1
|
Wu Z, He Y, Wang T, Wang M, Cheng A, Chen S. DENV and ZIKV infection: Species specificity and broad cell tropism. Virology 2024; 600:110276. [PMID: 39467358 DOI: 10.1016/j.virol.2024.110276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Nearly one-third of countries worldwide have reported cases of Dengue virus (DENV) and Zika virus (ZIKV) infections, highlighting the significant threat these viruses pose to global public health. As members of the Flavivirus genus within the Flaviviridae family, DENV and ZIKV have demonstrated the ability to infect a wide range of cell lines from multiple species in vitro. However, the range of susceptible animal models is notably limited, and field studies indicate that their capacity to infect host organisms is highly restricted, with a very narrow range of target cells in vivo. The virus's ability to hijack host cellular machinery plays a crucial role in determining its cellular and species specificity. In this review, we examine how DENV and ZIKV exploit host cells to facilitate their replication, offering new insights that could inform the development of antiviral drugs and therapeutic targets.
Collapse
Affiliation(s)
- Zhen Wu
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Agricultural Bioinformatics of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yu He
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Agricultural Bioinformatics of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Tao Wang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Mingshu Wang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Anchun Cheng
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Shun Chen
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Agricultural Bioinformatics of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
2
|
Schwickert KK, Glitscher M, Bender D, Benz NI, Murra R, Schwickert K, Pfalzgraf S, Schirmeister T, Hellmich UA, Hildt E. Zika virus replication is impaired by a selective agonist of the TRPML2 ion channel. Antiviral Res 2024; 228:105940. [PMID: 38901736 DOI: 10.1016/j.antiviral.2024.105940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
The flavivirus genus includes human pathogenic viruses such as Dengue (DENV), West Nile (WNV) and Zika virus (ZIKV) posing a global health threat due to limited treatment options. Host ion channels are crucial for various viral life cycle stages, but their potential as targets for antivirals is often not fully realized due to the lack of selective modulators. Here, we observe that treatment with ML2-SA1, an agonist for the human endolysosomal cation channel TRPML2, impairs ZIKV replication. Upon ML2-SA1 treatment, levels of intracellular genomes and number of released virus particles of two different ZIKV isolates were significantly reduced and cells displayed enlarged vesicular structures and multivesicular bodies with ZIKV envelope protein accumulation. However, no increased ZIKV degradation in lysosomal compartments was observed. Rather, the antiviral effect of ML2-SA1 seemed to manifest by the compound's negative impact on genome replication. Moreover, ML2-SA1 treatment also led to intracellular cholesterol accumulation. ZIKV and many other viruses including the Orthohepevirus Hepatitis E virus (HEV) rely on the endolysosomal system and are affected by intracellular cholesterol levels to complete their life cycle. Since we observed that ML2-SA1 also negatively impacted HEV infections in vitro, this compound may harbor a broader antiviral potential through perturbing the intracellular cholesterol distribution. Besides indicating that TRPML2 may be a promising target for combatting viral infections, we uncover a tentative connection between this protein and cholesterol distribution within the context of infectious diseases.
Collapse
Affiliation(s)
- Kerstin K Schwickert
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University, Jena, Germany; Department of Virology, Paul-Ehrlich-Institut, 63225, Langen, Germany; Department of Chemistry, Johannes Gutenberg-University, 55122, Mainz, Germany
| | - Mirco Glitscher
- Department of Virology, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Daniela Bender
- Department of Virology, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Nuka Ivalu Benz
- Department of Virology, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Robin Murra
- Department of Virology, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Kevin Schwickert
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, 55122, Mainz, Germany
| | - Steffen Pfalzgraf
- Department of Virology, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, 55122, Mainz, Germany
| | - Ute A Hellmich
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University, Jena, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt, Germany; Cluster of Excellence "Balance of the Microverse", Friedrich Schiller University, Jena, Germany.
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institut, 63225, Langen, Germany.
| |
Collapse
|
3
|
Oeyen M, Heymann CJF, Jacquemyn M, Daelemans D, Schols D. The Role of TIM-1 and CD300a in Zika Virus Infection Investigated with Cell-Based Electrical Impedance. BIOSENSORS 2024; 14:362. [PMID: 39194591 DOI: 10.3390/bios14080362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024]
Abstract
Orthoflaviviruses cause a major threat to global public health, and no antiviral treatment is available yet. Zika virus (ZIKV) entry, together with many other viruses, is known to be enhanced by phosphatidylserine (PS) receptors such as T-cell immunoglobulin mucin domain protein 1 (TIM-1). In this study, we demonstrate for the first time, using cell-based electrical impedance (CEI) biosensing, that ZIKV entry is also enhanced by expression of CD300a, another PS receptor. Furthermore, inhibiting CD300a in immature monocyte-derived dendritic cells partially but significantly inhibits ZIKV replication. As we have previously demonstrated that CEI is a useful tool to study Orthoflavivirus infection in real time, we now use this technology to determine how these PS receptors influence the kinetics of in vitro ZIKV infection. Results show that ZIKV entry is highly sensitive to minor changes in TIM-1 expression, both after overexpression of TIM-1 in infection-resistant HEK293T cells, as well as after partial knockout of TIM-1 in susceptible A549 cells. These results are confirmed by quantification of viral copy number and viral infectivity, demonstrating that CEI is highly suited to study and compare virus-host interactions. Overall, the results presented here demonstrate the potential of targeting this universal viral entry pathway.
