1
|
Preventive Effect of Gamma-Oryzanol on Physiopathological Process Related to Nonalcoholic Fatty Liver Disease in Animals Submitted to High Sugar/Fat Diet. LIVERS 2022. [DOI: 10.3390/livers2030013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the main cause of liver disease. The physiopathological processes involved in the disease are metabolic syndrome (MetS) components (central obesity, dyslipidemia, insulin resistance/type 2 diabetes, hypertension), genetic, and dietary factors, including unsaturated fats and sweetened beverages, which are able to lead to inflammation and oxidative stress, conditions associated with progression and severity of NAFLD. Gamma-oryzanol (γOz) is a nutraceutical obtained from rice brain oil with many benefits to health, from immunological to metabolic. The aim of this study is to test the preventive effect of γOz on the physiopathological process related to nonalcoholic fatty liver disease in animals submitted to high sugar/fat diet. Male Wistar rats (±187 g) were randomly divided into four experimental groups to receive: control diet (C, n = 6), control diet plus γOz (C + γOz, n = 6), high sugar/fat diet (HSF, n = 6), or high sugar/fat diet plus γOz (HSF + γOz, n = 6) during 30 weeks. HSF groups also received water plus sucrose (25%). γOz was added to diets to reach 0.5% of final concentration. The HSF group presented MetS, liver inflammation and oxidative stress, and micro and macrovesicular steatosis. HSF plus γOz was protected against these changes. It is possible to conclude that gamma-oryzanol was effective in modulating the physiopathological process related to nonalcoholic fatty liver disease in animals submitted to a high sugar/fat diet.
Collapse
|
2
|
Sousa AP, Costa R, Alves MG, Soares R, Baylina P, Fernandes R. The Impact of Metabolic Syndrome and Type 2 Diabetes Mellitus on Prostate Cancer. Front Cell Dev Biol 2022; 10:843458. [PMID: 35399507 PMCID: PMC8992047 DOI: 10.3389/fcell.2022.843458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/04/2022] [Indexed: 01/02/2023] Open
Abstract
Prostate cancer (PCa) remains the second most common type of cancer in men worldwide in 2020. Despite its low death rate, the need for new therapies or prevention strategies is critical. The prostate carcinogenesis process is complex and multifactorial. PCa is caused by a variety of mutations and carcinogenic events that constitutes the disease's multifactorial focus, capable of not only remodeling cellular activity, but also modeling metabolic pathways to allow adaptation to the nutritional requirements of the tumor, creating a propitious microenvironment. Some risk factors have been linked to the development of PCa, including Metabolic Syndrome (MetS) and Type 2 Diabetes Mellitus (T2DM). MetS is intrinsically related to PCa carcinogenic development, increasing its aggressiveness. On the other hand, T2DM has the opposite impact, although in other carcinomas its effect is similar to the MetS. Although these two metabolic disorders may share some developmental processes, such as obesity, insulin resistance, and dyslipidemia, their influence on PCa prognosis appears to have an inverse effect, which makes this a paradox. Understanding the phenomena behind this paradoxical behavior may lead to new concepts into the comprehension of the diseases, as well as to evaluate new therapeutical targets. Thus, this review aimed to evaluate the impact of metabolic disorders in PCa's aggressiveness state and metabolism.
Collapse
Affiliation(s)
- André P. Sousa
- LaBMI-Laboratório de Biotecnologia Médica e Industrial, Porto, Portugal
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine of Porto University, Porto, Portugal
- I3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- ESS-Escola Superior de Saúde, Instituto Politécnico do Porto, Porto, Portugal
| | - Raquel Costa
- LaBMI-Laboratório de Biotecnologia Médica e Industrial, Porto, Portugal
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine of Porto University, Porto, Portugal
- I3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Marco G. Alves
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal
| | - Raquel Soares
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine of Porto University, Porto, Portugal
- I3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Pilar Baylina
- LaBMI-Laboratório de Biotecnologia Médica e Industrial, Porto, Portugal
- I3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- ESS-Escola Superior de Saúde, Instituto Politécnico do Porto, Porto, Portugal
| | - Rúben Fernandes
- LaBMI-Laboratório de Biotecnologia Médica e Industrial, Porto, Portugal
- I3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- ESS-Escola Superior de Saúde, Instituto Politécnico do Porto, Porto, Portugal
| |
Collapse
|
3
|
Mattei L, Francisqueti-Ferron FV, Garcia JL, Ferron AJT, Silva CCVDA, Gregolin CS, Nakandakare-Maia ET, Silva JDCP, Moreto F, Minatel IO, Corrêa CR. Antioxidant and anti-inflammatory properties of gamma- oryzanol attenuates insulin resistance by increasing GLUT- 4 expression in skeletal muscle of obese animals. Mol Cell Endocrinol 2021; 537:111423. [PMID: 34400258 DOI: 10.1016/j.mce.2021.111423] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Skeletal muscle is the most important organ for whole-body glucose homeostasis. However, it has been suggested that obesity-related inflammation could be involved in insulin resistance and diabetes mellitus type 2 (DM2) development due several mechanisms, among them, the reduced expression of the glucose transporter type 4 (GLUT-4). Gamma-oryzanol (γOz) is a compound present in the whole grain of rice that presents anti-inflammatory and antioxidant activities. The aim of this study was to verify if the effect antioxidant and anti-inflammatory of yOz attenuate insulin resistance in skeletal muscle of obese rats by increasing GLUT- 4 expression. METHODS Male Wistar rats (±187 g) were initially randomly distributed into 2 experimental groups (control, n = 6, and high sugar-fat diet (HSF), n = 12) for 20 weeks. At week 20th of this study, once obesity and insulin resistance were detected in the HSF group, animals were divided to begin the treatment with γOz or continue receiving HSF for 10 more weeks. At the end it was analyzed nutritional, metabolic, inflammatory and oxidative stress parameters and GLUT-4 protein expression. RESULTS The treatment improved insulin resistance, reduced inflammation, increased antioxidant response and GLUT-4 expression. CONCLUSION It is possible to conclude that the antioxidant and anti-inflammatory activity of yOz attenuates insulin resistance by increasing GLUT-4 expression in skeletal muscle of obese animals.
