1
|
Zhang T, Shang F, Ma Y, Xu Y, Sun W, Song H. Caveolin-1 Promotes the Imbalance of Th17/Treg in Chronic Obstructive Pulmonary Disease by Regulating Hsp70 Expression. Int J Chron Obstruct Pulmon Dis 2023; 18:565-574. [PMID: 37077366 PMCID: PMC10106795 DOI: 10.2147/copd.s398780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/27/2023] [Indexed: 04/21/2023] Open
Abstract
Objective To investigate whether the expression of Hsp70 is associated with Cav-1 in promoting the imbalance of Th17/Treg cells in COPD. Methods The plasma Cav-1, Hsp70 expression were quantified by enzyme-linked immunosorbent assay (ELISA). The frequencies of circulating Th17, Treg cells and Th17/Treg ratio were determined by flow cytometry. Peripheral blood mononuclear cells (PBMCs) from subjects were transfected with Cav-1 or control plasmids and Hsp70 plasmid. Results We found that Cav-1 expression was lower but the levels of Hsp70 and Th17 cells were higher in COPD than in healthy control (HC). Hsp70 expressions were positively correlated with Cav-1 levels, Th17 cells, and Th17/Treg ratio in COPD but not in HC. Cav-1 over-expression resulted in an increase in Hsp70 and Th17 levels. Suppressing Hsp70 expressing by small interfering RNA (siRNA), the decline of Th17 frequency was observed in Cav-1-overexpressed PBMCs. Conclusion Collectively, our results illuminate that Cav-1 contributes to the imbalance of Th17/Treg through potentially regulating Hsp70 expression.
Collapse
Affiliation(s)
- Tongsong Zhang
- Department of Oncology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, Shandong, 266042, People’s Republic of China
| | - Fangfang Shang
- Department of Pathology, No. 971 Hospital of People’s Liberation Army Navy, Qingdao, 266071, People’s Republic of China
| | - Yanhui Ma
- Department of Clinical Laboratory, Biotherapy Center, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, 266042, People’s Republic of China
| | - Yanxia Xu
- Department of Oncology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, Shandong, 266042, People’s Republic of China
| | - Weihong Sun
- Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, Shandong, 266042, People’s Republic of China
| | - Haiping Song
- Department of Oncology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, Shandong, 266042, People’s Republic of China
- Correspondence: Haiping Song; Yanxia Xu, Department of Oncology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, 127 Siliu South Road, Qingdao, 266042, People’s Republic of China, Tel +86 532 8496 2202; +86 532 84962203, Fax +86 532-84963506, Email ;
| |
Collapse
|
2
|
High-mobility group box 1 serves as an inflammation driver of cardiovascular disease. Biomed Pharmacother 2021; 139:111555. [PMID: 33865014 DOI: 10.1016/j.biopha.2021.111555] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/15/2021] [Accepted: 03/27/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease (CVD) is the most deadly disease, which can cause sudden death, in which inflammation is a key factor in its occurrence and development. High-mobility group box 1 (HMGB1) is a novel nuclear DNA-binding protein that activates innate immunity to induce inflammation in CVD. HMGB1 exists in the cytoplasm and nucleus of different cell types, including those in the heart. By binding to its receptors, HMGB1 triggers a variety of signaling cascades, leading to inflammation and CVD. To help develop HMGB1-targeted therapies, here we discuss HMGB1 and its biological functions, receptors, signaling pathways, and pathophysiology related to inflammation and CVD, including cardiac remodeling, cardiac hypertrophy, myocardial infarction, heart failure, pulmonary hypertension, atherosclerosis, and cardiomyopathy.
