1
|
Alwahsh M, Hamadneh Y, Marchan R, Dahabiyeh LA, Alhusban AA, Hasan A, Alrawabdeh J, Hergenröder R, Hamadneh L. Glutathione and Xanthine Metabolic Changes in Tamoxifen Resistant Breast Cancer Cell Lines are Mediated by Down-Regulation of GSS and XDH and Correlated to Poor Prognosis. J Cancer 2024; 15:4047-4058. [PMID: 38947399 PMCID: PMC11212086 DOI: 10.7150/jca.96659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
Background: Tamoxifen is commonly used in the treatment of hormonal-positive breast cancer. However, 30%-40% of tumors treated with tamoxifen develop resistance; therefore, an important step to overcome this resistance is to understand the underlying molecular and metabolic mechanisms. In the present work, we used metabolic profiling to determine potential biomarkers of tamoxifen resistance, and gene expression levels of enzymes important to these metabolites and then correlated the expression to the survival of patients receiving tamoxifen. Methods: Tamoxifen-resistant cell lines previously developed and characterized in our laboratory were metabolically profiled with nuclear magnetic resonance spectroscopy (NMR) using cryogenic probe, and the findings were correlated with the expression of genes that encode the key enzymes of the significant metabolites. Moreover, the effect of significantly altered genes on the overall survival of patients was assessed using the Kaplan-Meier plotter web tool. Results: We observed a significant increase in the levels of glutamine, taurine, glutathione, and xanthine, and a significant decrease in the branched-chain amino acids, valine, and isoleucine, as well as glutamate and cysteine in the tamoxifen-resistant cells compared to tamoxifen sensitive cells. Moreover, xanthine dehydrogenase and glutathione synthase gene expression were downregulated, whereas glucose-6-phosphate dehydrogenase was upregulated compared to control. Additionally, increased expression of xanthine dehydrogenase was associated with a better outcome for breast cancer patients. Conclusion: Overall, this study sheds light on metabolic pathways that are dysregulated in tamoxifen-resistant cell lines and the potential role of each of these pathways in the development of resistance.
Collapse
Affiliation(s)
- Mohammad Alwahsh
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman-17138, Jordan
| | - Yazan Hamadneh
- School of Medicine, The University of Jordan, Amman, Jordan
| | - Rosemarie Marchan
- Leibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| | - Lina A. Dahabiyeh
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, 11942 Amman, Jordan
| | - Ala A Alhusban
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman-17138, Jordan
| | - Aya Hasan
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman-17138, Jordan
| | | | - Roland Hergenröder
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany
| | - Lama Hamadneh
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, 19117, Al-Salt, Jordan
| |
Collapse
|
2
|
Aher S, Zhu J, Bhagat P, Borse L, Liu X. Pt(IV) Complexes in the Search for Novel Platinum Prodrugs with Promising Activity. Top Curr Chem (Cham) 2024; 382:6. [PMID: 38400859 DOI: 10.1007/s41061-023-00448-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/15/2023] [Indexed: 02/26/2024]
Abstract
The kinetically inert, six coordinated, octahedral Pt(IV) complexes are termed dual-, triple-, or multi-action prodrugs based on the nature of the axially substituted ligands. These ligands are either inert or biologically active, where the nature of these axial ligands provides additional stability, synergistic biological activity or cell-targeting ability. There are many literature reports from each of these classes, mentioning the varied nature of these axial ligands. The ligands comprise drug molecules such as chlorambucil, doxorubicin, valproic acid, ethacrynic acid, biologically active chalcone, coumarin, combretastatin, non-steroidal anti-inflammatory drugs (NSAIDs) and many more, potentiating the anti-proliferative profile or reducing the side effects associated with cisplatin therapy. The targeting and non-targeting nature of these moieties exert additive or synergistic effects on the anti-cancer activity of Pt(II) moieties. Herein, we discuss the effects of these axially oriented ligands and the changes in the non-leaving am(m)ine groups and in the leaving groups on the biological activity. In this review, we have presented the latest developments in the field of Pt(IV) complexes that display promising activity with a reduced resistance profile. We have discussed the structure activity relationship (SAR) and the effects of the ligands on the biological activity of Pt(IV) complexes with cisplatin, oxaliplatin, carboplatin and the Pt core other than approved drugs. This literature work will help researchers to get an idea about Pt(IV) complexes that have been classified based on the aspects of their biological activity.
Collapse
Affiliation(s)
- Sainath Aher
- K. K. Wagh College of Pharmacy, Nashik, Maharashtra, 422003, India
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, 475004, People's Republic of China
| | - Jinhua Zhu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, 475004, People's Republic of China
| | - Pundlik Bhagat
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore, 632014, India
| | - Laxmikant Borse
- Sandip Institute of Pharmaceutical Sciences, Nashik, Maharashtra, 422213, India
| | - Xiuhua Liu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, 475004, People's Republic of China.
| |
Collapse
|
3
|
Pandey SK, Verma S, Upreti S, Mishra A, Yadav N, Dwivedi-Agnihotri H. Role of Cytochrome P450 3A4 in Cancer Drug Resistance: Challenges and Opportunities. Curr Drug Metab 2024; 25:235-247. [PMID: 38984579 DOI: 10.2174/0113892002312369240703102215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 07/11/2024]
Abstract
One of the biggest obstacles to the treatment of diseases, particularly serious conditions like cancer, is therapeutic resistance. The process of drug resistance is influenced by a number of important variables, including MDR genes, drug efflux, low-quality medications, inadequate dosage, etc. Drug resistance must be addressed, and new combinations based on the pharmacokinetics/pharmacodynamics (PK-PD) characteristics of the partner pharmaceuticals must be developed in order to extend the half-lives of already available medications. The primary mechanism of drug elimination is hepatic biotransformation of medicines by cytochrome P450 (CYP) enzymes; of these CYPs, CYP3A4 makes up 30-40% of all known cytochromes that metabolize medications. Induction or inhibition of CYP3A4-mediated metabolism affects the pharmacokinetics of most anticancer drugs, but these details are not fully understood and highlighted because of the complexity of tumor microenvironments and various influencing patient related factors. The involvement of CYPs, particularly CYP3A4 and other drug-metabolizing enzymes, in cancer medication resistance will be covered in the current review.
