1
|
Wu S, Guo P, Zhou Q, Yang X, Dai J. M1 Macrophage-Targeted Curcumin Nanocrystals with l-Arginine-Modified for Acute Lung Injury by Inhalation. J Pharm Sci 2024; 113:2492-2505. [PMID: 38772450 DOI: 10.1016/j.xphs.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/23/2024]
Abstract
Acute Lung Injury/Acute Respiratory Distress Syndrome (ALI/ARDS) with clinical manifestations of respiratory distress and hypoxemia remains a significant cause of respiratory failure, boasting a persistently high incidence and mortality rate. Given the central role of M1 macrophages in the pathogenesis of acute lung injury (ALI), this study utilized the anti-inflammatory agent curcumin as a model drug. l-arginine (L-Arg) was employed as a targeting ligand, and chitosan was initially modified with l-arginine. Subsequently, it was utilized as a surface modifier to prepare inhalable nano-crystals loaded with curcumin (Arg-CS-Cur), aiming for specific targeting of pulmonary M1 macrophages. Compared with unmodified chitosan-curcumin nanocrystals (CS-Cur), Arg-CS-Cur exhibited higher uptake in vitro by M1 macrophages, as evidenced by flow cytometry showing the highest fluorescence intensity in the Arg-CS-Cur group (P < 0.01). In vivo accumulation was greater in inflamed lung tissues, as indicated by small animal imaging demonstrating higher lung fluorescence intensity in the DiR-Arg-CS-Cur group compared to the DiR-CS-Cur group in the rat ALI model (P < 0.05), peaking at 12 h. Moreover, Arg-CS-Cur demonstrated enhanced therapeutic effects in both LPS-induced RAW264.7 cells and ALI rat models. Specifically, treatment with Arg-CS-Cur significantly suppressed NO release and levels of TNF-α and IL-6 in RAW264.7 cells (p < 0.01), while in ALI rat models, expression levels of TNF-α and IL-6 in lung tissues were significantly lower than those in the model group (P < 0.01). Furthermore, lung tissue damage was significantly reduced, with histological scores significantly lower than those in the CS-Cur group (P < 0.01). In conclusion, these findings underscore the targeting potential of l-arginine-modified nanocrystals, which effectively enhance curcumin concentration in inflammatory environments by selectively targeting M1 macrophages. This study thus introduces novel perspectives and theoretical support for the development of targeted therapeutic interventions for acute inflammatory lung diseases, including ALI/ARDS.
Collapse
Affiliation(s)
- Shiyue Wu
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing 102488, China
| | - Pengchuan Guo
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing 102488, China
| | - Qiren Zhou
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing 102488, China
| | - Xiaowen Yang
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing 102488, China
| | - Jundong Dai
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing 102488, China.
| |
Collapse
|
2
|
Simões JS, Rodrigues RF, Zavan B, Emídio RMP, Soncini R, Boralli VB. Endotoxin-Induced Sepsis on Ceftriaxone-Treated Rats' Ventilatory Mechanics and Pharmacokinetics. Antibiotics (Basel) 2024; 13:83. [PMID: 38247642 PMCID: PMC10812549 DOI: 10.3390/antibiotics13010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
Sepsis can trigger acute respiratory distress syndrome (ARDS), which can lead to a series of physiological changes, modifying the effectiveness of therapy and culminating in death. For all experiments, male Wistar rats (200-250 g) were split into the following groups: control and sepsis-induced by endotoxin lipopolysaccharide (LPS); the control group received only intraperitoneal saline or saline + CEF while the treated groups received ceftriaxone (CEF) (100 mg/kg) IP; previously or not with sepsis induction by LPS (1 mg/kg) IP. We evaluated respiratory mechanics, and alveolar bronchial lavage was collected for nitrite and vascular endothelial growth factor (VEGF) quantification and cell evaluation. For pharmacokinetic evaluation, two groups received ceftriaxone, one already exposed to LPS. Respiratory mechanics shows a decrease in total airway resistance, dissipation of viscous energy, and elastance of lung tissues in all sepsis-induced groups compared to the control group. VEGF and NOx values were higher in sepsis animals compared to the control group, and ceftriaxone was able to reduce both parameters. The pharmacokinetic parameters for ceftriaxone, such as bioavailability, absorption, and terminal half-life, were smaller in the sepsis-induced group than in the control group since clearance was higher in septic animals. Despite the pharmacokinetic changes, ceftriaxone showed a reduction in resistance in the airways. In addition, CEF lowers nitrite levels in the lungs and acts on their adverse effects, reflecting pharmacological therapy of the disease.
Collapse
Affiliation(s)
- Juliana Savioli Simões
- Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas (UNIFAL-MG), Alfenas 371300-001, Brazil; (J.S.S.); (R.F.R.)
| | - Rafaela Figueiredo Rodrigues
- Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas (UNIFAL-MG), Alfenas 371300-001, Brazil; (J.S.S.); (R.F.R.)
| | - Bruno Zavan
- Insituto de Ciências da Natureza, Universidade Federal de Alfenas (UNIFAL-MG), Alfenas 371300-001, Brazil; (B.Z.); (R.M.P.E.); (R.S.)
| | - Ricardo Murilo Pereira Emídio
- Insituto de Ciências da Natureza, Universidade Federal de Alfenas (UNIFAL-MG), Alfenas 371300-001, Brazil; (B.Z.); (R.M.P.E.); (R.S.)
| | - Roseli Soncini
- Insituto de Ciências da Natureza, Universidade Federal de Alfenas (UNIFAL-MG), Alfenas 371300-001, Brazil; (B.Z.); (R.M.P.E.); (R.S.)
| | - Vanessa Bergamin Boralli
- Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas (UNIFAL-MG), Alfenas 371300-001, Brazil; (J.S.S.); (R.F.R.)
| |
Collapse
|
3
|
Fang J, Wei H, Wang H, Wang J, Liu H, Chen Y, Chen L, Lu L, Zhang Q, Pan R, Cui E, Luo X. Human placenta-derived mesenchymal stem cell administration protects against acute lung injury in a mouse model. J Cell Biochem 2023; 124:1249-1258. [PMID: 37450693 DOI: 10.1002/jcb.30445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/08/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
This study aims to investigate the effect of placenta-derived mesenchymal stem cells (PMSCs) administration on tissue repair following acute lung injury (ALI). PMSCs were transplanted intravenously to a mouse model of lipopolysaccharide-induced ALI. The therapeutic effects were determined by evaluating several indicators, including pathology; the wet/dry ratio of the lungs; blood gas analysis; the total protein content, cell numbers, and the activity of myeloperoxidase (MPO) in bronchial alveolar lavage fluid (BALF); and the levels of anti-inflammatory and proinflammatory cytokines in serum and BALF. To investigate the underlying mechanism, PMSC-derived exosomes were used for ALI treatment. Administration of PMSCs improved the degree of lung injury, reduced inflammation, increased the expression levels of anti-inflammatory cytokines, and protected lung function. As expected, the effects of PMSC-derived exosomes in the ALI model were similar to those of PMSCs, both in terms of improved lung function and reduced inflammation. These findings suggest that PMSCs have ameliorating effects on ALI that are potentially mediated via their secreted exosomes.
