reproductive issues observed in ASD.
Collapse
Affiliation(s)
- Isabel Barón-Mendoza
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Mónica Martínez-Marcial
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Marcos García-Juárez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México
| | - Montserrat Mejía-Hernández
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Yesenia Cortés-Sánchez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Carmen J Zamora-Sánchez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, México
| | - Jorge Omar García-Rebollar
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Roberto Chavira-Ramírez
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, 14080 Ciudad de México, México
| | - David Ordaz-Rosado
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, 14080 Ciudad de México, México
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, México
| | | | - Omar Montes-Narváez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México
| | - Oscar González-Flores
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México
| | - Rocío García-Becerra
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Aliesha González-Arenas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
3
|
Ru M, Liang H, Ruan J, Haji RA, Cui Y, Yin C, Wei Q, Huang J. Chicken ovarian follicular atresia: interaction network at organic, cellular, and molecular levels. Poult Sci 2024; 103:103893. [PMID: 38870615 PMCID: PMC11225904 DOI: 10.1016/j.psj.2024.103893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024] Open
Abstract
Most of follicles undergo a degenerative process called follicular atresia. This process directly affects the egg production of laying hens and is regulated by external and internal factors. External factors primarily include nutrition and environmental factors. In follicular atresia, internal factors are predominantly regulated at 3 levels; organic, cellular and molecular levels. At the organic level, the hypothalamic-pituitary-ovary (HPO) axis plays an essential role in controlling follicular development. At the cellular level, gonadotropins and cytokines, as well as estrogens, bind to their receptors and activate different signaling pathways, thereby suppressing follicular atresia. By contrast, oxidative stress induces follicular atresia by increasing ROS levels. At the molecular level, granulosa cell (GC) apoptosis is not the only factor triggering follicular atresia. Autophagy is also known to give rise to atresia. Epigenetics also plays a pivotal role in regulating gene expression in processes that seem to be related to follicular atresia, such as apoptosis, autophagy, proliferation, and steroidogenesis. Among these processes, the miRNA regulation mechanism is well-studied. The current review focuses on factors that regulate follicular atresia at organic, cellular and molecular levels and evaluates the interaction network among these levels. Additionally, this review summarizes atretic follicle characteristics, in vitro modeling methods, and factors preventing follicular atresia in laying hens.
Collapse
Affiliation(s)
- Meng Ru
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Economic and Technological Development District, Nanchang 330045, China
| | - Haiping Liang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Economic and Technological Development District, Nanchang 330045, China
| | - Jiming Ruan
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Economic and Technological Development District, Nanchang 330045, China
| | - Ramlat Ali Haji
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Economic and Technological Development District, Nanchang 330045, China
| | - Yong Cui
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Economic and Technological Development District, Nanchang 330045, China
| | - Chao Yin
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Economic and Technological Development District, Nanchang 330045, China
| | - Qing Wei
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Economic and Technological Development District, Nanchang 330045, China
| | - Jianzhen Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Economic and Technological Development District, Nanchang 330045, China.
| |
Collapse
|
4
|
Kołodziejska R, Tafelska-Kaczmarek A, Pawluk M, Sergot K, Pisarska L, Woźniak A, Pawluk H. Ashwagandha-Induced Programmed Cell Death in the Treatment of Breast Cancer. Curr Issues Mol Biol 2024; 46:7668-7685. [PMID: 39057095 PMCID: PMC11275341 DOI: 10.3390/cimb46070454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The aim of this review is to provide experimental evidence for the programmed-death activity of Ashwagandha (Withania somnifera) in the anti-cancer therapy of breast cancer. The literature search was conducted using online electronic databases (Google Scholar, PubMed, Scopus). Collection schedule data for the review article covered the years 2004-2024. Ashwagandha active substances, especially Withaferin A (WA), are the most promising anti-cancer compounds. WS exerts its effect on breast cancer cells by inducing programmed cell death, especially apoptosis, at the molecular level. Ashwagandha has been found to possess a potential for treating breast cancer, especially estrogen receptor/progesterone receptor (ER/PR)-positive and triple-negative breast cancer.
Collapse
Affiliation(s)
- Renata Kołodziejska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (M.P.); (L.P.); (H.P.)
| | - Agnieszka Tafelska-Kaczmarek
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland;
| | - Mateusz Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (M.P.); (L.P.); (H.P.)
| | - Krzysztof Sergot
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland;
| | - Lucyna Pisarska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (M.P.); (L.P.); (H.P.)
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (M.P.); (L.P.); (H.P.)
| | - Hanna Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (M.P.); (L.P.); (H.P.)