Collapse
Affiliation(s)
- Swaroop Kumar Pandey
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, 281406, India
| | - Sona Verma
- Department of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, India
| | - Shobha Upreti
- Cell and Molecular Biology Laboratory, Department of Zoology, Kumaun University, Nainital, Uttrakhand, 263601, India
| | - Anuja Mishra
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, 281406, India
| | - Neha Yadav
- Department of Biophysics, University of Delhi, South Campus, New Delhi-110021, India
| | | |
Collapse
|
4
|
Zhao Y, Ding W, Zhang P, Deng L, Long Y, Lu J, Shiri F, Heidari Majd M. Improving Tamoxifen Performance in Inducing Apoptosis and Hepatoprotection by Loading on a Dual Nanomagnetic Targeting System. Anticancer Agents Med Chem 2024; 24:1016-1028. [PMID: 38685808 DOI: 10.2174/0118715206289666240423091244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Although tamoxifen (TMX) belongs to selective estrogen receptor modulators (SERMs) and selectively binds to estrogen receptors, it affects other estrogen-producing tissues due to passive diffusion and non-differentiation of normal and cancerous cells and leads to side effects. METHODS The problems expressed about tamoxifen (TMX) encouraged us to design a new drug delivery system based on magnetic nanoparticles (MNPs) to simultaneously target two receptors on cancer cells through folic acid (FA) and hyaluronic acid (HA) groups. The mediator of binding of two targeting agents to MNPs is a polymer linker, including dopamine, polyethylene glycol, and terminal amine (DPN). RESULTS Zeta potential, dynamic light scattering (DLS), and Field emission scanning electron microscopy (FESEM) methods confirmed that MNPs-DPN-HA-FA has a suitable size of ~105 nm and a surface charge of -41 mV, and therefore, it can be a suitable option for carrying TMX and increasing its solubility. The cytotoxic test showed that the highest concentration of MNPs-DPN-HA-FA-TMX decreased cell viability to about 11% after 72 h of exposure compared to the control. While the protective effect of modified MNPs on normal cells was evident, unlike tamoxifen, the survival rate of liver cells, even after 180 min of treatment, was not significantly different from the control group. The protective effect of MNPs was also confirmed by examining the amount of malondialdehyde, and no significant difference was observed in the amount of lipid peroxidation caused by modified MNPs compared to the control. Flow cytometry proved that TMX loaded onto modified MNPs can induce apoptosis by targeting the overexpressed receptors on cancer cells. Real-time PCR showed that the modified MNPs activated the intrinsic and extrinsic mitochondrial pathways of apoptosis, so the Bak1/Bclx ratio for MNPs-DPN-HAFA- TMX and free TMX was 70.82 and 0.38, respectively. Also, the expression of the caspase-3 gene increased 430 times compared to the control. On the other hand, only TNF gene expression, which is responsible for metastasis in some tumors, was decreased by both free TMX and MNPs-DPN-HA-FA-TMX. Finally, molecular docking proved that MNPs-DPN-HA-FA-TMX could provide a very stable interaction with both CD44 and folate receptors, induce apoptosis in cancer cells, and reduce hepatotoxicity. CONCLUSION All the results showed that MNPs-DPN-HA-FA-TMX can show good affinity to cancer cells using targeting agents and induce apoptosis in metastatic breast ductal carcinoma T-47D cell lines. Also, the protective effects of MNPs on hepatocytes are quite evident, and they can reduce the side effects of TMX.
Collapse
Affiliation(s)
- Yanfang Zhao
- Key Laboratory of Tumor Immunological Prevention and Treatment, Department of Oncology, Yan'An Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Wanbao Ding
- Key Laboratory of Tumor Immunological Prevention and Treatment, Department of Oncology, Yan'An Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Peixian Zhang
- Key Laboratory of Tumor Immunological Prevention and Treatment, Department of Oncology, Yan'An Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Lei Deng
- Key Laboratory of Tumor Immunological Prevention and Treatment, Department of Oncology, Yan'An Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Yi Long
- Key Laboratory of Tumor Immunological Prevention and Treatment, Department of Oncology, Yan'An Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Jiuqin Lu
- Key Laboratory of Tumor Immunological Prevention and Treatment, Department of Oncology, Yan'An Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | | | - Mostafa Heidari Majd
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
5
|
Betz M, Massard V, Gilson P, Witz A, Dardare J, Harlé A, Merlin JL. ESR1 Gene Mutations and Liquid Biopsy in ER-Positive Breast Cancers: A Small Step Forward, a Giant Leap for Personalization of Endocrine Therapy? Cancers (Basel) 2023; 15:5169. [PMID: 37958343 PMCID: PMC10649433 DOI: 10.3390/cancers15215169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
The predominant forms of breast cancer (BC) are hormone receptor-positive (HR+) tumors characterized by the expression of estrogen receptors (ERs) and/or progesterone receptors (PRs). Patients with HR+ tumors can benefit from endocrine therapy (ET). Three types of ET are approved for the treatment of HR+ BCs and include selective ER modulators, aromatase inhibitors, and selective ER downregulators. ET is the mainstay of adjuvant treatment in the early setting and the backbone of the first-line treatment in an advanced setting; however, the emergence of acquired resistance can lead to cancer recurrence or progression. The mechanisms of ET resistance are often related to the occurrence of mutations in the ESR1 gene, which encodes the ER-alpha protein. As ESR1 mutations are hardly detectable at diagnosis but are present in 30% to 40% of advanced BC (ABC) after treatment, the timeline of testing is crucial. To manage this resistance, ESR1 testing has recently been recommended; in ER+ HER2- ABC and circulating cell-free DNA, so-called liquid biopsy appears to be the most convenient way to detect the emergence of ESR1 mutations. Technically, several options exist, including Next Generation Sequencing and ultra-sensitive PCR-based techniques. In this context, personalization of ET through the surveillance of ESR1 mutations in the plasma of HR+ BC patients throughout the disease course represents an innovative way to improve the standard of care.