Collapse
Affiliation(s)
- Junbiao Fang
- Department of Anesthesiology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou medical College, Hangzhou, China
| | - Hanwei Wei
- Department of Anesthesiology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou medical College, Hangzhou, China
| | - Hongfa Wang
- Department of Anesthesiology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou medical College, Hangzhou, China
| | - Junkai Wang
- Department of Anesthesiology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou medical College, Hangzhou, China
| | - Huizi Liu
- Department of Anesthesiology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou medical College, Hangzhou, China
| | - Yue Chen
- Department of Anesthesiology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou medical College, Hangzhou, China
| | - Long Chen
- Department of Anesthesiology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou medical College, Hangzhou, China
| | - Ling Lu
- Department of Anesthesiology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou medical College, Hangzhou, China
| | - Qiang Zhang
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
| | - Ruolang Pan
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
| | - Enhai Cui
- Huzhou Central Hospital, Zhejiang University Huzhou Hospital, Huzhou, China
| | - Xiaopan Luo
- Department of Anesthesiology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou medical College, Hangzhou, China
| |
Collapse
|
4
|
Zhang Q, Yang C, Ma S, Guo S, Hu X, Zhou Z, Liu Y, Zhang X, Jiang R, Zhang Z, Wen L. Shiwei Qingwen decoction regulates TLR4/NF-κB signaling pathway and NLRP3 inflammasome to reduce inflammatory response in lipopolysaccharide -induced acute lung injury. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116615. [PMID: 37164255 DOI: 10.1016/j.jep.2023.116615] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/25/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shiwei Qingwen decoction (SWQ), a Chinese herbal formula based on the classic traditional Chinese medicine prescription Yu Ping Feng San, has shown efficacy in preventing and treating early pneumonia with good clinical outcomes. However, its underlying mechanism is yet unclear. AIM OF THE STUDY To clarify the preventive and therapeutic effects of SWQ on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and explore the underlying mechanism by which SWQ influences pneumonia. MATERIALS AND METHODS First, the chemical composition of SWQ was preliminarily determined by high performance liquid chromatography (HPLC), and the impact of SWQ (3.27, 6.55, and 13.1 g/kg) was assessed in the LPS-induced ALI rat model. Next, its inflammatory pathway was determined via network pharmacology. Finally, the molecular mechanism of SWQ was validated using a rat ALI model and a THP-1 cell inflammation model. RESULTS HPLC identified chlorogenic acid, prime-O-glucosylcimifugin, calycosin, and 5-O-methylaminoside in the chemical profile of SWQ. In the ALI model, SWQ alleviated ALI by reducing lung wet/dry weight ratio (W/D) and preventing histopathological damage to the lungs. At the same time, SWQ decreased penetration of inflammatory mediators by upregulating AQP1 and AQP5 and endothelial nitric oxide synthase (eNOS). Pretreatment with SWQ downregulated white blood cells and neutrophils count in BALF and suppressed LPS-induced expression levels of MPO, NE, and pro-inflammatory factors (TNF-α, IL-1β, IL-6, and iNOS). Network pharmacology showed that SWQ was associated with TLR4/NF-κB inflammation pathway. Moreover, pretreatment with SWQ reduced the expression level of TLR4/NF-κB signaling pathway-associated proteins (TLR4, Myd88, p-IκB, and p-p65) and NLRP3 inflammasome (NLRP3, ASC, caspase-1, and cleaved-IL-1β) in vivo and vitro. CONCLUSIONS The present study demonstrates that SWQ can reduce inflammation in ALI by inhibiting TLR4/NF-κB and NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Qian Zhang
- School of Basic Medicine, Hubei University of Traditional Chinese Medicine, Wuhan, 430065, China
| | - Chengxiong Yang
- School of Chemical Engineering and Pharmacy, Jingchu University of Technology, Jingmen, 448000, China
| | - Shangzhi Ma
- School of Pharmacy, Hubei University of Traditional Chinese Medicine, Wuhan, 430065, China
| | - Shuyun Guo
- School of Basic Medicine, Hubei University of Traditional Chinese Medicine, Wuhan, 430065, China
| | - Xiaodi Hu
- School of Pharmacy, Hubei University of Traditional Chinese Medicine, Wuhan, 430065, China
| | - Zhongshi Zhou
- School of Pharmacy, Hubei University of Traditional Chinese Medicine, Wuhan, 430065, China
| | - Yanju Liu
- School of Pharmacy, Hubei University of Traditional Chinese Medicine, Wuhan, 430065, China
| | - Xiuqiao Zhang
- School of Pharmacy, Hubei University of Traditional Chinese Medicine, Wuhan, 430065, China
| | - Ruixue Jiang
- School of Basic Medicine, Hubei University of Traditional Chinese Medicine, Wuhan, 430065, China
| | - Zhihua Zhang
- School of Basic Medicine, Hubei University of Traditional Chinese Medicine, Wuhan, 430065, China.
| | - Li Wen
- School of Pharmacy, Hubei University of Traditional Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
5
|
Kim Y, Bae CR, Kim D, Kim H, Lee S, Zhang H, Noh M, Kim YM, Mochizuki N, Kwon YG. Efficacy of CU06-1004 via regulation of inflammation and endothelial permeability in LPS-induced acute lung injury. J Inflamm (Lond) 2023; 20:13. [PMID: 37024954 PMCID: PMC10078077 DOI: 10.1186/s12950-023-00338-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Acute lung injury (ALI) is a life-threatening condition that fundamentally results from inflammation and edema in the lung. There are no effective treatments available for clinical use. Previously, we found that as a leakage blocker CU06-1004 prevents endothelial barrier disruption and enhances endothelial cell survival under inflammatory conditions. In this study, we aimed to elucidate the effect of CU06-1004 in terms of prevention of inflammation and endothelial dysfunction in an ALI mouse model. METHODS An ALI model was established that included intraperitoneal administration of LPS. Following LPS administration, survival rates and lung wet/dry ratios were assessed. Histological analysis was performed using hematoxylin and eosin staining. Scanning electron microscopy was used to examine alveolar and capillary morphology. Cytokines such as IL-1β, IL-6, and TNF-α were analyzed using an ELISA assay of bronchoalveolar lavage fluid (BALF) and serum. Neutrophil infiltration was observed in BALF using Wright-Giemsa staining, and myeloperoxidase (MPO) activity was assessed. Pulmonary vascular leakage was confirmed using Evans-blue dye, and the expression of junctional proteins was evaluated using immunofluorescent staining. Expression of adhesion molecules was observed using immunofluorescence staining. NF-κB activation was determined using immunohistochemistry and western blot analysis. RESULTS Survival rates and pulmonary edema were ameliorated with CU06-1004 treatment. Administration of CU06-1004 normalized histopathological changes induced by LPS, and alveolar-capillary wall thickening was reduced. Compared with the LPS-challenged group, after CU06-1004 treatment, the infiltration of immune cells was decreased in the BALF, and MPO activity in lung tissue was reduced. Similarly, in the CU06-1004 treatment group, pro-inflammatory cytokines were significantly inhibited in both BALF and serum. Evans-blue leakage was reduced, and the expression of junctional proteins was recovered in the CU06-1004 group. Adhesion molecules were downregulated and NF-κB activation was inhibited after CU06-1004 treatment. CONCLUSIONS These results suggested that CU06-1004 had a therapeutic effect against LPS-induced ALI via alleviation of the inflammatory response and protection of vascular integrity.
Collapse
Affiliation(s)
- Yeomyeong Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- Department of Bio Research, Curacle Co. Ltd, Seoul, 06694, Republic of Korea
| | - Cho-Rong Bae
- Department of Bio Research, Curacle Co. Ltd, Seoul, 06694, Republic of Korea
| | - Dongyeop Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyejeong Kim
- Department of Bio Research, Curacle Co. Ltd, Seoul, 06694, Republic of Korea
| | - Sunghye Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Haiying Zhang
- Department of Bio Research, Curacle Co. Ltd, Seoul, 06694, Republic of Korea
| | - Minyoung Noh
- Department of Bio Research, Curacle Co. Ltd, Seoul, 06694, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe- shimmachi, Suita, Osaka, 564-8565, Japan
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
6
|
Schiano Moriello A, Roviezzo F, Iannotti FA, Rea G, Allarà M, Camerlingo R, Verde R, Di Marzo V, Petrosino S. First Evidence of the Protective Effects of 2-Pentadecyl-2-Oxazoline (PEA-OXA) in In Vitro Models of Acute Lung Injury. Biomolecules 2022; 13:biom13010033. [PMID: 36671418 PMCID: PMC9855419 DOI: 10.3390/biom13010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a serious inflammatory lung disorder and a complication of SARS-CoV-2 infection. In patients with severe SARS-CoV-2 infection, the transition to ARDS is principally due to the occurrence of a cytokine storm and an exacerbated inflammatory response. The effectiveness of ultra-micronized palmitoylethanolamide (PEA-um) during the earliest stage of COVID-19 has already been suggested. In this study, we evaluated its protective effects as well as the effectiveness of its congener, 2-pentadecyl-2-oxazoline (PEA-OXA), using in vitro models of acute lung injury. In detail, human lung epithelial cells (A549) activated by polyinosinic-polycytidylic acid (poly-(I:C)) or Transforming Growth Factor-beta (TGF-β) were treated with PEA-OXA or PEA. The release of IL-6 and the appearance of Epithelial-Mesenchymal Transition (EMT) were measured by ELISA and immunofluorescence assays, respectively. A possible mechanism of action for PEA-OXA and PEA was also investigated. Our results showed that both PEA-OXA and PEA were able to counteract poly-(I:C)-induced IL-6 release, as well as to revert TGF-β-induced EMT. In addition, PEA was able to produce an "entourage" effect on the levels of the two endocannabinoids AEA and 2-AG, while PEA-OXA only increased PEA endogenous levels, in poly-(I:C)-stimulated A549 cells. These results evidence for the first time the superiority of PEA-OXA over PEA in exerting protective effects and point to PEA-OXA as a new promising candidate in the management of acute lung injury.