Collapse
Affiliation(s)
- Letícia Mattei
- São Paulo State University (UNESP), Medical School, Botucatu, SP, Brazil
| | | | | | | | | | | | | | | | - Fernando Moreto
- São Paulo State University (UNESP), Medical School, Botucatu, SP, Brazil
| | - Igor Otávio Minatel
- São Paulo State University (UNESP), Institute of Biosciences, Botucatu, SP, Brazil
| | | |
Collapse
|
4
|
Jack BU, Malherbe CJ, Mamushi M, Muller CJF, Joubert E, Louw J, Pheiffer C. Adipose tissue as a possible therapeutic target for polyphenols: A case for Cyclopia extracts as anti-obesity nutraceuticals. Biomed Pharmacother 2019; 120:109439. [PMID: 31590126 DOI: 10.1016/j.biopha.2019.109439] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/29/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity is a significant contributor to increased morbidity and premature mortality due to increasing the risk of many chronic metabolic diseases such as type 2 diabetes, cardiovascular disease and certain types of cancer. Lifestyle modifications such as energy restriction and increased physical activity are highly effective first-line treatment strategies used in the management of obesity. However, adherence to these behavioral changes is poor, with an increased reliance on synthetic drugs, which unfortunately are plagued by adverse effects. The identification of new and safer anti-obesity agents is thus of significant interest. In recent years, plants and their phenolic constituents have attracted increased attention due to their health-promoting properties. Amongst these, Cyclopia, an endemic South African plant commonly consumed as a herbal tea (honeybush), has been shown to possess modulating properties against oxidative stress, hyperglycemia, and obesity. Likewise, several studies have reported that some of the major phenolic compounds present in Cyclopia spp. exhibit anti-obesity effects, particularly by targeting adipose tissue. These phenolic compounds belong to the xanthone, flavonoid and benzophenone classes. The aim of this review is to assess the potential of Cyclopia extracts as an anti-obesity nutraceutical as underpinned by in vitro and in vivo studies and the underlying cellular mechanisms and biological pathways regulated by their phenolic compounds.
Collapse
Affiliation(s)
- Babalwa U Jack
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa.
| | - Christiaan J Malherbe
- Plant Bioactives Group, Post-Harvest and Agro-processing Technologies, Agricultural Research Council, Infruitec-Nietvoorbij, Stellenbosch, South Africa
| | - Mokadi Mamushi
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa; Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Christo J F Muller
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa; Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa; Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa, South Africa
| | - Elizabeth Joubert
- Plant Bioactives Group, Post-Harvest and Agro-processing Technologies, Agricultural Research Council, Infruitec-Nietvoorbij, Stellenbosch, South Africa; Department of Food Science, Stellenbosch University, Stellenbosch, South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa; Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa; Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
5
|
Mentoor I, Engelbrecht AM, Nell T. Fatty acids: Adiposity and breast cancer chemotherapy, a bad synergy? Prostaglandins Leukot Essent Fatty Acids 2019; 140:18-33. [PMID: 30553399 DOI: 10.1016/j.plefa.2018.11.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 11/12/2018] [Accepted: 11/20/2018] [Indexed: 02/07/2023]
Abstract
Globally, breast cancer continues to be a major concern in women's health. Lifestyle related risk factors, specifically excess adipose tissue (adiposity) has reached epidemic proportions and has been identified as a major risk factor in the development of breast cancer. Dysfunctional adipose tissue has evoked research focusing on its association with metabolic-related conditions, breast cancer risk and progression. Adipose dysfunction in coordination with immune cells and inflammation, are responsible for accelerated cell growth and survival of cancer cells. Recently, evidence also implicates adiposity as a potential risk factor for chemotherapy resistance. Chemotherapeutic agents have been shown to negatively impact adipose tissue. Since adipose tissue is a major storage site for fatty acids, it is not unlikely that these negative effects may disrupt adipose tissue homeostasis. It is therefore argued that fatty acid composition may be altered due to the chemotherapeutic pharmacokinetics, which in turn could have severe health related outcomes. The underlying molecular mechanisms elucidating the effects of fatty acid composition in adiposity-linked drug resistance are still unclear and under explored. This review focuses on the potential role of adiposity in breast cancer and specifically emphasizes the role of fatty acids in cancer progression and treatment resistance.