Collapse
Affiliation(s)
- Margaux Betz
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN, Université de Lorraine, 54519 Vandœuvre-lès-Nancy, France
| | - Vincent Massard
- Département d’Oncologie Médicale, Institut de Cancérologie de Lorraine, 54519 Vandœuvre-lès-Nancy, France;
| | - Pauline Gilson
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN, Université de Lorraine, 54519 Vandœuvre-lès-Nancy, France
| | - Andréa Witz
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN, Université de Lorraine, 54519 Vandœuvre-lès-Nancy, France
| | - Julie Dardare
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN, Université de Lorraine, 54519 Vandœuvre-lès-Nancy, France
| | - Alexandre Harlé
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN, Université de Lorraine, 54519 Vandœuvre-lès-Nancy, France
| | - Jean-Louis Merlin
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN, Université de Lorraine, 54519 Vandœuvre-lès-Nancy, France
| |
Collapse
|
6
|
Bender O, Celik I, Dogan R, Atalay A, Shoman ME, Ali TFS, Beshr EAM, Mohamed M, Alaaeldin E, Shawky AM, Awad EM, Ahmed ASF, Younes KM, Ansari M, Anwar S. Vanillin-Based Indolin-2-one Derivative Bearing a Pyridyl Moiety as a Promising Anti-Breast Cancer Agent via Anti-Estrogenic Activity. ACS OMEGA 2023; 8:6968-6981. [PMID: 36844536 PMCID: PMC9948168 DOI: 10.1021/acsomega.2c07793] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
The structure-based design introduced indoles as an essential motif in designing new selective estrogen receptor modulators employed for treating breast cancer. Therefore, here, a series of synthesized vanillin-substituted indolin-2-ones were screened against the NCI-60 cancer cell panel followed by in vivo, in vitro, and in silico studies. Physicochemical parameters were evaluated with HPLC and SwissADME tools. The compounds demonstrated promising anti-cancer activity for the MCF-7 breast cancer cell line (GI = 6-63%). The compound with the highest activity (6j) was selective for the MCF-7 breast cancer cell line (IC50 = 17.01 μM) with no effect on the MCF-12A normal breast cell line supported by real-time cell analysis. A morphological examination of the used cell lines confirmed a cytostatic effect of compound 6j. It inhibited both in vivo and in vitro estrogenic activity, triggering a 38% reduction in uterine weight induced by estrogen in an immature rat model and hindering 62% of ER-α receptors in in vitro settings. In silico molecular docking and molecular dynamics simulation studies supported the stability of the ER-α and compound 6j protein-ligand complex. Herein, we report that indolin-2-one derivative 6j is a promising lead compound for further pharmaceutical formulations as a potential anti-breast cancer drug.
Collapse
Affiliation(s)
- Onur Bender
- Biotechnology
Institute, Ankara University, 06135 Ankara, Turkey
| | - Ismail Celik
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, 38280 Kayseri, Turkey
| | - Rumeysa Dogan
- Biotechnology
Institute, Ankara University, 06135 Ankara, Turkey
| | - Arzu Atalay
- Biotechnology
Institute, Ankara University, 06135 Ankara, Turkey
| | - Mai E. Shoman
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Taha F. S. Ali
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Eman A. M. Beshr
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Mahmoud Mohamed
- Department
of Pharmacognosy, College of Clinical Pharmacy, Al Baha University, 65528 Al Baha, Saudi Arabia
| | - Eman Alaaeldin
- Department
of Pharmaceutics, Faculty of Pharmacy, Minia
University, 61519 Minia, Egypt
- Department
of Clinical Pharmacy, Faculty of Pharmacy, Deraya University, 61111 Minia, Egypt
| | - Ahmed M. Shawky
- Science
and Technology Unit (STU), Umm Al-Qura University, 21955 Makkah, Saudi Arabia
- Central
Laboratory for Micro-analysis, Minia University, 61519 Minia, Egypt
| | - Eman M. Awad
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Al-Shaimaa F. Ahmed
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Kareem M. Younes
- Department
of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, 81442 Hail, Saudi Arabia
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr El-Aini Street, ET-11562 Cairo, Egypt
| | - Mukhtar Ansari
- Department
of Clinical Pharmacy, College of Pharmacy, University of Hail, 81442 Hail, Saudi Arabia
| | - Sirajudheen Anwar
- Department
of Pharmacology and Toxicology, College of Pharmacy, University of Hail, 81442 Hail, Saudi Arabia
| |
Collapse
|
7
|
Boccarelli A, Del Buono N, Esposito F. Cluster of resistance-inducing genes in MCF-7 cells by estrogen, insulin, methotrexate and tamoxifen extracted via NMF. Pathol Res Pract 2023; 242:154347. [PMID: 36738509 DOI: 10.1016/j.prp.2023.154347] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023]
Abstract
Breast cancer has become a leading cause of death for women as the economy has grown and the number of women in the labor force has increased. Several biomarkers with diagnostic, prognostic, and therapeutic implications for breast cancer have been identified in studies, leading to therapeutic advances. Resistance, on the other hand, is one of clinical practice's limitations. In this paper, we use Nonnegative Matrix Factorization to automatically extract two gene signatures from gene expression profiles of wild-type and resistance MCF-7 cells, which were then investigated further using pathways analysis and proved useful in relating resistance pathways to breast cancer regardless of the stimulus that caused it. A few extracted genes (including MAOA, IL4I1, RRM2, DUT, NME4, and SUMO3) represent new elements in the functional network for resistance in MCF-7 ER+ breast cancer. As a result of this research, a better understanding of how resistance occurs or the pathways that contribute to it may allow more effective therapies to be developed.
Collapse
Affiliation(s)
- Angelina Boccarelli
- Department of Precision and Regenerative Medicine and Polo Jonico, University of Bari Medical School, Piazza Giulio Cesare 11, Bari, Italy.
| | - Nicoletta Del Buono
- Department of Mathematics, University of Bari Aldo Moro, via Edoardo Orabona 4, 70125 Bari, Italy; INDAM-GNCS Research Group, Piazzale Aldo Moro, 5, 00185 Roma, Italy.
| | - Flavia Esposito
- Department of Mathematics, University of Bari Aldo Moro, via Edoardo Orabona 4, 70125 Bari, Italy; INDAM-GNCS Research Group, Piazzale Aldo Moro, 5, 00185 Roma, Italy.