Collapse
Affiliation(s)
- Merel Oeyen
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Clément J F Heymann
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Maarten Jacquemyn
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Dirk Daelemans
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
4
|
Sherwood M, Zhou Y, Sui Y, Wang Y, Skipp P, Kaid C, Gray J, Okamoto K, Ewing RM. Integrated re-analysis of transcriptomic and proteomic datasets reveals potential mechanisms for Zika viral-based oncolytic therapy in neuroblastoma. F1000Res 2024; 12:719. [PMID: 38903860 PMCID: PMC11187533 DOI: 10.12688/f1000research.132627.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 06/22/2024] Open
Abstract
Background Paediatric neuroblastoma and brain tumours account for a third of all childhood cancer-related mortality. High-risk neuroblastoma is highly aggressive and survival is poor despite intensive multi-modal therapies with significant toxicity. Novel therapies are desperately needed. The Zika virus (ZIKV) can access the nervous system and there is growing interest in employing ZIKV as a potential therapy against paediatric nervous system tumours, including neuroblastoma. Methods Here, we perform extensive data mining, integration and re-analysis of ZIKV infection datasets to highlight molecular mechanisms that may govern the oncolytic response in neuroblastoma cells. We collate infection data of multiple neuroblastoma cell lines by different ZIKV strains from a body of published literature to inform the susceptibility of neuroblastoma to the ZIKV oncolytic response. Integrating published transcriptomics, interaction proteomics, dependency factor and compound datasets we propose the involvement of multiple host systems during ZIKV infection. Results Through data mining of published literature, we observed most paediatric neuroblastoma cell lines to be highly susceptible to ZIKV infection and propose the PRVABC59 ZIKV strain to be the most promising candidate for neuroblastoma oncolytic virotherapy. ZIKV induces TNF signalling, lipid metabolism, the Unfolded Protein Response (UPR), and downregulates cell cycle and DNA replication processes. ZIKV infection is dependent on sterol regulatory element binding protein (SREBP)-regulated lipid metabolism and three protein complexes; V-ATPase, ER Membrane Protein Complex (EMC) and mammalian translocon. We propose ZIKV non-structural protein 4B (NS4B) as a likely mediator of ZIKVs interaction with IRE1-mediated UPR, lipid metabolism and mammalian translocon. Conclusions Our work provides a significant understanding of ZIKV infection in neuroblastoma cells, which will facilitate the progression of ZIKV-based oncolytic virotherapy through pre-clinical research and clinical trials.
Collapse
Affiliation(s)
- Matt Sherwood
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
| | - Yilu Zhou
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
| | - Yi Sui
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
| | - Yihua Wang
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
| | - Paul Skipp
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
| | - Carolini Kaid
- Human Genome and Stem-Cell Center (HUG-CELL), Biosciences Institute, Universidade de Sao Paulo, São Paulo, State of São Paulo, Brazil
| | - Juliet Gray
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, England, UK
| | - Keith Okamoto
- Human Genome and Stem-Cell Center (HUG-CELL), Biosciences Institute, Universidade de Sao Paulo, São Paulo, State of São Paulo, Brazil
| | - Rob M. Ewing
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
| |
Collapse
|
5
|
Ravindran S, Lahon A. Tropism and immune response of chikungunya and zika viruses: An overview. Cytokine 2023; 170:156327. [PMID: 37579710 DOI: 10.1016/j.cyto.2023.156327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/16/2023]
Abstract
Zika virus (ZIKV) and chikungunya virus (CHIKV) are two medically important vector-borne viruses responsible for causing significant disease burden in humans, including neurological sequelae/complications. Besides sharing some common clinical features, ZIKV has major shares in causing microcephaly and brain malformations in developing foetus, whereas CHIKV causes chronic joint pain/swelling in infected individuals. Both viruses have a common route of entry to the host body. i.e., dermal site of inoculation through the bite of an infected mosquito and later taken up by different immune cells for further dissemination to other areas of the host body that lead to a range of immune responses via different pathways. The immune responses generated by both viruses have similar characteristics with varying degrees of inflammation and activation of immune cells. However, the overall response of immune cells is not fully explored in the context of ZIKV and CHIKV infection. The knowledge of cellular tropism and the immune response is the key to understanding the mechanisms of viral immunity and pathogenesis, which may allow to develop novel therapeutic strategies for these viral infections. This review aims to discuss recent advancements and identify the knowledge gaps in understanding the mechanism of cellular tropism and immune response of CHIKV and ZIKV.
Collapse
Affiliation(s)
- Shilpa Ravindran
- Institute of Advanced Virology, Thiruvananthapuram, Kerala 695317, India
| | - Anismrita Lahon
- Institute of Advanced Virology, Thiruvananthapuram, Kerala 695317, India.
| |
Collapse
|
6
|
Popuche D, Huaman A, Loyola S, Silva M, Jenkins SA, Guevara C. Development and validation of a vero cell-based suspension method for the detection of Zika virus. Rev Peru Med Exp Salud Publica 2023; 40:297-306. [PMID: 37991033 PMCID: PMC10959515 DOI: 10.17843/rpmesp.2023.403.12606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/01/2023] [Indexed: 11/23/2023] Open
Abstract
OBJECTIVE. To develop and validate a cell suspension method using Vero 76 cells for culturing Zika virus (ZIKV) based on infection of detached freshly seeded cells. MATERIAL AND METHODS. Three different multiplicities of infection of ZIKV were used to develop and compare this novel method to the standard confluent cell monolayer method. In addition, we preliminary validated the cell suspension method using well-characterized ZIKV positive and negative clinical samples. The standard confluent cell monolayer method was used as the reference method, and viral isolation was confirmed by a ZIKV-specific RT-PCR. The sensitivity and its 95% confidence intervals for the cell suspension method were estimated. Also, a technical comparison of the cell suspension method against the cell monolayer method was performed. RESULTS. Our findings suggested that both the viral load and replication of ZIKV were comparable between both monolayer- and suspension-infection methods. Although both methods were suitable for culturing and isolating ZIKV, the cell suspension method was easier, cheaper, and quicker as well as a sensitive isolation technique. The cell suspension method was significantly more sensitive in detecting Zika in inconclusive cases by RT-PCR, with a fourfold increase compared to the confluent cell monolayer method. CONCLUSION. The cell suspension method has the potential to be an effective method for cultivating and isolating ZIKV and its application is potentially useful in both research and clinical settings.
