1
|
Michalak M, Pilawa B, Ramos P, Glinka R. Effect of UV Radiation and Temperature on Radical Scavenging Activity of Hippophaë rhamnoides L. and Vaccinium oxycoccos L. Fruit Extracts. Int J Mol Sci 2024; 25:9810. [PMID: 39337296 PMCID: PMC11432430 DOI: 10.3390/ijms25189810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
New active ingredients, including those of plant origin, which could protect the skin against various harmful factors, such as UV radiation and free radicals responsible for skin ageing, are still being sought. The present study was focused on the antioxidant activity of Hippophaë rhamnoides L. and Vaccinium oxycoccos L. fruit glycolic extracts. Investigations were also carried out to evaluate the effect of UVA radiation and the storage of the sea buckthorn and European cranberry extracts at an elevated temperature of 50 °C on their interactions with free radicals. The kinetics of the interactions of the extracts with DPPH were assessed using electron paramagnetic resonance (EPR) spectroscopy. The sea buckthorn and European cranberry extracts quench the EPR signal of DPPH free radicals, which indicates their antioxidant potential. The EPR method further showed that a mixture of sea buckthorn and cranberry extracts in a volume ratio of 2:1 was more potent in quenching free radicals compared to a mixture of these extracts in a ratio of 1:2. Our findings demonstrate that long-term UVA radiation exposure reduces the ability of sea buckthorn and cranberry extracts to interact with free radicals. Moreover, storage at elevated temperatures does not affect the interaction of sea buckthorn extract with free radicals, while it alters the ability of cranberry extract to interact with free radicals. This study has demonstrated that an important factor in maintaining the ability to scavenge radicals is the storage of raw materials under appropriate conditions. H. rhamnoides and V. oxycoccos extracts can be used as valuable raw materials with antioxidant properties in the pharmaceutical and cosmetic industries.
Collapse
Affiliation(s)
- Monika Michalak
- Department of Pharmaceutical Sciences, Jan Kochanowski University, 25-369 Kielce, Poland
| | - Barbara Pilawa
- Department of Biophysics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, 41-200 Sosnowiec, Poland
| | - Paweł Ramos
- Department of Biophysics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, 41-200 Sosnowiec, Poland
| | - Ryszard Glinka
- Higher School of Social Sciences in Lublin, 20-102 Lublin, Poland
| |
Collapse
|
2
|
Nicolescu A, Babotă M, Aranda Cañada E, Inês Dias M, Añibarro-Ortega M, Cornea-Cipcigan M, Tanase C, Radu Sisea C, Mocan A, Barros L, Crișan G. Association of enzymatic and optimized ultrasound-assisted aqueous extraction of flavonoid glycosides from dried Hippophae rhamnoides L. (Sea Buckthorn) berries. ULTRASONICS SONOCHEMISTRY 2024; 108:106955. [PMID: 38909597 PMCID: PMC11253688 DOI: 10.1016/j.ultsonch.2024.106955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/25/2024]
Abstract
The main purpose of the present study was to determine the effect of associating an optimized ultrasound-assisted extraction (UAE) protocol with enzyme-assisted extraction (EAE) in aqueous media, using the dried berries of Hippophae rhamnoides L. (sea buckthorn) as plant material. A specialized software was used for the determination of potential optimal extraction parameters, leading to the development of four optimized extracts with different characteristics (UAE ± EAE). For these extracts, buffered or non-buffered solutions have been used, with the aim to determine the influence of adjustable pH on extractability. As enzymatic solution, a pectinase, cellulase, and hemicellulase mix (2:1:1) has been applied, acting as pre-treatment for the optimized protocol. The highest extractive yields have been identified for non-buffered extracts, and the E-UAE combination obtained extracts with the highest overall in vitro antioxidant activity. The HPLC-MSn analysis demonstrated a rich composition in different types of isorhamnetin-O-glycosides, as well as some quercetin-O-glycosides, showing a high recovery of specific flavonol-type polyphenolic species. Moreover, we have tentatively identified two flavanols (i.e., catechin and epigallocatechin) and one flavone derivative (i.e., luteolin).
Collapse
Affiliation(s)
- Alexandru Nicolescu
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania; Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Mihai Babotă
- Research Center of Medicinal and Aromatic Plants, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania
| | | | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Mikel Añibarro-Ortega
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Mihaiela Cornea-Cipcigan
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Corneliu Tanase
- Research Center of Medicinal and Aromatic Plants, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania
| | - Cristian Radu Sisea
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Andrei Mocan
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; Research Center of Medicinal and Aromatic Plants, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania.
