1
|
Temur N, Dadi S, Nisari M, Ucuncuoglu N, Avan I, Ocsoy I. UV light promoted dihydrolipoic acid and its alanine derivative directed rapid synthesis of stable gold nanoparticles and their catalytic activity. Sci Rep 2024; 14:24697. [PMID: 39433872 PMCID: PMC11494073 DOI: 10.1038/s41598-024-76772-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024] Open
Abstract
In general, colloidal gold nanoparticles (AuNPs) have been synthesized in heated or boiling water containing HAuCl4 precursor with sodium citrate as reducing stabilizing reagent. Although temperature plays a driving for synthesis of AuNPs, elevated temperature in thermal reduction method causes aggregation of the AuNPs. The preferential, rapid and strong binding of dihydro-lipoic acid and its derivatives on surface of AuNPs via thiol - Au chemistry promote the production of very stable AuNPs. In this study, we have developed citric acid (CA), dihydrolipoic acid (DHLA) and DHLA-Alanine (DHLA-Ala) directed rapid synthesis of ultra-stable AuNPs, DHLA@AuNPs and DHLA-Ala@AuNPs, under the UV (311 nm) irradiation at room temperature (RT: 25 °C) in around 10 min (min). CA is used as a potential reducing agent to expedite both reduction of Au3+ ion and AuNP formation, DHLA and DHLA-Ala act as stabilizing agents by replacing CA molecules on surface of AuNPs in order to produce quite stable AuNP. It is worthy to mention that reduction of Au3+ ion, formation and surface stabilization of AuNPs are consequently occurred in one step. We also investigated how experimental parameters including reaction time and temperature, pH of reaction solution, affect formation of the AuNPs. The effects of salt concentration and storage temperature were studied to show stability of the AuNPs. The synthesized DHLA@AuNPs and DHLA-Alanine@AuNPs were characterized via UV-Vis spectrophotometer (UV-Vis), scanning transmission electron microscope (STEM), dynamic light scattering (DLS) and Zeta potential (ZT) devices. The reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) was efficiently catalyzed by the AuNPs in the presence of sodium borohydride in aqueous solution.
Collapse
Affiliation(s)
- Nimet Temur
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, 38039, Turkey
| | - Seyma Dadi
- Department of Nanotechnology Engineering, Abdullah Gül University, Kayseri, 38080, Turkey
| | - Mustafa Nisari
- Department of Medical Biochemistry, Faculty of Dentistry, University of Nuh Naci Yazgan, Kayseri, 38090, Turkey
| | - Neslihan Ucuncuoglu
- Department of Physiology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, 34700, Turkey
| | - Ilker Avan
- Department of Chemistry, Faculty of Science, Eskişehir Technical University, Eskişehir, 26470, Turkey
| | - Ismail Ocsoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, 38039, Turkey.
| |
Collapse
|
2
|
Wei L, Wang Z, Dong Y, Yu D, Chen Y. Enhanced CRISPR/Cas12a Fluorimetry via a DNAzyme-Embedded Framework Nucleic Acid Substrate. Anal Chem 2024; 96:16453-16461. [PMID: 39367822 DOI: 10.1021/acs.analchem.4c04710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
CRISPR/Cas12a fluorimetry has been extensively developed in the biosensing arena, on account of its high selectivity, simplicity, and rapidness. However, typical CRISPR/Cas12a fluorimetry suffers from low sensitivity due to the limited trans-cleavage efficiency of Cas12a, necessitating the integration of other preamplification techniques. Herein, we develop an enhanced CRISPR/Cas12a fluorimetry via a DNAzyme-embedded framework nucleic acid (FNAzyme) substrate, which was designed by embedding four CLICK-17 DNAzymes into a rigid tetrahedral scaffold. FNAzyme can not only enhance the trans-cleavage efficiency of CRISPR/Cas12a by facilitating the exposure of trans-substrate to Cas12a but also result in an exceptionally high signal-to-noise ratio by mediating enzymatic click reaction. Combined with a functional nucleic acid recognition module, this method can profile methicillin-resistant Staphylococcus aureus as low as 18 CFU/mL, whose sensitivity is approximately 54-fold higher than that of TaqMan probe-mediated CRISPR/Cas12a fluorimetry. Meanwhile, the method exhibited satisfactory recoveries in food matrices ranging from 80% to 101%. The DNA extraction- and preamplification-free detection format as well as the potent detection performance highlight its tremendous potential as a next-generation analysis tool.
Collapse
Affiliation(s)
- Luyu Wei
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zhilong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yongzhen Dong
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Deyang Yu
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yiping Chen
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
3
|
Hemmati J, Chiani M, Asghari B, Roshanaei G, Soleimani Asl S, Shafiei M, Arabestani MR. Antibacterial and antibiofilm potentials of vancomycin-loaded niosomal drug delivery system against methicillin-resistant Staphylococcus aureus (MRSA) infections. BMC Biotechnol 2024; 24:47. [PMID: 38978013 PMCID: PMC11229259 DOI: 10.1186/s12896-024-00874-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
The threat of methicillin-resistant Staphylococcus aureus (MRSA) is increasing worldwide, making it significantly necessary to discover a novel way of dealing with related infections. The quick spread of MRSA isolates among infected individuals has heightened public health concerns and significantly limited treatment options. Vancomycin (VAN) can be applied to treat severe MRSA infections, and the indiscriminate administration of this antimicrobial agent has caused several concerns in medical settings. Owing to several advantageous characteristics, a niosomal drug delivery system may increase the potential of loaded antimicrobial agents. This work aims to examine the antibacterial and anti-biofilm properties of VAN-niosome against MRSA clinical isolates with emphasis on cytotoxicity and stability studies. Furthermore, we aim to suggest an effective approach against MRSA infections by investigating the inhibitory effect of formulated niosome on the expression of the biofilm-associated gene (icaR). The thin-film hydration approach was used to prepare the niosome (Tween 60, Span 60, and cholesterol), and field emission scanning electron microscopy (FE-SEM), an in vitro drug release, dynamic light scattering (DLS), and entrapment efficiency (EE%) were used to investigate the physicochemical properties. The physical stability of VAN-niosome, including hydrodynamic size, polydispersity index (PDI), and EE%, was analyzed for a 30-day storage time at 4 °C and 25 °C. In addition, the human foreskin fibroblast (HFF) cell line was used to evaluate the cytotoxic effect of synthesized niosome. Moreover, minimum inhibitory and bactericidal concentrations (MICs/MBCs) were applied to assess the antibacterial properties of niosomal VAN formulation. Also, the antibiofilm potential of VAN-niosome was investigated by microtiter plate (MTP) and real-time PCR methods. The FE-SEM result revealed that synthesized VAN-niosome had a spherical morphology. The hydrodynamic size and PDI of VAN-niosome reported by the DLS method were 201.2 nm and 0.301, respectively. Also, the surface zeta charge of the prepared niosome was - 35.4 mV, and the EE% ranged between 58.9 and 62.5%. Moreover, in vitro release study revealed a sustained-release profile for synthesized niosomal formulation. Our study showed that VAN-niosome had acceptable stability during a 30-day storage time. Additionally, the VAN-niosome had stronger antibacterial and anti-biofilm properties against MRSA clinical isolates compared with free VAN. In conclusion, the result of our study demonstrated that niosomal VAN could be promising as a successful drug delivery system due to sustained drug release, negligible toxicity, and high encapsulation capacity. Also, the antibacterial and anti-biofilm studies showed the high capacity of VAN-niosome against MRSA clinical isolates. Furthermore, the results of real-time PCR exhibited that VAN-niosome could be proposed as a powerful strategy against MRSA biofilm via down-regulation of icaR gene expression.
Collapse
Affiliation(s)
- Jaber Hemmati
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Mohsen Chiani
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Babak Asghari
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ghodratollah Roshanaei
- Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sara Soleimani Asl
- Department of Anatomy, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Morvarid Shafiei
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran.
| | - Mohammad Reza Arabestani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
4
|
Chu J, Zhao X. Allosteric Probe-Based Colorimetric Assay for Direct Identification and Sensitive Analysis of Methicillin Resistance of Staphylococcus aureus. J Microbiol Biotechnol 2024; 34:681-688. [PMID: 38544299 PMCID: PMC11016754 DOI: 10.4014/jmb.2312.12042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 04/17/2024]
Abstract
The accurate and rapid detection of methicillin-resistance of Staphylococcus aureus (SA) holds significant clinical importance. However, the methicillin-resistance detection strategies commonly require complicated cell lysis and gene extraction. Herein, we devised a novel colorimetric approach for the sensitive and accurate identification of methicillin-resistance of SA by combining allosteric probe-based target recognition with self-primer elongation-based target recycling. The PBP2a aptamer in the allosteric probe successfully identified the target MRSA, leading to the initiation of self-primer elongation based-cascade signal amplification. The peroxidase-like hemin/G-quadruplex undergo an isothermal autonomous process that effectively catalyzes the oxidation of ABTS2- and produces a distinct blue color, enabling the visual identification of MRSA at low concentrations. The method offers a shorter duration for bacteria cultivation compared to traditional susceptibility testing methods, as well as simplified manual procedures for gene analysis. The overall amplification time for this test is 60 min, and it has a detection limit of 3 CFU/ml. In addition, the approach has exceptional selectivity and reproducibility, demonstrating commendable performance when tested with real samples. Due to its advantages, this colorimetric assay exhibits considerable potential for integration into a sensor kit, thereby offering a viable and convenient alternative for the prompt and on-site detection of MRSA in patients with skin and soft tissue infections.