Collapse
Affiliation(s)
- Aniello Schiano Moriello
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, 80078 Pozzuoli, Italy
- Epitech Group SpA, Saccolongo, 35100 Padova, Italy
| | - Fiorentina Roviezzo
- Department of Pharmacy, University of Naples Federico II, 80138 Naples, Italy
| | - Fabio Arturo Iannotti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, 80078 Pozzuoli, Italy
| | - Giuseppina Rea
- Microenvironment Molecular Targets, National Cancer Institute G. Pascale Foundation, IRCCS, 80131 Naples, Italy
| | - Marco Allarà
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, 80078 Pozzuoli, Italy
- Epitech Group SpA, Saccolongo, 35100 Padova, Italy
| | - Rosa Camerlingo
- Cellular Biology and Biotherapy-Research Department, National Cancer Institute G. Pascale Foundation, IRCCS, 80131 Naples, Italy
| | - Roberta Verde
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, 80078 Pozzuoli, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, 80078 Pozzuoli, Italy
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, CRIUCPQ and INAF, Faculties of Medicine and Agriculture and Food Sciences, Université Laval, Quebec City, QC G1V 4G5, Canada
- Correspondence: (V.D.); (S.P.)
| | - Stefania Petrosino
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, 80078 Pozzuoli, Italy
- Epitech Group SpA, Saccolongo, 35100 Padova, Italy
- Correspondence: (V.D.); (S.P.)
| |
Collapse
|
7
|
Qi Z, Chen J, Deng M, Zhang Y, Ma T, Ma M. Protection of Toll-Like Receptor 9 Against Lipopolysaccharide-Induced Inflammation and Oxidative Stress of Pulmonary Epithelial Cells via MyD88-Mediated Pathways. Physiol Res 2022; 71:259-273. [DOI: 10.33549/physiolres.934741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Acute lung injury (ALI) caused by lipopolysaccharide (LPS) is a common, severe clinical syndrome. Injury caused by inflammation and oxidative stress in vascular endothelial and alveolar epithelial cells is a vital process in the pathogenesis of ALI. Toll-like receptor 9 (TLR9) is highly expressed in LPS-induced ALI rats. In this study, Beas-2B human pulmonary epithelial cells and A549 alveolar epithelial cells were stimulated by LPS, resulting in the upregulation of TLR9 in a concentration-dependent manner. Furthermore, TLR9 overexpression and interference vectors were transfected before LPS administration to explore the role of TLR9 in LPS-induced ALI in vitro. The findings revealed that inhibition of TLR9 reduced inflammation and oxidative stress while suppressing apoptosis of LPS-induced Beas-2B and A549 cells, whereas TLR9 overexpression aggravated these conditions. Moreover, TLR9 inhibition resulted in downregulated protein expression of myeloid differentiation protein 88 (MyD88) and activator activator protein 1 (AP-1), as well as phosphorylation of nuclear factor-B (NF-B), c-Jun N terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK). The phosphorylation of extracellular-regulated protein kinases 1/2 was upregulated compared to that of cells subjected to only LPS administration, and this was reversed by TLR9 overexpression. These results indicate that inhibition of TLR9 plays a protective role against LPS-induced inflammation and oxidative stress in Beas-2B and A549 cells, possibly via the MyD88/NF-B and MyD88/MAPKs/AP-1 pathways.
Collapse
Affiliation(s)
- Z Qi
- Department of Critical Care Medicine, Foshan Hospital of Traditional Chinese Medicine, Foshan, China.
| | | | | | | | | | | |
Collapse
|
8
|
Zhang Y, Zhang J, Fu Z. Molecular hydrogen is a potential protective agent in the management of acute lung injury. Mol Med 2022; 28:27. [PMID: 35240982 PMCID: PMC8892414 DOI: 10.1186/s10020-022-00455-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/14/2022] [Indexed: 11/21/2022] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome, which is a more severe form of ALI, are life-threatening clinical syndromes observed in critically ill patients. Treatment methods to alleviate the pathogenesis of ALI have improved to a great extent at present. Although the efficacy of these therapies is limited, their relevance has increased remarkably with the ongoing pandemic caused by the novel coronavirus disease 2019 (COVID-19), which causes severe respiratory distress syndrome. Several studies have demonstrated the preventive and therapeutic effects of molecular hydrogen in the various diseases. The biological effects of molecular hydrogen mainly involve anti-inflammation, antioxidation, and autophagy and cell death modulation. This review focuses on the potential therapeutic effects of molecular hydrogen on ALI and its underlying mechanisms and aims to provide a theoretical basis for the clinical treatment of ALI and COVID-19.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Jin Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Zhiling Fu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.