| |
Collapse
|
5
|
Joung H, Liu H. 2‑D08 mediates notable anticancer effects through multiple cellular pathways in uterine leiomyosarcoma cells. Oncol Rep 2024; 52:97. [PMID: 38874019 PMCID: PMC11200159 DOI: 10.3892/or.2024.8756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024] Open
Abstract
2',3',4'‑trihydroxyflavone (2‑D08), a SUMO E2 inhibitor, has several biological functions, including anticancer activity, but its effects on uterine leiomyosarcoma (Ut‑LMS) are unknown. The anticancer activity of 2‑D08 was explored in an in vitro model using SK‑LMS‑1 and SK‑UT‑1B cells (human Ut‑LMS cells). Treatment with 2‑D08 inhibited cell viability in a dose‑ and time‑dependent manner and significantly inhibited the colony‑forming ability of Ut‑LMS cells. In SK‑UT‑1B cells treated with 2‑D08, flow cytometric analysis revealed a slight increase in apoptotic rates, while cell cycle progression remained unaffected. Western blotting revealed elevated levels of RIP1, indicating induction of necrosis, but LC3B levels remained unchanged, suggesting no effect on autophagy. A lactate dehydrogenase (LDH) assay confirmed increased LDH release, further supporting the induction of apoptosis and necrosis by 2‑D08 in SK‑UT‑1B cells. 2‑D08‑induced production of reactive oxygen species and apoptosis progression were observed in SK‑LMS‑1 cells. Using Ki67 staining and bromodeoxyuridine assays, it was found that 2‑D08 suppressed proliferation in SK‑LMS‑1 cells, while treatment for 48 h led to cell‑cycle arrest. 2‑D08 upregulated p21 protein expression in SK‑LMS‑1 cells and promoted apoptosis through caspase‑3. Evaluation of α‑SM‑actin, calponin 1 and TAGLN expression indicated that 2‑D08 did not directly initiate smooth muscle phenotypic switching in SK‑LMS‑1 cells. Transcriptome analysis on 2‑D08‑treated SK‑LMS‑1 cells identified significant differences in gene expression and suggested that 2‑D08 modulates cell‑cycle‑ and apoptosis‑related pathways. The analysis identified several differentially expressed genes and significant enrichment for biological processes related to DNA replication and molecular functions associated with the apoptotic process. It was concluded that 2‑D08 exerts antitumor effects in Ut‑LMS cells by modulating multiple signaling pathways and that 2‑D08 may be a promising candidate for the treatment of human Ut‑LMS. The present study expanded and developed knowledge regarding Ut‑LMS management and indicated that 2‑D08 represents a notable finding in the exploration of fresh treatment options for such cancerous tumors.
Collapse
Affiliation(s)
- Hosouk Joung
- Research Institute of Medical Sciences, Chonnam National University Medical School, Hwasun, Jeonnam 58128, Republic of Korea
| | - Hyunju Liu
- Department of Obstetrics and Gynecology, Chosun University College of Medicine, Gwangju 61452, Republic of Korea
- Department of Obstetrics and Gynecology, Chosun University Hospital, Gwangju 61453, Republic of Korea
| |
Collapse
|
6
|
Chettiar V, Patel A, Chettiar SS, Jhala DD. Meta-analysis of endometrial transcriptome data reveals novel molecular targets for recurrent implantation failure. J Assist Reprod Genet 2024; 41:1417-1431. [PMID: 38456991 PMCID: PMC11143096 DOI: 10.1007/s10815-024-03077-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/27/2024] [Indexed: 03/09/2024] Open
Abstract
PURPOSE Gene expression analysis of the endometrium has been shown to be a useful approach for identifying the molecular signatures and pathways involved in recurrent implantation failure (RIF). Nevertheless, individual studies have limitations in terms of study design, methodology and analysis to detect minor changes in expression levels or identify novel gene signatures associated with RIF. METHOD To overcome this, we conducted an in silico meta-analysis of nine studies, the systematic collection and integration of gene expression data, utilizing rigorous selection criteria and statistical techniques to ensure the robustness of our findings. RESULTS Our meta-analysis successfully unveiled a meta-signature of 49 genes closely associated with RIF. Of these genes, 38 were upregulated and 11 downregulated in RIF patients' endometrium and believed to participate in key processes like cell differentiation, communication, and adhesion. GADD45A, IGF2, and LIF, known for their roles in implantation, were identified, along with lesser-studied genes like OPRK1, PSIP1, SMCHD1, and SOD2 related to female infertility. Many of these genes are involved in MAPK and PI3K-Akt pathways, indicating their role in inflammation. We also investigated to look for key miRNAs regulating these 49 dysregulated mRNAs as potential diagnostic biomarkers. Along with this, we went to associate protein-protein interactions of 49 genes, and we could recognize one cluster consisting of 11 genes (consisted of 22 nodes and 11 edges) with the highest score (p = 0.001). Finally, we validated some of the genes by qRT-PCR in our samples. CONCLUSION In summary, the meta-signature genes hold promise for improving RIF patient identification and facilitating the development of personalized treatment strategies, illuminating the multifaceted nature of this complex condition.
Collapse
Affiliation(s)
- Venkatlaxmi Chettiar
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Alpesh Patel
- GeneXplore Diagnostics and Research Centre PVT. LTD., Ahmedabad, Gujarat, India
| | | | - Devendrasinh D Jhala
- Department of Zoology, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India.