| |
Collapse
|
8
|
Gao W, Hu H, Dai L, He M, Yuan H, Zhang H, Liao J, Wen B, Li Y, Palmisano M, Traore MDM, Zhou S, Sun D. Structure‒tissue exposure/selectivity relationship (STR) correlates with clinical efficacy/safety. Acta Pharm Sin B 2022; 12:2462-2478. [PMID: 35646532 PMCID: PMC9136610 DOI: 10.1016/j.apsb.2022.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/23/2022] [Accepted: 02/12/2022] [Indexed: 11/17/2022] Open
Abstract
Drug optimization, which improves drug potency/specificity by structure‒activity relationship (SAR) and drug-like properties, is rigorously performed to select drug candidates for clinical trials. However, the current drug optimization may overlook the structure‒tissue exposure/selectivity-relationship (STR) in disease-targeted tissues vs. normal tissues, which may mislead the drug candidate selection and impact the balance of clinical efficacy/toxicity. In this study, we investigated the STR in correlation with observed clinical efficacy/toxicity using seven selective estrogen receptor modulators (SERMs) that have similar structures, same molecular target, and similar/different pharmacokinetics. The results showed that drug's plasma exposure was not correlated with drug's exposures in the target tissues (tumor, fat pad, bone, uterus), while tissue exposure/selectivity of SERMs was correlated with clinical efficacy/safety. Slight structure modifications of four SERMs did not change drug's plasma exposure but altered drug's tissue exposure/selectivity. Seven SERMs with high protein binding showed higher accumulation in tumors compared to surrounding normal tissues, which is likely due to tumor EPR effect of protein-bound drugs. These suggest that STR alters drug's tissue exposure/selectivity in disease-targeted tissues vs. normal tissues impacting clinical efficacy/toxicity. Drug optimization needs to balance the SAR and STR in selecting drug candidate for clinical trial to improve success of clinical drug development.
Collapse
Affiliation(s)
- Wei Gao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hongxiang Hu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lipeng Dai
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Miao He
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hebao Yuan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Huixia Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jinhui Liao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bo Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yan Li
- Translational Development and Clinical Pharmacology, Bristol Myers Squibb, Summit, NJ 07920, USA
| | - Maria Palmisano
- Translational Development and Clinical Pharmacology, Bristol Myers Squibb, Summit, NJ 07920, USA
| | - Mohamed Dit Mady Traore
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Simon Zhou
- Translational Development and Clinical Pharmacology, Bristol Myers Squibb, Summit, NJ 07920, USA
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
9
|
Zhuang T, Wang B, Tan X, Wu L, Li X, Li Z, Cai Y, Fan R, Yang X, Zhang C, Xia Y, Niu Z, Liu B, Cao Q, Ding Y, Zhou Z, Huang Q, Yang H. TRIM3 facilitates estrogen signaling and modulates breast cancer cell progression. Cell Commun Signal 2022; 20:45. [PMID: 35392925 PMCID: PMC8991925 DOI: 10.1186/s12964-022-00861-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Breast cancer is the most common cancer in women worldwide. More than 70% of breast cancers are estrogen receptor (ER) alpha positive. Compared with ER alpha-negative breast cancer, which is more aggressive and has a shorter survival time, ER alpha-positive breast cancer could benefit from endocrine therapy. Selective estrogen receptor modulators, such as tamoxifen, are widely used in endocrine therapy. Approximately half of ER alpha-positive breast cancer patients will eventually develop endocrine resistance, making it a major clinical challenge in therapy. Thus, decoding the throughput of estrogen signaling, including the control of ER alpha expression and stability, is critical for the improvement of breast cancer therapeutics. METHODS TRIM3 and ER alpha protein expression levels were measured by western blotting, while the mRNA levels of ER alpha target genes were measured by RT-PCR. A CCK-8 assay was used to measure cell viability. RNA sequencing data were analyzed by Ingenuity Pathway Analysis. Identification of ER alpha signaling activity was accomplished with luciferase assays, RT-PCR and western blotting. Protein stability assays and ubiquitin assays were used to detect ER alpha protein degradation. Ubiquitin-based immunoprecipitation assays were used to detect the specific ubiquitination modification on the ER alpha protein. RESULTS In our current study, we found that TRIM3, an E3 ligase, can promote ER alpha signaling activity and breast cancer progression. TRIM3 depletion inhibits breast cancer cell proliferation and migration, while unbiased RNA sequencing data indicated that TRIM3 is required for the activity of estrogen signaling on the -genome-wide scale. The immunoprecipitation assays indicated that TRIM3 associates with ER alpha and promotes its stability, possibly by inducing K63-linked polyubiquitination of ER alpha. In conclusion, our data implicate a nongenomic mechanism by which TRIM3 stabilizes the ER alpha protein to control ER alpha target gene expression linked to breast cancer progression. CONCLUSION Our study provides a novel posttranslational mechanism in estrogen signaling. Modulation of TRIM3 expression or function could be an interesting approach for breast cancer treatment. Video abstract.
Collapse
Affiliation(s)
- Ting Zhuang
- Xinxiang Key Laboratory of Tumor Migration, Invasion and Precision Medicine, Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, People's Republic of China
| | - Beibei Wang
- Xinxiang Key Laboratory of Tumor Migration, Invasion and Precision Medicine, Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, People's Republic of China
| | - Xiaojing Tan
- Department of Oncology, Dong Ying People' S Hospital, Dongying, Shandong Province, People's Republic of China
| | - Le Wu
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Xin Li
- Xinxiang Key Laboratory of Tumor Migration, Invasion and Precision Medicine, Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, People's Republic of China
| | - Zhongbo Li
- Xinxiang Key Laboratory of Tumor Migration, Invasion and Precision Medicine, Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, People's Republic of China
| | - Yuqing Cai
- Xinxiang Key Laboratory of Tumor Migration, Invasion and Precision Medicine, Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, People's Republic of China
| | - Rongrong Fan
- Department of Bioscience and Nutrition, Karolinska Institute, 14157, Huddinge, Sweden
| | - Xiao Yang
- Xinxiang Key Laboratory of Tumor Migration, Invasion and Precision Medicine, Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, People's Republic of China
| | - Chenmiao Zhang
- Xinxiang Key Laboratory of Tumor Migration, Invasion and Precision Medicine, Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, People's Republic of China
| | - Yan Xia
- Xinxiang Key Laboratory of Tumor Migration, Invasion and Precision Medicine, Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, People's Republic of China
| | - Zhiguo Niu
- Xinxiang Key Laboratory of Tumor Migration, Invasion and Precision Medicine, Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, People's Republic of China
| | - Bingtian Liu
- Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong Province, People's Republic of China
| | - Qi Cao
- Xinxiang Key Laboratory of Tumor Migration, Invasion and Precision Medicine, Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, People's Republic of China
| | - Yinlu Ding
- Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong Province, People's Republic of China.