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Gianina Crișan
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Guo K. Changes in the Main Physicochemical Properties and Electrochemical Fingerprints in the Production of Sea Buckthorn Juice by Pectinase Treatment. Molecules 2024; 29:1035. [PMID: 38474547 DOI: 10.3390/molecules29051035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/19/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Enzymatic hydrolysis using pectinase is critical for producing high-yield and quality sea buckthorn juice. This study determined the optimal temperature, time, and enzyme dosage combinations to guide manufacturers. A temperature of 60 °C, hydrolysis time of 3 h, and 0.3% enzyme dosage gave 64.1% juice yield-25% higher than without enzymes. Furthermore, monitoring physicochemical properties reveals enzyme impacts on composition. Higher dosages increase soluble solids up to 15% and soluble fiber content by 35% through cell wall breakdown. However, excessive amounts over 0.3% decrease yields. Pectin concentration also declines dose-dependently, falling by 91% at 0.4%, improving juice stability but needing modulation to retain viscosity. Electrochemical fingerprinting successfully differentiates process conditions, offering a rapid quality control tool. Its potential for commercial inline use during enzymatic treatment requires exploration. Overall, connecting optimized parameters to measured effects provides actionable insights for manufacturers to boost yields, determine enzyme impacts on nutrition/functionality, and introduce novel process analytical technology. Further investigations of health properties using these conditions could expand sea buckthorn juice functionality.
Collapse
Affiliation(s)
- Kaihua Guo
- Department of Biology and Food Engineering, LyuLiang University, Lvliang 033000, China
| |
Collapse
|
4
|
Evaluation of the Chemical Composition of Selected Varieties of L. caerulea var. kamtschatica and L. caerulea var. emphyllocalyx. Molecules 2023; 28:molecules28062525. [PMID: 36985495 PMCID: PMC10057922 DOI: 10.3390/molecules28062525] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Lonicera caerulea fruits are a rich source of vitamins, organic acids, and phenolic compounds, which are characterised by their health-promoting properties. The content of bioactive compounds in this fruit may vary depending on the cultivar and the harvest date. The fruits of the L. caerulea var. kamtschatica cultivars ‘Duet’ and ‘Aurora’ and the L. caerulea var. emphyllocalyx cultivars ‘Lori’, ‘Colin’ and ‘Willa’ were used in this study. L. emphyllocalyx fruit, especially the cultivar ‘Willa’, was characterised as having a higher acidity by an average of 29.96% compared to L. kamtschatica. The average ascorbic acid content of the L. kamtschatica fruit was 53.5 mg·100 g−1 f.w., while L. emphyllocalyx fruit had an average content that was 14.14% lower. The antioxidant activity (determined by DPPH, FRAP, and ABTS) varied according to the cultivar and the species of fruit analysed. The total polyphenol content differed significantly depending on the cultivar analysed; fruits of the L. emphyllocalyx cultivar ‘Willa’ were characterised by the lowest content of total polyphenols—416.94 mg GAE·100 g−1 f.w.—while the highest content of total polyphenols—747.85 GAE·100 g−1 f.w.—was found in the fruits of the L. emphyllocalyx cultivar ‘Lori’. Lonicera caerulea fruits contained 26 different phenolic compounds in their compositions, of which the highest content was characterised by cyanidin 3-O-glucoside (average: 347.37 mg·100 g−1). On the basis of this study, it appears that both L. kamtschatica fruits and L. emphyllocalyx fruits, especially of the cultivars ‘Lori’ and ‘Willa’, can be used in food processing.
Collapse
|
5
|
Michalak M. Plant-Derived Antioxidants: Significance in Skin Health and the Ageing Process. Int J Mol Sci 2022; 23:585. [PMID: 35054770 PMCID: PMC8776015 DOI: 10.3390/ijms23020585] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 12/21/2022] Open
Abstract
Natural substances have traditionally been used in skin care for centuries. There is now an ongoing search for new natural bioactives that not only promote skin health but also protect the skin against various harmful factors, including ultraviolet radiation and free radicals. Free radicals, by disrupting defence and restoration mechanisms, significantly contribute to skin damage and accelerate ageing. Natural compounds present in plants exhibit antioxidant properties and the ability to scavenge free radicals. The increased interest in plant chemistry is linked to the growing interest in plant materials as natural antioxidants. This review focuses on aromatic and medicinal plants as a source of antioxidant substances, such as polyphenols, tocopherols, carotenoids, ascorbic acid, and macromolecules (including polysaccharides and peptides) as well as components of essential oils, and their role in skin health and the ageing process.