| |
Collapse
|
7
|
Torres Irizarry VC, Feng B, Yang X, Patel N, Schaul S, Ibrahimi L, Ye H, Luo P, Carrillo-Sáenz L, Lai P, Kota M, Dixit D, Wang C, Lasek AW, He Y, Xu P. Estrogen signaling in the dorsal raphe regulates binge-like drinking in mice. Transl Psychiatry 2024; 14:122. [PMID: 38413577 PMCID: PMC10899193 DOI: 10.1038/s41398-024-02821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/29/2024] Open
Abstract
Estrogens promote binge alcohol drinking and contribute to sex differences in alcohol use disorder. However, the mechanisms are largely unknown. This study aims to test if estrogens act on 5-hydroxytryptamine neurons in the dorsal raphe nucleus (5-HTDRN) to promote binge drinking. We found that female mice drank more alcohol than male mice in chronic drinking in the dark (DID) tests. This sex difference was associated with distinct alterations in mRNA expression of estrogen receptor α (ERα) and 5-HT-related genes in the DRN, suggesting a potential role of estrogen/ERs/5-HT signaling. In supporting this view, 5-HTDRN neurons from naïve male mice had lower baseline firing activity but higher sensitivity to alcohol-induced excitation compared to 5-HTDRN neurons from naïve female mice. Notably, this higher sensitivity was blunted by 17β-estradiol treatment in males, indicating an estrogen-dependent mechanism. We further showed that both ERα and ERβ are expressed in 5-HTDRN neurons, whereas ERα agonist depolarizes and ERβ agonist hyperpolarizes 5-HTDRN neurons. Notably, both treatments blocked the stimulatory effects of alcohol on 5-HTDRN neurons in males, even though they have antagonistic effects on the activity dynamics. These results suggest that ERs' inhibitory effects on ethanol-induced burst firing of 5-HTDRN neurons may contribute to higher levels of binge drinking in females. Consistently, chemogenetic activation of ERα- or ERβ-expressing neurons in the DRN reduced binge alcohol drinking. These results support a model in which estrogens act on ERα/β to prevent alcohol-induced activation of 5-HTDRN neurons, which in return leads to higher binge alcohol drinking.
Collapse
Affiliation(s)
- Valeria C Torres Irizarry
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Bing Feng
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, 70808, USA
| | - Xiaohua Yang
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, 510642, Guangzhou, Guangdong, China
| | - Nirali Patel
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Sarah Schaul
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Lucas Ibrahimi
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Hui Ye
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Pei Luo
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, 510642, Guangzhou, Guangdong, China
| | - Leslie Carrillo-Sáenz
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Penghua Lai
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Maya Kota
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Devin Dixit
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Chunmei Wang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Amy W Lasek
- Center for Alcohol Research in Epigenetics and Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VI, 23298, USA
| | - Yanlin He
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, 70808, USA.
| | - Pingwen Xu
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA.
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
8
|
Vincent KF, Mallari OG, Dillon EJ, Stewart VG, Cho AJ, Dong Y, Edlow AG, Ichinose F, Xie Z, Solt K. Oestrous cycle affects emergence from anaesthesia with dexmedetomidine, but not propofol, isoflurane, or sevoflurane, in female rats. Br J Anaesth 2023; 131:67-78. [PMID: 37142466 PMCID: PMC10308440 DOI: 10.1016/j.bja.2023.03.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/17/2023] [Accepted: 03/13/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Although sex differences in anaesthetic sensitivity have been reported, what underlies these differences is unknown. In rodents, one source of variability in females is the oestrous cycle. Here we test the hypothesis that the oestrous cycle impacts emergence from general anaesthesia. METHODS Time to emergence was measured after isoflurane (2 vol% for 1 h), sevoflurane (3 vol% for 20 min), dexmedetomidine (50 μg kg-1 i.v., infused over 10 min), or propofol (10 mg kg-1 i.v. bolus) during proestrus, oestrus, early dioestrus, and late dioestrus in female Sprague-Dawley rats (n=24). EEG recordings were taken during each test for power spectral analysis. Serum was analysed for 17β-oestradiol and progesterone concentrations. The effect of oestrous cycle stage on return of righting latency was assessed using a mixed model. The association between righting latency and serum hormone concentration was tested by linear regression. Mean arterial blood pressure and arterial blood gases were assessed in a subset of rats after dexmedetomidine and compared in a mixed model. RESULTS Oestrous cycle did not affect righting latency after isoflurane, sevoflurane, or propofol. When in the early dioestrus stage, rats emerged more rapidly from dexmedetomidine than in the proestrus (P=0.0042) or late dioestrus (P=0.0230) stage and showed reduced overall power in frontal EEG spectra 30 min after dexmedetomidine (P=0.0049). 17β-Oestradiol and progesterone serum concentrations did not correlate with righting latency. Oestrous cycle did not affect mean arterial blood pressure or blood gases during dexmedetomidine. CONCLUSIONS In female rats, the oestrous cycle significantly impacts emergence from dexmedetomidine-induced unconsciousness. However, 17β-oestradiol and progesterone serum concentrations do not correlate with the observed changes.