Collapse
|
3
|
Cuevas A, Saavedra N, Salazar LA, Cavalcante MF, Silva JC, Abdalla DSP. Prodigiosin Modulates the Immune Response and Could Promote a Stable Atherosclerotic Lession in C57bl/6 Ldlr-/- Mice. Int J Mol Sci 2020; 21:ijms21176417. [PMID: 32899258 PMCID: PMC7504388 DOI: 10.3390/ijms21176417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/15/2020] [Accepted: 07/18/2020] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease, whose progression and stability are modulated, among other factors, by an innate and adaptive immune response. Prodiginines are bacterial secondary metabolites with antiproliferative and immunomodulatory activities; however, their effect on the progression or vulnerability of atheromatous plaque has not been evaluated. This study assessed the therapeutic potential of prodigiosin and undecylprodigiosin on inflammatory marker expression and atherosclerosis. An in vitro and in vivo study was carried out. Migration, low-density lipoprotein (LDL) uptake and angiogenesis assays were performed on cell types involved in the pathophysiology of atherosclerosis. In addition, male LDL receptor null (Ldlr-/-) C57BL/6J mice were treated with prodigiosin or undecylprodigiosin for 28 days. Morphometric analysis of atherosclerotic plaques, gene expression of atherogenic factors in the aortic sinus and serum cytokine quantification were performed. The treatments applied had slight effects on the in vitro tests performed, highlighting the inhibitory effect on the migration of SMCs (smooth muscle cells). On the other hand, although no significant difference in atherosclerotic plaque progression was observed, gene expression of IL-4 and chemokine (C-C motif) ligand 2 (Ccl2) was downregulated. In addition, 50 µg/Kg/day of both treatments was sufficient to inhibit circulating tumor necrosis factor alpha (TNF-α), interleukin-2 (IL-2) and interferon-gamma (IFN-γ) in serum. These results suggested that prodigiosin and undecylprodigiosin modulated inflammatory markers and could have an impact in reducing atherosclerotic plaque vulnerability.
Collapse
Affiliation(s)
- Alejandro Cuevas
- Clinical Microbiology Unit, Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Manuel Montt 112, Temuco CP 4781176, Chile
- Centro de Investigación en Medicina de Laboratorio—CeMLab, Faculty of Medicine, Universidad de La Frontera, Manuel Montt 112, Temuco CP 4781176, Chile;
- Correspondence: ; Tel.: +56-45-2744333
| | - Nicolás Saavedra
- Centro de Investigación en Medicina de Laboratorio—CeMLab, Faculty of Medicine, Universidad de La Frontera, Manuel Montt 112, Temuco CP 4781176, Chile;
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Francisco Salazar 01145, Temuco CP 4811230, Chile;
| | - Luis A. Salazar
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Francisco Salazar 01145, Temuco CP 4811230, Chile;
| | - Marcela F. Cavalcante
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, Universidade de São Paulo, São Paulo–SP 05508-000, Brazil; (M.F.C.); (J.C.S.); (D.S.P.A.)
| | - Jacqueline C. Silva
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, Universidade de São Paulo, São Paulo–SP 05508-000, Brazil; (M.F.C.); (J.C.S.); (D.S.P.A.)
| | - Dulcineia S. P. Abdalla
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, Universidade de São Paulo, São Paulo–SP 05508-000, Brazil; (M.F.C.); (J.C.S.); (D.S.P.A.)
| |
Collapse
|
4
|
Wang P, Liu S, Wang Z, Zhao H, Zhang X. Altered levels of circulating natural antibodies against VEGFR1-derived peptide in atherosclerosis. J Int Med Res 2020; 48:300060520948750. [PMID: 32811267 PMCID: PMC7513417 DOI: 10.1177/0300060520948750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/20/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Several lines of evidence have pointed to a protective role of natural antibodies in chronic diseases like atherosclerosis and cancer. Vascular endothelial growth factor receptor 1 (VEGFR1) and VEGFR2 are important regulators of angiogenesis and may be involved in the development of atherosclerosis. In this retrospective study, we developed an in-house enzyme-linked immunosorbent assay to assess whether natural IgG levels against VEGFR1 and the regulatory T cell markers CD25 and FOXP3 were associated with atherosclerosis. METHODS A total of 218 patients with atherosclerosis and 200 healthy controls were enrolled. All patients had atherosclerotic carotid plaques. Carotid intima-media thickness was analyzed using a diagnostic ultrasound system. RESULTS Plasma anti-VEGFR1 IgG levels were significantly lower in patients with atherosclerosis than control subjects. Decreased anti-VEGFR1 IgG levels were more obvious in male patients. Spearman correlation analysis showed no significant correlation between natural IgG levels and carotid intima-media thickness. CONCLUSIONS Decreased levels of anti-VEGFR1 IgG may be involved in development of atherosclerosis and related conditions.