| | - Zhipeng Zhou
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China.
| | - Qingsong Huang
- Xinxiang Key Laboratory of Tumor Migration, Invasion and Precision Medicine, Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, People's Republic of China.
| | - Huijie Yang
- Xinxiang Key Laboratory of Tumor Migration, Invasion and Precision Medicine, Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, People's Republic of China.
| |
Collapse
|
10
|
Grobin A, Roškar R, Trontelj J. Multi-parameter risk assessment of forty-one selected substances with endocrine disruptive properties in surface waters worldwide. CHEMOSPHERE 2022; 287:132195. [PMID: 34826907 DOI: 10.1016/j.chemosphere.2021.132195] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
The increasing use of substances with endocrine disruptive properties (EDs) not only impacts aquatic organisms but can also have a direct negative effect on human health. In this comprehensive worldwide review, we collected ecotoxicology and concentration data observed in surface water for 53 high-potency EDs and performed a risk assessment. The compounds were selected from the EU watchlist of priority substances, expanded with new compounds of emerging concern (total 41), where quantifiable data were available for the past three years (2018-2020). The risk quotients ranged from <0.01 for 22 substances to 1974 for tamoxifen. The frequency of samples in which the predicted no-effect concentrations were exceeded also varied, from 1.8% to 92.7%. By using the comprehensive multi-parameter risk assessment in our study, the most current to date, we determined that tamoxifen, imidacloprid, clothianidin, four bisphenols (BPA, BPF, BPS, and BPAF), PFOA, amoxicillin, and three steroid hormones (estriol, estrone, and cyproterone) pose significant risks in the environment. Comparing two structurally very similar bisphenols, BPA and BPB, suggested that the risk from BPB is currently underestimated by at least four orders of magnitude due to the lack of ecotoxicological data availability. The methodological limitations encountered suggest that a standardized methodology for data selection and assessment is necessary, highlighting the fact that some substances are currently under-represented in the field of ecotoxicological research. A new prioritization system is therefore presented, which provides a potential basis for new substances to be included in environmental monitoring lists.
Collapse
Affiliation(s)
- Andrej Grobin
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia
| | - Robert Roškar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia.
| | - Jurij Trontelj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
11
|
Estrogenic hormones receptors in Alzheimer's disease. Mol Biol Rep 2021; 48:7517-7526. [PMID: 34657250 DOI: 10.1007/s11033-021-06792-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023]
Abstract
Estrogens are hormones that play a critical role during development and growth for the adequate functioning of the reproductive system of women, as well as for maintaining bones, metabolism, and cognition. During menopause, the levels of estrogens are decreased, altering their signaling mediated by their intracellular receptors such as estrogen receptor alpha and beta (ERα and ERβ), and G protein-coupled estrogen receptor (GPER). In the brain, the reduction of molecular pathways mediated by estrogenic receptors seems to favor the progression of Alzheimer's disease (AD) in postmenopausal women. In this review, we investigate the participation of estrogen receptors in AD in women during aging.
Collapse
|
12
|
Shridhar Deshpande N, Mahendra GS, Aggarwal NN, Gatphoh BFD, Revanasiddappa BC. Insilico design, ADMET screening, MM-GBSA binding free energy of novel 1,3,4 oxadiazoles linked Schiff bases as PARP-1 inhibitors targeting breast cancer. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00321-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Abstract
Background
Poly(ADP-ribose) polymerases (PARPs), a nuclear protein belongs to a new class of drugs, which mainly target tumours with DNA repair defects. They are mainly involved in the multiple cellular processes in addition to the DNA repair process. They act directly on the base excision repair, which is considered as one of the important pathway for cell survival in breast cancer. These belong to the active members of DNA repair assembly and evolved as a key target in the anti-cancer drug discovery. 1,3,4-Oxadiazoles are also well known anticancer agents.
Results
A novel series of 1,3,4-oxadiazoles linked to Schiff bases (T1-21) were designed and subjected to In-silico analysis against PARP-1 (PDB ID:5DS3) enzyme targeting against breast cancer. Molecular docking study for the designed compounds (T1-21) was performed by In-silico ADMET screening by QikProp module, Glide module and MM-GBSA binding free energy calculations by using Schrodinger suit 2019–2. The PARP-1 enzyme shows the binding affinity against the newly designed molecules (T1-21) based on the glide scores. Compounds T21, T12 showed very good glide score by the molecular docking studies and compared with the standard Tamoxifen. The binding free energies by the MM-GBSA assay were found to be consistent. The pharmacokinetic (ADMET) parameters of all the newly designed compounds were found to be in the acceptable range.
Conclusion
The selected 1,3,4-oxadiazole-schiff base conjugates seems to be one of the potential source for the further development of anticancer agents against PARP-1 enzyme. The results revealed that some of the compounds T21, T17, T14, T13, T12, T8 with good glide scores showed very significant activity against breast cancer
Collapse
|
13
|
Rajagopal K, Sri VB, Byran G, Gomathi S. Pyrazole Substituted 9-Anilinoacridines as HER2 Inhibitors Targeting Breast Cancer - An In-Silico Approach. Curr Drug Res Rev 2021; 14:61-72. [PMID: 34139975 DOI: 10.2174/2589977513666210617160302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/06/2021] [Accepted: 03/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Breast cancer is one of the malignant tumours which mainly affect the female population. Total 20% of the cases of breast cancer are due to overexpression of Human epidermal growth factor receptor-2 (HER2), which is the dominant tyrosine kinase receptor. In general, 9-anilinoacridine derivatives play an important role as antitumor agents due to their DNA-intercalating properties. OBJECTIVE Some novel 9-anilinoacridines substituted with pyrazole moiety(1a-z) were designed, and their HER2enzyme (PDB id-3PP0) inhibition activity was evaluated by molecular docking studies using the Glide module of Schrodinger suite 2019-4. METHODS Glide module of the Schrodinger suite was used to perform docking studies, qikprop module was used for in-silico ADMET screening, and the Prime-MM-GBSA module was used for free binding energy calculations. Using GLIDE scoring functions, we can determine the binding affinity of ligands (1a-z) towards HER2. RESULTS The inhibitory activity of ligands against HER2 was mainly due to the strong hydrophobic and hydrogen bonding interactions. Almost all the compounds 1a-z have a good binding affinity with Glide scores in the range of -4.9 to -9.75 compared to the standard drugs CK0403(-4.105) and Tamoxifen (-3.78). From the results of in-silico ADMET properties, most of the compounds fall within the recommended values. MM-GBSA binding calculations of the most potent inhibitors are more favourable. CONCLUSION The results of in-silico studies provide strong evidence for the consideration of valuable ligands in pyrazole substituted 9-anilinoacridines as potential HER2 inhibitors, and the compounds, 1v,s,r,d, a,o with significant Glide scores may produce significant anti-breast cancer activity for further development.