Collapse
Affiliation(s)
- Monika Michalak
- Department of Dermatology, Cosmetology and Aesthetic Surgery, Collegium Medicum, Jan Kochanowski University, IX Wieków Kielc 19, 35-317 Kielce, Poland
| |
Collapse
|
6
|
Ge X, Tang N, Huang Y, Chen X, Dong M, Rui X, Zhang Q, Li W. Fermentative and physicochemical properties of fermented milk supplemented with sea buckthorn (Hippophae eleagnaceae L.). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112484] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Mardani M, Somogyi L, Szedljak I, Prauda I, Farmani J, Badakné Kerti K. Efficiency of sea buckthorn extract in oxidative stability improvement of high oleic sunflower oil. ACTA ALIMENTARIA 2021. [DOI: 10.1556/066.2021.00080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Sea buckthorn (Hippophae rhamnoides) with high antioxidant capacity is distributed all over the world, but has never been used as a natural antioxidant in oils to replace synthetic antioxidants. Therefore, this study was performed to investigate the effectiveness of sea buckthorn extract in comparison to a common natural antioxidant rosemary extract and a synthetic antioxidant on retarding lipid oxidation. First the extracts were characterised, and it was found that sea buckthorn extract had higher polyphenol contents, radical scavenging activity, and higher antioxidant capacity. Then the proper concentrations for the use of these antioxidants were determined. Additionally, the progress of lipid oxidation during cycles of frying was assessed in terms of free fatty acids content, peroxide value, p-anisidine value, TOTOX value, colour, total polar compounds, and Induction period. The general order of effectiveness for inhibition of high oleic sunflower oil degradation during frying was: sea buckthorn > BHT > rosemary > control (P <0.05).
Collapse
Affiliation(s)
- M. Mardani
- 1 Department of Cereal and Industrial Plant Processing, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Villányi út 23, H-1118 Budapest, Hungary
| | - L. Somogyi
- 1 Department of Cereal and Industrial Plant Processing, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Villányi út 23, H-1118 Budapest, Hungary
| | - I. Szedljak
- 1 Department of Cereal and Industrial Plant Processing, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Villányi út 23, H-1118 Budapest, Hungary
| | - I. Prauda
- 2 Department of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Somlói út 14-16, H-1118 Budapest, Hungary
| | - J. Farmani
- 3 Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, PO Box: 578, Sari, Iran
| | - K. Badakné Kerti
- 1 Department of Cereal and Industrial Plant Processing, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Villányi út 23, H-1118 Budapest, Hungary
| |
Collapse
|
8
|
Haq SAU, Mir MA, Lone SM, Banoo A, Shafi F, Mir SA, Bhat JIA, Rashid R, Wani SH, Masoodi TH, Khan MN, Nehvi FA, Masoodi KZ. Explicating genetic diversity based on ITS characterization and determination of antioxidant potential in sea buckthorn (Hippophae spp.). Mol Biol Rep 2021; 49:5229-5240. [PMID: 34387804 DOI: 10.1007/s11033-021-06619-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/02/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Sea buckthorn (Hippophae) is in the focus of interest mainly for its positive effects on health of both human and animal organisms. Due to the similarities in vegetative morphology, Hippophae species are often misidentified. Therefore, current study was focused on ITS based sequence characterization of sea buckthorn species and comparative biochemical evaluation for its antioxidant properties. METHODS AND RESULTS DNA was extracted from leaf samples. Primer pairs K-Lab-SeaBukRhm-ITS1F1- K-Lab-SeaBukRhm-ITS1R1 and K-LabSeaBukTib- ITSF1- K-LabSeaBukTib-ITSR1 were used for PCR amplification. The purified PCR products were outsourced for sequencing. Phylogenetic tree was constructed based on neighbor-joining (NJ) method. Moreover, comparison of antioxidant potential of leaves of two sea buckthorn species (Hippophae rhamnoides and Hippophae tibetana) collected from different regions of Ladakh viz., Stakna, Nubra, DRDO Leh and Zanskar was determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azino-bis (3- ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS), and Total antioxidant capacity (TAC) by phosphomolybdenum assays. The present investigation led to the differentiation of two sea buckthorn species viz., H. rhamnoides and H. tibetana based on Internal Transcribed Spacer (ITS) region. Moreover, significant variation was observed in antioxidant potential of leaf extracts collected from different regions. CONCLUSIONS Primary ITS sequence analysis was found to be powerful tool for identification and genetic diversity studies in sea buckthorn. Leaves of sea buckthorn have pronounced antioxidant properties and can be used in food, neutraceuticals and pharmaceutical industries etc. The current study will pave the way to discover small bioactive molecules responsible for antioxidant and anticancer properties in sea buckthorn.