Collapse
Affiliation(s)
- Peng Wang
- Second Hospital of Jilin University, Changchun, China
| | - Siqi Liu
- Second Hospital of Jilin University, Changchun, China
| | - Zhenqi Wang
- School of Public Health, Jilin University, Changchun,
China
| | - Huan Zhao
- Second Hospital of Jilin University, Changchun, China
| | - Xuan Zhang
- Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Zhu W, Liu S. The role of human cytomegalovirus in atherosclerosis: a systematic review. Acta Biochim Biophys Sin (Shanghai) 2020; 52:339-353. [PMID: 32253424 DOI: 10.1093/abbs/gmaa005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/05/2019] [Accepted: 01/20/2020] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis is a progressive vascular disease with increasing morbidity and mortality year by year in modern society. Human cytomegalovirus (HCMV) infection is closely associated with the development of atherosclerosis. HCMV infection may accelerate graft atherosclerosis and the development of transplant vasculopathy in organ transplantation. However, our current understanding of HCMV-associated atherosclerosis remains limited and is mainly based on clinical observations. The underlying mechanism of the involvement of HCMV infection in atherogenesis remains unclear. Here, we summarized current knowledge regarding the multiple influences of HCMV on a diverse range of infected cells, including vascular endothelial cells, vascular smooth muscle cells, monocytes, macrophages, and T cells. In addition, we described potential HCMV-induced molecular mechanisms, such as oxidative stress, endoplasmic reticulum stress, autophagy, lipid metabolism, and miRNA regulation, which are involved in the development of HCMV-associated atherogenesis. Gaining an improved understanding of these mechanisms will facilitate the development of novel and effective therapeutic strategies for the treatment of HCMV-related cardiovascular disease.
Collapse
Affiliation(s)
- Wenbo Zhu
- Clinical Research Institute, First Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Shuangquan Liu
- Clinical Laboratory, First Affiliated Hospital, University of South China, Hengyang 421001, China
| |
Collapse
|
6
|
Alnaes-Katjavivi P, Roald B, Staff AC. Uteroplacental acute atherosis in preeclamptic pregnancies: Rates and clinical outcomes differ by tissue collection methods. Pregnancy Hypertens 2020; 19:11-17. [PMID: 31864207 DOI: 10.1016/j.preghy.2019.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Acute atherosis (AA) is a uteroplacental spiral artery lesion, identified by intramural lipid-laden foam cells, with highest rates in preeclampsia (PE). We compared AA detection rates in preeclampsia (PE) across three different decidual spiral artery collection methods in same patients. We tested whether the rate and topographical distribution of AA associates with clinical parameters. STUDY DESIGN Three decidual tissue types were harvested from each of 107 preeclamptic women delivered by cesarean section. Routine sampled basal surface placenta (decidua basalis, DB) and fetal membrane roll (decidua parietalis, DP) biopsies were compared with decidual vacuum suction biopsies (DB), regarding spiral artery rate and AA presence. Spiral arteries and AA were identified using predefined, immunohistochemically based criteria on serial sections. MAIN OUTCOME MEASURES AND RESULTS Detection of spiral arteries (87%) and AA (35%) was highest in DB samples collected by vacuum suction compared to the two other methods. Pregnancies with AA detected in vacuum suctioned DB had lower gestational age at delivery, lower birth weight percentile and more often fetal growth restriction. Basal plate DB samples demonstrating AA associated with pregnancies affected by pathological fetal Dopplers, whereas AA detected in DP membrane rolls, did not. CONCLUSIONS Placental bed vacuum suction provides more spiral arteries and higher AA rate, suggesting underestimation of AA in conventional pathology samples of basal plate DB biopsies and DP. The association of AA with PE-related clinical parameters varies according to tissue collection method. Longitudinal studies could elucidate whether AA also identifies women with future premature cardiovascular risk.
Collapse
Affiliation(s)
- Patji Alnaes-Katjavivi
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Ullevål and Faculty of Medicine, University of Oslo, Norway.