Collapse
Affiliation(s)
- Kathleen F Vincent
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Olivia G Mallari
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Emmaline J Dillon
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Brigham Young University, Provo, UT, USA
| | - Victoria G Stewart
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Brigham Young University, Provo, UT, USA
| | - Angel J Cho
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Touro College of Osteopathic Medicine, New York, NY, USA
| | - Yuanlin Dong
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Andrea G Edlow
- Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA; Department of Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Fumito Ichinose
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Zhongcong Xie
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Ken Solt
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Kehmeier MN, Bedell BR, Cullen AE, Khurana A, D'Amico HJ, Henson GD, Walker AE. In vivo arterial stiffness, but not isolated artery endothelial function, varies with the mouse estrous cycle. Am J Physiol Heart Circ Physiol 2022; 323:H1057-H1067. [PMID: 36240435 PMCID: PMC9678414 DOI: 10.1152/ajpheart.00369.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 12/14/2022]
Abstract
With the increasing appreciation for sex as a biological variable and the inclusion of female mice in research, it is important to understand the influence of the estrous cycle on physiological function. Sex hormones are known to modulate vascular function, but the effects of the mouse estrous cycle phase on arterial stiffness, endothelial function, and arterial estrogen receptor expression remain unknown. In 23 female C57BL/6 mice (6 mo of age), we determined the estrous cycle stage via vaginal cytology and plasma hormone concentrations. Aortic stiffness, assessed by pulse wave velocity, was lower during the estrus phase compared with diestrus. In ex vivo assessment of isolated pressurized mesenteric and posterior cerebral arteries, the responses to acetylcholine, insulin, and sodium nitroprusside, as well as nitric oxide-mediated dilation, were not different between estrous cycle phases. In the aorta, expression of phosphorylated estrogen receptor-α was higher for mice in estrus compared with mice in proestrus. In the cerebral arteries, gene expression for estrogen receptor-β (Esr2) was lowest for mice in estrus compared with diestrus and proestrus. These results demonstrate that the estrus phase is associated with lower in vivo large artery stiffness in mice. In contrast, ex vivo resistance artery endothelial function is not different between estrous cycle phases. Estrogen receptor expression is modulated by the estrus cycle in an artery-dependent manner. These results suggest that the estrous cycle phase should be considered when measuring in vivo arterial stiffness in young female mice.NEW & NOTEWORTHY To design rigorous vascular research studies using young female rodents, the influence of the estrous cycle on vascular function must be known. We found that in vivo aortic stiffness was lower during estrus compared with the diestrus phase in female mice. In contrast, ex vivo mesenteric and cerebral artery endothelial function did not differ between estrous cycle stages. These results suggest that the estrous cycle stage should be accounted for when measuring in vivo arterial stiffness.
Collapse
Affiliation(s)
| | - Bradley R Bedell
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Abigail E Cullen
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Aleena Khurana
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Holly J D'Amico
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Grant D Henson
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Ashley E Walker
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| |
Collapse
|
10
|
Zhao Q, Bai J, Chen Y, Liu X, Zhao S, Ling G, Jia S, Zhai F, Xiang R. An optimized herbal combination for the treatment of liver fibrosis: Hub genes, bioactive ingredients, and molecular mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115567. [PMID: 35870684 DOI: 10.1016/j.jep.2022.115567] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/30/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liver fibrosis is a chronic liver disease that can lead to cirrhosis, liver failure, and hepatocellular carcinoma, and it is associated with long-term adverse outcomes and mortality. As a primary resource for complementary and alternative medicine, traditional Chinese medicine (TCM) has accumulated a large number of effective formulas for the treatment of liver fibrosis in clinical practice. However, studies on how to systematically optimize TCM formulas are still lacking. AIM OF THE REVIEW To provide a methodological reference for the systematic optimization of TCM formulae against liver fibrosis and explored the underlying molecular mechanisms; To provide an efficient method for searching for lead compounds from natural sources and developing from herbal medicines; To enable clinicians and patients to make more reasonable choices and promote the effective treatment toward those patients with liver fibrosis. MATERIALS AND METHODS TCM formulas related to treating liver fibrosis were collected from the Web of Science, PubMed, the China National Knowledge Infrastructure (CNKI), Wan Fang, and the Chinese Scientific Journals Database (VIP). Furthermore, the TCM compatibility patterns were mined using association analysis. The core TCM combinations were found by designing an optimized formulas algorithm. Finally, the hub target proteins, potential molecular mechanisms, and active compounds were explored through integrative pharmacology and docking-based inverse virtual screening (IVS) approaches. RESULTS We found that the herbs for reinforcing deficiency, activating blood, removing blood stasis, and clearing heat were the basis of TCM formulae patterns. Furthermore, the combination of Salviae Miltiorrhizae (Salvia miltiorrhiza Bunge; Chinese salvia/Danshen), Astragali Radix (Astragalus membranaceus (Fisch.) Bunge; Astragalus/Huangqi), and Radix Bupleuri (Bupleurum chinense DC.; Bupleurum/Chaihu) was identified as core groups. A total of six targets (TNF, STAT3, EGFR, IL2, ICAM1, PTGS2) play a pivotal role in TCM-mediated liver fibrosis inhibition. (-)-Cryptotanshinone, Tanshinaldehyde, Ononin, Thymol, Daidzein, and Formononetin were identified as active compounds in TCM. And mechanistically, TCM could affect the development of liver fibrosis by regulating inflammation, immunity, angiogenesis, antioxidants, and involvement in TNF, MicroRNAs, Jak-STAT, NF-kappa B, and C-type lectin receptors (CLRs) signaling pathways. Molecular docking results showed that key components had good potential to bind to the target genes. CONCLUSION In summary, this study provides a methodological reference for the systematic optimization of TCM formulae and exploration of underlying molecular mechanisms.