Collapse
Affiliation(s)
- Syed Anam Ul Haq
- Transcriptomics Lab (K-Lab), Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K, 190025, India
| | - Mudasir A Mir
- Transcriptomics Lab (K-Lab), Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K, 190025, India
| | - Sameena M Lone
- Division of Vegetable Science, SKUAST-K, Srinagar, J&K, 190025, India
| | - Aqleema Banoo
- Division of Plant Pathology, SKUAST-K, Srinagar, J&K, 190025, India
| | - Fauzia Shafi
- Division of Basic Sciences and Humanities, SKUAST-K, Srinagar, J&K, 190025, India
| | - Shakeel A Mir
- Division of Agricultural Statistics, SKUAST-K, Srinagar, J&K, 190025, India
| | - Javeed I A Bhat
- Division of Environmental Sciences, SKUAST-K, Srinagar, J&K, 190025, India
| | - Rizwan Rashid
- Division of Vegetable Science, SKUAST-K, Srinagar, J&K, 190025, India
| | - Shabir H Wani
- Mountain Research Center for Field Crops, Khudwani,, SKUAST-K, Anantnag, J&K, 192102, India
| | - T H Masoodi
- Faculty of Forestry, Benihama-SKUAST-K, Ganderbal, J&K, 191201, India
| | - M N Khan
- Transcriptomics Lab (K-Lab), Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K, 190025, India
| | - Firdous A Nehvi
- Transcriptomics Lab (K-Lab), Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K, 190025, India
| | - Khalid Z Masoodi
- Transcriptomics Lab (K-Lab), Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K, 190025, India.
| |
Collapse
|
9
|
Odgerel U, Islam MZ, Kitamura Y, Kokawa M, Odbayar T. Effect of micro wet milling process on particle sizes, antioxidants, organic acids, and specific phenolic compounds of whole sea buckthorn (
Hippophae rhamnoides
L.) juices. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ulziibat Odgerel
- Graduate School of Life and Environmental Sciences University of Tsukuba Ibaraki Japan
| | - Md. Zohurul Islam
- Graduate School of Life and Environmental Sciences University of Tsukuba Ibaraki Japan
| | - Yutaka Kitamura
- Faculty of Life and Environmental Sciences University of Tsukuba Ibaraki Japan
| | - Mito Kokawa
- Faculty of Life and Environmental Sciences University of Tsukuba Ibaraki Japan
| | - Tseye‐Oidov Odbayar
- School of Industrial Technology, Department of Food Engineering Main Campus of MUST Ulaanbaatar Mongolia
| |
Collapse
|
10
|
Ghendov-Mosanu A, Cristea E, Patras A, Sturza R, Padureanu S, Deseatnicova O, Turculet N, Boestean O, Niculaua M. Potential Application of Hippophae Rhamnoides in Wheat Bread Production. Molecules 2020; 25:E1272. [PMID: 32168868 PMCID: PMC7144010 DOI: 10.3390/molecules25061272] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 11/17/2022] Open
Abstract
Sea buckthorn (Hippophae rhamnoides) berries are well known for their content in bioactive compounds, high acidity, bright yellow color, pleasant taste and odor, thus their addition in a basic food such as bread could be an opportunity for modern food producers. The aim of the present research was to investigate the characteristics and the effects of the berry' flour added in wheat bread (in concentration of 1%, 3% and 5%) on sensory, physicochemical and antioxidant properties, and also bread shelf life. Berry flour contained total polyphenols-1467 mg gallic acid equivalents (GAE)/100 g, of which flavonoids-555 mg GAE/100 g, cinnamic acids-425 mg caffeic acid equivalents (CAE)/100 g, flavonols-668 mg quercetin equivalents (QE)/100 g. The main identified phenolics were catechin, hyperoside, chlorogenic acid, cis- and trans-resveratrol, ferulic and protocatechuic acids, procyanidins B1 and B2, epicatechin, gallic acid, quercetin, p- and m-hydroxybenzoic acids. The antioxidant activity was 7.64 mmol TE/100 g, and carotenoids content 34.93 ± 1.3 mg/100 g. The addition of berry flour increased the antioxidant activity of bread and the shelf life up to 120 h by inhibiting the development of rope spoilage. The obtained results recommend the addition of 1% Hippophae rhamnoides berry flour in wheat bread, in order to obtain a product enriched in health-promoting biomolecules, with better sensorial and antioxidant properties and longer shelf life.