Collapse
Affiliation(s)
- Juan Chu
- Department of Dermatology, Zhuji Affiliated Hospital of Shaoxing University, Zhuji City, Zhejiang Province 31180, P.R. China
| | - Xiaoqin Zhao
- Department of Dermatology, Zhuji Affiliated Hospital of Shaoxing University, Zhuji City, Zhejiang Province 31180, P.R. China
| |
Collapse
|
5
|
Sun Y, Cheng X, Yi Y, Quan K, Chen Q, Zhang K, Xu JJ. The Compact Integration of Multiple Exonuclease III-Assisted Cyclic Amplification Units for High-Efficiency Ratiometric Electrochemiluminescence Detection of MRSA. Anal Chem 2024; 96:943-948. [PMID: 38166359 DOI: 10.1021/acs.analchem.3c05410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) exhibits multiresistance to a plethora of antibiotics, therefore, accurate detection methods must be employed for timely identification to facilitate effective infection control measures. Herein, we construct a high-efficiency ratiometric electrochemiluminescent (ECL) biosensor that integrates multiple exonuclease (Exo) III-assisted cyclic amplification units for rapid detection of trace amounts of MRSA. The target bacteria selectively bind to the aptamer, triggering the release of two single-stranded DNAs. One released DNA strand initiates the opening of a hairpin probe, inducing exonuclease cleavage to generate a single strand that can form a T-shaped structure with the double strand connecting the oxidation-reduction (O-R) emitter of N-(4-aminobutyl)-N-ethylisoluminol gold (ABEI-Au). Consequently, ABEI-Au is released upon Exo III cleavage. The other strand unwinds the hairpin DNA structure on the surface of the reduction-oxidation (R-O) emitter ZIF-8@CdS, facilitating the subsequent release of a specific single strand through Exo III cleavage. This process effectively anchors the cathode-emitting material to the electrode. The Fe(III) metal-organogel (Fe-MOG) is selected as a substrate, in which the catalytic reduction of hydrogen peroxide by Fe(III) active centers accelerates the generation of reactive oxygen species and enhances signals from both ABEI-Au and ZIF-8@CdS. In this way, the two emitters cooperate to achieve bacterial detection at the single-cell level, and a good linear range is obtained in the range of 100-107 CFU/mL. Moreover, the sensor exhibited excellent performance in detecting MRSA across various authentic samples and accurately quantifying MRSA levels in serum samples, demonstrating its immense potential in addressing clinical bacterial detection challenges.
Collapse
Affiliation(s)
- Yudie Sun
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma 'anshan, Anhui 243032, PR China
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xi Cheng
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma 'anshan, Anhui 243032, PR China
| | - Yang Yi
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma 'anshan, Anhui 243032, PR China
| | - Kehong Quan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma 'anshan, Anhui 243032, PR China
| | - Qian Chen
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma 'anshan, Anhui 243032, PR China
| | - Kui Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma 'anshan, Anhui 243032, PR China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| |
Collapse
|
6
|
Qaeed MA, Hendi A, Thahe AA, Al-Maaqar SM, Osman AM, Ismail A, Mindil A, Eid AA, Aqlan F, Al-Nahari EG, Obaid AS, Warsi MK, Saif AA, AL-Farga A. Effect of Different Ratios of Mentha spicata Aqueous Solution Based on a Biosolvent on the Synthesis of AgNPs for Inhibiting Bacteria. JOURNAL OF NANOMATERIALS 2023; 2023:1-10. [DOI: 10.1155/2023/3599501] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Our work was devoted to studying the effect of different concentrations of Mentha spicata aqueous extract on the green synthesis of silver nanoparticles (AgNPs) in order to obtain the most effective of these concentrations for bacteria inhibitory activity. Different concentrations of the aqueous M. spicata extract (0.25, 0.50, 0.75, and 1.00 mM) were used as biological solvent to synthesize AgNPs by means of the reduction method. The crystal structure and morphology of the NPs were characterized UV–vis spectra, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The inhibition effect of AgNPs on Escherichia coli was studied to determine the minimum inhibitory concentration (MIC). The dark yellow color of the M. spicata extract aqueous solution indicates the successful synthesis of the AgNPs. UV spectra of the NPs show a gradual increase in absorption with increasing concentration of aqueous M. spicata extract solution from 0.25 to 1.00 mM, accompanied by a shift in the wavelength from 455 to 479 nm along with a change in the nanoparticle size from 31 to 9 nm. The tests also showed a high activity of the particles against bacteria (E. coli) ranging between 15.6 and 62.5 µg/ml. From the AgNPs, it was confirmed that aqueous M. spicata extract is an effective biosolvent for the synthesis of different sizes of AgNPs according to the solvent concentration. The AgNPs also proved effectual for the killing of bacteria.
Collapse
Affiliation(s)
- Motahher A. Qaeed
- Department of Physics, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Abdulmajeed Hendi
- Department of Physics, IRC Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Asad A. Thahe
- Department of Medical Physics, College of Applied Science, University of Fallujah, Fallujah, Iraq
| | - Saleh M. Al-Maaqar
- Faculty of Education, Department of Biology, Al-Baydha University, Al-Baydha, Yemen
| | - Abdalghaffar M. Osman
- Department of Chemistry, IRC Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - A. Ismail
- Department of Physics, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia
| | - A. Mindil
- Department of Physics, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Alharthi A. Eid
- Department of Physics, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Faisal Aqlan
- Department of Chemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - E. G. Al-Nahari
- Department of Physics, Center of Excellence in Development of Non-Profit Organizations, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Ahmed. S. Obaid
- Department of Physics, College of Science, University of Anbar, Ramadi, Iraq
| | - Mohiuddin Khan Warsi
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Ala’eddin A. Saif
- Department of Physics, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Ammar AL-Farga
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Red cabbage extract-mediated colorimetric sensor for swift, sensitive and economic detection of urease-positive bacteria by naked eye and Smartphone platform. Sci Rep 2023; 13:2056. [PMID: 36739311 PMCID: PMC9899230 DOI: 10.1038/s41598-023-28604-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/20/2023] [Indexed: 02/06/2023] Open
Abstract
The bacterial pathogens have caused various serious infectious diseases in the human body, and even some threats to human life by leading to deaths. Enterobacteriaceae species especially urease positive ones, Proteus mirabilis (P. mirabilis) and Klebsiella pneumoniae (K. pneumoniae), show resistance to antibiotics and cause respiratory and urinary tract infections. We have developed natural indicator-incorporated colorimetric urease tests with a naked eye and smartphone readout to rapidly, sensitively and economically detect P. mirabilis and K. pneumoniae. We utilized anthocyanin found as a predominant component in red cabbage (Brassica oleracea) extract as a natural pH indicator instead of toxic and synthetic indicators. As a mechanistic explanation for the detection of P. mirabilis and K. pneumoniae, urease enzymes secreted from the P. mirabilis and K. pneumoniae hydrolyze urea to produce ammonia (NH3), which increases the pH value of the reaction environment and leads to deprotonation from anthocyanins. The changes in the molecular structure and electronic structure of anthocyanins are responsible for revealing many different colors. We demonstrated how some reaction parameters including the concentration of the bacteria (colony-forming unit, CFU), the concentration of anthocyanin in the tests, initial color and pH values (pHs) of the tests influence their detection performance. We further developed a 3D-printed smartphone platform with smartphone based digital image processing software to improve the detection limit and shorten the detection time. We claim that natural indicator-incorporated rapid urease tests providing colorimetric readout evaluated by the human eye and smartphone imaging processing has great potential in practical use and they can be implemented in clinics.
Collapse
|
8
|
Khoshbin Z, Moeenfard M, Abnous K, Taghdisi SM. Nano-gold mediated aptasensor for colorimetric monitoring of acrylamide: Smartphone readout strategy for on-site food control. Food Chem 2023; 399:133983. [DOI: 10.1016/j.foodchem.2022.133983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 10/15/2022]
|
9
|
Qu CC, Liang YT, Wang XQ, Gao S, He ZZ, Sun XY. Gallium-Based Liquid Metal Materials for Antimicrobial Applications. Bioengineering (Basel) 2022; 9:416. [PMID: 36134962 PMCID: PMC9495447 DOI: 10.3390/bioengineering9090416] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
The hazards caused by drug-resistant bacteria are rocketing along with the indiscriminate use of antibiotics. The development of new non-antibiotic antibacterial drugs is urgent. The excellent biocompatibility and diverse multifunctionalities of liquid metal have stimulated the studies of antibacterial application. Several gallium-based antimicrobial agents have been developed based on the mechanism that gallium (a type of liquid metal) ions disorder the normal metabolism of iron ions. Other emerging strategies, such as physical sterilization by directly using LM microparticles to destroy the biofilm of bacteria or thermal destruction via infrared laser irradiation, are gaining increasing attention. Different from traditional antibacterial agents of gallium compounds, the pronounced property of gallium-based liquid metal materials would bring innovation to the antibacterial field. Here, LM-based antimicrobial mechanisms, including iron metabolism disorder, production of reactive oxygen species, thermal injury, and mechanical destruction, are highlighted. Antimicrobial applications of LM-based materials are summarized and divided into five categories, including liquid metal motors, antibacterial fabrics, magnetic field-responsive microparticles, liquid metal films, and liquid metal polymer composites. In addition, future opportunities and challenges towards the development and application of LM-based antimicrobial materials are presented.