| | - Borghild Roald
- Department of Pathology, Oslo University Hospital, Ullevål and Faculty of Medicine, University of Oslo, Norway
| | - Anne Cathrine Staff
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Ullevål and Faculty of Medicine, University of Oslo, Norway
| |
Collapse
|
7
|
Interleukin-17 production by CD4+CD45RO+Foxp3+ T cells in peripheral blood of patients with atherosclerosis. ACTA ACUST UNITED AC 2019; 4:e215-e224. [PMID: 31538127 PMCID: PMC6749180 DOI: 10.5114/amsad.2019.87525] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022]
Abstract
Introduction T regulatory cells (Tregs) are known as immunoregulatory cells that are reduced in atherosclerosis. Tregs are a part of crosstalk between the immune system and lipoprotein metabolism, both of which are involved in atherosclerotic processes. Depletion of Tregs leads to impaired clearance of low density lipoprotein (LDL), and intracellular cholesterol homeostasis affects Treg cell development. Furthermore, the atherosclerotic environment affects the Treg cells’ phenotype and plasticity. Plasticity between Tregs and Th17 cells has been a matter of investigation lately. We investigated the frequency of interleukin-17 (IL-17)-producing Tregs in the peripheral blood of patients with atherosclerosis. Material and methods We studied 10 non-diabetic patients with significant coronary artery disease (CAD) as the patient group, and seven non-diabetic individuals with normal coronary angiography/insignificant CAD as the control group. Peripheral blood mononuclear cells were stained with fluorescent antibodies to detect CD4, CD45RO, IL-17, and Foxp3 expression both before and after stimulation with PMA/Ionomycin. Cell enumeration was performed using flowcytometry and analysed using Mann-Whitney test. Results CD4+IL-17+Foxp3+ and CD4+IL-17+Foxp3- subsets showed higher frequencies in patients than in controls both before (p = 0.0031, p = 0.033, respectively) and after stimulation (p = 0.0027 and p = 0.0013, respectively). Interestingly, CD4+IL-17+Foxp3+ cells were almost exclusively CD45RO+ with a much higher frequency in patients than in controls (p = 0.0027, p = 0.0007). After stimulation, the frequency of CD4+CD45RO+IL-17+Foxp3+ lymphocytes increased to a greater extent in patients (p < 0.0001) than in controls. Conclusions Interleukin-17 production by an intermediate population with an activated Treg phenotype in our patients may point to the population heterogeneity or plasticity in Tregs during atherosclerotic inflammation.
Collapse
|
8
|
Biolo G, Di Girolamo FG, McDonnell A, Fiotti N, Mearelli F, Situlin R, Gonelli A, Dapas B, Giordano M, Lainscak M, Grassi G, Zauli G, Secchiero P, Mekjavic I. Effects of Hypoxia and Bed Rest on Markers of Cardiometabolic Risk: Compensatory Changes in Circulating TRAIL and Glutathione Redox Capacity. Front Physiol 2018; 9:1000. [PMID: 30104982 PMCID: PMC6077233 DOI: 10.3389/fphys.2018.01000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/09/2018] [Indexed: 12/18/2022] Open
Abstract
In chronic diseases, hypoxia and physical inactivity are associated with atherosclerosis progression. In contrast, a lower mortality from coronary artery disease and stroke is observed in healthy humans residing at high altitude in hypoxic environments. Eleven young, male volunteers completed the following 10-day campaigns in a randomized order: hypoxic ambulatory, hypoxic bed rest and normoxic bed rest. Before intervention, subjects were evaluated in normoxic ambulatory condition. Normobaric hypoxia was achieved in a hypoxic facility simulating 4000 m of altitude. Following hypoxia, either in bed rest or ambulatory condition, markers of cardiometabolic risk shifted toward a more atherogenic pattern consisting of: (a) lower levels of total HDL cholesterol and HDL2 sub-fraction and decreased hepatic lipase; (b) activation of systemic inflammation, as determined by C-reactive protein and serum amyloid A; (c) increased plasma homocysteine; (d) decreased delta-5 desaturase index in cell membrane fatty acids, a marker of insulin sensitivity. Bed rest and hypoxia additively decreased total HDL and delta-5 desaturase index. In parallel to the pro-atherogenic effects, hypoxia activated selected anti-atherogenic pathways, consisting of increased circulating TNF-related apoptosis-inducing ligand (TRAIL), a protective factor against atherosclerosis, membrane omega-3 index and erythrocyte glutathione availability. Hypoxia mediated changes in TRAIL concentrations and redox glutathione capacity (i.e., GSH/GSSG ratio) were greater in ambulatory conditions (+34 ± 6% and +87 ± 31%, respectively) than in bed rest (+17 ± 7% and +2 ± 27% respectively). Hypoxia-induced cardiometabolic risk is blunted by moderate level of physical activity as compared to bed rest. TRAIL and glutathione redox capacity may contribute to the positive interaction between physical activity and hypoxia. Highlights: – Hypoxia and bed rest activate metabolic and inflammatory markers of atherogenesis. – Hypoxia and physical activity activate selected anti-atherogenic pathways. – Hypoxia and physical activity positive interaction involves TRAIL and glutathione.