| |
Collapse
|
9
|
Lee W, Lee CH, Lee J, Jeong Y, Park JH, Nam IJ, Lee DS, Lee HM, Lee J, Yun N, Song J, Choi S, Kim S. Botanical formulation, TADIOS, alleviates lipopolysaccharide (LPS)-Induced acute lung injury in mice via modulation of the Nrf2-HO-1 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113795. [PMID: 33421604 PMCID: PMC7832766 DOI: 10.1016/j.jep.2021.113795] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/29/2020] [Accepted: 01/03/2021] [Indexed: 05/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE TADIOS is an herbal formulation prepared from a mixture of Taraxacum officinale (L.) Weber ex F.H.Wigg, Dioscorea batatas Decaisne and Schizonepeta tenuifolia (Benth.) Briquet. These plants have traditionally been used in Asia to treat a variety of respiratory diseases. A bulk of literature on traditional Korean medicine describe their activities and functions for respiratory problems. Therefore, we hypothesized that the combination of these plants might be effective in alleviating respiratory symptoms. AIM OF THE STUDY In this study, we investigated whether TADIOS ameliorates LPS-induced acute lung injury via regulation of the Nrf2-HO-1 signaling pathway. MATERIALS AND METHODS The LPS-induced acute lung injury mouse model was used to determine the anti-inflammatory and anti-oxidative stress effects of TADIOS. The amount of marker compounds contained in TADIOS was quantified using high-performance liquid chromatography (HPLC) analysis. The protein level of pro-inflammatory cytokines in culture supernatant was measured by ELISA. Changes in the RNA level of pro-inflammatory cytokines in mice lungs and RAW264.7 cells were measured by quantitative RT-PCR. The relative amounts of reactive oxygen species (ROS) were measured by DCF-DA assay. Western blot analysis was used to evaluate expression of cellular proteins. Effects of TADIOS on antioxidant responsive elements (AREs) were determined by luciferase assay. The severity of acute lung injury was evaluated by Hematoxylin & Eosin (H&E) staining. To test the effects of TADIOS on LPS-induced oxidative stress, myeloperoxidase (MPO) activity and the total antioxidant capacity were measured. RESULTS TADIOS was prepared by extraction of a blend of these three plants by ethanol, and quality control was performed through quantification of marker compounds by HPLC and measurement of bioactivities using cell-based bioassays. In the murine macrophage cell line RAW264.7, TADIOS effectively suppressed the production of pro-inflammatory cytokines such as IL-6 and IL-1β, and also ROS induced by LPS. When RAW264.7 cells were transfected with a luciferase reporter plasmid containing nucleotide sequences for AREs, TADIOS treatment increased the level of relative luciferase units in a dose-dependent manner. In the LPS-induced acute lung injury mouse model, orally administered TADIOS alleviated lung damage and neutrophil infiltration induced by LPS. Consistent with the in vitro data, treatment with TADIOS inhibited the LPS-mediated expression of pro-inflammatory cytokines and oxidative stress, and activated the Nrf2-HO-1 axis. CONCLUSION Our data suggest the potential for TADIOS to be developed as a safe and effective therapeutics for the treatment of acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Wonwoo Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Chang Hyung Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Jungkyu Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Yoonseon Jeong
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Jong-Hyung Park
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - In-Jeong Nam
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Doo Suk Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Hyun Myung Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Jaehyun Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Nayoung Yun
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Jisun Song
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Sooyeon Choi
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Sunyoung Kim
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| |
Collapse
|
10
|
Bone marrow-derived mesenchymal stem cells modulate autophagy in RAW264.7 macrophages via the phosphoinositide 3-kinase/protein kinase B/heme oxygenase-1 signaling pathway under oxygen-glucose deprivation/restoration conditions. Chin Med J (Engl) 2021; 134:699-707. [PMID: 33605598 PMCID: PMC7989993 DOI: 10.1097/cm9.0000000000001133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background Autophagy of alveolar macrophages is a crucial process in ischemia/reperfusion injury-induced acute lung injury (ALI). Bone marrow-derived mesenchymal stem cells (BM-MSCs) are multipotent cells with the potential for repairing injured sites and regulating autophagy. This study was to investigate the influence of BM-MSCs on autophagy of macrophages in the oxygen-glucose deprivation/restoration (OGD/R) microenvironment and to explore the potential mechanism. Methods We established a co-culture system of macrophages (RAW264.7) with BM-MSCs under OGD/R conditions in vitro. RAW264.7 cells were transfected with recombinant adenovirus (Ad-mCherry-GFP-LC3B) and autophagic status of RAW264.7 cells was observed under a fluorescence microscope. Autophagy-related proteins light chain 3 (LC3)-I, LC3-II, and p62 in RAW264.7 cells were detected by Western blotting. We used microarray expression analysis to identify the differently expressed genes between OGD/R treated macrophages and macrophages co-culture with BM-MSCs. We investigated the gene heme oxygenase-1 (HO-1), which is downstream of the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling pathway. Results The ratio of LC3-II/LC3-I of OGD/R treated RAW264.7 cells was increased (1.27 ± 0.20 vs. 0.44 ± 0.08, t = 6.67, P < 0.05), while the expression of p62 was decreased (0.77 ± 0.04 vs. 0.95 ± 0.10, t = 2.90, P < 0.05), and PI3K (0.40 ± 0.06 vs. 0.63 ± 0.10, t = 3.42, P < 0.05) and p-Akt/Akt ratio was also decreased (0.39 ± 0.02 vs. 0.58 ± 0.03, t = 9.13, P < 0.05). BM-MSCs reduced the LC3-II/LC3-I ratio of OGD/R treated RAW264.7 cells (0.68 ± 0.14 vs. 1.27 ± 0.20, t = 4.12, P < 0.05), up-regulated p62 expression (1.10 ± 0.20 vs. 0.77 ± 0.04, t = 2.80, P < 0.05), and up-regulated PI3K (0.54 ± 0.05 vs. 0.40 ± 0.06, t = 3.11, P < 0.05) and p-Akt/Akt ratios (0.52 ± 0.05 vs. 0.39 ± 0.02, t = 9.13, P < 0.05). A whole-genome microarray assay screened the differentially expressed gene HO-1, which is downstream of the PI3K/Akt signaling pathway, and the alteration of HO-1 mRNA and protein expression was consistent with the data on PI3K/Akt pathway. Conclusions Our results suggest the existence of the PI3K/Akt/HO-1 signaling pathway in RAW264.7 cells under OGD/R circumstances in vitro, revealing the mechanism underlying BM-MSC-mediated regulation of autophagy and enriching the understanding of potential therapeutic targets for the treatment of ALI.
Collapse
|
11
|
Liu J, Huang X, Hu S, He H, Meng Z. Dexmedetomidine attenuates lipopolysaccharide induced acute lung injury in rats by inhibition of caveolin-1 downstream signaling. Biomed Pharmacother 2019; 118:109314. [DOI: 10.1016/j.biopha.2019.109314] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/27/2019] [Accepted: 07/31/2019] [Indexed: 10/26/2022] Open
|
12
|
Lu X, Ma Y, He J, Li Y, Zhu H, Yu X. N-acetylcysteine for adults with acute respiratory distress syndrome: A meta-analysis of randomized controlled trials. HONG KONG J EMERG ME 2019. [DOI: 10.1177/1024907918794559] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Acute respiratory distress syndrome is regarded as a formidable clinical challenge due to its high prevalence and mortality. The treatment of acute respiratory distress syndrome is very complex and difficult. As an adjuvant therapy, the antioxidant N-acetylcysteine has been investigated for several years but the benefit is controversial. Objectives: We performed the systematic review and meta-analysis of randomized controlled trials to evaluate the efficacy of N-acetylcysteine on patients with acute respiratory distress syndrome. Methods: We searched PubMed, CENTRAL, and CBM databases. Randomized controlled trials comparing the effects of N-acetylcysteine and control were included. Overall mortality was the primary outcome; length of intensive care unit stay, duration of mechanical ventilation, glutathione levels, and PaO2/FiO2 were the secondary outcomes. Results: Eight trials with a total of 289 patients were included. Compared to the control group, the N-acetylcysteine group did not lower the overall mortality (risk ratio: 0.83; 95% confidence interval: 0.62 to 1.11; P = 0.21; I2 = 0%). However, N-acetylcysteine significantly shortened intensive care unit stay in the random-effects model (mean difference: –4.47 days; 95% confidence interval: –8.79 to −0.14; P = 0.04; I2 = 46%). Due to substantial heterogeneity and limited number of studies, the data of duration of mechanical ventilation, glutathione levels, and PaO2/FiO2 could not be pooled in the meta-analysis. Conclusion: N-acetylcysteine is ineffective in reducing mortality but beneficial for intensive care unit stay. Nonetheless, the effectiveness of N-acetylcysteine for acute respiratory distress syndrome is limited and further research is required before strong recommendations can be made.
Collapse
Affiliation(s)
- Xin Lu
- Department of Emergency, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yong Ma
- Department of Emergency, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianqiang He
- Department of Emergency, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yi Li
- Department of Emergency, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Huadong Zhu
- Department of Emergency, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuezhong Yu
- Department of Emergency, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Xiao Z, Jia B, Zhao X, Bi S, Meng W. Attenuation of Lipopolysaccharide-Induced Acute Lung Injury by Cyclosporine-A via Suppression of Mitochondrial DNA. Med Sci Monit 2018; 24:7682-7688. [PMID: 30367813 PMCID: PMC6216435 DOI: 10.12659/msm.909909] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background Lipopolysaccharide (LPS) is generally associated with sepsis, which causes multiple system injuries and systemic inflammatory response. Mitochondrial DNA (mtDNA) is of great importance in mediation of inflammation. The aim of this study was to investigate the protective profiles of Cyclosporine-A (CsA) in LPS-induced acute lung injury (ALI) and systemic inflammation by the inhibition of mtDNA and Toll-like receptor. Material/Methods Twenty-four C57BL/6 mice were randomly assigned to 4 groups: a sham group (n=6); an experiment group (ALI induced through intraperitoneal injection of 10 mg/ml LPS, n=6); a low-CsA group (injection of 2.5 mg/kg of CsA 15 min after injection of LPS, n=6); and a high-CsA group (injection of 25 mg/kg of CsA 15 min after injection of LPS, n=6). Lung tissue, bronchoalveolar lavage fluid (BALF), and blood samples were collected at 6 h for further analyses. Results CsA treatment significantly attenuated LPS-induced lung histopathological changes (P<.05), myeloperoxidase (MPO) activity (P<.05) and lung wet-to-dry weight ratio (P<.05). In addition, injection of CsA decreased total cells (P<.05), neutrophils (P<.05), and total protein (P<.05) in BALF and inflammatory mediators, including tumor necrosis factor-α (TNF-α, P<.05) and interleukin-6 (IL-6, P<.05) in a dose-dependent manner. A significant decrease in mtDNA was observed in the CsA group when compared with controls (P<.05). Furthermore, we demonstrated that there was a significant difference between the high-CsA group and low-CsA group in lung injury score (P<.05), mtDNA (P<.05), and MPO (P<.05). Conclusions The evidence from this study suggests that CsA attenuated lung inflammation after LPS injection, and the protective mechanism may at least in part involve decreasing the release of inflammatory cytokines and mtDNA.