Collapse
Affiliation(s)
- Dina Popuche
- U.S. Naval Medical Research Unit SOUTH, Lima, Peru.U.S. Naval Medical Research Unit SOUTHLimaPeru
| | - Alfredo Huaman
- U.S. Naval Medical Research Unit SOUTH, Lima, Peru.U.S. Naval Medical Research Unit SOUTHLimaPeru
| | - Steev Loyola
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru.Universidad Peruana Cayetano HerediaFacultad de MedicinaUniversidad Peruana Cayetano HerediaLimaPeru
- Vysnova Partners Inc., Maryland, USAVysnova Partners Inc.MarylandUSA
| | - María Silva
- U.S. Naval Medical Research Unit SOUTH, Lima, Peru.U.S. Naval Medical Research Unit SOUTHLimaPeru
| | - Sarah A. Jenkins
- U.S. Naval Medical Research Unit SOUTH, Lima, Peru.U.S. Naval Medical Research Unit SOUTHLimaPeru
- Naval Medical Research Center, Silver Spring, USANaval Medical CenterNaval Medical Research CenterSilver SpringUSA
| | - Carolina Guevara
- U.S. Naval Medical Research Unit SOUTH, Lima, Peru.U.S. Naval Medical Research Unit SOUTHLimaPeru
| |
Collapse
|
7
|
Dorjsuren D, Eastman RT, Song MJ, Yasgar A, Chen Y, Bharti K, Zakharov AV, Jadhav A, Ferrer M, Shi PY, Simeonov A. A platform of assays for the discovery of anti-Zika small-molecules with activity in a 3D-bioprinted outer-blood-retina model. PLoS One 2022; 17:e0261821. [PMID: 35041689 PMCID: PMC8765781 DOI: 10.1371/journal.pone.0261821] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 12/10/2021] [Indexed: 01/24/2023] Open
Abstract
The global health emergency posed by the outbreak of Zika virus (ZIKV), an arthropod-borne flavivirus causing severe neonatal neurological conditions, has subsided, but there continues to be transmission of ZIKV in endemic regions. As such, there is still a medical need for discovering and developing therapeutical interventions against ZIKV. To identify small-molecule compounds that inhibit ZIKV disease and transmission, we screened multiple small-molecule collections, mostly derived from natural products, for their ability to inhibit wild-type ZIKV. As a primary high-throughput screen, we used a viral cytopathic effect (CPE) inhibition assay conducted in Vero cells that was optimized and miniaturized to a 1536-well format. Suitably active compounds identified from the primary screen were tested in a panel of orthogonal assays using recombinant Zika viruses, including a ZIKV Renilla luciferase reporter assay and a ZIKV mCherry reporter system. Compounds that were active in the wild-type ZIKV inhibition and ZIKV reporter assays were further evaluated for their inhibitory effects against other flaviviruses. Lastly, we demonstrated that wild-type ZIKV is able to infect a 3D-bioprinted outer-blood-retina barrier tissue model and disrupt its barrier function, as measured by electrical resistance. One of the identified compounds (3-Acetyl-13-deoxyphomenone, NCGC00380955) was able to prevent the pathological effects of the viral infection on this clinically relevant ZIKV infection model.
Collapse
Affiliation(s)
- Dorjbal Dorjsuren
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Richard T. Eastman
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Min Jae Song
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Adam Yasgar
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Yuchi Chen
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Kapil Bharti
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alexey V. Zakharov
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Ajit Jadhav
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Marc Ferrer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Pei-Yong Shi
- University of Texas Medical Branch Galveston, Galveston, TX, United States of America
| | - Anton Simeonov
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
8
|
Ruiz-Jiménez F, Pérez-Olais JH, Raymond C, King BJ, McClure CP, Urbanowicz RA, Ball JK. Challenges on the development of a pseudotyping assay for Zika glycoproteins. J Med Microbiol 2021; 70:001413. [PMID: 34499027 PMCID: PMC8697511 DOI: 10.1099/jmm.0.001413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/15/2021] [Indexed: 11/18/2022] Open
Abstract
Introduction. Zika virus (ZIKV) emerged as a public health concern on the American continent during late 2015. As the number of infected grew so did the concerns about its capability to cause long-term damage especially with the appearance of the congenital Zika syndrome (CZS). Proteins from the TAM family of receptor tyrosine kinases (RTKs) were proposed as the cellular receptors, however, due to the ability of the virus to infect a variety of cell lines different strategies to elucidate the tropism of the virus should be investigated.Hypothesis. Pseudotyping is a powerful tool to interrogate the ability of the glycoprotein (GP) to permit entry of viruses.Aim. We aimed to establish a highly tractable pseudotype model using lenti- and retro-viral backbones to investigate the entry pathway of ZIKV.Methodology. We used different glycoprotein constructs and different lenti- or retro-viral backbones, in a matrix of ratios to investigate production of proteins and functional pseudotypes.Results. Varying the ratio of backbone and glycoprotein plasmids did not yield infectious pseudotypes. Moreover, the supplementation of the ZIKV protease or the substitution of the backbone had no positive impact on the infectivity. We showed production of the proteins in producer cells implying the lack of infectious pseudotypes is due to a lack of successful glycoprotein incorporation, rather than lack of protein production.Conclusion. In line with other reports, we were unable to successfully produce infectious pseudotypes using the variety of methods described. Other strategies may be more suitable in the development of an efficient pseudotype model for ZIKV and other flaviviruses.