Collapse
Affiliation(s)
- Qianqian Zhao
- Faculty of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Jinwei Bai
- School of Medical Equipment, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Yiwei Chen
- Faculty of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Xin Liu
- Faculty of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Shangfeng Zhao
- Faculty of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Guixia Ling
- School of Medical Equipment, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Shubing Jia
- Faculty of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Fei Zhai
- School of Medical Equipment, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Rongwu Xiang
- School of Medical Equipment, Shenyang Pharmaceutical University, Shenyang, 110016, China; Liaoning Professional Technology Innovation Center on Medical Big Data and Artificial Intelligence, Shenyang, 110016, China.
| |
Collapse
|
11
|
Tronson NC, Schuh KM. Hormonal contraceptives, stress, and the brain: The critical need for animal models. Front Neuroendocrinol 2022; 67:101035. [PMID: 36075276 DOI: 10.1016/j.yfrne.2022.101035] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/26/2022] [Accepted: 09/01/2022] [Indexed: 01/10/2023]
Abstract
Hormonal contraceptives are among the most important health and economic developments in the 20thCentury, providing unprecedented reproductive control and a range of health benefits including decreased premenstrual symptoms and protections against various cancers. Hormonal contraceptives modulate neural function and stress responsivity. These changes are usually innocuous or even beneficial, including their effects onmood. However, in approximately 4-10% of users, or up to 30 million people at any given time, hormonal contraceptives trigger depression or anxiety symptoms. How hormonal contraceptives contribute to these responses and who is at risk for adverse outcomes remain unknown. In this paper, we discussstudies of hormonal contraceptive use in humans and describe the ways in which laboratory animal models of contraceptive hormone exposure will be an essential tool for expanding findings to understand the precise mechanisms by which hormonal contraceptives influence the brain, stress responses, and depression risk.
Collapse
Affiliation(s)
- Natalie C Tronson
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA.
| | - Kristen M Schuh
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
12
|
Estrogen Regulates the Expression and Localization of YAP in the Uterus of Mice. Int J Mol Sci 2022; 23:ijms23179772. [PMID: 36077170 PMCID: PMC9456404 DOI: 10.3390/ijms23179772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
The dynamics of uterine endometrium is important for successful establishment and maintenance of embryonic implantation and development, along with extensive cell differentiation and proliferation. The tissue event is precisely and complicatedly regulated as several signaling pathways are involved including two main hormones, estrogen and progesterone signaling. We previously showed a novel signaling molecule, Serine/threonine protein kinase 3/4 (STK3/4), which is responded to hormone in the mouse uterine epithelium. However, the role and regulation of its target, YES-associated protein (YAP) remains unknown. In this study, we investigated the expression and regulation of YAP in mouse endometrium. We found that YAP was periodically expressed in the endometrium during the estrous cycle. Furthermore, periodic expression of YAP was shown to be related to the pathway under hormone treatment. Interestingly, estrogen was shown to positively modulate YAP via endometrial epithelial receptors. In addition, the knockdown of YAP showed that YAP regulated various target genes in endometrial cells. The knockdown of YAP down-regulated numerous targets including ADAMTS1, AMOT, AMOTL1, ANKRD1, CTNNA1, MCL1. On the other hand, the expressions of AREG and AXL were increased by its knockdown. These findings imply that YAP responds via Hippo signaling under various intrauterine signals and is considered to play a role in the expression of factors important for uterine endometrium dynamic regulation.
Collapse
|
13
|
Läsche M, Gallwas J, Gründker C. Like Brothers in Arms: How Hormonal Stimuli and Changes in the Metabolism Signaling Cooperate, Leading HPV Infection to Drive the Onset of Cervical Cancer. Int J Mol Sci 2022; 23:5050. [PMID: 35563441 PMCID: PMC9103757 DOI: 10.3390/ijms23095050] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
Abstract
Despite all precautionary actions and the possibility of using vaccinations to counteract infections caused by human papillomaviruses (HPVs), HPV-related cancers still account for approximately 5% of all carcinomas. Worldwide, many women are still excluded from adequate health care due to their social position and origin. Therefore, immense efforts in research and therapy are still required to counteract the challenges that this disease entails. The special thing about an HPV infection is that it is not only able to trick the immune system in a sophisticated way, but also, through genetic integration into the host genome, to use all the resources available to the host cells to complete the replication cycle of the virus without activating the alarm mechanisms of immune recognition and elimination. The mechanisms utilized by the virus are the metabolic, immune, and hormonal signaling pathways that it manipulates. Since the virus is dependent on replication enzymes of the host cells, it also intervenes in the cell cycle of the differentiating keratinocytes and shifts their terminal differentiation to the uppermost layers of the squamocolumnar transformation zone (TZ) of the cervix. The individual signaling pathways are closely related and equally important not only for the successful replication of the virus but also for the onset of cervical cancer. We will therefore analyze the effects of HPV infection on metabolic signaling, as well as changes in hormonal and immune signaling in the tumor and its microenvironment to understand how each level of signaling interacts to promote tumorigenesis of cervical cancer.
Collapse
Affiliation(s)
| | | | - Carsten Gründker
- Department of Gynecology and Obstetrics, University Medicine Göttingen, 37075 Göttingen, Germany; (M.L.); (J.G.)
| |
Collapse
|
14
|
Moon S, Hwang S, Kim B, Lee S, Kim H, Lee G, Hong K, Song H, Choi Y. Hippo Signaling in the Endometrium. Int J Mol Sci 2022; 23:ijms23073852. [PMID: 35409214 PMCID: PMC8998929 DOI: 10.3390/ijms23073852] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 01/27/2023] Open
Abstract
The uterus is essential for embryo implantation and fetal development. During the estrous cycle, the uterine endometrium undergoes dramatic remodeling to prepare for pregnancy. Angiogenesis is an essential biological process in endometrial remodeling. Steroid hormones regulate the series of events that occur during such remodeling. Researchers have investigated the potential factors, including angiofactors, involved in endometrial remodeling. The Hippo signaling pathway discovered in the 21st century, plays important roles in various cellular functions, including cell proliferation and cell death. However, its role in the endometrium remains unclear. In this review, we describe the female reproductive system and its association with the Hippo signaling pathway, as well as novel Hippo pathway genes and potential target genes.