Collapse
Affiliation(s)
- Kalirajan Rajagopal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Ooty 643001, [JSS Academy of Higher Education & Research-(Deemed to be University)], The Nilgiris (Tamilnadu), India
| | - Vulsi Bodhya Sri
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Ooty 643001, [JSS Academy of Higher Education & Research-(Deemed to be University)], The Nilgiris (Tamilnadu), India
| | - Gowramma Byran
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Ooty 643001, [JSS Academy of Higher Education & Research-(Deemed to be University)], The Nilgiris (Tamilnadu), India
| | - Swaminathan Gomathi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Ooty 643001, [JSS Academy of Higher Education & Research-(Deemed to be University)], The Nilgiris (Tamilnadu), India
| |
Collapse
|
14
|
Selvaraj J, John JBA, Joghee NM, Antony J, Wadhwani A, Natarajan J. Coumarin-Fatty Acid Conjugates as Potential ERα/AKT-1 Antagonists for ER Positive Breast Cancer. Anticancer Agents Med Chem 2021; 20:437-449. [PMID: 31746305 DOI: 10.2174/1871520619666191028104339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/04/2019] [Accepted: 08/07/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND Current drugs used for the treatment of hormone-dependent breast cancer function as anti-estrogens in the breast, in addition to Estrogen Receptor (ER) agonists in the uterus, thus elevate a woman's risk of developing uterine cancer. This is due to the lack of selective binding and partial agonistic effect of these drugs towards estrogen receptors. In recent years, therefore, researchers have turned their attention towards antiestrogens devoid of these agonist properties and thus have a mechanism of action different from the existing drugs. OBJECTIVE In this context, we report here the design, development and in vitro evaluation of some novel pharmacophores containing coumarin and fatty acid scaffolds for their anti-breast cancer activity. METHODS A library of coumarin-fatty acid conjugates was designed using structure-based drug design approach. The conjugates which have shown good in silico results were then synthesized, characterized and evaluated for their anti-breast cancer activity by MTT assay, Apoptotic assay, Cell proliferation assay, Estrogen binding assay and Gene expression study. RESULTS Out of the fifteen compounds screened, two compounds, SAC-2 and LNAC-2, showed good activity with IC50 values 22µg/ml, 25μg/ml, respectively. These compounds suppressed the proliferation of ER overexpressed MCF-7 cells, increased ERα degradation and hence inactivate the ERα pathway. ER binding assay and gene expression RT-PCR study reveal that SAC-2 downregulated the expression of ERα receptor and AKT-1 gene. CONCLUSION Compound SAC-2 is a good antagonist to ER and hence has a potential for treating breast cancer and other cancers where AKT plays an important role.
Collapse
Affiliation(s)
- Jubie Selvaraj
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, India
| | - Jameera B A John
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, India
| | - Nanjan M Joghee
- Director, Research (Retd), JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, India
| | - Justin Antony
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, India
| | - Ashish Wadhwani
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, India
| | - Jawahar Natarajan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, India
| |
Collapse
|
15
|
Mangla B, Neupane YR, Singh A, Kumar P, Shafi S, Kohli K. Lipid-nanopotentiated combinatorial delivery of tamoxifen and sulforaphane: ex vivo, in vivo and toxicity studies. Nanomedicine (Lond) 2020; 15:2563-2583. [DOI: 10.2217/nnm-2020-0277] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: This study aims to load tamoxifen (TAM) and sulforaphane (SFN) into nanostructured lipid carriers (NLCs) to enhance their oral delivery. Materials & methods: TAM-SFN-NLCs were prepared using Precirol® ATO5 and Transcutol® HP, characterized and evaluated in vitro and ex vivo to assess the drug release profile and intestinal permeability, respectively. In vivo pharmacokinetic and acute toxicity assessment was performed in Wistar rats. Results: Optimized TAM-SFN-NLCs exhibited a particle size of 121.9 ± 6.42 nm and zeta potential of -21.2 ± 2.91 mV. The NLCs enhanced intestinal permeability of TAM and SFN and augmented oral bioavailability of TAM and SFN 5.2-fold and 4.8-fold, respectively. SFN significantly reduced TAM-associated toxicity in vivo. Conclusion: This coencapsulation of a chemotherapeutic agent with a herbal bioactive in NLCs could pave a novel treatment approach against cancer.