Collapse
Affiliation(s)
| | | | - Chidinma Raymond
- School of Life Sciences, The University of Nottingham, Nottingham, UK
| | - Barnabas J King
- School of Life Sciences, The University of Nottingham, Nottingham, UK
| | | | - Richard A. Urbanowicz
- School of Life Sciences, The University of Nottingham, Nottingham, UK
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jonathan K. Ball
- School of Life Sciences, The University of Nottingham, Nottingham, UK
| |
Collapse
|
9
|
Leiva S, Dizanzo MP, Fabbri C, Bugnon Valdano M, Luppo V, Levis S, Cavatorta AL, Morales MA, Gardiol D. Application of quantitative immunofluorescence assays to analyze the expression of cell contact proteins during Zika virus infections. Virus Res 2021; 304:198544. [PMID: 34400226 DOI: 10.1016/j.virusres.2021.198544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 05/10/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
Zika Virus (ZIKV) is an RNA virus that belongs to the Flavivirus (FV) genus. In the last years, several unique characteristics of ZIKV among FV have been revealed, as the multiple routes of transmission and its ability to reach different human tissues, including the central nervous system. Thus, one of the most intriguing features of ZIKV biology is its ability to cross diverse complex biological barriers. The main aim of this study is to contribute to the understanding of the still unclear mechanisms behind this viral activity. We investigated an African strain and two South American ZIKV isolates belonging to the Asian lineage, in order to characterize possible differences regarding their ability to disturb intercellular junctions. The Asian isolates correspond to an imported (Venezuelan) and an autochthonous (Argentinian) ZIKV strain for which there is still no data available. We focused on occludin and DLG1 expression as markers of tight and adherent junctions, respectively. For this, we applied a quantitative immunofluorescence assay that can ascertain alterations in the cell junction proteins expression in the infected cells. Our findings indicated that the different ZIKV strains were able to reduce the levels of both polarity proteins without altering their overall cell distribution. Moreover, the grade of this effect was strain-dependent, being the DLG1 reduction higher for the African and Asian Venezuelan isolates and, on the contrary, occludin down-regulation was more noticeable for the Argentinian strain. Interestingly, among both junction proteins the viral infection caused a relative larger reduction in DLG1 expression for all viruses, suggesting DLG1 may be of particular relevance for ZIKV infections. Taken together, this study contributes to the knowledge of the biological mechanisms involved in ZIKV cytopathogenesis, with a special focus on regional isolates.
Collapse
Affiliation(s)
- Santiago Leiva
- Instituto de Biología Molecular y Celular de Rosario-CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - María Paula Dizanzo
- Instituto de Biología Molecular y Celular de Rosario-CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Cintia Fabbri
- Instituto Nacional de Enfermedades Virales Humanas "Dr. Julio Maiztegui" (INEVH-ANLIS), Monteagudo 2510, Pergamino, Buenos Aires, Argentina
| | - Marina Bugnon Valdano
- Instituto de Biología Molecular y Celular de Rosario-CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Victoria Luppo
- Instituto Nacional de Enfermedades Virales Humanas "Dr. Julio Maiztegui" (INEVH-ANLIS), Monteagudo 2510, Pergamino, Buenos Aires, Argentina
| | - Silvana Levis
- Instituto Nacional de Enfermedades Virales Humanas "Dr. Julio Maiztegui" (INEVH-ANLIS), Monteagudo 2510, Pergamino, Buenos Aires, Argentina
| | - Ana Laura Cavatorta
- Instituto de Biología Molecular y Celular de Rosario-CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - María Alejandra Morales
- Instituto Nacional de Enfermedades Virales Humanas "Dr. Julio Maiztegui" (INEVH-ANLIS), Monteagudo 2510, Pergamino, Buenos Aires, Argentina
| | - Daniela Gardiol
- Instituto de Biología Molecular y Celular de Rosario-CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina.
| |
Collapse
|
10
|
The epidermal growth factor receptor is a relevant host factor in the early stages of Zika virus life cycle in vitro. J Virol 2021; 95:e0119521. [PMID: 34379506 DOI: 10.1128/jvi.01195-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Zika virus (ZIKV) is a flavivirus well-known for the epidemic in the Americas in 2015-2016, where microcephaly in newborns and other neurological complications were connected to ZIKV infection. Many aspects of the viral life cycle, including binding and entry into the host cell, are still enigmatic. Based on the observation that CHO cells lack the expression of EGFR and are not permissive for various ZIKV strains, the relevance of EGFR for the viral life cycle was analyzed. Infection of A549 cells by ZIKV leads to a rapid internalization of EGFR that colocalizes with the endosomal marker EEA1. Moreover, the infection by different ZIKV strains is associated with an activation of EGFR and subsequent activation of the MAPK/ERK signaling cascade. However, treatment of the cells with MβCD, which on the one hand leads to an activation of EGFR but on the other hand prevents EGFR internalization, impairs ZIKV infection. Specific inhibition of EGFR or of the RAS-RAF-MEK-ERK signal transduction cascade hinders ZIKV infection by inhibition of ZIKV entry. In accordance to this, knockout of EGFR expression impedes ZIKV entry. In case of an already established infection, inhibition of EGFR or of downstream signaling does not affect viral replication. Taken together, these data demonstrate the relevance of EGFR in the early stages of ZIKV infection and identify EGFR as a target for antiviral strategies. Importance These data deepen the knowledge about the ZIKV infection process and demonstrate the relevance of EGFR for ZIKV entry. In light of the fact that a variety of specific and efficient inhibitors of EGFR and of EGFR-dependent signaling were developed and licensed, repurposing of these substances could be a helpful tool to prevent the spreading of ZIKV infection in an epidemic outbreak.
Collapse
|
11
|
Gao J, Chen J, Lu W, Cai J, Shi L, Zhao W, Zhang B. Construction of an infectious clone of Zika virus stably expressing an EGFP marker in a eukaryotic expression system. Virol J 2021; 18:151. [PMID: 34281586 PMCID: PMC8287661 DOI: 10.1186/s12985-021-01622-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 07/14/2021] [Indexed: 11/26/2022] Open
Abstract
Background Zika virus is becoming one of the most widely transmitted arboviruses in the world. Development of antiviral inhibitor and vaccine requires an experimental system that allows rapid monitoring of the virus infection. This is achievable with a reverse genetic system. In this study, we constructed an infectious clone for Zika virus that stably expressing EGFP. Methods A PCR-mediated recombination approach was used to assemble the full-length Zika virus genome containing the CMV promoter, intron, EGFP, hepatitis delta virus ribozyme, and SV40 terminator sequence for cloning into the pBAC11 vector to produce recombinant pBAC-ZIKA-EGFP. ZIKA-EGFP virus was rescued by transfection of pBAC-ZIKA-EGFP into 293T cells. The characterization of ZIKA-EGFP virus was determined by qPCR, plaque assay, CCK-8, and Western blot. Results Rescued ZIKA-EGFP virus exhibited stable replication for at least five generations in tissue culture. ZIKA-EGFP can effectively infect C6/36, SH-SY5Y and Vero cells, and cause cytopathic effects on SH-SY5Y and Vero cells. The inhibition of ZIKA-EGFP by NF-κB inhibitor, caffeic acid phenethyl ester was observed by fluorescence microscopy. Conclusion Our results suggested that Zika virus infectious clone with an EGFP marker retained it infectivity as wide-type Zika virus which could be used for drugs screening. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-021-01622-z.