Collapse
Affiliation(s)
- Chun-Chun Qu
- College of Engineering, China Agricultural University, Beijing 100083, China
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100083, China
- Hainan Institute of China Agricultural University, China Agricultural University, Sanya 572000, China
| | - Yu-Tong Liang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xi-Qing Wang
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100083, China
| | - Shang Gao
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Zhi-Zhu He
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xu-Yang Sun
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| |
Collapse
|
10
|
Liu F, Zhang C, Duan Y, Ma J, Wang Y, Chen G. In vitro selection and characterization of a DNA aptamer targeted to Prorocentrum minimum-A common harmful algae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154771. [PMID: 35339548 DOI: 10.1016/j.scitotenv.2022.154771] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/08/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Prorocentrum minimum is a common diarrhetic shellfish toxins-producing marine microalga that may seriously endanger marine resources and cause great economic losses. The development of a novel rapid detection technique is of great importance for the prevention and control of the damage caused by P. minimum. In this study, the aptamer against P. minimum was for the first time generated from an artificially synthesized single-stranded DNA library by systematic evolution of ligand by exponential enrichment (SELEX), using P. minimum and P. minimum-related species, including Prorocentrum donghaiense, Prorocentrum lima and Prorocentrum micans as target and counter-screening species, respectively. The aptamer library was successfully obtained at the end of 18 rounds of SELEX-screening by continuously monitoring the binding ratio of the resultant ssDNA from each round. Three sequences (Apt 1, Apt 2 and Apt 3) with the highest frequency in the aptamer library resulted from high-throughput sequencing were first selected as candidate aptamers. The secondary structure of these sequences was predicted and analyzed. In addition, the specificity and affinity of these candidate aptamers were determined by flow cytometry analysis. The results indicated that these aptamers had high specificity and affinity, with a KD of (224.6 ± 8.8) nM (Apt 1), (286.6 ± 13.9) nM (Apt 2) and (388.5 ± 44.6) nM (Apt 3), respectively. Apt 1 was therefore chosen as the best aptamer against P. minimum. Finally, the fluorescence microscopic examination further confirmed that Apt 1 can well bind to P. minimum. In summary, Apt 1 may be promising for being used as a novel molecular recognition element for P. minimum.
Collapse
Affiliation(s)
- Fuguo Liu
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Chunyun Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China; School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Yu Duan
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| | - Jinju Ma
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| | - Yuanyuan Wang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China.
| |
Collapse
|
11
|
Fei Y, Fang R, Xiao L, Zhang Y, Fan K, Jiang Y, Lei S, Xu R, Yang D, Ye Y, Xiang S, Wang P, Zhou C, Tang T. The development of a colorimetric biosensing assay for the detection of Helicobacter pylori in feces. Anal Biochem 2022; 651:114737. [PMID: 35595119 DOI: 10.1016/j.ab.2022.114737] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 11/01/2022]
Abstract
As Helicobacter pylori (H. pylori) is closely related to the occurrence of gastric diseases such as chronic gastritis, peptic ulcer, and gastric cancer, early detection of H. pylori is an urgent need. In this study, oligonucleotide probes conjugated with gold nanoparticles (AuNPs) were used in combination with H. pylori-specific aptamers for the rapid detection of H. pylori in stool samples, which converted the method of detection from proteins to nucleic acids. Therefore, qualitative detection of H. pylori can be achieved by observing color changes through the aggregation (red to purple) or deaggregation (purple to red) of AuNPs, and further quantitative detection can be achieved through UV spectrometry. The detection limit of the colorimetric biosensing method is 25 CFU/mL (S/N = 3), which is favorably comparable to other reported detection methods. Compared with the existing detection methods for H. pylori, this colorimetric biosensing method has no limitations to the test subjects. All these features render the colorimetric biosensing assay a promising method for the clinical field detection of H. pylori.
Collapse
Affiliation(s)
- Yu Fei
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Rong Fang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Lina Xiao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China; West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Yuqing Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Ke Fan
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Yundi Jiang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Silu Lei
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Rui Xu
- West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Dailan Yang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China; West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Yan Ye
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China; West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Shibing Xiang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China; West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Ping Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China; West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Chen Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China.
| | - Tian Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China; West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, 610041, Sichuan, PR China.
| |
Collapse
|
12
|
Liu M, Yue F, Kong Q, Liu Z, Guo Y, Sun X. Aptamers against Pathogenic Bacteria: Selection Strategies and Apta-assay/Aptasensor Application for Food Safety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5477-5498. [PMID: 35471004 DOI: 10.1021/acs.jafc.2c01547] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Pathogenic bacteria are primarily kinds of detrimental agents that cause mankind illness via contaminated food with traits of multiple types, universality, and low content. In view of the detection demands for rapidity, aptamer recognition factors emerged as a substitution for antibodies, which are short single strands of nucleic acid selected via in vitro. They display certain superiorities over antibodies, such as preferable stability, liable modification, and cost-efficiency. Taking advantage of the situation, numerous aptamers against pathogenic bacteria have been successfully selected and applied, yet there are still restrictions on commercial availability. In this review, the strategies/approaches to key sections in pathogen aptamers SELEX and post-SELEX are summarized and sorted out. Recently, optical, electrochemical, and piezoelectric aptamer-based assays or sensors dedicated to pathogen detection have been critically reviewed. Ultimately, the existing challenges and future trends in this field are proposed to further promote development prospects.
Collapse
Affiliation(s)
- Mengyue Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
| | - Fengling Yue
- School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
| | - Qianqian Kong
- School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
| | - Zhanli Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
| |
Collapse
|
13
|
Plant-Mediated Green Synthesis of Ag NPs and Their Possible Applications: A Critical Review. JOURNAL OF NANOTECHNOLOGY 2022. [DOI: 10.1155/2022/2779237] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The potential applications of Ag NPs are exciting and beneficial in a variety of fields; however, there is less awareness of the new risks posed by inappropriate disposal of Ag NPs. The Ag NPs have medicinal, plasmonic, and catalytic properties. The Ag NPs can be prepared via physical, chemical, or biological routes, and the selection of any specific route depends largely on the end-use. The downside of a physical and chemical approach is that it requires a wide space, high temperature, high temperature for a longer time to preserve the thermal stability of synthesized Ag NPs, and the use of toxic chemicals. Although these methods produce nanoparticles with high purity and well-defined morphology, it is critical to develop cost-effective, energy-efficient, and facile route, such as green synthesis; it suggests the desirable use of renewable resources by avoiding the use of additional solvents and toxic reagents in order to achieve the ultimate goal. However, each method has its pros and cons. The synthesized Ag NPs obtained using the green approach have larger biocompatibility and are less toxic towards the biotic systems. However, identifying the phytoconstituents that are responsible for nanoparticle synthesis is difficult and has been reported as a suitable candidate for biological application. The concentration of the effective bioreducing phytoconstituents plays a crucial role in deciding the morphology of the nanoparticle. Besides these reaction times, temperature, pH, and concentration of silver salt are some of the key factors that determine the morphology. Hence, careful optimization in the methodology is required as different morphologies have different properties and usage. It is due to which the development of methods to prepare nanoparticles effectively using various plant extracts is gaining rapid momentum in recent days. To make sense of what involves in the bioreduction of silver salt and to isolate the secondary metabolites from plants are yet challenging. This review focuses on the contribution of plant-mediated Ag NPs in different applications and their toxicity in the aquatic system.
Collapse
|
14
|
Wang Z, Liu J, Chen G, Feng X, Deng M, Mu D, Xu Q, Xu H. An integrated system using phenylboronic acid functionalized magnetic beads and colorimetric detection for Staphylococcus aureus. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108633] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Attallah NGM, Elekhnawy E, Negm WA, Hussein IA, Mokhtar FA, Al-Fakhrany OM. In Vivo and In Vitro Antimicrobial Activity of Biogenic Silver Nanoparticles against Staphylococcus aureus Clinical Isolates. Pharmaceuticals (Basel) 2022; 15:194. [PMID: 35215306 PMCID: PMC8878289 DOI: 10.3390/ph15020194] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 12/04/2022] Open
Abstract
Staphylococcus aureus can cause a wide range of severe infections owing to its multiple virulence factors in addition to its resistance to multiple antimicrobials; therefore, novel antimicrobials are needed. Herein, we used Gardenia thailandica leaf extract (GTLE), for the first time for the biogenic synthesis of silver nanoparticles (AgNPs). The active constituents of GTLE were identified by HPLC, including chlorogenic acid (1441.03 μg/g) from phenolic acids, and quercetin-3-rutinoside (2477.37 μg/g) and apigenin-7-glucoside (605.60 μg/g) from flavonoids. In addition, the antioxidant activity of GTLE was evaluated. The synthesized AgNPs were characterized using ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy, transmission and scanning electron microscopy (SEM), zeta potential, dynamic light scattering, and X-ray diffraction. The formed AgNPs had a spherical shape with a particle size range of 11.02-17.92 nm. The antimicrobial activity of AgNPs was investigated in vitro and in vivo against S. aureus clinical isolates. The minimum inhibitory concentration (MIC) of AgNPs ranged from 4 to 64 µg/mL. AgNPs significantly decreased the membrane integrity of 45.8% of the isolates and reduced the membrane potential by flow cytometry. AgNPs resulted in morphological changes observed by SEM. Furthermore, qRT-PCR was utilized to examine the effect of AgNPs on the gene expression of the efflux pump genes norA, norB, and norC. The in vivo examination was performed on wounds infected with S. aureus bacteria in rats. AgNPs resulted in epidermis regeneration and reduction in the infiltration of inflammatory cells. Thus, GTLE could be a vital source for the production of AgNPs, which exhibited promising in vivo and in vitro antibacterial activity against S. aureus bacteria.