Collapse
Affiliation(s)
- Bharti Mangla
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Yub R Neupane
- Department of Pharmacy, National University of Singapore, 117559 Singapore
| | - Archu Singh
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Pankaj Kumar
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences & Research University, New Delhi 110017, India
| | - Sadat Shafi
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
16
|
Gu L, Saha ST, Thomas J, Kaur M. Targeting cellular cholesterol for anticancer therapy. FEBS J 2019; 286:4192-4208. [DOI: 10.1111/febs.15018] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/30/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Liang Gu
- School of Molecular and Cell Biology University of the Witwatersrand Johannesburg South Africa
| | - Sourav Taru Saha
- School of Molecular and Cell Biology University of the Witwatersrand Johannesburg South Africa
| | - Jodie Thomas
- School of Molecular and Cell Biology University of the Witwatersrand Johannesburg South Africa
| | - Mandeep Kaur
- School of Molecular and Cell Biology University of the Witwatersrand Johannesburg South Africa
| |
Collapse
|
17
|
Kaushik S, Sanawar R, Lekshmi A, Chandrasekhar L, Nair M, Bhatnagar S, Santhoshkumar TR. ER alpha selective chromone, isoxazolylchromones, induces ROS‐mediated cell death without autophagy. Chem Biol Drug Des 2019; 94:1352-1367. [DOI: 10.1111/cbdd.13510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/11/2019] [Accepted: 02/09/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Swati Kaushik
- Cancer Research Program 1 Rajiv Gandhi Centre for Biotechnology, KINFRA CampusTrivandrum Kerala India
- Novel Molecule Synthesis Laboratory Amity Institute of Biotechnology Amity University Noida Uttar Pradesh India
| | - Rahul Sanawar
- Cancer Research Program 1 Rajiv Gandhi Centre for Biotechnology, KINFRA CampusTrivandrum Kerala India
- Manipal Academy of Higher Education (MAHE) Manipal Karnataka India
| | - Asha Lekshmi
- Cancer Research Program 1 Rajiv Gandhi Centre for Biotechnology, KINFRA CampusTrivandrum Kerala India
| | - Leena Chandrasekhar
- Cancer Research Program 1 Rajiv Gandhi Centre for Biotechnology, KINFRA CampusTrivandrum Kerala India
| | - Mydhily Nair
- Cancer Research Program 1 Rajiv Gandhi Centre for Biotechnology, KINFRA CampusTrivandrum Kerala India
| | - Seema Bhatnagar
- Novel Molecule Synthesis Laboratory Amity Institute of Biotechnology Amity University Noida Uttar Pradesh India
| | | |
Collapse
|
18
|
Baez-Jurado E, Rincón-Benavides MA, Hidalgo-Lanussa O, Guio-Vega G, Ashraf GM, Sahebkar A, Echeverria V, Garcia-Segura LM, Barreto GE. Molecular mechanisms involved in the protective actions of Selective Estrogen Receptor Modulators in brain cells. Front Neuroendocrinol 2019; 52:44-64. [PMID: 30223003 DOI: 10.1016/j.yfrne.2018.09.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/09/2018] [Accepted: 09/12/2018] [Indexed: 02/06/2023]
Abstract
Synthetic selective modulators of the estrogen receptors (SERMs) have shown to protect neurons and glial cells against toxic insults. Among the most relevant beneficial effects attributed to these compounds are the regulation of inflammation, attenuation of astrogliosis and microglial activation, prevention of excitotoxicity and as a consequence the reduction of neuronal cell death. Under pathological conditions, the mechanism of action of the SERMs involves the activation of estrogen receptors (ERs) and G protein-coupled receptor for estrogens (GRP30). These receptors trigger neuroprotective responses such as increasing the expression of antioxidants and the activation of kinase-mediated survival signaling pathways. Despite the advances in the knowledge of the pathways activated by the SERMs, their mechanism of action is still not entirely clear, and there are several controversies. In this review, we focused on the molecular pathways activated by SERMs in brain cells, mainly astrocytes, as a response to treatment with raloxifene and tamoxifen.
Collapse
Affiliation(s)
- E Baez-Jurado
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - M A Rincón-Benavides
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - O Hidalgo-Lanussa
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - G Guio-Vega
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - G M Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - A Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - V Echeverria
- Universidad San Sebastián, Fac. Cs de la Salud, Lientur 1457, Concepción 4080871, Chile; Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL 33744, USA
| | - L M Garcia-Segura
- Instituto Cajal, CSIC, Madrid, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - G E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia; Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
19
|
Kalirajan R, Pandiselvi A, Gowramma B, Balachandran P. In-silico Design, ADMET Screening, MM-GBSA Binding Free Energy of Some Novel Isoxazole Substituted 9-Anilinoacridines as HER2 Inhibitors Targeting Breast Cancer. Curr Drug Res Rev 2019; 11:118-128. [PMID: 31513003 DOI: 10.2174/2589977511666190912154817] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Human Epidermal development factor Receptor-2 (HER2) is a membrane tyrosine kinase which is overexpressed and gene amplified in human breast cancers. HER2 amplification and overexpression have been linked to important tumor cell proliferation and survival pathways for 20% of instances of breast cancer. 9-aminoacridines are significant DNA-intercalating agents because of their antiproliferative properties. OBJECTIVE Some novel isoxazole substituted 9-anilinoacridines(1a-z) were designed by in-silico technique for their HER2 inhibitory activity. Docking investigations of compounds 1a-z are performed against HER2 (PDB id-3PP0) by using Schrodinger suit 2016-2. METHODS Molecular docking study for the designed molecules 1a-z are performed by Glide module, in-silico ADMET screening by QikProp module and binding free energy by Prime-MMGBSA module of Schrodinger suit. The binding affinity of designed molecules 1a-z towards HER2 was chosen based on GLIDE score. RESULTS Many compounds showed good hydrophobic communications and hydrogen bonding associations to hinder HER2. The compounds 1a-z, aside from 1z have significant Glide scores in the scope of - 4.91 to - 10.59 when compared with the standard Ethacridine (- 4.23) and Tamoxifen (- 3.78). The in-silico ADMET properties are inside the suggested about drug likeness. MM-GBSA binding of the most intense inhibitor is positive. CONCLUSION The outcomes reveal that this study provides evidence for the consideration of isoxazole substituted 9-aminoacridine derivatives as potential HER2 inhibitors. The compounds, 1s,x,v,a,j,r with significant Glide scores may produce significant anti breast cancer activity and further in vitro and in vivo investigations may prove their therapeutic potential.
Collapse
Affiliation(s)
- Rajagopal Kalirajan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, A Constituent College of JSS Academy of Higher Education & Research-(Deemed to be University), Udhagamandalam - 643001 (Tamilnadu), India
| | - Arumugasamy Pandiselvi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, A Constituent College of JSS Academy of Higher Education & Research-(Deemed to be University), Udhagamandalam - 643001 (Tamilnadu), India
| | - Byran Gowramma
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, A Constituent College of JSS Academy of Higher Education & Research-(Deemed to be University), Udhagamandalam - 643001 (Tamilnadu), India
| | | |
Collapse
|
20
|
Vasquez YM. Estrogen-regulated transcription: Mammary gland and uterus. Steroids 2018; 133:82-86. [PMID: 29289754 DOI: 10.1016/j.steroids.2017.12.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/20/2017] [Accepted: 12/23/2017] [Indexed: 02/08/2023]
Abstract
Estrogen (E2) plays a central role in the developmental, metabolic and reproductive functions of both males and females. E2 acts via the estrogen receptor alpha (ERα) to regulate the transcription of genes involved in numerous cellular functions. The E2-dependent engagement of ERα across regulatory regions of the genome, termed "enhancers", exhibits a high degree of complexity and plasticity. The E2-transcriptional response is defined by pioneer factors, transcription co-factors, posttranslational modifications of ERα, the chromatin environment, and cross talk with other signaling pathways. These inputs collectively define the normal functions of tissues like the mammary gland and the uterus. This mechanism can also provide a selective and aberrant growth advantage in pathological conditions, such as cancer. E2-regulated transcription continues to be an area of great interest in the fields of reproduction and cancer. The goal of these field is to decipher the molecular mechanisms governing ERα transcription to design effective therapeutic strategies for the improvement of clinical care and control of fertility.