Collapse
Affiliation(s)
- Zhenghua Xiao
- Department of Cardiovascular Surgery, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, China (mainland)
| | - Bangsheng Jia
- Department of Radiology, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, China (mainland)
| | - Xueshan Zhao
- West China School of Medicine, Sichuan University, , China (mainland)
| | - Siwei Bi
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China (mainland)
| | - Wei Meng
- Department of Cardiovascular Surgery, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, China (mainland)
| |
Collapse
|
14
|
Chang HY, Chen YC, Lin JG, Lin IH, Huang HF, Yeh CC, Chen JJ, Huang GJ. Asatone Prevents Acute Lung Injury by Reducing Expressions of NF-κB, MAPK and Inflammatory Cytokines. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:651-671. [DOI: 10.1142/s0192415x18500349] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Asatone is an active component extracted from the Chinese herb Radix et Rhizoma Asari. Our preliminary studies have indicated that asatone has an anti-inflammatory effect on RAW 264.7 culture cells challenged with lipopolysaccharide (LPS). Acute lung injury (ALI) has high morbidity and mortality rates due to the onset of serious lung inflammation and edema. Whether asatone prevents ALI LPS-induced requires further investigation. In vitro studies revealed that asatone at concentrations of 2.5–20[Formula: see text][Formula: see text]g/mL drastically prevented cytotoxicity and concentration-dependently reduced NO production in the LPS-challenged macrophages. In an in vivo study, the intratracheal administration of LPS increased the lung wet/dry ratio, myeloperoxidase activity, total cell counts, white blood cell counts, NO, iNOS, COX, TNF-[Formula: see text], IL-1[Formula: see text], and IL-6 in the bronchoalveolar lavage fluid as well as mitogen-activated protein kinases in the lung tissues. Pretreatment with asatone could reverse all of these effects. Asatone markedly reduced the levels of TNF-[Formula: see text] and IL-6 in the lung and liver, but not in the kidney of mice. By contrast, LPS reduced anti-oxidative enzymes and inhibited NF-[Formula: see text]B activations, whereas asatone increased anti-oxidative enzymes in the bronchoalveolar lavage fluid and NF-[Formula: see text]B activations in the lung tissues. Conclusively, asatone can prevent ALI through various anti-inflammatory modalities, including the major anti-inflammatory pathways of NF-[Formula: see text]B and mitogen-activated protein kinases. These findings suggest that asatone can be applied in the treatment of ALI.
Collapse
Affiliation(s)
- Heng-Yuan Chang
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Yi-Chuan Chen
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Jaung-Geng Lin
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
| | - I-Hsin Lin
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Hui-Fen Huang
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 970, Taiwan
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei 231, Taiwan
| | - Chia-Chou Yeh
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 970, Taiwan
- Department of Chinese Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi 622, Taiwan
| | - Jian-Jung Chen
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 970, Taiwan
- Department of Chinese Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
| | - Guan-Jhong Huang
- School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
15
|
Qing R, Huang Z, Tang Y, Xiang Q, Yang F. Cordycepin alleviates lipopolysaccharide-induced acute lung injury via Nrf2/HO-1 pathway. Int Immunopharmacol 2018; 60:18-25. [PMID: 29702279 DOI: 10.1016/j.intimp.2018.04.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 01/22/2023]
Abstract
AIMS The present study is to investigate the protective effect of cordycepin on inflammatory reactions in rats with acute lung injury (ALI) induced by lipopolysaccharide (LPS), as well as the underlying mechanism. METHODS Wistar rat model of ALI was induced by intravenous injection of LPS (30 mg/kg body weight). One hour later, intravenous injection of cordycepin (1, 10 or 30 mg/kg body weight) was administered. The wet-to-dry weight ratio of lung tissues and myeloperoxidase activity in the lung tissues were measured. The contents of nitrite and nitrate were measured by reduction method, while chemiluminescence was used to determine the content of superoxide. Quantitative real-time polymerase chain reaction and Western blotting were used to determine the expression of mRNA and protein, respectively. Colorimetry was performed to determine the enzymatic activity of heme oxygenase-1 (HO-1). Nuclear translocation of Nrf2 was identified by Western blotting. The plasma contents of cytokines were measured by enzyme-linked immunosorbent assay. RESULTS Cordycepin enhanced the expression and enzymatic activity of HO-1 in ALI rats, and activated Nrf2 by inducing the translocation of Nrf2 from cytoplasm to nucleus. In addition, cordycepin regulated the secretion of TNF-α, IL-6 and IL-10 via HO-1, and suppressed inflammation in lung tissues of ALI rats by inducing the expression of HO-1. HO-1 played important roles in the down-regulation of superoxide levels in lung tissues by cordycepin, and HO-1 expression induced by cordycepin affected nitrite and nitrate concentrations in plasma and iNOS protein expression in lung tissues. Cordycepin showed protective effect on injuries in lung tissues. CONCLUSION The present study demonstrates that cordycepin alleviates inflammation induced by LPS via the activation of Nrf2 and up-regulation of HO-1 expression.
Collapse
Affiliation(s)
- Rui Qing
- Division of Pathogenic Biology, Department of Laboratory Medicine, Shaoyang University, Shaoyang, PR China
| | - Zezhi Huang
- Division of Pathogenic Biology, Department of Laboratory Medicine, Shaoyang University, Shaoyang, PR China
| | - Yufei Tang
- Division of Pathogenic Biology, Department of Laboratory Medicine, Shaoyang University, Shaoyang, PR China
| | - Qingke Xiang
- Division of Pathogenic Biology, Department of Laboratory Medicine, Shaoyang University, Shaoyang, PR China
| | - Fan Yang
- Department of Basic Medicine, Xiangnan University, Chenzhou, PR China.