Collapse
Affiliation(s)
- Nashwah G. M. Attallah
- Department of Pharmaceutical Science, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Engy Elekhnawy
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Walaa A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Ismail A. Hussein
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt;
| | - Fatma Alzahraa Mokhtar
- Department of Pharmacognosy, Faculty of Pharmacy, Alsalam University, Tanta 3111, Egypt;
| | - Omnia Momtaz Al-Fakhrany
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| |
Collapse
|
16
|
Investigation of ellagic acid rich-berry extracts directed silver nanoparticles synthesis and their antimicrobial properties with potential mechanisms towards Enterococcus faecalis and Candida albicans. J Biotechnol 2021; 341:155-162. [PMID: 34601019 DOI: 10.1016/j.jbiotec.2021.09.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022]
Abstract
The essential goals of this present study are to elucidate the formation mechanism of ellagic acid rich-blackberry, BBE, (Rubus fruticosus L.) and raspberry, RBE, (Rubus idaeus L.) extracts directed silver nanoparticles and to investigate thier antimicrobial properties towards model dental pathogens E. faecalis and C. albicans compared to BBE, RBE, NaOCl, CHX and EDTA. Both %5 w/w of BBE and RBE reacted with 5 mM Ag + ions at room temperature (25 °C) under mild-stirring, the formation of BBE and RBE directed b@Ag NP and r@Ag NP was monitored over time by using an Uv-vis spectrophotometer. Both b@Ag and r@Ag NPs were also complementarily characterized with SEM and FT-IR. In terms of the antimicrobial studies, b@Ag NP, r@Ag NP, %5 BBE and RBE, 5 mM AgNO3, %5 NaOCl, %1,5 CHX and %15 EDTA were separately incubated with E. faecalis and C. albicans suspensions. The results were evaluated with student t-test using GraphPad Prism 8.0.1 statistical software (P < 0.05). While formation of b@Ag NP was confirmed with characteristic absorbance at ~435 nm in 20 min (min) of incubation, r@Ag NP did not give absorbance till 80 min owing to concentration of ellagic acid acted as a reducing and stabilizng agent for formation of the Ag NPs. Intrestingly, 50 ppm r@Ag NP inactivated ∼89% and ∼99% of E. faecalis and C. albicans cell, respectively, ∼25% and ∼40% cell inactivations for E. faecalis and C. albicans were observed respectively with 50 ppm b@Ag NP. We showed that 50 ppm r@Ag NP has effective antimicrobial property as much as mostly used %5 NaOCl and %1,5 CHX solutions.
Collapse
|
17
|
Li B, Feng D, Miao Y, Liang X, Gu L, Lan H, Gao S, Zhang Y, Deng Y, Geng L. The systemic characterization of aptamer cocktail for bacterial detection studied by graphene oxide-based fluorescence resonance energy transfer aptasensor. J Mol Recognit 2021; 34:e2934. [PMID: 34553439 DOI: 10.1002/jmr.2934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022]
Abstract
Aptamers have gained significant attention as the molecular recognition element to replace antibodies in sensor development and target delivery. Nevertheless, it is noteworthy that unlike the wide application of polyvalent antibodies, existing researches on the combined use of heterologous aptamers with similar recognition affinity and specificity for target detection were sporadic. Herein, first, the wide existence of polyaptamer for bacteria was revealed through the summary of existing literature. Furthermore, based on the establishment of a sensitive aptamer cocktail/graphene oxide fluorescence resonance energy transfer polyaptasensor with a detection limit as low as 10 CFU/ml, the systemic characterization of aptamer cocktails in bacterial detection was carried out by taking E. coli, Vi. parahemolyticus, S. typhimurium, and C. sakazakii as the assay targets. It was turned out that the polyaptasensors for C. sakazakii and S. typhimurium owned prevalence in the broader concentration range of target bacteria. While the polyaptasensors for E. coli and V. parahemolyticus outperformed monoaptasensor mainly in the lower concentration of target bacteria. The linear relationships between fluorescence recovery and the concentration of bacteria were also discussed. The different characteristics of the bacterial cellular membrane, including the binding affinity and the robustness to variation, are analyzed to be the main reason for the diverse detection performance of aptasensors. The study here enhances a sensor detection strategy with super sensitivity. More importantly, this systemic study on the aptamer cocktail in reference to antibodies will advance the in-depth understanding and rational design of aptamer based biological recognition, detection, and targeting.
Collapse
Affiliation(s)
- Baichang Li
- Department of Life, Beijing Institute of Technology, Beijing, China
| | - Dongwei Feng
- Department of Life, Beijing Institute of Technology, Beijing, China
| | - Yunfei Miao
- Department of Life, Beijing Institute of Technology, Beijing, China
| | - Xuewang Liang
- Department of Life, Beijing Institute of Technology, Beijing, China
| | - Le Gu
- Biological Detection Department, BOE Technology Group Co., Ltd., Beijing, China
| | - Hongying Lan
- Department of Life, Beijing Institute of Technology, Beijing, China
| | - Shimeng Gao
- College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yaxi Zhang
- Department of Life, Beijing Institute of Technology, Beijing, China
| | - Yulin Deng
- Department of Life, Beijing Institute of Technology, Beijing, China
| | - Lina Geng
- Department of Life, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
18
|
A Ocsoy M, Yusufbeyoglu S, Ildiz N, Ulgen A, Ocsoy I. DNA Aptamer-Conjugated Magnetic Graphene Oxide for Pathogenic Bacteria Aggregation: Selective and Enhanced Photothermal Therapy for Effective and Rapid Killing. ACS OMEGA 2021; 6:20637-20643. [PMID: 34396009 PMCID: PMC8359158 DOI: 10.1021/acsomega.1c02832] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/19/2021] [Indexed: 05/19/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), often called "superbug", is a nosocomial and multidrug resistance bacterium that shows resistance to β-lactam antibiotics. There has been high demand to develop an alternative treatment model to antibiotics for efficiently fighting MRSA. Herein, we developed DNA aptamer-conjugated magnetic graphene oxide (Apt@MGO) as a multifunctional and biocompatible nanoplatform for selective and rapid eradication of MRSA and evaluated heat generation and cell death performance of Apt@MGO for the first time under dispersed and aggregated states. The aptamer sequence was specifically selected for MRSA and acted as a molecular targeting probe for selective MRSA recognition and antibiotic-free therapy. Magnetic graphene oxide (MGO) serves as a nanoplatform for aptamer conjugation and as a photothermal agent by converting near-infrared (NIR) light to heat. Iron oxide nanoparticles (Fe3O4 NPs) are formed on GO to prepare MGO, which shows magnetic properties for collecting MRSA cells in a certain area in the reaction tube by an external magnet. The collected MGO induces remarkably high local heating and eventual MRSA cell death under NIR laser irradiation. We demonstrate that Apt@MGO resulted in ∼78% MRSA and over >97% MRSA cell inactivation in dispersed and aggregated states, respectively, under 200 seconds (sn) exposure of NIR irradiation (808 nm, 1.1 W cm-2). An in vitro study highlights that Apt@MGO is considered a targeted, biocompatible, and light-activated photothermal agent for efficient and rapid killing of MRSA in the aggregated state under NIR light.
Collapse
Affiliation(s)
- Muserref A Ocsoy
- Department
of Physics, Faculty of Science, Erciyes
University, 38039 Kayseri, Turkey
| | - Sadi Yusufbeyoglu
- Department
of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey
- Department
of Pharmacognosy, Faculty of Gülhane Pharmacy, University of Health Sciences, 06010 Ankara, Turkey
| | - Nilay Ildiz
- Department
of Pharmaceutical Microbiology, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey
| | - Ahmet Ulgen
- Department
of Chemistry, Faculty of Science, Erciyes
University, 38039 Kayseri, Turkey
| | - Ismail Ocsoy
- Department
of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey
| |
Collapse
|
19
|
Selective Capture and Identification of Methicillin-Resistant Staphylococcus aureus by Combining Aptamer-Modified Magnetic Nanoparticles and Mass Spectrometry. Int J Mol Sci 2021; 22:ijms22126571. [PMID: 34207373 PMCID: PMC8234742 DOI: 10.3390/ijms22126571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022] Open
Abstract
A nucleic acid aptamer that specifically recognizes methicillin-resistant Staphylococcus aureus (MRSA) has been immobilized on magnetic nanoparticles to capture the target bacteria prior to mass spectrometry analysis. After the MRSA species were captured, they were further eluted from the nanoparticles and identified using matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). The combination of aptamer-based capture/enrichment and MS analysis of microorganisms took advantage of the selectivity of both techniques and should enhance the accuracy of MRSA identification. The capture and elution efficiencies for MRSA were optimized by examining factors such as incubation time, temperature, and elution solvents. The aptamer-modified magnetic nanoparticles showed a capture rate of more than 90% under the optimized condition, whereas the capture rates were less than 11% for non-target bacteria. The as-prepared nanoparticles exhibited only a 5% decrease in the capture rate and a 9% decrease in the elution rate after 10 successive cycles of utilization. Most importantly, the aptamer-modified nanoparticles revealed an excellent selectivity towards MRSA in bacterial mixtures. The capture of MRSA at a concentration of 102 CFU/mL remained at a good percentage of 82% even when the other two species were at 104 times higher concentration (106 CFU/mL). Further, the eluted MRSA bacteria were successfully identified using MALDI mass spectrometry.