Collapse
|
15
|
Tramullas M, Collins JM, Fitzgerald P, Dinan TG, O' Mahony SM, Cryan JF. Estrous cycle and ovariectomy-induced changes in visceral pain are microbiota-dependent. iScience 2021; 24:102850. [PMID: 34381975 PMCID: PMC8333168 DOI: 10.1016/j.isci.2021.102850] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/07/2021] [Accepted: 07/09/2021] [Indexed: 12/11/2022] Open
Abstract
Visceral hypersensitivity (VH) is a hallmark of many functional gastrointestinal disorders including irritable bowel syndrome and is categorized by a dull, diffuse sensation of abdominal pain. Recently, the gut microbiota has been implicated in VH in male mice, but the effects in females have yet to be explored fully. To this end, we now show that somewhat surprisingly, female germ-free mice have similar visceral pain responses to colorectal distension (CRD) as their conventional controls. However, we show that although sensitivity to CRD is estrous cycle stage-dependent in conventional mice, it is not in germ-free mice. Further, ovariectomy (OVX) induced VH in conventional but not germ-free mice, and induced weight gain regardless of microbiota status. Finally, we show that estrogen-replacement ameliorated OVX-induced VH. Taken together, this study provides evidence for a major role of female sex hormones and the gut microbiota in sensation of visceral pain in females.
Collapse
Affiliation(s)
| | - James M Collins
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry and Behavioural Science, University College Cork, Cork, Ireland
| | - Siobhain M O' Mahony
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
16
|
Kumagai K, Takanashi M, Ohno SI, Harada Y, Fujita K, Oikawa K, Sudo K, Ikeda SI, Nishi H, Oikawa K, Kuroda M. WAPL induces cervical intraepithelial neoplasia modulated with estrogen signaling without HPV E6/E7. Oncogene 2021; 40:3695-3706. [PMID: 33947962 PMCID: PMC8154587 DOI: 10.1038/s41388-021-01787-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 03/30/2021] [Accepted: 04/12/2021] [Indexed: 02/03/2023]
Abstract
Since cervical cancer still afflicts women around the world, it is necessary to understand the underlying mechanism of cervical cancer development. Infection with HPV is essential for the development of cervical intraepithelial neoplasia (CIN). In addition, estrogen receptor signaling is implicated in the development of cervical cancer. Previously, we have isolated human wings apart-like (WAPL), which is expected to cause chromosomal instability in the process of HPV-infected precancerous lesions to cervical cancer. However, the role of WAPL in the development of CIN is still unknown. In this study, in order to elucidate the role of WAPL in the early lesion, we established WAPL overexpressing mice (WAPL Tg mice) and HPV E6/E7 knock-in (KI) mice. WAPL Tg mice developed CIN lesion without HPV E6/E7. Interestingly, in WAPL Tg mice estrogen receptor 1 (ESR1) showed reduction as compared with the wild type, but cell growth factors MYC and Cyclin D1 controlled by ESR1 expressed at high levels. These results suggested that WAPL facilitates sensitivity of ESR1 mediated by some kind of molecule, and as a result, affects the expression of MYC and Cyclin D1 in cervical cancer cells. To detect such molecules, we performed microarray analysis of the uterine cervix in WAPL Tg mice, and focused MACROD1, a co-activator of ESR1. MACROD1 expression was increased in WAPL Tg mice compared with the wild type. In addition, knockdown of WAPL induced the downregulation of MACROD1, MYC, and Cyclin D1 but not ESR1 expression. Furthermore, ESR1 sensitivity assay showed lower activity in WAPL or MACROD1 downregulated cells than control cells. These data suggested that WAPL increases ESR1 sensitivity by activating MACROD1, and induces the expression of MYC and Cyclin D1. Therefore, we concluded that WAPL not only induces chromosomal instability in cervical cancer tumorigenesis, but also plays a key role in activating estrogen receptor signaling in early tumorigenesis.