Collapse
Affiliation(s)
- Yasmin M Vasquez
- The Cecil H. and Ida Green Center for Reproductive Biology Sciences and the Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
21
|
Abstract
Aims: This study is aimed at finding out a logical solution for perimenopausal menorrhagia in normal or bulky uterus. Settings and Design: The study is carried out at a tertiary care hospital at Odisha. In our setup, nearly 900 hysterectomies are done per year out of which 60% are for menorrhagia with bulky uterus. Subjects and Methods: There were sixty cases of menorrhagia between the ages of 40 and 55 years who completed child bearing treated with ormeloxifene. Their endometrial thickness (ET) and hemoglobin (Hb) level were determined at the start of the study and also at 6 months and compared. At 1 year from the start of treatment, patients' satisfaction and status of menstrual cycle were reassessed. Statistical Analysis Used: Age and parity variables were expressed as mean ± standard deviation and range. We used the paired samples t-test to estimate the mean, median, range, P and t value. All statistical analyses were performed using SPSS software version 11.5 (IBM Corp) and tests of statistical significance were two-sided and differences were taken as significant when P < 0.05. Results: After 1 year of follow-up, 90% of patients found to be amenorrhoic and only two out of them presented with mild irritability and vasomotor complaints which resolved with counseling and placebo therapy. There was a significant reduction (P < 0.0001) in ET and rise in Hb level (P < 0.0001). Conclusions: Ormeloxifene is a safe drug which can be used to treatment of perimenopausal bleeding with minimal focal pathology.
Collapse
Affiliation(s)
- Tapasi Pati
- Department of Obstetrics and Gynaecology, IMS and SUM Hospital, Siksha O Anusandhan University, Bhubaneswar, Odisha, India
| | - Kabita Chanania
- Department of Obstetrics and Gynaecology, IMS and SUM Hospital, Siksha O Anusandhan University, Bhubaneswar, Odisha, India
| | - Satyabhama Marandi
- Department of Obstetrics and Gynaecology, IMS and SUM Hospital, Siksha O Anusandhan University, Bhubaneswar, Odisha, India
| | - Jagadish Hansa
- Directorate of Medical Research, IMS and SUM Hospital, Siksha O Anusandhan University, Bhubaneswar, Odisha, India
| |
Collapse
|
22
|
Heroux MS, Chesnik MA, Halligan BD, Al-Gizawiy M, Connelly JM, Mueller WM, Rand SD, Cochran EJ, LaViolette PS, Malkin MG, Schmainda KM, Mirza SP. Comprehensive characterization of glioblastoma tumor tissues for biomarker identification using mass spectrometry-based label-free quantitative proteomics. Physiol Genomics 2014; 46:467-81. [PMID: 24803679 PMCID: PMC4587597 DOI: 10.1152/physiolgenomics.00034.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/05/2014] [Indexed: 01/21/2023] Open
Abstract
Cancer is a complex disease; glioblastoma (GBM) is no exception. Short survival, poor prognosis, and very limited treatment options make it imperative to unravel the disease pathophysiology. The critically important identification of proteins that mediate various cellular events during disease is made possible with advancements in mass spectrometry (MS)-based proteomics. The objective of our study is to identify and characterize proteins that are differentially expressed in GBM to better understand their interactions and functions that lead to the disease condition. Further identification of upstream regulators will provide new potential therapeutic targets. We analyzed GBM tumors by SDS-PAGE fractionation with internal DNA markers followed by liquid chromatography-tandem mass spectrometry (MS). Brain tissue specimens obtained for clinical purposes during epilepsy surgeries were used as controls, and the quantification of MS data was performed by label-free spectral counting. The differentially expressed proteins were further characterized by Ingenuity Pathway Analysis (IPA) to identify protein interactions, functions, and upstream regulators. Our study identified several important proteins that are involved in GBM progression. The IPA revealed glioma activation with z score 2.236 during unbiased core analysis. Upstream regulators STAT3 and SP1 were activated and CTNNα was inhibited. We verified overexpression of several proteins by immunoblot to complement the MS data. This work represents an important step towards the identification of GBM biomarkers, which could open avenues to identify therapeutic targets for better treatment of GBM patients. The workflow developed represents a powerful and efficient method to identify biomarkers in GBM.
Collapse
Affiliation(s)
- Maxime S Heroux
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Marla A Chesnik
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Brian D Halligan
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mona Al-Gizawiy
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Wade M Mueller
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Scott D Rand
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Elizabeth J Cochran
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Peter S LaViolette
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Mark G Malkin
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia
| | - Kathleen M Schmainda
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Shama P Mirza
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin;
| |
Collapse
|
23
|
Development of new estrogen receptor-targeting therapeutic agents for tamoxifen-resistant breast cancer. Future Med Chem 2013; 5:1023-35. [PMID: 23734685 DOI: 10.4155/fmc.13.63] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Despite our deepening understanding of the mechanisms of resistance and intensive efforts to develop therapeutic solutions to combat resistance, de novo and acquired tamoxifen resistance remains a clinical challenge, and few effective regimens exist to treat tamoxifen-resistant breast cancer. The complexity of tamoxifen resistance calls for diverse therapeutic approaches. This review presents several therapeutic strategies and lead compounds targeting the estrogen receptor signaling pathways for treatment of tamoxifen-resistant breast cancer, with a critical assessment of challenges and potentials regarding clinical outcome. Medicinal chemistry holds the key to effective, personalized combination therapy for tamoxifen-resistant breast cancer by making available a diverse arsenal of small-molecule drugs that specifically target signaling pathways modulating hormone resistance. These combination therapy candidates should have the desired specificity, selectivity and low toxicity to resensitize tumor response to tamoxifen and/or inhibit the growth and proliferation of resistant breast cancer cells.
Collapse
|