Collapse
|
20
|
Lingaraju K, Basavaraj R, Jayanna K, S.Bhavana, Devaraja S, Kumar Swamy H, Nagaraju G, Nagabhushana H, Raja Naika H. Biocompatible fabrication of TiO2 nanoparticles: Antimicrobial, anticoagulant, antiplatelet, direct hemolytic and cytotoxicity properties. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108505] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Thorat ND, Dworniczek E, Brennan G, Chodaczek G, Mouras R, Gascón Pérez V, Silien C, Tofail SAM, Bauer J. Photo-responsive functional gold nanocapsules for inactivation of community-acquired, highly virulent, multidrug-resistant MRSA. J Mater Chem B 2021; 9:846-856. [PMID: 33367418 DOI: 10.1039/d0tb02047h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The indiscriminate and sporadic use of antibiotics has contributed to the emergence of drug resistance phenomenon in bacteria including but not limited to Staphylococcus aureus. These drug-resistant bacteria have been threatening safety in hospitals and adversely affecting human health. Here we report a strategy to design photo-stimulated theranostic nanoprobes against methicillin-resistant Staphylococcus aureus (MRSA) "superbug" USA300. The nanocapsule probe is based on gold nanorods (GNRs) coated with pegylated thiol, mPEG-SH, which has been further modified by adding successively a natural antibacterial compound such as curcumin, and a cell targeting deoxyribonucleic acid (DNA) aptamer. We have used this novel gold nanocapsules for near-infrared (NIR) photophysical stimulation against pathogenic bacteria. We have found that the novel nanocapsule blocks biofilm formation and kills bacteria by photothermal action that causes disruption of the bacterial cell wall and membrane. In this approach, multiple drug-resistant Staphylococcus aureus has been captured by these nanocapsules through DNA aptamer targeting. All of the trapped bacteria could be killed in 30 minutes during the NIR stimulation due to the combination of photothermal effect, the generation of reactive oxygen species (ROS) and a loss of transmembrane potential (Δψ). Importantly we did not notice any resistance developed against the photothermal treatment. This is remarkable from an anti-biofilm activity point of view. Importantly, these multifunctional nanocapsules have also shown a surface enhanced Raman spectroscopy (SERS) effect, which could be used to evaluate the success of the inactivation effect during treatment. These results indicate that nanocapsule-based photo treatment can be an alternative antibacterial strategy without contributing to antibiotic resistance, and thus can be used for both environmental and therapeutic applications.
Collapse
Affiliation(s)
- Nanasaheb D Thorat
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, wybrzeże Stanisława Wyspiańskiego 27, Wrocław 50-370, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Labouta HI, Hooshmand N, Upreti T, El-Sayed MA. Localized Plasmonic Photothermal Therapy as a Life-saving Treatment Paradigm for Hospitalized COVID-19 Patients. PLASMONICS (NORWELL, MASS.) 2021; 16:1029-1033. [PMID: 33495692 PMCID: PMC7815498 DOI: 10.1007/s11468-020-01353-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/04/2020] [Indexed: 05/12/2023]
Abstract
Lung failure is the main reason for mortality in COVID-19 patients, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To date, no drug has been clinically approved for treatment of COVID-19. Nanotechnology has a great potential in contributing significantly to the fight against COVID-19 by developing effective therapies that can selectively eradicate the respiratory virus load. We propose a novel COVID-19 management approach that is efficient in eliminating the virus load from the airways and protecting the lungs from the fatal effects of the virus. This approach relies on targeting the virus using ACE-2-functionalized gold nanorods (AuNRs) followed by irradiation with near-infrared (NIR) light for the selective eradication of SARS-CoV-2 without off-target effects, i.e., targeted plasmonic photothermal therapy. Using discrete dipole approximation (DDA), we quantitatively determined the efficiency of AuNRs (31 nm × 8 nm) in absorbing NIR when present at different orientations relative to one another on the surface of the virus. The safety and the local administration of AuNRs using a well-tolerated flexible bronchoscopy technique, commonly used for hospitalized COVID-19 patients, ensure feasibility and clinical translation. While requiring further research, we anticipate this approach to result in a first-line treatment for hospitalized COVID-19 patients that are experiencing severe respiratory conditions or belong to a high-risk population, e.g., seniors and diabetic patients.
Collapse
Affiliation(s)
- Hagar I. Labouta
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba Canada
- Biomedical Engineering, University of Manitoba, Winnipeg, Manitoba Canada
- Faculty of Pharmacy , University of Alexandria , Alexandria, Egypt
| | - Nasrin Hooshmand
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA USA
| | - Tushar Upreti
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba Canada
| | - Mostafa A. El-Sayed
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA USA
| |
Collapse
|
23
|
Binding Characteristics Study of DNA based Aptamers for E. coli O157:H7. Molecules 2021; 26:molecules26010204. [PMID: 33401561 PMCID: PMC7795876 DOI: 10.3390/molecules26010204] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 01/29/2023] Open
Abstract
E. coli O157:H7 is a pathogenic bacterium producing verotoxins that could lead to serious complications such as hemolytic uremia syndrome. Fast detection of such pathogens is important. For rapid detection, aptamers are quickly gaining traction as alternative biorecognition molecules besides conventional antibodies. Several DNA aptamers have been selected for E. coli O157:H7. Nonetheless, there has not been a comparative study of the binding characteristics of these aptamers. In this work, we present a comprehensive analysis of binding characteristics including binding affinity (Kd) and binding capacity (Bmax) of DNA-based aptamers for E. coli O157:H7 using qPCR. Our results show that aptamer E18R has the highest binding capacity to E. coli 157:H7 and the highest specificity over non-pathogenic E. coli strains K12 and DH5α. Our study also finds that the common biotin-tag modification at 5' end typically changes the binding capacity significantly. For most of the selected aptamers, the binding capacity after a biotin-tag modification decreases. There exists a discrepancy in the binding capability between the selected aptamer and the aptamer used for detection. Our study also shows that a lower concentration of Mg2+ ions in the binding buffer leads to a decrease in the binding capacity of E17F and E18R, while it does not affect the binding capacity of S1 and EcoR1.
Collapse
|
24
|
Li W. Prospective Application of Aptamer-based Assays and Therapeutics in Bloodstream Infections. Mini Rev Med Chem 2020; 20:831-840. [PMID: 32048971 DOI: 10.2174/1389557520666200212105813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 11/22/2022]
Abstract
Sepsis is still a severe health problem worldwide with high morbidity and mortality. Blood bacterial culture remains the gold standard for the detection of pathogenic bacteria in bloodstream infections, but it is time-consuming, and both the sophisticated equipment and well-trained personnel are required. Immunoassays and genetic diagnosis are expensive and limited to specificity and sensitivity. Aptamers are single-stranded deoxyribonucleic acid (ssDNA) and ribonucleic acid (RNA) oligonucleotide or peptide sequence generated in vitro based on the binding affinity of aptamer-target by a process known as Systematic Evolution of Ligands by Exponential Enrichment (SELEX). By taking several advantages over monoclonal antibodies and other conventional small-molecule therapeutics, such as high specificity and affinity, negligible batch-to-batch variation, flexible modification and production, thermal stability, low immunogenicity and lack of toxicity, aptamers are presently becoming promising novel diagnostic and therapeutic agents. This review describes the prospective application of aptamerbased laboratory diagnostic assays and therapeutics for pathogenic bacteria and toxins in bloodstream infections.
Collapse
Affiliation(s)
- Weibin Li
- Institute for Laboratory Medicine, 900th Hospital of Joint Service Corps, PLA, China.,Laboratory Department of Fujian Medical University, No. 156 North Xi-er Huan Road, Fuzhou City, Fujian Province, Fuzhou 350025, China
| |
Collapse
|
25
|
Preparation of nature inspired indicator based agar for detection and identification of MRSA and MRSE. Talanta 2020; 219:121292. [DOI: 10.1016/j.talanta.2020.121292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 11/17/2022]
|
26
|
Zaheer Z, Albukhari SM. Fabrication of zinc/silver binary nanoparticles, their enhanced microbial and adsorbing properties. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.09.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
27
|
Karaagac Z, Gul OT, Ildiz N, Ocsoy I. Transfer of hydrophobic colloidal gold nanoparticles to aqueous phase using catecholamines. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113796] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Environmentally benign production of cupric oxide nanoparticles and various utilizations of their polymeric hybrids in different technologies. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213378] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Preparation of natural indicator incorporated media and its logical use as a colorimetric biosensor for rapid and sensitive detection of Methicillin-resistant Staphylococcus aureus. Anal Chim Acta 2020; 1128:80-89. [DOI: 10.1016/j.aca.2020.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/29/2022]
|
30
|
Lee KS, Lee SM, Oh J, Park IH, Song JH, Han M, Yong D, Lim KJ, Shin JS, Yoo KH. Electrical antimicrobial susceptibility testing based on aptamer-functionalized capacitance sensor array for clinical isolates. Sci Rep 2020; 10:13709. [PMID: 32792573 PMCID: PMC7426404 DOI: 10.1038/s41598-020-70459-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/06/2020] [Indexed: 01/16/2023] Open
Abstract
To prescribe effective antibiotics to patients with bacterial infections in a timely manner and to avoid the misuse of antibiotics, a rapid antimicrobial susceptibility test (AST) is essential. However, conventional AST methods require more than 16 h to provide results; thus, we developed an electrical AST (e-AST) system, which provides results within 6 h. The proposed e-AST is based on an array of 60 aptamer-functionalized capacitance sensors that are comparable to currently available AST panels and a pattern-matching algorithm. The performance of the e-AST was evaluated in comparison with that of broth microdilution as the reference test for clinical strains isolated from septic patients. A total of 4,554 tests using e-AST showed a categorical agreement of 97% with a minor error of 2.2%, major error of 0.38%, and very major error of 0.38%. We expect that the proposed e-AST could potentially aid antimicrobial stewardship efforts and lead to improved patient outcomes.