Collapse
Affiliation(s)
- Ilze Mentoor
- Department of Physiological Sciences, Faculty of Sciences, Stellenbosch University Main Campus, Stellenbosch 7600, Western Cape, Republic of South Africa
| | - A-M Engelbrecht
- Department of Physiological Sciences, Faculty of Sciences, Stellenbosch University Main Campus, Stellenbosch 7600, Western Cape, Republic of South Africa
| | - Theo Nell
- Department of Physiological Sciences, Faculty of Sciences, Stellenbosch University Main Campus, Stellenbosch 7600, Western Cape, Republic of South Africa.
| |
Collapse
|
6
|
Metabolic syndrome and body shape predict differences in health parameters in farm working women. BMC Public Health 2018; 18:453. [PMID: 29618342 PMCID: PMC5885298 DOI: 10.1186/s12889-018-5378-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 03/26/2018] [Indexed: 01/15/2023] Open
Abstract
Background Sufficient evidence associate body shape to detrimental lifestyle diseases including the metabolic syndrome (MetS). The prevalence of the MetS, as well as effects of the MetS and body shape on body composition, insulin-like growth factor-1 (IGF-1), C-reactive protein (CRP) and sex hormone parameters were investigated in a female farm worker population in the Western Cape. Methods Women between the ages of 20–60 years were classified according to the International Diabetes Federation’s definition of the MetS. Assessments included body shape (android/gynoid), blood pressure, anthropometric, bioelectrical impedance analyses and blood analyses for fasting glucose and insulin, lipid profile, IGF-1, CRP, and sex hormone parameters. Results The prevalence of the MetS was 52%, with abdominal obesity 68.8%, hypertension 66.4% and low high density lipoprotein-cholesterol (HDL-c) levels (64.1%) being the more prevalent MetS risk factors. The MetS, irrespective of body shape, was found to be associated with body mass index (p < 0.01), fat mass (%) (p < 0.01), waist circumference (p < 0.001), HDL-c (p < 0.001), systolic blood pressure (p < 0.05) and diastolic blood pressure (p < 0.01). No significant differences were observed for IGF-1, CRP and sex hormone parameters. Conclusion The prevalence of the MetS and its individual risk factors were found to be significantly high in this female farm worker population. Additionally, the study showed that the MetS, body shape and/or both could predict differences in body composition, physiological and biochemical parameters in women.
Collapse
|
7
|
Mentoor I, Engelbrecht AM, van Jaarsveld PJ, Nell T. Chemoresistance: Intricate Interplay Between Breast Tumor Cells and Adipocytes in the Tumor Microenvironment. Front Endocrinol (Lausanne) 2018; 9:758. [PMID: 30619088 PMCID: PMC6297254 DOI: 10.3389/fendo.2018.00758] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/29/2018] [Indexed: 12/24/2022] Open
Abstract
Excess adipose tissue is a hallmark of an overweight and/or obese state as well as a primary risk factor for breast cancer development and progression. In an overweight/obese state adipose tissue becomes dysfunctional due to rapid hypertrophy, hyperplasia, and immune cell infiltration which is associated with sustained low-grade inflammation originating from dysfunctional adipokine synthesis. Evidence also supports the role of excess adipose tissue (overweight/obesity) as a casual factor for the development of chemotherapeutic drug resistance. Obesity-mediated effects/modifications may contribute to chemotherapeutic drug resistance by altering drug pharmacokinetics, inducing chronic inflammation, as well as altering tumor-associated adipocyte adipokine secretion. Adipocytes in the breast tumor microenvironment enhance breast tumor cell survival and decrease the efficacy of chemotherapeutic agents, resulting in chemotherapeutic resistance. A well-know chemotherapeutic agent, doxorubicin, has shown to negatively impact adipose tissue homeostasis, affecting adipose tissue/adipocyte functionality and storage. Here, it is implied that doxorubicin disrupts adipose tissue homeostasis affecting the functionality of adipose tissue/adipocytes. Although evidence on the effects of doxorubicin on adipose tissue/adipocytes under obesogenic conditions are lacking, this narrative review explores the potential role of obesity in breast cancer progression and treatment resistance with inflammation as an underlying mechanism.
Collapse
Affiliation(s)
- Ilze Mentoor
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Paul J. van Jaarsveld
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Theo Nell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- *Correspondence: Theo Nell
| |
Collapse
|
8
|
Kowalska K, Olejnik A. Cranberries ( Oxycoccus quadripetalus ) inhibit pro-inflammatory cytokine and chemokine expression in 3T3-L1 adipocytes. Food Chem 2016; 196:1137-43. [DOI: 10.1016/j.foodchem.2015.10.069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 09/22/2015] [Accepted: 10/14/2015] [Indexed: 01/31/2023]
|