Collapse
Affiliation(s)
- Jing Gao
- Biosafety Level 3 Laboratory, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Jiayi Chen
- Biosafety Level 3 Laboratory, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Weizhi Lu
- Biosafety Level 3 Laboratory, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Jintai Cai
- Biosafety Level 3 Laboratory, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Linjuan Shi
- Biosafety Level 3 Laboratory, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Wei Zhao
- Biosafety Level 3 Laboratory, School of Public Health, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| | - Bao Zhang
- Biosafety Level 3 Laboratory, School of Public Health, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
12
|
A Novel Series of Indole Alkaloid Derivatives Inhibit Dengue and Zika Virus Infection by Interference with the Viral Replication Complex. Antimicrob Agents Chemother 2021; 65:e0234920. [PMID: 34001508 DOI: 10.1128/aac.02349-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we identified a novel class of compounds which demonstrated good antiviral activity against dengue and Zika virus infection. These derivatives constitute intermediates in the synthesis of indole (ervatamine-silicine) alkaloids and share a tetracyclic structure, with an indole and a piperidine fused to a seven-membered carbocyclic ring. Structure-activity relationship studies indicated the importance of substituent at position C-6 and especially the presence of a benzyl ester for the activity and cytotoxicity of the molecules. In addition, the stereochemistry at C-7 and C-8, as well as the presence of an oxazolidine ring, influenced the potency of the compounds. Mechanism of action studies with two analogues of this family (compounds 22 and trans-14) showed that this class of molecules can suppress viral infection during the later stages of the replication cycle (RNA replication/assembly). Moreover, a cell-dependent antiviral profile of the compounds against several Zika strains was observed, possibly implying the involvement of a cellular factor(s) in the activity of the molecules. Sequencing of compound-resistant Zika mutants revealed a single nonsynonymous amino acid mutation (aspartic acid to histidine) at the beginning of the predicted transmembrane domain 1 of NS4B protein, which plays a vital role in the formation of the viral replication complex. To conclude, our study provides detailed information on a new class of NS4B-associated inhibitors and strengthens the importance of identifying host-virus interactions in order to tackle flavivirus infections.
Collapse
|
13
|
Oeyen M, Meyen E, Noppen S, Claes S, Doijen J, Vermeire K, Süssmuth RD, Schols D. Labyrinthopeptin A1 inhibits dengue and Zika virus infection by interfering with the viral phospholipid membrane. Virology 2021; 562:74-86. [PMID: 34274562 DOI: 10.1016/j.virol.2021.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 11/18/2022]
Abstract
To date, there are no broad-spectrum antivirals available to treat infections with flaviviruses such as dengue (DENV) and Zika virus (ZIKV). In this study, we determine the broad antiviral activity of the lantibiotic Labyrinthopeptin A1. We show that Laby A1 inhibits all DENV serotypes and various ZIKV strains with IC50 around 1 μM. The structurally related Laby A2 also displayed a consistent, but about tenfold lower, antiviral activity. Furthermore, Laby A1 inhibits many viruses from divergent families such as HIV, YFV, RSV and Punta Torovirus. Of interest, Laby A1 does not show activity against non-enveloped viruses. Its antiviral activity is independent of the cell line or the used evaluation method, and can also be observed in MDDC, a physiologically relevant primary cell type. Furthermore, Laby A1 demonstrates low cellular toxicity and has a more favorable SI compared to duramycin, a well-described lantibiotic with broad-spectrum antiviral activity. Time-of-drug addition experiments demonstrate that Laby A1 inhibits infection and entry processes of ZIKV and DENV. We reveal that Laby A1 performs its broad antiviral activity by interacting with a viral factor rather than a cellular factor, and that it has virucidal properties. Finally, using SPR interaction studies we demonstrate that Laby A1 interacts with several phospholipids (i.e. PE and PS) present in the viral envelope. Together with other recent Labyrinthopeptin antiviral publications, this work validates the activity of Laby A1 as broad antiviral entry inhibitor with a unique mechanism of action and demonstrates its potential value as antiviral agent against emerging flaviviruses.
Collapse
Affiliation(s)
- Merel Oeyen
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000 Leuven, Belgium
| | - Eef Meyen
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000 Leuven, Belgium
| | - Sam Noppen
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000 Leuven, Belgium
| | - Sandra Claes
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000 Leuven, Belgium
| | - Jordi Doijen
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000 Leuven, Belgium
| | - Kurt Vermeire
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000 Leuven, Belgium
| | - Roderich D Süssmuth
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124/TC 2, D-10623 Berlin, Germany
| | - Dominique Schols
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
14
|
Topology, Antiviral Functional Residues and Mechanism of IFITM1. Viruses 2020; 12:v12030295. [PMID: 32182730 PMCID: PMC7150853 DOI: 10.3390/v12030295] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
Interferon-inducible transmembrane proteins (IFITM1/2/3) have been reported to suppress the entry of a wide range of viruses. However, their antiviral functional residues and specific mechanisms are still unclear. Here, we firstly resolved the topology of IFITM1 on the plasma membrane where N-terminus points into the cytoplasm and C-terminus resides extracellularly. Further, KRRK basic residues of IFITM1 locating at 62–67 of the conserved intracellular loop (CIL) were found to play a key role in the restriction on the Zika virus (ZIKV) and dengue virus (DENV). Similarly, KRRK basic residues of IFITM2/3 also contributed to suppressing ZIKV replication. Finally, IFITM1 was revealed to be capable of restricting the release of ZIKV particles from endosome to cytosol so as to impede the entry of ZIKV into host cells, which was tightly related with the inhibition of IFITM1 on the acidification of organelles. Overall, our study provided topology, antiviral functional residues and the mechanism of interferon-inducible transmembrane proteins.