| |
Collapse
|
16
|
Gao X, Qian P, Cen D, Hong W, Peng Q, Xue M. Synthesis of phosphatidylcholine in rats with oleic acid-induced pulmonary edema and effect of exogenous pulmonary surfactant on its De Novo synthesis. PLoS One 2018; 13:e0193719. [PMID: 29554114 PMCID: PMC5858825 DOI: 10.1371/journal.pone.0193719] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 02/14/2018] [Indexed: 11/26/2022] Open
Abstract
In mammals, oleic acid (OA) induces pulmonary edema (PE), which can initiate acute lung injury (ALI) and lead to acute respiratory distress syndrome (ARDS). Pulmonary surfactant (PS) plays a key role in a broad range of treatments for ARDS. The aim of the present investigation was to assess changes in the synthesis of phosphatidylcholine (PC) from choline and determine the effect of exogenous PS on its de novo synthesis in rats with OA-induced PE. Experimental rats were randomized into three groups, including a control group, OA-induced PE group, and OA-induced group treated with exogenous PS (OA-PS). Twenty-four rats were sacrificed 4 h after induction of the OA model, and tissue was examined by light and electron microscopy to assess the severity of ALI using an established scoring system at the end of the experiment. After 15 μCi 3H-choline chloride was injected intravenously, eight rats in each group were sacrificed at 4, 8, and 16 h. The radioactivity of 3H incorporated into total phospholipid (TPL) and desaturated phosphatidylcholine (DSPC) was measured in bronchoalveolar lavage fluid (BALF) and lung tissue (LT) using a liquid scintillation counter and was expressed as counts per minute (CPM). Results showed that TPL, DSPC, and the ratio of DSPC/total protein (TP) in lung tissue decreased 4 h after challenge with OA, but the levels recovered after 8 and 16 h. At 8 h after injection, 3H-TPL and 3H-DSPC radioactivity in the lungs reached its peak. Importantly, 3H-DSPC CPM were significantly lower in the PS treatment group (LT: Control: 62327 ± 9108; OA-PE: 97315 ± 10083; OA-PS: 45127 ± 10034, P < 0.05; BALF: Control: 7771 ± 1768; OA-PE: 8097 ± 1799; OA-PE: 3651 ± 1027, P < 0.05). Furthermore, DSPC secretory rate (SR) in the lungs was significantly lower in the PS treatment group at 4 h after injection (Control: 0.014 ± 0.003; OA-PE: 0.011 ± 0.004; OA-PS: 0.023 ± 0.006, P < 0.05). Therefore, we hypothesize that exogenous PS treatments may adversely affect endogenous de novo synthetic and secretory phospholipid pathways via feedback inhibition. This novel finding reveals the specific involvement of exogenous PS in endogenous synthetic and secretory phospholipid pathways during the treatment of ARDS. This information improves our understanding of how PS treatment is beneficial against ARDS and opens new opportunities for expanding its use.
Collapse
Affiliation(s)
- Xiwen Gao
- Department of Respiratory Diseases, Minhang Hospital, Fudan University, Minhang District, Shanghai, P.R. China
- * E-mail:
| | - Peiyu Qian
- Oncology Bioinformatic Research Center, Minhang Hospital, Fudan University, Minhang District, Shanghai, P.R. China
| | - Dong Cen
- Centre for Clinical Laboratory, Ningbo Yinzhou No 2 Hospital, Zhejiang
| | - Weijun Hong
- Department of Respiratory Diseases, Minhang Hospital, Fudan University, Minhang District, Shanghai, P.R. China
| | - Qing Peng
- Department of Respiratory Diseases, Minhang Hospital, Fudan University, Minhang District, Shanghai, P.R. China
| | - Min Xue
- Department of Respiratory Diseases, Minhang Hospital, Fudan University, Minhang District, Shanghai, P.R. China
| |
Collapse
|
17
|
Ren H, Zhang Q, Wang J, Pan R. Comparative Effects of Umbilical Cord- and Menstrual Blood-Derived MSCs in Repairing Acute Lung Injury. Stem Cells Int 2018; 2018:7873625. [PMID: 30050579 PMCID: PMC6040282 DOI: 10.1155/2018/7873625] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/02/2018] [Accepted: 05/14/2018] [Indexed: 12/26/2022] Open
Abstract
Mesenchymal stem cells (MSCs) can effectively relieve acute lung injury (ALI) in several in vivo models. However, the underlying mechanisms and optimal sources of MSCs are unclear. In the present study, we investigated the effects of umbilical cord- (UC-) and menstrual blood- (MB-) derived MSCs on ALI. MSCs were transplanted into a lipopolysaccharide-induced ALI mouse model, and the therapeutic effects were determined by histological, cellular, and biochemical analyses. Our results showed that both UCMSC and MBMSC transplantation inhibited the inflammatory response and promoted lung tissue repair. UCMSC treatment resulted in reduced damage and inflammation in the lung tissue and enhanced protection of lung function. Furthermore, we found that UCMSCs secreted higher levels of anti-inflammatory cytokines (interleukin-10 and keratinocyte growth factor) in ALI-related conditions, which may be due to the greater therapeutic capacity of UCMSCs compared with MBMSCs. These findings suggest that MSCs protected the lipopolysaccharide-induced ALI model by regulating inflammation, most likely via paracrine factors. Moreover, MSCs derived from the UC may be a promising alternative for ALI treatment.
Collapse
Affiliation(s)
- Haitao Ren
- 1Department of Burns and Wound Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Qiang Zhang
- 2Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou 311121, China
- 3Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, Hangzhou 311121, China
| | - Jinfu Wang
- 4Institute of Cell and Development, College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Ruolang Pan
- 2Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou 311121, China
- 3Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, Hangzhou 311121, China
| |
Collapse
|
18
|
Cryopreserved, Xeno-Free Human Umbilical Cord Mesenchymal Stromal Cells Reduce Lung Injury Severity and Bacterial Burden in Rodent Escherichia coli-Induced Acute Respiratory Distress Syndrome. Crit Care Med 2017; 45:e202-e212. [PMID: 27861182 DOI: 10.1097/ccm.0000000000002073] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Although mesenchymal stem/stromal cells represent a promising therapeutic strategy for acute respiratory distress syndrome, clinical translation faces challenges, including scarcity of bone marrow donors, and reliance on bovine serum during mesenchymal stem/stromal cell proliferation. We wished to compare mesenchymal stem/stromal cells from human umbilical cord, grown in xeno-free conditions, with mesenchymal stem/stromal cells from human bone marrow, in a rat model of Escherichia coli pneumonia. In addition, we wished to determine the potential for umbilical cord-mesenchymal stem/stromal cells to reduce E. coli-induced oxidant injury. DESIGN Randomized animal study. SETTING University research laboratory. SUBJECTS Male Sprague-Dawley rats. INTERVENTIONS Acute respiratory distress syndrome was induced in rats by intratracheal instillation of E. coli (1.5-2 × 10 CFU/kg). "Series 1" compared the effects of freshly thawed cryopreserved umbilical cord-mesenchymal stem/stromal cells with bone marrow-mesenchymal stem/stromal cells on physiologic indices of lung injury, cellular infiltration, and E. coli colony counts in bronchoalveolar lavage. "Series 2" examined the effects of cryopreserved umbilical cord-mesenchymal stem/stromal cells on survival, as well as measures of injury, inflammation and oxidant stress, including production of reactive oxidative species, reactive oxidative species scavenging by superoxide dismutase-1 and superoxide dismutase-2. MEASUREMENTS AND MAIN RESULTS In "Series 1," animals subjected to E. coli pneumonia who received umbilical cord-mesenchymal stem/stromal cells had improvements in oxygenation, respiratory static compliance, and wet-to-dry ratios comparable to bone marrow-mesenchymal stem/stromal cell treatment. E. coli colony-forming units in bronchoalveolar lavage were reduced in both cell therapy groups, despite a reduction in bronchoalveolar lavage neutrophils. In series 2, umbilical cord-mesenchymal stem/stromal cells enhanced animal survival and decreased alveolar protein and proinflammatory cytokine concentrations, whereas increasing interleukin-10 concentrations. Umbilical cord-mesenchymal stem/stromal cell therapy decreased nicotinamide adenine dinucleotide phosphate-oxidase 2 and inducible nitric oxide synthase and enhanced lung concentrations of superoxide dismutase-2, thereby reducing lung tissue reactive oxidative species concentrations. CONCLUSIONS Our results demonstrate that freshly thawed cryopreserved xeno-free human umbilical cord-mesenchymal stem/stromal cells reduce the severity of rodent E. coli-induced acute respiratory distress syndrome. Umbilical cord-mesenchymal stem/stromal cells, therefore, represent an attractive option for future clinical trials in acute respiratory distress syndrome.