Collapse
Affiliation(s)
- Gianni Biolo
- Clinica Medica, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Filippo G Di Girolamo
- Clinica Medica, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Adam McDonnell
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Nicola Fiotti
- Clinica Medica, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Filippo Mearelli
- Clinica Medica, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Roberta Situlin
- Clinica Medica, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Arianna Gonelli
- Dipartimento di Morfologia, Chirurgia e Medicina Sperimentale, University of Ferrara, Ferrara, Italy
| | - Barbara Dapas
- Department of Life Science, University of Trieste, Trieste, Italy
| | - Mauro Giordano
- Ospedale Clinicizzato di Marcianise, Dipartimento di Scienze Mediche, Chirurgiche, Neurologiche, Metaboliche e dell'Invecchiamento, Università degli Studi della Campania Luigi Vanvitelli, Marcianise, Italy
| | - Mitja Lainscak
- Department of Internal Medicine, General Hospital Murska Sobota and Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Gabriele Grassi
- Department of Life Science, University of Trieste, Trieste, Italy
| | - Giorgio Zauli
- Dipartimento di Morfologia, Chirurgia e Medicina Sperimentale, University of Ferrara, Ferrara, Italy
| | - Paola Secchiero
- Dipartimento di Morfologia, Chirurgia e Medicina Sperimentale, University of Ferrara, Ferrara, Italy
| | - Igor Mekjavic
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
9
|
The potential applications of mushrooms against some facets of atherosclerosis: A review. Food Res Int 2018; 105:517-536. [DOI: 10.1016/j.foodres.2017.11.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/08/2017] [Accepted: 11/19/2017] [Indexed: 12/16/2022]
|
10
|
Abstract
Atherosclerosis is a progressive disease of large arteries and a leading cause of cardiovascular diseases and stroke. Chronic inflammation, aberrant immune response, and disturbances to key enzymes involved with lipid metabolism are characteristic features of atherosclerosis. Apart from targeting the derangements in lipid metabolism, therapeutic modulation to regulate chronic inflammation and the immune system response may prove to be very promising strategies in the management of atherosclerosis. In recent years, various targets have been studied for the treatment of atherosclerosis. PCSK9, a serine protease, actively targets the LDL-R and causes lysosomal degradation, which leads to excessive accumulation of LDL-C. Regulatory T cells (Tregs) and Triggering Receptor Expressed on Myeloid cells-1 (TREM-1) affects the adaptive and innate immune response, respectively, and thus, therapeutic intervention of either of these targets would directly modulate disease progression. Advanced atherosclerotic lesions are characterized by an accumulation of apoptotic cells. Cluster of differentiation-47 (CD47), an anti-phagocytic known as the "don't eat me" signaling molecule, inhibits efferocytosis, which causes accumulation of cell debris in plaque. ADAMTS and Notch signaling potentially affect the formation of neointima by modulation of extracellular matrix components such as macrophages and vascular smooth muscle cells. This review provides insights on the molecular targets for therapeutic intervention of atherosclerosis, their effect at various stages of atherosclerosis development, and the therapies that have been designed and currently being evaluated in clinical trials.
Collapse
Affiliation(s)
- Ankita Solanki
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
| | - Thomas P Johnston
- Division of Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, MO, United States
| |
Collapse
|
11
|
Dai X, Zhang D, Wang C, Wu Z, Liang C. The Pivotal Role of Thymus in Atherosclerosis Mediated by Immune and Inflammatory Response. Int J Med Sci 2018; 15:1555-1563. [PMID: 30443178 PMCID: PMC6216065 DOI: 10.7150/ijms.27238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/06/2018] [Indexed: 12/26/2022] Open
Abstract
Atherosclerosis is one kind of chronic inflammatory disease, in which multiple types of immune cells or factors are involved. Data from experimental and clinical studies on atherosclerosis have confirmed the key roles of immune cells and inflammation in such process. The thymus as a key organ in T lymphocyte ontogenesis has an important role in optimizing immune system function throughout the life, and dysfunction of thymus has been proved to be associated with severity of atherosclerosis. Based on previous research, we begin with the hypothesis that low density lipoprotein or cholesterol reduces the expression of the thymus transcription factor Foxn1 via low density lipoprotein receptors on the membrane surface and low density lipoprotein receptor related proteins on the cell surface, which cause the thymus function decline or degradation. The imbalance of T cell subgroups and the decrease of naive T cells due to thymus dysfunction cause the increase or decrease in the secretion of various inflammatory factors, which in turn aggravates or inhibits atherosclerosis progression and cardiovascular events. Hence, thymus may be the pivotal role in coronary heart disease mediated by atherosclerosis and cardiovascular events and it can imply a novel treatment strategy for the clinical management of patients with atherosclerosis in addition to different commercial drugs. Modulation of immune system by inducing thymus function may be a therapeutic approach for the prevention of atherosclerosis. Purpose of this review is to summarize and discuss the recent advances about the impact of thymus function on atherosclerosis by the data from animal or human studies and the potential mechanisms.