Collapse
|
15
|
Peters R, Stevenson M. Immunological detection of Zika virus: A summary in the context of general viral diagnostics. J Microbiol Methods 2020. [DOI: 10.1016/bs.mim.2019.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Abstract
Zika virus (ZIKV) is an important pathogen transmitted to humans by the mosquito vector Aedes aegypti. ZIKV is able to infect several tissues and organs and, importantly, has been associated with microcephaly and central nervous system abnormalities in fetuses and newborn babies of mothers exposed to ZIKV during pregnancy, as well as neurological diseases such as Guillain-Barré syndrome in adults. There is currently no vaccine or drug licensed to prevent or treat ZIKV infections. The use of ZIKV isolation in disease diagnosis has been largely replaced by new techniques. However, virus isolation is still considered as a gold standard for the detection of ZIKV and is usually performed in research and reference laboratories for characterization, sequencing, and a variety of research experiments including pathogenesis, drug susceptibility, and vaccine efficacy. The experimental procedures presented here describe the most common techniques used for ZIKV isolation, propagation, purification, and quantification.
Collapse
Affiliation(s)
- Mariana Baz
- Infectious Disease Research Centre, CHU de Québec and Laval University, Québec, QC, Canada.
| |
Collapse
|
17
|
Basic M, Elgner F, Bender D, Sabino C, Herrlein ML, Roth H, Glitscher M, Fath A, Kerl T, Schmalz HG, Hildt E. A synthetic derivative of houttuynoid B prevents cell entry of Zika virus. Antiviral Res 2019; 172:104644. [DOI: 10.1016/j.antiviral.2019.104644] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/30/2019] [Accepted: 11/02/2019] [Indexed: 12/12/2022]
|
18
|
Sippert E, Rocha BC, Assis FL, Ok S, Rios M. Use of Monocyte-Derived Macrophage Culture Increases Zika Virus Isolation Rate from Human Plasma. Viruses 2019; 11:v11111058. [PMID: 31739467 PMCID: PMC6893817 DOI: 10.3390/v11111058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 12/19/2022] Open
Abstract
Viral isolation is desirable for many reasons, including development of diagnostic assays and reference materials, and for virology basic research. Zika virus (ZIKV) isolation from clinical samples is challenging, but isolates are known to infect various cell lines. Here, we evaluated suitability of Vero, C6/36 and JEG-3 as host cells, for direct isolation of ZIKV from human plasma. We also assessed the use of primary monocyte-derived macrophages (MDMs) culture to enhance ZIKV isolation from human plasma samples followed by virus expansion in Vero, C6/36 and JEG-3 cultures. Direct inoculation of cell lines with 42 ZIKV-RNA positive samples resulted in isolation rates of 9.52% (4/42) in Vero and C6/36, and of 7.14% (3/42) in JEG-3 cells. Inoculation of plasma in MDMs followed by supernatant testing by TaqMan RT-PCR, resulted in 33/42 (78.57%) ZIKV-RNA-positive supernatants, which expansion in cell lines increased isolation rates to 24.24% (8/33) in Vero and to 27.27% (9/33) in C6/36 and JEG-3 regardless of the presence of ZIKV-antibody. Isolates generated in JEG-3 cells were also produced in Vero and C6/36 with similar viral titers. These results suggest that efficiency of ZIKV isolation from human plasma can be enhanced when MDM culture is used before viral expansion in cell lines.
Collapse
|
19
|
Khaiboullina SF, Ribeiro FM, Uppal T, Martynova EV, Rizvanov AA, Verma SC. Zika Virus Transmission Through Blood Tissue Barriers. Front Microbiol 2019; 10:1465. [PMID: 31333605 PMCID: PMC6621930 DOI: 10.3389/fmicb.2019.01465] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 06/11/2019] [Indexed: 01/12/2023] Open
Abstract
The recent Zika virus (ZIKV) epidemic in the Americas and the Caribbean revealed a new deadly strain of the mosquito-borne virus, which has never been associated with previous outbreaks in Asia. For the first time, widespread ZIKV infection was shown to cause microcephaly and death of newborns, which was most likely due to the mutation acquired during the large outbreak recorded in French Polynesia in 2013–2014. Productive ZIKV replication and persistence has been demonstrated in placenta and fetal brains. Possible association between ZIKV and microcephaly and fetal death has been confirmed using immunocompetent mouse models in vitro and in vivo. Having crossed the placenta, ZIKV directly targets neural progenitor cells (NPCs) in developing human fetus and triggers apoptosis. The embryonic endothelial cells are exceptionally susceptible to ZIKV infection, which causes cell death and tissue necrosis. On the contrary, ZIKV infection does not affect the adult brain microvascular cell morphology and blood–brain barrier function. ZIKV is transmitted primarily by Aedes mosquito bite and is introduced into the placenta/blood through replication at the site of the entry. Also, virus can be transmitted through unprotected sex. Although, multiple possible routes of virus infection have been identified, the exact mechanism(s) utilized by ZIKV to cross the placenta still remain largely unknown. In this review, the current understanding of ZIKV infection and transmission through the placental and brain barriers is summarized.