Collapse
|
19
|
Tsung YC, Chung CY, Wan HC, Chang YY, Shih PC, Hsu HS, Kao MC, Huang CJ. Dimethyl Sulfoxide Attenuates Acute Lung Injury Induced by Hemorrhagic Shock/Resuscitation in Rats. Inflammation 2017; 40:555-565. [PMID: 28028757 DOI: 10.1007/s10753-016-0502-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Inflammation following hemorrhagic shock/resuscitation (HS/RES) induces acute lung injury (ALI). Dimethyl sulfoxide (DMSO) possesses anti-inflammatory and antioxidative capacities. We sought to clarify whether DMSO could attenuate ALI induced by HS/RES. Male Sprague-Dawley rats were allocated to receive either a sham operation, sham plus DMSO, HS/RES, or HS/RES plus DMSO, and these were denoted as the Sham, Sham + DMSO, HS/RES, or HS/RES + DMSO group, respectively (n = 12 in each group). HS/RES was achieved by drawing blood to lower mean arterial pressure (40-45 mmHg for 60 min) followed by reinfusion with shed blood/saline mixtures. All rats received an intravenous injection of normal saline or DMSO immediately before resuscitation or at matching points relative to the sham groups. Arterial blood gas and histological assays (including histopathology, neutrophil infiltration, and lung water content) confirmed that HS/RES induced ALI. Significant increases in pulmonary expression of tumor necrosis factor-α (TNF-α), malondialdehyde, nuclear factor-kappa B (NF-κB), inducible nitric oxide synthase (iNOS), and cyclooxygenase 2 (COX-2) confirmed that HS/RES induced pulmonary inflammation and oxidative stress. DMSO significantly attenuated the pulmonary inflammation and ALI induced by HS/RES. The mechanisms for this may involve reducing inflammation and oxidative stress through inhibition of pulmonary NF-κB, TNF-α, iNOS, and COX-2 expression.
Collapse
Affiliation(s)
- Yu-Chi Tsung
- Division of Surgical Intensive Care Unit, Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan.,Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Yang Chung
- Department of Anesthesiology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 289, Jianguo Rd., Sindian District, New Taipei City, 231, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hung-Chieh Wan
- Department of Anesthesiology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 289, Jianguo Rd., Sindian District, New Taipei City, 231, Taiwan
| | - Ya-Ying Chang
- Department of Anesthesiology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 289, Jianguo Rd., Sindian District, New Taipei City, 231, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ping-Cheng Shih
- Department of Anesthesiology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 289, Jianguo Rd., Sindian District, New Taipei City, 231, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Han-Shui Hsu
- Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ming-Chang Kao
- Department of Anesthesiology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 289, Jianguo Rd., Sindian District, New Taipei City, 231, Taiwan. .,School of Medicine, Tzu Chi University, Hualien, Taiwan.
| | - Chun-Jen Huang
- Department of Anesthesiology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 289, Jianguo Rd., Sindian District, New Taipei City, 231, Taiwan. .,School of Medicine, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
20
|
Wang X, Liu C, Wang G. Propofol Protects Rats and Human Alveolar Epithelial Cells Against Lipopolysaccharide-Induced Acute Lung Injury via Inhibiting HMGB1 Expression. Inflammation 2017; 39:1004-16. [PMID: 26956470 DOI: 10.1007/s10753-016-0330-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
High-mobility group box 1 (HMGB1) plays a key role in the development of acute lung injury (ALI). Propofol, a general anesthetic with anti-inflammatory properties, has been suggested to be able to modulate lipopolysaccharide (LPS)-induced ALI. In this study, we investigated the effects of propofol on the expression of HMGB1 in a rat model of LPS-induced ALI. Rats underwent intraperitoneal injection of LPS to mimic sepsis-induced ALI. Propofol bolus (1, 5, or 10 mg/kg) was infused continuously 30 min after LPS administration, followed by infusion at 5 mg/(kg · h) through the left femoral vein cannula. LPS increased wet to dry weight ratio and myeloperoxidase activity in lung tissues and caused the elevation of total protein and cells, neutrophils, macrophages, and neutrophils in bronchoalveolar lavage fluid (BALF). Moreover, HMGB1 and other cytokine levels were increased in BALF and lung tissues and pathological changes of lung tissues were excessively aggravated in rats after LPS administration. Propofol inhibited all the above effects. It also inhibited LPS-induced toll-like receptor (TLR)2/4 protein upexpression and NF-κB activation in lung tissues and human alveolar epithelial cells. Propofol protects rats and human alveolar epithelial cells against HMGB1 expression in a rat model of LPS-induced ALI. These effects may partially result from reductions in TLR2/4 and NF-κB activation.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan, Shandong, China
| | - Chengxiao Liu
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan, Shandong, China
| | - Gongming Wang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan, Shandong, China.
| |
Collapse
|
21
|
Kellner M, Noonepalle S, Lu Q, Srivastava A, Zemskov E, Black SM. ROS Signaling in the Pathogenesis of Acute Lung Injury (ALI) and Acute Respiratory Distress Syndrome (ARDS). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 967:105-137. [PMID: 29047084 PMCID: PMC7120947 DOI: 10.1007/978-3-319-63245-2_8] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The generation of reactive oxygen species (ROS) plays an important role for the maintenance of cellular processes and functions in the body. However, the excessive generation of oxygen radicals under pathological conditions such as acute lung injury (ALI) and its most severe form acute respiratory distress syndrome (ARDS) leads to increased endothelial permeability. Within this hallmark of ALI and ARDS, vascular microvessels lose their junctional integrity and show increased myosin contractions that promote the migration of polymorphonuclear leukocytes (PMNs) and the transition of solutes and fluids in the alveolar lumen. These processes all have a redox component, and this chapter focuses on the role played by ROS during the development of ALI/ARDS. We discuss the origins of ROS within the cell, cellular defense mechanisms against oxidative damage, the role of ROS in the development of endothelial permeability, and potential therapies targeted at oxidative stress.
Collapse
Affiliation(s)
- Manuela Kellner
- Department of Medicine, Center for Lung Vascular Pathobiology, University of Arizona, 1501 N Campbell Ave., Tucson, AZ, 85719, USA
| | - Satish Noonepalle
- Department of Medicine, Center for Lung Vascular Pathobiology, University of Arizona, 1501 N Campbell Ave., Tucson, AZ, 85719, USA
| | - Qing Lu
- Department of Medicine, Center for Lung Vascular Pathobiology, University of Arizona, 1501 N Campbell Ave., Tucson, AZ, 85719, USA
| | - Anup Srivastava
- Department of Medicine, Center for Lung Vascular Pathobiology, University of Arizona, 1501 N Campbell Ave., Tucson, AZ, 85719, USA
| | - Evgeny Zemskov
- Department of Medicine, Center for Lung Vascular Pathobiology, University of Arizona, 1501 N Campbell Ave., Tucson, AZ, 85719, USA
| | - Stephen M Black
- Department of Medicine, Center for Lung Vascular Pathobiology, University of Arizona, 1501 N Campbell Ave., Tucson, AZ, 85719, USA.
| |
Collapse
|
22
|
Luo Y, Che W, Zhao M. Ulinastatin post-treatment attenuates lipopolysaccharide-induced acute lung injury in rats and human alveolar epithelial cells. Int J Mol Med 2016; 39:297-306. [PMID: 27959396 PMCID: PMC5358699 DOI: 10.3892/ijmm.2016.2828] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/16/2016] [Indexed: 01/11/2023] Open
Abstract
Ulinastatin (UTI), a serine protease inhibitor, possesses anti-inflammatory properties and has been suggested to modulate lipopolysaccharide (LPS)-induced acute lung injury (ALI). High-mobility group box 1 (HMGB1), a nuclear DNA-binding protein, plays a key role in the development of ALI. The aim of this study was to investigate whether UTI attenuates ALI through the inhibition of HMGB1 expression and to elucidate the underlying molecular mechanisms. ALI was induced in male rats by the intratracheal instillation of LPS (5 mg/kg). UTI was administered intraperitoneally 30 min following exposure to LPS. A549 alveolar epithelial cells were incubated with LPS in the presence or absence of UTI. An enzyme-linked immunosorbent assay was used to detect the levels of inflammatory cytokines. Western blot analysis was performed to detect the changes in the expression levels of Toll-like receptor 2/4 (TLR2/4) and the activation of nuclear factor-κB (NF-κB). The results revealed that UTI significantly protected the animals from LPS-induced ALI, as evidenced by the decrease in the lung wet to dry weight ratio, total cells, neutrophils, macrophages and myeloperoxidase activity, associated with reduced lung histological damage. We also found that UTI post-treatment markedly inhibited the release of HMGB1 and other pro-inflammatory cytokines. Furthermore, UTI significantly inhibited the LPS-induced increase in TLR2/4 protein expression and NF-κB activation in lung tissues. In vitro, UTI markedly inhibited the expression of TLR2/4 and the activation of NF-κB in LPS-stimulated A549 alveolar epithelial cells. The findings of our study indicate that UTI attenuates LPS-induced ALI through the inhibition of HMGB1 expression in rats. These benefits are associated with the inhibition of the activation of the TLR2/4-NF-κB pathway by UTI.