Collapse
Affiliation(s)
- Kyo-Seok Lee
- Department of Physics, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sun-Mi Lee
- Nanomedical Graduate Program, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Jeseung Oh
- Proteomtech Inc., 1101 Wooree-Venture Town, Seoul, 07573, Republic of Korea
| | - In Ho Park
- Department of Microbiology, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea.,Severance Biomedical Science Institute and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jun Ho Song
- Department of Physics, Yonsei University, Seoul, 03722, Republic of Korea
| | - Myeonggil Han
- Department of Microbiology, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Kook Jin Lim
- Nanomedical Graduate Program, Yonsei University, Seoul, 03722, Republic of Korea.,Proteomtech Inc., 1101 Wooree-Venture Town, Seoul, 07573, Republic of Korea
| | - Jeon-Soo Shin
- Nanomedical Graduate Program, Yonsei University, Seoul, 03722, Republic of Korea. .,Department of Microbiology, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea. .,Severance Biomedical Science Institute and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Kyung-Hwa Yoo
- Department of Physics, Yonsei University, Seoul, 03722, Republic of Korea. .,Nanomedical Graduate Program, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
31
|
Zhong Y, Zhao J, Li J, Liao X, Chen F. Advances of aptamers screened by Cell-SELEX in selection procedure, cancer diagnostics and therapeutics. Anal Biochem 2020; 598:113620. [PMID: 32087127 DOI: 10.1016/j.ab.2020.113620] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 12/23/2022]
Abstract
Aptamers are a class of short artificial single-stranded oligo(deoxy) nucleotides that can bind to different targets, which generated by Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Due to excellent selectivity and high affinity to targets, aptamers hold considerable potential as molecular probe in diverse applications ranging from ensuring food safety, monitoring environment, disease diagnosis to therapy. This review highlights recent development and challenges about aptamers screened by Cell-SELEX, and its application about cancer diagnostics and therapeutics. Advances about some operation methods such as seperation method and culture method in aptamers selection procedure were summarized in this paper. Some common challenges and technological difficulties such as nonspecific binding and biostability were discussed. Up to now, the recent endeavors about cancer diagnostic and therapeutic applications of aptamers are summarized and expatiated. Most of aptamers screened by Cell-SELEX took tumor cells as target cells, and such aptamers have been assembled to various aptasensor for cancer diagnosis. Aptamers conjugated various drugs or nanomaterials are functioned for cancer target therapy to improve drugs delivery efficiency and reduce side effects. Furthermore, the duplexed aptamer is discussed to be applied for cancer cells detection and some conflicts of theories about duplexed aptamer designs are analyzed.
Collapse
Affiliation(s)
- Yi Zhong
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, China; National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jiayao Zhao
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, China; National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jiazhao Li
- Qionglai maternal&Child health care hospital, Chengdu, 611530, Sichuan, China
| | - Xin Liao
- School of laboratory medical and Life science, Wenzhou Medical University, Wenzhou, 325000, Fujian, China
| | - Fengling Chen
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
32
|
Demirbas A, Büyükbezirci K, Celik C, Kislakci E, Karaagac Z, Gokturk E, Kati A, Cimen B, Yilmaz V, Ocsoy I. Synthesis of Long-Term Stable Gold Nanoparticles Benefiting from Red Raspberry ( Rubus idaeus), Strawberry ( Fragaria ananassa), and Blackberry ( Rubus fruticosus) Extracts-Gold Ion Complexation and Investigation of Reaction Conditions. ACS OMEGA 2019; 4:18637-18644. [PMID: 31737823 PMCID: PMC6854581 DOI: 10.1021/acsomega.9b02469] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 10/14/2019] [Indexed: 05/25/2023]
Abstract
We report synthesis of monodispersed, stable, and colloidal gold nanoparticles (Au NPs) using anthocyanin-riched red raspberry (Rubus idaeus), strawberry (Fragaria ananassa), and blackberry (Rubus fruticosus) extracts as functions of concentration of HAuCl4·3H2O and berries extract, reaction time, and reaction pH values (pHs) and demonstrate their unique stability in highly concentrated salt (sodium chloride, NaCl) solutions. The catecholamine group of anthocyanin molecules give preferential coordination reaction with gold ions (Au3+) for creating anthocyanin-Au3+ complexes, which may lead to initiation of nucleation for seed formation, and then, oxidation of catecholamine results in a flow of electrons from anthocyanins to Au seeds for anisotropic growth. Finally, the surface of the Au NPs is saturated with anthocyanins, and formation of monodispersed and stable Au NPs with narrow size distribution is completed. We also report the effects of some experimental parameters including concentrations of Au3+ ions and barrier extracts, reaction time, and pHs on formation of the Au NPs with rational explanations. The long-term colloidal stability of the Au NPs in the 400 mM NaCl solution was comparatively studied with commercial Au NPs (citrate capped). As results show that anthocyanin-riched berry extracts directed Au NPs we proposed here can be considered as promising and safe tools for biomedical applications owing to their highly much colloidal dispersibility and salt tolerance properties.
Collapse
Affiliation(s)
- Ayse Demirbas
- Recep
Tayyip Erdogan University, Faculty of Fisheries
and Aquatic Sciences, 53100 Rize, Turkey
| | - Kasım Büyükbezirci
- Department
of Analytical Chemistry, Faculty of Pharmacy, and Department of
Biochemistry, Faculty of Pharmacy, Erciyes
University, 38039 Kayseri, Turkey
| | - Cagla Celik
- Department
of Analytical Chemistry, Faculty of Pharmacy, and Department of
Biochemistry, Faculty of Pharmacy, Erciyes
University, 38039 Kayseri, Turkey
| | - Emine Kislakci
- Department
of Analytical Chemistry, Faculty of Pharmacy, and Department of
Biochemistry, Faculty of Pharmacy, Erciyes
University, 38039 Kayseri, Turkey
| | - Zehra Karaagac
- Department
of Analytical Chemistry, Faculty of Pharmacy, and Department of
Biochemistry, Faculty of Pharmacy, Erciyes
University, 38039 Kayseri, Turkey
| | - Ersen Gokturk
- Department
of Chemistry, Hatay Mustafa Kemal University, Tayfur Sokmen Campus, Alahan, Antakya City, 31001 Hatay, Turkey
| | - Ahmet Kati
- Biotechnology
Department, Institution of Health Science, University of Health Science, 34001 Istanbul, Turkey
| | - Behzat Cimen
- Department
of Analytical Chemistry, Faculty of Pharmacy, and Department of
Biochemistry, Faculty of Pharmacy, Erciyes
University, 38039 Kayseri, Turkey
| | - Vedat Yilmaz
- Department
of Analytical Chemistry, Faculty of Pharmacy, and Department of
Biochemistry, Faculty of Pharmacy, Erciyes
University, 38039 Kayseri, Turkey
| | - Ismail Ocsoy
- Department
of Analytical Chemistry, Faculty of Pharmacy, and Department of
Biochemistry, Faculty of Pharmacy, Erciyes
University, 38039 Kayseri, Turkey
| |
Collapse
|
33
|
Bing T, Zhang N, Shangguan D. Cell-SELEX, an Effective Way to the Discovery of Biomarkers and Unexpected Molecular Events. ACTA ACUST UNITED AC 2019; 3:e1900193. [PMID: 32648677 DOI: 10.1002/adbi.201900193] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/26/2019] [Indexed: 12/15/2022]
Abstract
Cell-SELEX can not only generate aptamers for specific cell isolation/detection, diagnosis, and therapy, but also lead to the discovery of biomarkers and unexpected molecular events. However, most cell-SELEX research is concentrated on aptamer generation and applications. In this progress report, recent research progress with cell-SELEX in terms of the discovery of biomarkers and unexpected molecular events is highlighted. In particular, the key technical challenges for cell-SELEX-based biomarker discovery, namely, the methods for identification and validation of target proteins of aptamers, are discussed in detail. Finally, the prospects of the applications of cell-SELEX in this field now and in the near future are described. It is expected that this report will attract attention to the benefit of cell-SELEX and provide a practical reference for biomedical researchers.
Collapse
Affiliation(s)
- Tao Bing
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dihua Shangguan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
34
|
Yan J, Xiong H, Cai S, Wen N, He Q, Liu Y, Peng D, Liu Z. Advances in aptamer screening technologies. Talanta 2019; 200:124-144. [DOI: 10.1016/j.talanta.2019.03.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/20/2019] [Accepted: 03/02/2019] [Indexed: 02/07/2023]
|
35
|
Kaur SJ, Gilman V, Duong M, Asher DM, Gregori L. Rapid selection of single-stranded DNA aptamers binding Staphylococcus epidermidis in platelet concentrates. Biotechniques 2019; 65:331-338. [PMID: 30477331 DOI: 10.2144/btn-2018-0081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Staphylococcus epidermidis is the most common transfusion-associated pathogen contaminating platelet concentrates. Methods to reduce or eliminate contaminating bacteria from platelet units are critical for improving the safety of blood transfusions. We used rapid isolation of DNA aptamers (RIDA) to identify single-stranded (ss)DNA aptamers as ligands that specifically bind to S. epidermidis. Five target-specific ssDNA aptamers (76 mer) were obtained under stringent selection conditions. Aptamer SE43 demonstrated higher binding affinity compared with scrambled control. Furthermore, when binding assays were conducted in platelet concentrate, there was a twofold increase in binding affinity compared with the SE43 binding in buffer alone. Our data identified an aptamer that may be useful as a ligand to capture, detect or remove S. epidermidis contaminant from platelet concentrates.