Collapse
Affiliation(s)
- Svetlana F Khaiboullina
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, Reno, Reno, NV, United States.,Department of Exploratory Research, Scientific and Educational Center of Pharmaceutics, Kazan Federal University, Kazan, Russia
| | - Fabiola M Ribeiro
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Timsy Uppal
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, Reno, Reno, NV, United States
| | - Ekaterina V Martynova
- Department of Exploratory Research, Scientific and Educational Center of Pharmaceutics, Kazan Federal University, Kazan, Russia
| | - Albert A Rizvanov
- Department of Exploratory Research, Scientific and Educational Center of Pharmaceutics, Kazan Federal University, Kazan, Russia
| | - Subhash C Verma
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, Reno, Reno, NV, United States
| |
Collapse
|
20
|
Shaily S, Upadhya A. Zika virus: Molecular responses and tissue tropism in the mammalian host. Rev Med Virol 2019; 29:e2050. [PMID: 31095819 DOI: 10.1002/rmv.2050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/15/2022]
Abstract
Zika virus (ZIKV) outbreaks have raised alarm because of reports of congenital Zika virus syndrome in infants. The virus is also known to cause the debilitating Guillain-Barré syndrome in adults. As a result, extensive research has been carried out on the virus over the past few years. To study the molecular responses of viral infectivity in mammals, in vitro two-dimensional and three-dimensional cellular models have been employed. The in vivo models of mouse, pig, chicken, and nonhuman primates are primarily used to investigate the teratogenicity of the virus, to study effects of the virus on specific tissues, and to study the systemic effects of a proposed antiviral agent. The virus exhibits wide tissue tropism in the mammalian host. The major host tissues of viral persistence and propagation are neural tissue, ocular tissue, testicular tissue and placental tissue. An understanding of the function of viral components, viral replication cycle, and the molecular responses elicited in the host tissues is imperative for designing antiviral treatment strategies and for development of vaccines. This review provides an update on ZIKV research models and mammalian host responses with respect to ZIKV tissue infection.
Collapse
Affiliation(s)
- Sangya Shaily
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, Mumbai, India
| | - Archana Upadhya
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, Mumbai, India
| |
Collapse
|
21
|
Alfano C, Gladwyn-Ng I, Couderc T, Lecuit M, Nguyen L. The Unfolded Protein Response: A Key Player in Zika Virus-Associated Congenital Microcephaly. Front Cell Neurosci 2019; 13:94. [PMID: 30971894 PMCID: PMC6445045 DOI: 10.3389/fncel.2019.00094] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/26/2019] [Indexed: 01/08/2023] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne virus that belongs to the Flaviviridae family, together with dengue, yellow fever, and West Nile viruses. In the wake of its emergence in the French Polynesia and in the Americas, ZIKV has been shown to cause congenital microcephaly. It is the first arbovirus which has been proven to be teratogenic and sexually transmissible. Confronted with this major public health challenge, the scientific and medical communities teamed up to precisely characterize the clinical features of congenital ZIKV syndrome and its underlying pathophysiological mechanisms. This review focuses on the critical impact of the unfolded protein response (UPR) on ZIKV-associated congenital microcephaly. ZIKV infection of cortical neuron progenitors leads to high endoplasmic reticulum (ER) stress. This results in both the stalling of indirect neurogenesis, and UPR-dependent neuronal apoptotic death, and leads to cortical microcephaly. In line with these results, the administration of molecules inhibiting UPR prevents ZIKV-induced cortical microcephaly. The discovery of the link between ZIKV infection and UPR activation has a broader relevance, since this pathway plays a crucial role in many distinct cellular processes and its induction by ZIKV may account for several reported ZIKV-associated defects.
Collapse
Affiliation(s)
- Christian Alfano
- GIGA-Stem Cells, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, Liège, Belgium
| | - Ivan Gladwyn-Ng
- GIGA-Stem Cells, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, Liège, Belgium
| | - Thérèse Couderc
- Institut Pasteur, Biology of Infection Unit, Paris, France.,INSERM U1117, Biologie des Infections, Paris, France
| | - Marc Lecuit
- Institut Pasteur, Biology of Infection Unit, Paris, France.,INSERM U1117, Biologie des Infections, Paris, France.,Paris Descartes University, Division of Infectious Diseases and Tropical Medicine, Necker-Enfants Malades Hospital, Institut Imagine, Sorbonne Paris Cité, Paris, France
| | - Laurent Nguyen
- GIGA-Stem Cells, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, Liège, Belgium
| |
Collapse
|
22
|
Dinnon III KH, Gallichotte EN, Fritch EJ, Menachery VD, Baric RS. Shortening of Zika virus CD-loop reduces neurovirulence while preserving antigenicity. PLoS Negl Trop Dis 2019; 13:e0007212. [PMID: 30845254 PMCID: PMC6424462 DOI: 10.1371/journal.pntd.0007212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 03/19/2019] [Accepted: 02/04/2019] [Indexed: 01/05/2023] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne positive sense RNA virus. Recently, ZIKV emerged into the Western hemisphere as a human health threat, with severe disease associated with developmental and neurological complications. The structural envelope protein of ZIKV and other neurotropic flaviviruses contains an extended CD-loop relative to non-neurotropic flaviviruses, and has been shown to augment ZIKV stability and pathogenesis. Here we show that shortening the CD-loop in ZIKV attenuates the virus in mice, by reducing the ability to invade and replicate in the central nervous system. The CD-loop mutation was genetically stable following infection in mice, though secondary site mutations arise adjacent to the CD-loop. Importantly, while shortening of the CD-loop attenuates the virus, the CD-loop mutant maintains antigenicity in immunocompetent mice, eliciting an antibody response that similarly neutralizes both the mutant and wildtype ZIKV. These findings suggest that the extended CD-loop in ZIKV is a determinant of neurotropism and may be a target in live-attenuated vaccine design, for not only ZIKV, but for other neurotropic flaviviruses.
Collapse
Affiliation(s)
- Kenneth H. Dinnon III
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Emily N. Gallichotte
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ethan J. Fritch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Vineet D. Menachery
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Ralph S. Baric
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
23
|
DuPai CD, McWhite CD, Smith CB, Garten R, Maurer-Stroh S, Wilke CO. Influenza passaging annotations: what they tell us and why we should listen. Virus Evol 2019; 5:vez016. [PMID: 31275610 PMCID: PMC6599686 DOI: 10.1093/ve/vez016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Influenza databases now contain over 100,000 worldwide sequence records for strains influenza A(H3N2) and A(H1N1). Although these data facilitate global research efforts and vaccine development practices, they also represent a stumbling block for researchers because of their confusing and heterogeneous annotation. Unclear passaging annotations are particularly concerning given the recent work highlighting the presence and risk of false adaptation signals introduced by cell passaging of viral isolates. With this in mind, we aim to provide a concise outline of why viruses are passaged, a clear overview of passaging annotation nomenclature currently in use, and suggestions for a standardized nomenclature going forward. Our hope is that this summary will empower researchers and clinicians alike to more easily understand a virus sample's passage history when analyzing influenza sequences.