Collapse
Affiliation(s)
- Aliona Ghendov-Mosanu
- Technical University of Moldova; 9/9 Studentilor St, MD-2045 Chisinau, Republic of Moldova
| | - Elena Cristea
- Technical University of Moldova; 9/9 Studentilor St, MD-2045 Chisinau, Republic of Moldova
| | - Antoanela Patras
- “Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine of Iasi, Romania, 3 Mihail Sadoveanu Alley, 700490, Iasi, Romania
| | - Rodica Sturza
- Technical University of Moldova; 9/9 Studentilor St, MD-2045 Chisinau, Republic of Moldova
| | - Silvica Padureanu
- “Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine of Iasi, Romania, 3 Mihail Sadoveanu Alley, 700490, Iasi, Romania
| | - Olga Deseatnicova
- Technical University of Moldova; 9/9 Studentilor St, MD-2045 Chisinau, Republic of Moldova
| | - Nadejda Turculet
- Technical University of Moldova; 9/9 Studentilor St, MD-2045 Chisinau, Republic of Moldova
| | - Olga Boestean
- Technical University of Moldova; 9/9 Studentilor St, MD-2045 Chisinau, Republic of Moldova
| | - Marius Niculaua
- Research Center for Oenology, Romanian Academy, Iasi Branch, 9 Mihail Sadoveanu Alley, 700490 Iasi, Romania
| |
Collapse
|
11
|
Gu Q, Duan G, Yu X. Bioconversion of Flavonoid Glycosides from Hippophae rhamnoides Leaves into Flavonoid Aglycones by Eurotium amstelodami. Microorganisms 2019; 7:E122. [PMID: 31060344 PMCID: PMC6560391 DOI: 10.3390/microorganisms7050122] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 01/10/2023] Open
Abstract
The flowering process has been reported to play crucial roles in improving the flavor and efficacy of fermented tea. Hippophae rhamnoides leaves containing many beneficial ingredients are a suitable plant source for tea processing. In this study, we isolated a β-glucosidase-producing fungus Eurotium amstelodami BSX001 from the fermented tea and used Hippophae rhamnoides leaves (HRL) as a substrate to explore the detailed process of bioconversion of some important functional factors. The results show that the contents of total phenolic compounds and flavonoids increased significantly after seven days, especially flavonoid aglycones (e.g., quercetin, kaempferol, and isorhamnetin). Such compounds greatly enhance the antioxidative activity of fermented products. Metabolic analysis of the standard compounds (rutin, quercetin-3-glucoside, kaempferol-3-glucoside, quercetin, isorhamnetin-3-glucoside, isorhamnetin, and kaempferol) further confirmed the effective biotransformation by E. amstelodami. Mechanisms of the bioconversion could be involved in deglycosylation, dihydroxylation, and O-methylation. Our findings expand the understanding of tea fermentation process and provide further guidance for the fermented tea industry.
Collapse
Affiliation(s)
- Qiuya Gu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Guoliang Duan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Xiaobin Yu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
12
|
Asofiei I, Calinescu I, Trifan A, David IG, Gavrila AI. Microwave-Assisted Batch Extraction of Polyphenols from Sea Buckthorn Leaves. CHEM ENG COMMUN 2016. [DOI: 10.1080/00986445.2015.1134518] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Ioana Asofiei
- Department of Bioresources and Polymer Science, University Politehnica of Bucharest, Bucharest, Romania
| | - Ioan Calinescu
- Department of Bioresources and Polymer Science, University Politehnica of Bucharest, Bucharest, Romania
| | - Adrian Trifan
- Department of Bioresources and Polymer Science, University Politehnica of Bucharest, Bucharest, Romania
| | | | - Adina Ionuta Gavrila
- Department of Bioresources and Polymer Science, University Politehnica of Bucharest, Bucharest, Romania
| |
Collapse
|