Collapse
Affiliation(s)
- Simran J Kaur
- Division of Emerging & Transfusion-Transmitted Diseases, Laboratory of Bacterial & Transmissible Spongiform Encephalopathy Agents, Center for Biologics Evaluation & Research, Office of Blood Research & Review, US Food & Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA.,Current Address: Department of Microbiology and Immunology, University of Maryland School of Medicine, 20 Penn Street, Baltimore, MD 21201, USA
| | - Vladimir Gilman
- Engineering Center of Excellence, 267 Farley Road, Hollis, NH 03049, USA
| | - Minh Duong
- Engineering Center of Excellence, 267 Farley Road, Hollis, NH 03049, USA
| | - David M Asher
- Division of Emerging & Transfusion-Transmitted Diseases, Laboratory of Bacterial & Transmissible Spongiform Encephalopathy Agents, Center for Biologics Evaluation & Research, Office of Blood Research & Review, US Food & Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Luisa Gregori
- Division of Emerging & Transfusion-Transmitted Diseases, Laboratory of Bacterial & Transmissible Spongiform Encephalopathy Agents, Center for Biologics Evaluation & Research, Office of Blood Research & Review, US Food & Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| |
Collapse
|
36
|
Kim EJ, Choi JH, Yang HJ, Choi SS, Lee HK, Cho YC, Kim HK, Kim SW, Chae HS. Comparison of high and low molecular weight chitosan as in-vitro boosting agent for photodynamic therapy against Helicobacter pylori using methylene blue and endoscopic light. Photodiagnosis Photodyn Ther 2019; 26:111-115. [PMID: 30836214 DOI: 10.1016/j.pdpdt.2019.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/28/2019] [Accepted: 03/01/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND We reported in a previous study that photodynamic therapy (PDT) of Helicobacter pylori(H. pylori) could potentiate bactericidal effect by adding chitosan. As a next step, we compared the bactericidal effects of low molecular weight (LMW) combined with Photodynamic Therapy to high molecular weight (HMW) chitosan. METHOD To perform PDT to kill H. pylori, we used endoscopic light as light source, methylene blue (MB) as a photosensitizer and chitosan (310-375, 50-190 kDa). We evaluated bacterial removal rate and its membrane damage by ethidium bromide monoazide PCR method (EMA q-PCR). 8-oxo-2'-dexoyguanosine by ELISA was measured for oxidative stress. RESULTS At a chitosan concentration of ≤0.05%, the killing effect did not differ between the two molecular weights, and 100% bacterial removal rate was observed at a light energy ≥ 6.23 mJ/cm2 powers under 0.02% MB. After 15 min irradiation, LMW chitosan with high concentration of MB (0.004%) showed highest killing effects, which were consistent with the results of EMA q-PCR but not with the level of 8-OHdG. Bactericidal effects of LMW chitosan plus PDT using 0.002 and 0.004% MB for 15 min irradiation were significantly higher than those using HMW chitosan plus PDT. CONCLUSION We found that PDT using methylene blue with LMW chitosan to kill H. pylori exerted greater bactericidal effects through bacterial membrane damage than PDT with HMW chitosan. These results suggest that it would be better to choose LMW chitosan to enhance the effect of PDT for clinical application, even at a very low concentration of PS.
Collapse
Affiliation(s)
- Eui Jin Kim
- Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ji Hye Choi
- Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyun Jung Yang
- Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sung Sook Choi
- College of Pharmacy, Sahmyook University, Seoul, South Korea
| | - Hae Kyung Lee
- Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Young-Chang Cho
- College of Pharmacy, Chonnam National University, Gwangju, South Korea
| | - Hyung Keun Kim
- Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sang Woo Kim
- Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hiun Suk Chae
- Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| |
Collapse
|
37
|
Kaur H. Recent developments in cell-SELEX technology for aptamer selection. Biochim Biophys Acta Gen Subj 2018; 1862:2323-2329. [PMID: 30059712 DOI: 10.1016/j.bbagen.2018.07.029] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/19/2018] [Accepted: 07/25/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND SELEX technique is employed to select aptamers against wide range of targets. The in vitro method of aptamer selection using live cells as the target is referred as cell-SELEX. SCOPE OF THE REVIEW The review provides a comprehensive description on the development of aptamers through various cell-SELEX methods and list of aptamers identified through this method. In addition, it pinpoints the advantages and limitations of the cell-SELEX process and its variants. MAJOR CONCLUSIONS The use of aptamers as therapeutic and diagnostic agents is rapidly evolving, selection techniques such as Cell-SELEX could be beneficial in identifying aptamers when the target is in its native conformation and without prior information of the cognate target, thereby bringing the aptamer development one step closer to the clinic. GENERAL SIGNIFICANCE The information in this review can serve as a database for the design and development of futuristic oligonucleotide based diagnostics and therapeutics work.
Collapse
|
38
|
Hibbitts A, O'Leary C. Emerging Nanomedicine Therapies to Counter the Rise of Methicillin-Resistant Staphylococcus aureus. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E321. [PMID: 29473883 PMCID: PMC5849018 DOI: 10.3390/ma11020321] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/14/2018] [Accepted: 02/19/2018] [Indexed: 12/25/2022]
Abstract
In a recent report, the World Health Organisation (WHO) classified antibiotic resistance as one of the greatest threats to global health, food security, and development. Methicillin-resistant Staphylococcus aureus (MRSA) remains at the core of this threat, with persistent and resilient strains detectable in up to 90% of S. aureus infections. Unfortunately, there is a lack of novel antibiotics reaching the clinic to address the significant morbidity and mortality that MRSA is responsible for. Recently, nanomedicine strategies have emerged as a promising therapy to combat the rise of MRSA. However, these approaches have been wide-ranging in design, with few attempts to compare studies across scientific and clinical disciplines. This review seeks to reconcile this discrepancy in the literature, with specific focus on the mechanisms of MRSA infection and how they can be exploited by bioactive molecules that are delivered by nanomedicines, in addition to utilisation of the nanomaterials themselves as antibacterial agents. Finally, we discuss targeting MRSA biofilms using nano-patterning technologies and comment on future opportunities and challenges for MRSA treatment using nanomedicine.
Collapse
Affiliation(s)
- Alan Hibbitts
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
- Trinity Centre of Bioengineering, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland.
| | - Cian O'Leary
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
- Trinity Centre of Bioengineering, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland.
- School of Pharmacy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
39
|
Whole-bacterium SELEX of DNA aptamers for rapid detection of E.coli O157:H7 using a QCM sensor. J Biotechnol 2017; 266:39-49. [PMID: 29242148 DOI: 10.1016/j.jbiotec.2017.12.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/27/2017] [Accepted: 12/10/2017] [Indexed: 12/21/2022]
Abstract
The rapid detection of foodborne pathogens is critical to ensure food safety. The objective of this study is to select aptamers specifically bound to Escherichia coli O157:H7 using the whole-bacterium SELEX (Systematic Evolution of Ligands by Exponential Enrichment) and apply the selected aptamer to a QCM (quartz crystal microbalance) sensor for rapid and sensitive detection of target bacteria. A total of 19 rounds of selection against live E. coli O157:H7 and 6 rounds of counter selection against a mixture of Staphylococcus aureus, Listeria monocytogenes, and Salmonella Typhimurium, were performed. The aptamer pool from the last round was cloned and sequenced. One sequence S1 that appeared 16 times was characterized and a dissociation constant (Kd) of 10.30nM was obtained. Subsequently, a QCM aptasensor was developed for the rapid detection of E. coli O157:H7. The limit of detection (LOD) and the detection time of the aptasensor was determined to be 1.46×103 CFU/ml and 50min, respectively. This study demonstrated that the ssDNA aptamer selected by the whole-bacterium SELEX possessed higher sensitivity than previous work and the potential use of the constructed QCM aptasensor in rapid screening of foodborne pathogens.
Collapse
|
40
|
Jo N, Kim B, Lee SM, Oh J, Park IH, Jin Lim K, Shin JS, Yoo KH. Aptamer-functionalized capacitance sensors for real-time monitoring of bacterial growth and antibiotic susceptibility. Biosens Bioelectron 2017; 102:164-170. [PMID: 29132052 DOI: 10.1016/j.bios.2017.11.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/15/2017] [Accepted: 11/01/2017] [Indexed: 12/20/2022]
Abstract
To prevent spread of infection and antibiotic resistance, fast and accurate diagnosis of bacterial infection and subsequent administration of antimicrobial agents are important. However, conventional methods for bacterial detection and antibiotic susceptibility testing (AST) require more than two days, leading to delays that have contributed to an increase in antibiotic-resistant bacteria. Here, we report an aptamer-functionalized capacitance sensor array that can monitor bacterial growth and antibiotic susceptibility in real-time. While E. coli and S. aureus were cultured, the capacitance increased over time, and apparent bacterial growth curves were observed even when 10 CFU/mL bacteria was inoculated. Furthermore, because of the selectivity of aptamers, bacteria could be identified within 1h using the capacitance sensor array functionalized with aptamers. In addition to bacterial growth, antibiotic susceptibility could be monitored in real-time. When bacteria were treated with antibiotics above the minimum inhibitory concentration (MIC), the capacitance decreased because the bacterial growth was inhibited. These results demonstrate that the aptamer-functionalized capacitance sensor array might be applied for rapid ASTs.