Collapse
Affiliation(s)
- Katsuyoshi Kumagai
- grid.410793.80000 0001 0663 3325Pre-clinical Research Center, Tokyo Medical University, Tokyo, Japan
| | - Masakatsu Takanashi
- grid.410793.80000 0001 0663 3325Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Shin-ichiro Ohno
- grid.410793.80000 0001 0663 3325Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Yuichirou Harada
- grid.410793.80000 0001 0663 3325Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Koji Fujita
- grid.410793.80000 0001 0663 3325Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Keiki Oikawa
- grid.410793.80000 0001 0663 3325Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Katsuko Sudo
- grid.410793.80000 0001 0663 3325Pre-clinical Research Center, Tokyo Medical University, Tokyo, Japan
| | - Shun-ichi Ikeda
- Department of Obstetrics and Gynecology, Kohseichuo General Hospital, Tokyo, Japan
| | - Hirotaka Nishi
- grid.410793.80000 0001 0663 3325Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo, Japan
| | - Kosuke Oikawa
- grid.412857.d0000 0004 1763 1087Department of Pathology, Wakayama Medical University, Wakayama, Japan
| | - Masahiko Kuroda
- grid.410793.80000 0001 0663 3325Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
17
|
James CD, Morgan IM, Bristol ML. The Relationship between Estrogen-Related Signaling and Human Papillomavirus Positive Cancers. Pathogens 2020; 9:E403. [PMID: 32455952 PMCID: PMC7281727 DOI: 10.3390/pathogens9050403] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
High risk-human papillomaviruses (HPVs) are known carcinogens. Numerous reports have linked the steroid hormone estrogen, and the expression of estrogen receptors (ERs), to HPV-related cancers, although the exact nature of the interactions remains to be fully elucidated. Here we will focus on estrogen signaling and describe both pro and potentially anti-cancer effects of this hormone in HPV-positive cancers. This review will summarize: (1) cell culture-related evidence, (2) animal model evidence, and (3) clinical evidence demonstrating an interaction between estrogen and HPV-positive cancers. This comprehensive review provides insights into the potential relationship between estrogen and HPV. We suggest that estrogen may provide a potential therapeutic for HPV-related cancers, however additional studies are necessary.
Collapse
Affiliation(s)
- Claire D. James
- School of Dentistry, Philips Institute for Oral Health Research, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA;
| | - Iain M. Morgan
- School of Dentistry, Philips Institute for Oral Health Research, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA;
- VCU Massey Cancer Center, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA
| | - Molly L. Bristol
- School of Dentistry, Philips Institute for Oral Health Research, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA;
| |
Collapse
|
18
|
BIRC5 Expression is Regulated in Uterine Epithelium During the Estrous Cycle. Genes (Basel) 2020; 11:genes11030282. [PMID: 32155884 PMCID: PMC7140846 DOI: 10.3390/genes11030282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
Baculoviral inhibitor of apoptosis repeat-containing 5 (Birc5), also known as survivin, is a member of the inhibitor of apoptosis (IAP) family of proteins and regulates the size of tissues through cell division control. The uterus is the most dynamically sized organ among tissues during the estrous cycle. Although Birc5 is expressed in some terminally differentiated cells, the regulation of its expression in the uterus remains unknown. We investigated the regulation of Birc5 expression in the mouse uterus. RT-PCR analysis showed that Birc5 was expressed in various tissues, including the uterus; the expression level of Birc5 was significantly higher at the diestrus stage. Immunohistochemistry and Western blotting analysis revealed that Birc5 was more active in luminal and glandular epithelium than in endometrial stroma. In ovariectomized mice, Birc5 expression in the uterus was gradually increased by estrogen treatment; however, progesterone injection decreased its expression. Estrogen-induced Birc5 expression was blocked by treatment with estrogen receptor antagonist, ICI 182, 780 and progesterone-reduced Birc5 expression was inhibited by the progesterone receptor antagonist RU486. These results suggest that Birc5 expression is dynamically regulated by a combination of estrogen and progesterone via their receptor-mediated signaling.
Collapse
|
19
|
Sampathkumar NK, Bravo JI, Chen Y, Danthi PS, Donahue EK, Lai RW, Lu R, Randall LT, Vinson N, Benayoun BA. Widespread sex dimorphism in aging and age-related diseases. Hum Genet 2020; 139:333-356. [PMID: 31677133 PMCID: PMC7031050 DOI: 10.1007/s00439-019-02082-w] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 10/26/2019] [Indexed: 02/07/2023]
Abstract
Although aging is a conserved phenomenon across evolutionary distant species, aspects of the aging process have been found to differ between males and females of the same species. Indeed, observations across mammalian studies have revealed the existence of longevity and health disparities between sexes, including in humans (i.e. with a female or male advantage). However, the underlying mechanisms for these sex differences in health and lifespan remain poorly understood, and it is unclear which aspects of this dimorphism stem from hormonal differences (i.e. predominance of estrogens vs. androgens) or from karyotypic differences (i.e. XX vs. XY sex chromosome complement). In this review, we discuss the state of the knowledge in terms of sex dimorphism in various aspects of aging and in human age-related diseases. Where the interplay between sex differences and age-related differences has not been explored fully, we present the state of the field to highlight important future research directions. We also discuss various dietary, drug or genetic interventions that were shown to improve longevity in a sex-dimorphic fashion. Finally, emerging tools and models that can be leveraged to decipher the mechanisms underlying sex differences in aging are also briefly discussed.
Collapse
Affiliation(s)
- Nirmal K Sampathkumar
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - Juan I Bravo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
- Graduate Program in the Biology of Aging, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yilin Chen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
- Masters Program in Nutrition, Healthspan, and Longevity, University of Southern California, Los Angeles, CA, 90089, USA
| | - Prakroothi S Danthi
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Erin K Donahue
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, USA
| | - Rochelle W Lai
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Ryan Lu
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
- Graduate Program in the Biology of Aging, University of Southern California, Los Angeles, CA, 90089, USA
| | - Lewis T Randall
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
- Graduate Program in the Biology of Aging, University of Southern California, Los Angeles, CA, 90089, USA
| | - Nika Vinson
- Department of Urology, Pelvic Medicine and Reconstructive Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA, 90024, USA
| | - Bérénice A Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.
- USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, CA, 90089, USA.
- USC Stem Cell Initiative, Los Angeles, CA, 90089, USA.
| |
Collapse
|
20
|
Moon S, Lee OH, Lee S, Lee J, Park H, Park M, Chang EM, Park KH, Choi Y. STK3/4 Expression Is Regulated in Uterine Endometrial Cells during the Estrous Cycle. Cells 2019; 8:cells8121643. [PMID: 31847471 PMCID: PMC6952811 DOI: 10.3390/cells8121643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022] Open
Abstract
The uterus is dynamically regulated in response to various signaling triggered by hormones during the estrous cycle. The Hippo signaling pathway is known as an important signaling for regulating cellular processes during development by balancing between cell growth and apoptosis. Serine/threonine protein kinase 3/4 (STK3/4) is a key component of the Hippo signaling network. However, the regulation of STK3/4-Hippo signaling in the uterus is little known. In this study, we investigated the regulation and expression of STK3/4 in the uterine endometrium during the estrous cycle. STK3/4 expression was dynamically regulated in the uterus during the estrous cycle. STK3/4 protein expression was gradually increased from the diestrus stage and reached the highest in the estrus stage. STK3/4 was exclusively localized in the luminal and glandular epithelial cells of the uterus, and phosphorylated STK3/4 was also increased at the estrus stage. Moreover, the increase of STK3/4 expression in uteri was induced by administration of estradiol, but not by progesterone injection in ovariectomized mice. Pretreatment with an estrogen receptor antagonist ICI 182,780 reduced estrogen-induced STK3/4 expression and its phosphorylation. The estrogen-induced STK3/4 expression was related to the increase in phosphorylation of downstream targets including LATS1/2 and YAP. These findings suggest that STK3/4-Hippo signaling acts a novel signaling pathway in the uterine epithelium and STK3/4-Hippo is one of key molecules for connecting between the estrogen downstream signaling pathway and the Hippo signaling pathway leading to regulate dynamic uterine epithelium during the estrous cycle.
Collapse
Affiliation(s)
- Sohyeon Moon
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center, Konkuk University, Seoul 05029, Korea; (S.M.); (J.L.); (H.P.)
| | - Ok-Hee Lee
- Department of Biomedical Science, CHA University, Gyeonggi-do 13488, Korea; (O.-H.L.); (S.L.); (K.-H.P.)
| | - Sujin Lee
- Department of Biomedical Science, CHA University, Gyeonggi-do 13488, Korea; (O.-H.L.); (S.L.); (K.-H.P.)
| | - Jihyun Lee
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center, Konkuk University, Seoul 05029, Korea; (S.M.); (J.L.); (H.P.)
| | - Haeun Park
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center, Konkuk University, Seoul 05029, Korea; (S.M.); (J.L.); (H.P.)
| | - Miseon Park
- Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 06135, Korea; (M.P.); (E.M.C.)
| | - Eun Mi Chang
- Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 06135, Korea; (M.P.); (E.M.C.)
| | - Keun-Hong Park
- Department of Biomedical Science, CHA University, Gyeonggi-do 13488, Korea; (O.-H.L.); (S.L.); (K.-H.P.)
| | - Youngsok Choi
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center, Konkuk University, Seoul 05029, Korea; (S.M.); (J.L.); (H.P.)
- Correspondence: ; Tel.: +82-2-450-3969
| |
Collapse
|
21
|
Chiu HC, Li CJ, Yiang GT, Tsai APY, Wu MY. Epithelial to Mesenchymal Transition and Cell Biology of Molecular Regulation in Endometrial Carcinogenesis. J Clin Med 2019; 8:E439. [PMID: 30935077 PMCID: PMC6518354 DOI: 10.3390/jcm8040439] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 12/15/2022] Open
Abstract
Endometrial carcinogenesis is involved in several signaling pathways and it comprises multiple steps. The four major signaling pathways-PI3K/AKT, Ras/Raf/MEK/ERK, WNT/β-catenin, and vascular endothelial growth factor (VEGF)-are involved in tumor cell metabolism, growth, proliferation, survival, and angiogenesis. The genetic mutation and germline mitochondrial DNA mutations also impair cell proliferation, anti-apoptosis signaling, and epithelial⁻mesenchymal transition by several transcription factors, leading to endometrial carcinogenesis and distant metastasis. The PI3K/AKT pathway activates the ransforming growth factor beta (TGF-β)-mediated endothelial-to-mesenchymal transition (EMT) and it interacts with downstream signals to upregulate EMT-associated factors. Estrogen and progesterone signaling in EMT also play key roles in the prognosis of endometrial carcinogenesis. In this review article, we summarize the current clinical and basic research efforts regarding the detailed molecular regulation in endometrial carcinogenesis, especially in EMT, to provide novel targets for further anti-carcinogenesis treatment.
Collapse
Affiliation(s)
- Hsiao-Chen Chiu
- Department of Obstetrics and Gynecology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei 231, Taiwan.
- Department of Obstetrics and Gynecology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | - Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
| | - Giou-Teng Yiang
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan.
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | - Andy Po-Yi Tsai
- Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan.
| | - Meng-Yu Wu
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan.
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| |
Collapse
|