Collapse
Affiliation(s)
- Cory D DuPai
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Claire D McWhite
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Catherine B Smith
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Rebecca Garten
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sebastian Maurer-Stroh
- Biomolecular Function Discovery Division, Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Biological Sciences (DBS), National University of Singapore (NUS), Singapore
| | - Claus O Wilke
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
- Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
24
|
Alves MP, Vielle NJ, Thiel V, Pfaender S. Research Models and Tools for the Identification of Antivirals and Therapeutics against Zika Virus Infection. Viruses 2018; 10:v10110593. [PMID: 30380760 PMCID: PMC6265910 DOI: 10.3390/v10110593] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022] Open
Abstract
Zika virus recently re-emerged and caused global outbreaks mainly in Central Africa, Southeast Asia, the Pacific Islands and in Central and South America. Even though there is a declining trend, the virus continues to spread throughout different geographical regions of the world. Since its re-emergence in 2015, massive advances have been made regarding our understanding of clinical manifestations, epidemiology, genetic diversity, genomic structure and potential therapeutic intervention strategies. Nevertheless, treatment remains a challenge as there is no licensed effective therapy available. This review focuses on the recent advances regarding research models, as well as available experimental tools that can be used for the identification and characterization of potential antiviral targets and therapeutic intervention strategies.
Collapse
Affiliation(s)
- Marco P Alves
- Institute of Virology and Immunology, 3012 Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.
| | - Nathalie J Vielle
- Institute of Virology and Immunology, 3012 Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland.
| | - Volker Thiel
- Institute of Virology and Immunology, 3012 Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.
| | - Stephanie Pfaender
- Institute of Virology and Immunology, 3012 Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.
| |
Collapse
|
25
|
Beaver JT, Lelutiu N, Habib R, Skountzou I. Evolution of Two Major Zika Virus Lineages: Implications for Pathology, Immune Response, and Vaccine Development. Front Immunol 2018; 9:1640. [PMID: 30072993 PMCID: PMC6058022 DOI: 10.3389/fimmu.2018.01640] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/03/2018] [Indexed: 12/13/2022] Open
Abstract
Zika virus (ZIKV) became a public health emergency of global concern in 2015 due to its rapid expansion from French Polynesia to Brazil, spreading quickly throughout the Americas. Its unexpected correlation to neurological impairments and defects, now known as congenital Zika syndrome, brought on an urgency to characterize the pathology and develop safe, effective vaccines. ZIKV genetic analyses have identified two major lineages, Asian and African, which have undergone substantial changes during the past 50 years. Although ZIKV infections have been circulating throughout Africa and Asia for the later part of the 20th century, the symptoms were mild and not associated with serious pathology until now. ZIKV evolution also took the form of novel modes of transmission, including maternal-fetal transmission, sexual transmission, and transmission through the eye. The African and Asian lineages have demonstrated differential pathogenesis and molecular responses in vitro and in vivo. The limited number of human infections prior to the 21st century restricted ZIKV research to in vitro studies, but current animal studies utilize mice deficient in type I interferon (IFN) signaling in order to invoke enhanced viral pathogenesis. This review examines ZIKV strain differences from an evolutionary perspective, discussing how these differentially impact pathogenesis via host immune responses that modulate IFN signaling, and how these differential effects dictate the future of ZIKV vaccine candidates.
Collapse
Affiliation(s)
| | | | | | - Ioanna Skountzou
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
26
|
Elgner F, Sabino C, Basic M, Ploen D, Grünweller A, Hildt E. Inhibition of Zika Virus Replication by Silvestrol. Viruses 2018; 10:v10040149. [PMID: 29584632 PMCID: PMC5923443 DOI: 10.3390/v10040149] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 01/03/2023] Open
Abstract
The Zika virus (ZIKV) outbreak in 2016 in South America with specific pathogenic outcomes highlighted the need for new antiviral substances with broad-spectrum activities to react quickly to unexpected outbreaks of emerging viral pathogens. Very recently, the natural compound silvestrol isolated from the plant Aglaia foveolata was found to have very potent antiviral effects against the (−)-strand RNA-virus Ebola virus as well as against Corona- and Picornaviruses with a (+)-strand RNA-genome. This antiviral activity is based on the impaired translation of viral RNA by the inhibition of the DEAD-box RNA helicase eukaryotic initiation factor-4A (eIF4A) which is required to unwind structured 5´-untranslated regions (5′-UTRs) of several proto-oncogenes and thereby facilitate their translation. Zika virus is a flavivirus with a positive-stranded RNA-genome harboring a 5′-capped UTR with distinct secondary structure elements. Therefore, we investigated the effects of silvestrol on ZIKV replication in A549 cells and primary human hepatocytes. Two different ZIKV strains were used. In both infected A549 cells and primary human hepatocytes, silvestrol has the potential to exert a significant inhibition of ZIKV replication for both analyzed strains, even though the ancestor strain from Uganda is less sensitive to silvestrol. Our data might contribute to identify host factors involved in the control of ZIKV infection and help to develop antiviral concepts that can be used to treat a variety of viral infections without the risk of resistances because a host protein is targeted.
Collapse
Affiliation(s)
- Fabian Elgner
- Department of Virology, Paul-Ehrlich-Institut, 63225 Langen, Germany.
| | - Catarina Sabino
- Department of Virology, Paul-Ehrlich-Institut, 63225 Langen, Germany.
| | - Michael Basic
- Department of Virology, Paul-Ehrlich-Institut, 63225 Langen, Germany.
| | - Daniela Ploen
- Department of Virology, Paul-Ehrlich-Institut, 63225 Langen, Germany.
| | - Arnold Grünweller
- Pharmazeutische Chemie, Philipps-Universität Marburg, 35037 Marburg, Germany.
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institut, 63225 Langen, Germany.
- German Center for Infection Research (DZIF), 38124 Braunschweig, Germany.
| |
Collapse
|