Collapse
Affiliation(s)
- Yunpeng Luo
- Department of Intensive Care Unit, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Wen Che
- Department of Intensive Care Unit, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Mingyan Zhao
- Department of Intensive Care Unit, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
23
|
Lelli D, Sahebkar A, Johnston TP, Pedone C. Curcumin use in pulmonary diseases: State of the art and future perspectives. Pharmacol Res 2016; 115:133-148. [PMID: 27888157 DOI: 10.1016/j.phrs.2016.11.017] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/13/2016] [Accepted: 11/19/2016] [Indexed: 01/18/2023]
Abstract
Curcumin (diferuloylmethane) is a yellow pigment present in the spice turmeric (Curcuma longa). It has been used for centuries in Ayurveda (Indian traditional medicine) for the treatment of several diseases. Over the last several decades, the therapeutic properties of curcumin have slowly been elucidated. It has been shown that curcumin has pleiotropic effects, regulating transcription factors (e.g., NF-kB), cytokines (e.g., IL6, TNF-alpha), adhesion molecules (e.g., ICAM-1), and enzymes (e.g., MMPs) that play a major role in inflammation and cancerogenesis. These effects may be relevant for several pulmonary diseases that are characterized by abnormal inflammatory responses, such as asthma or chronic obstructive pulmonary disease, acute respiratory distress syndrome, pulmonary fibrosis, and acute lung injury. Furthermore, some preliminary evidence suggests that curcumin may have a role in the treatment of lung cancer. The evidence for the use of curcumin in pulmonary disease is still sparse and has mostly been obtained using either in vitro or animal models. The most important issue with the use of curcumin in humans is its poor bioavailability, which makes it necessary to use adjuvants or curcumin nanoparticles or liposomes. The aim of this review is to summarize the available evidence on curcumin's effectiveness in pulmonary diseases, including lung cancer, and to provide our perspective on future research with curcumin so as to improve its pharmacological effects, as well as provide additional evidence of curcumin's efficacy in the treatment of pulmonary diseases.
Collapse
Affiliation(s)
- Diana Lelli
- Area di Geriatria, Università Campus Bio-Medico di Roma, via Alvaro del Portillo 21, 00128 Roma, Italy.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, BuAli Square, Mashhad, 9196773117 Iran.
| | - Thomas P Johnston
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108,USA.
| | - Claudio Pedone
- Area di Geriatria, Università Campus Bio-Medico di Roma, via Alvaro del Portillo 21, 00128 Roma, Italy.
| |
Collapse
|
24
|
Yang C, Song Y, Wang H. Suppression of RAGE and TLR9 by Ketamine Contributes to Attenuation of Lipopolysaccharide-Induced Acute Lung Injury. J INVEST SURG 2016; 30:177-186. [PMID: 27715346 DOI: 10.1080/08941939.2016.1232448] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The present study aimed to investigate the protective role of ketamine in lipopolysaccharide (LPS)-induced acute lung injury (ALI) by the inhibition of the receptor for advanced glycation end products (RAGE) and toll-like receptor 9 (TLR9). ALI was induced in rats by intratracheal instillation of LPS (5 mg/kg), and ketamine (5, 7.5, and 10 mg/kg) was injected intraperitoneally 1 h after LPS administration. Meanwhile, A549 alveolar epithelial cells were incubated with LPS in the presence or absence of ketamine. After 24 h, bronchoalveolar lavage fluid (BALF) and lung tissue were collected. Ketamine posttreatment at doses of 5, 7.5, and 10 mg/kg decreased LPS-induced evident lung histopathological changes, lung wet-to-dry weight ratio, and lung myeloperoxidase activity. In addition, posttreatment with ketamine-inhibited inflammatory cells and inflammatory mediators including tumor necrosis factor-α, interleukin-6, and high-mobility group box 1 in BALF. Furthermore, we demonstrated that ketamine-inhibited LPS-induced RAGE and TLR9 protein up-expressions and the phosphorylation of I-κB-α and nuclear factor-κB (NF-κB) p65 in vivo and in vitro. The results presented here suggest that the protective mechanism of ketamine may be attributed partly to decreased production of inflammatory mediators through the inhibition of RAGE/TLR9-NF-κB pathway.
Collapse
Affiliation(s)
- Chunyan Yang
- a Department of Anesthesiology , Shaanxi Provincial People's Hospital , Xi'an , Shaanxi , China
| | - Yulong Song
- a Department of Anesthesiology , Shaanxi Provincial People's Hospital , Xi'an , Shaanxi , China
| | - Hui Wang
- a Department of Anesthesiology , Shaanxi Provincial People's Hospital , Xi'an , Shaanxi , China
| |
Collapse
|
25
|
Kozan A, Kilic N, Alacam H, Guzel A, Guvenc T, Acikgoz M. The Effects of Dexamethasone and L-NAME on Acute Lung Injury in Rats with Lung Contusion. Inflammation 2016; 39:1747-56. [DOI: 10.1007/s10753-016-0409-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Guo D, Li K, Yang M, Zhang H, Miao Y. Levobupivacaine attenuates lipopolysaccharide-induced acute lung injury. Fundam Clin Pharmacol 2016; 30:307-15. [PMID: 26991027 DOI: 10.1111/fcp.12197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/08/2016] [Accepted: 03/15/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Dan Guo
- Department of Anesthesiology; First Affiliated Hospital of Henan University of Science and Technology; Luoyang Henan China 471000
| | - Kehan Li
- Department of Anesthesiology; First Affiliated Hospital of Henan University of Science and Technology; Luoyang Henan China 471000
| | - Muqiang Yang
- Department of Anesthesiology; First Affiliated Hospital of Henan University of Science and Technology; Luoyang Henan China 471000
| | - Hongjun Zhang
- Department of Anesthesiology; First Affiliated Hospital of Henan University of Science and Technology; Luoyang Henan China 471000
| | - Yafei Miao
- Department of Anesthesiology; First Affiliated Hospital of Henan University of Science and Technology; Luoyang Henan China 471000
| |
Collapse
|
27
|
Abstract
Neurogenic pulmonary edema (NPE) is a life-threatening complication of central nervous system (CNS) injuries. This review summarizes current knowledge about NPE etiology and pathophysiology with an emphasis on its experimental models, including our spinal cord compression model. NPE may develop as a result of activation of specific CNS trigger zones located in the brainstem, leading to a rapid sympathetic discharge, rise in systemic blood pressure, baroreflex-induced bradycardia, and enhanced venous return resulting in pulmonary vascular congestion characterized by interstitial edema, intra-alveolar accumulation of transudate, and intra-alveolar hemorrhages. The potential etiological role of neurotransmitter changes in NPE trigger zones leading to enhanced sympathetic nerve activity is discussed. Degree of anesthesia is a crucial determinant for the extent of NPE development in experimental models because of its influence on sympathetic nervous system activity. Sympathetic hyperactivity is based on the major activation of either ascending spinal pathways by spinal cord injury or NPE trigger zones by increased intracranial pressure. Attenuation of sympathetic nerve activity or abolition of reflex bradycardia completely prevent NPE development in our experimental model. Suggestions for future research into NPE pathogenesis as well as therapeutic potential of particular drugs and interventions are discussed.
Collapse
Affiliation(s)
- Jiří Šedý
- Institute of Physiology , Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jaroslav Kuneš
- Institute of Physiology , Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Josef Zicha
- Institute of Physiology , Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|