Collapse
Affiliation(s)
- Namgyeong Jo
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea
| | - Bongjun Kim
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea
| | - Sun-Mi Lee
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea; Nanomedical Graduate Program, Yonsei University, Seoul 03722, Republic of Korea
| | - Jeseung Oh
- Proteomtech Inc., B202 Yonsei Dairy Building, Seoul 03722, Republic of Korea
| | - In Ho Park
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Severance Biomedical Science Institute and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Kook Jin Lim
- Nanomedical Graduate Program, Yonsei University, Seoul 03722, Republic of Korea; Proteomtech Inc., B202 Yonsei Dairy Building, Seoul 03722, Republic of Korea
| | - Jeon-Soo Shin
- Nanomedical Graduate Program, Yonsei University, Seoul 03722, Republic of Korea; Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Severance Biomedical Science Institute and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Kyung-Hwa Yoo
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea; Nanomedical Graduate Program, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
41
|
Formation of Matricaria chamomilla extract-incorporated Ag nanoparticles and size-dependent enhanced antimicrobial property. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 174:78-83. [DOI: 10.1016/j.jphotobiol.2017.07.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/17/2017] [Accepted: 07/21/2017] [Indexed: 12/24/2022]
|
42
|
DNA aptamer functionalized gold nanostructures for molecular recognition and photothermal inactivation of methicillin-Resistant Staphylococcus aureus. Colloids Surf B Biointerfaces 2017; 159:16-22. [PMID: 28778062 DOI: 10.1016/j.colsurfb.2017.07.056] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 07/06/2017] [Accepted: 07/24/2017] [Indexed: 12/27/2022]
Abstract
In this work, we report the development of DNA aptamer-functionalized gold nanoparticles (Apt@Au NPs) and gold nanorods (Apt@Au NRs) for inactivation of Methicillin-resistant Staphylococcus aureus (MRSA) with targeted photothermal therapy (PTT). Although both Apt@Au NPs and Apt@Au NRs specifically bind to MRSA cells, Apt@Au NPs and Apt@Au NRs inactivated ∼5% and over 95% of the cells,respectively through PTT. This difference in inactivation was based on the relatively high longitudinal absorption of near-infrared (NIR) radiation and strong photothermal conversion capability for the Apt@Au NRs compared to the Apt@Au NPs. The Au NRs served as a nanoplatform for the loading of thiolated aptamer and also provided multivalent effects for increasing binding strength and affinity to MRSA. Our results indicate that the type of aptamer and the degree of multivalent effect(s) are important factors for MRSA inactivation efficiency in PTT. We show that the Apt@Au NRs are a very effective and promising nanosystem for specific cell recognition and in vitro PTT.
Collapse
|
43
|
Aptamer-assisted novel technologies for detecting bacterial pathogens. Biomed Pharmacother 2017; 93:737-745. [PMID: 28700978 DOI: 10.1016/j.biopha.2017.07.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/18/2017] [Accepted: 07/05/2017] [Indexed: 01/08/2023] Open
Abstract
Nowadays, all people are at risk of infectious diseases that are mainly caused by bacteria causing infection. There is a permanent demand for an appropriate detection method that is affordable, practical, careful, rapid, sensitive, efficient and economical. Aptamers are single stranded DNA or RNA oligonucleotides, which can be recognized specifically and bind to their target molecules and also, be exploited in diagnostic applications. Recently, aptamer-based systems have offered great potentials in applications for the recognition of several important bacterial pathogens from clinical and food specimens. There are several reports appraising the diagnostic applicability of aptamer-based systems for the detection of pathogens. As for its excellent sensitivity, as well as its rapid and efficient detectability, this technique may be practical to indicate bacterial targets with less sample size and may consume less time than traditional methods These systems offer a promising approach for the sensitive and quick detection of food-borne and clinical agents. This review provides an overview of aptamer-based methods as a novel approach for detecting bacterial pathogens.
Collapse
|
44
|
Ocsoy I, Demirbas A, McLamore ES, Altinsoy B, Ildiz N, Baldemir A. Green synthesis with incorporated hydrothermal approaches for silver nanoparticles formation and enhanced antimicrobial activity against bacterial and fungal pathogens. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.05.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
The Effect of Pelargonium endlicherianum Fenzl. root extracts on formation of nanoparticles and their antimicrobial activities. Enzyme Microb Technol 2017; 97:21-26. [DOI: 10.1016/j.enzmictec.2016.10.019] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/01/2016] [Accepted: 10/21/2016] [Indexed: 11/22/2022]
|
46
|
G-quadruplex aptamer targeting Protein A and its capability to detect Staphylococcus aureus demonstrated by ELONA. Sci Rep 2016; 6:33812. [PMID: 27650576 PMCID: PMC5030626 DOI: 10.1038/srep33812] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/24/2016] [Indexed: 01/15/2023] Open
Abstract
Aptamers for whole cell detection are selected mostly by the Cell-SELEX procedure. Alternatively, the use of specific cell surface epitopes as target during aptamer selections allows the development of aptamers with ability to bind whole cells. In this study, we integrated a formerly selected Protein A-binding aptamer PA#2/8 in an assay format called ELONA (Enzyme-Linked OligoNucleotide Assay) and evaluated the ability of the aptamer to recognise and bind to Staphylococcus aureus presenting Protein A on the cell surface. The full-length aptamer and one of its truncated variants could be demonstrated to specifically bind to Protein A-expressing intact cells of S. aureus, and thus have the potential to expand the portfolio of aptamers that can act as an analytical agent for the specific recognition and rapid detection of the bacterial pathogen. The functionality of the aptamer was found to be based on a very complex, but also highly variable structure. Two structural key elements were identified. The aptamer sequence contains several G-clusters allowing folding into a G-quadruplex structure with the potential of dimeric and multimeric assembly. An inverted repeat able to form an imperfect stem-loop at the 5'-end also contributes essentially to the aptameric function.
Collapse
|
47
|
Lyu Y, Chen G, Shangguan D, Zhang L, Wan S, Wu Y, Zhang H, Duan L, Liu C, You M, Wang J, Tan W. Generating Cell Targeting Aptamers for Nanotheranostics Using Cell-SELEX. Am J Cancer Res 2016; 6:1440-52. [PMID: 27375791 PMCID: PMC4924511 DOI: 10.7150/thno.15666] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 05/12/2016] [Indexed: 12/21/2022] Open
Abstract
Detecting and understanding changes in cell conditions on the molecular level is of great importance for the accurate diagnosis and timely therapy of diseases. Cell-based SELEX (Systematic Evolution of Ligands by EXponential enrichment), a foundational technology used to generate highly-specific, cell-targeting aptamers, has been increasingly employed in studies of molecular medicine, including biomarker discovery and early diagnosis/targeting therapy of cancer. In this review, we begin with a mechanical description of the cell-SELEX process, covering aptamer selection, identification and identification, and aptamer characterization; following this introduction is a comprehensive discussion of the potential for aptamers as targeting moieties in the construction of various nanotheranostics. Challenges and prospects for cell-SELEX and aptamer-based nanotheranostic are also discussed.
Collapse
|
48
|
Champanhac C, Teng IT, Cansiz S, Zhang L, Wu X, Zhoa Z, Fu T, Tan W. Development of a panel of DNA Aptamers with High Affinity for Pancreatic Ductal Adenocarcinoma. Sci Rep 2015; 5:16788. [PMID: 26603187 PMCID: PMC4658478 DOI: 10.1038/srep16788] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/09/2015] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer costs nearly 40,000 lives in the U.S. each year and has one of the
lowest survival rates among cancers. Effective treatment of pancreatic ductal
adenocarcinoma is hindered by lack of a reliable biomarker. To address this
challenge, aptamers were selected by cell-SELEX (Systematic Evolution of Ligands by
EXponential enrichment) targeting human pancreatic ductal adenocarcinoma (PL45).
Five promising aptamers presenting low Kd values and good specificity
were generated. Among these five aptamers, one was tailored into a nanostructure
carrying a high drug payload for specific drug delivery. The results show a
viability of almost 80% for negative cells while only 50% of the target cells
remained alive after 48 h incubation. These results lead to the
conclusion that further research could reveal protein biomarkers specific to
pancreatic adenocarcinoma, with probes available for early detection.
Collapse
Affiliation(s)
- Carole Champanhac
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - I-Ting Teng
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Sena Cansiz
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Liqin Zhang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Xiaoqiu Wu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Zilong Zhoa
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Ting Fu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Weihong Tan
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida, USA.,Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha, China
| |
Collapse
|
49
|
Abstract
A new DNA aptamer targeting Protein A is presented. The aptamer was selected by use of the FluMag-SELEX procedure. The SELEX technology (Systematic Evolution of Ligands by EXponential enrichment) is widely applied as an in vitro selection and amplification method to generate target-specific aptamers and exists in various modified variants. FluMag-SELEX is one of them and is characterized by the use of magnetic beads for target immobilization and fluorescently labeled oligonucleotides for monitoring the aptamer selection progress. Structural investigations and sequence truncation experiments of the selected aptamer for Protein A led to the conclusion, that a stem-loop structure at its 5’-end including the 5’-primer binding site is essential for aptamer-target binding. Extensive interaction analyses between aptamer and Protein A were performed by methods like surface plasmon resonance, MicroScale Thermophoresis and bead-based binding assays using fluorescence measurements. The binding of the aptamer to its target was thus investigated in assays with immobilization of one of the binding partners each, and with both binding partners in solution. Affinity constants were determined in the low micromolar to submicromolar range, increasing to the nanomolar range under the assumption of avidity. Protein A provides more than one binding site for the aptamer, which may overlap with the known binding sites for immunoglobulins. The aptamer binds specifically to both native and recombinant Protein A, but not to other immunoglobulin-binding proteins like Protein G and L. Cross specificity to other proteins was not found. The application of the aptamer is directed to Protein A detection or affinity purification. Moreover, whole cells of Staphylococcus aureus, presenting Protein A on the cell surface, could also be bound by the aptamer.
Collapse
|