Collapse
Affiliation(s)
- Xianliang Dai
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.,Department of Cardiology, 101 Hospital of PLA, Wuxi, Jiangsu province 214041, China
| | - Danfeng Zhang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Chaoqun Wang
- Department of Endocrinology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.,Department of Endocrinology, Changhai Hospital, Second Military Medical University, Shanghai 200003, China
| | - Zonggui Wu
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Chun Liang
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| |
Collapse
|
12
|
The alternation of autophagy/apoptosis in CD4+CD25+Foxp3+ Tregs on the developmental stages of atherosclerosis. Biomed Pharmacother 2017; 97:1053-1060. [PMID: 29136784 DOI: 10.1016/j.biopha.2017.11.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 10/27/2017] [Accepted: 11/03/2017] [Indexed: 12/31/2022] Open
Abstract
Naturally regulatory T cells (Tregs) play a critical role in the regulation of T cell-mediated immune responses in atherosclerosis. However, the regulatory mechanism underlying Tregs upon long-term development of atherosclerosis remains unknown. Therefore, in this study, atherosclerotic model was induced in ApoE-/- mice by feeding fat-diet for 10 weeks. Quantification of atherosclerotic lesions was done by calculating the lesion size in the aortic sinus every 2 weeks. The lipid levels and inflammatory mediators were detected in serum sample. The populations of CD4+CD25+Foxp3+ Tregs were compared between ApoE-/- mice (ApoE-/-) and wild type C57BL/6 littermates (WT). The expression levels of autophagy and apoptosis signaling related regulators were determined by flow cytomery, RT-qPCR, and western blot assays in the CD4+CD25+Foxp3+ Tregs isolated from ApoE-/- and WT. We found that the sizes of plaque lesions in atherosclerotic ApoE-/- mice were larger than those in WT group during 10 weeks' detection (all P<0.05); Whereas, flow cytometry assay showed that the populations of CD4+CD25+Foxp3+ Tregs were significantly reduced in atherosclerotic ApoE-/- mice compared with those in corresponding WT group from the 4th weeks' detection (all P<0.05). The lipid accumulation and increased pro-inflammatory mediators were correlated with the developmental progression of atherosclerosis. Furthermore, compared to WT group, the functional properties of CD4+CD25+Foxp3+ Tregs from ApoE-/- mice showed a gradually decreased autophagic activity with aberrant expressions of LC3, Beclin1, ATG5, ATG7, p62 (all P<0.05), and a gradually increased apoptotic activity with abnormal expressions of cleaved caspase 3, Bim, Bcl-2 (all P<0.05) during the 10 weeks' detection period. Taken together, our data demonstrated that the population of CD4+CD25+Foxp3+ Tregs was reversely correlated with plaque forming in atherosclerotic ApoE-/- mice during atherosclerosis development. And the autophagy/apoptosis-dependent Tregs might play a crucial role for the maintenance of CD4 9+CD25+Foxp3+ Tregs survival during atherosclerosis progression.
Collapse
|
13
|
TSPO PET Imaging: From Microglial Activation to Peripheral Sterile Inflammatory Diseases? CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:6592139. [PMID: 29114179 PMCID: PMC5632884 DOI: 10.1155/2017/6592139] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/01/2017] [Accepted: 08/07/2017] [Indexed: 02/07/2023]
Abstract
Peripheral sterile inflammatory diseases (PSIDs) are a heterogeneous group of disorders that gathers several chronic insults involving the cardiovascular, respiratory, gastrointestinal, or musculoskeletal system and wherein inflammation is the cornerstone of the pathophysiology. In PSID, timely characterization and localization of inflammatory foci are crucial for an adequate care for patients. In brain diseases, in vivo positron emission tomography (PET) exploration of inflammation has matured over the last 20 years, through the development of radiopharmaceuticals targeting the translocator protein-18 kDa (TSPO) as molecular biomarkers of activated microglia. Recently, TSPO has been introduced as a possible molecular target for PSIDs PET imaging, making this protein a potential biomarker to address disease heterogeneity, to assist in patient stratification, and to contribute to predicting treatment response. In this review, we summarized the major research advances recently made in the field of TSPO PET imaging in PSIDs. Promising preliminary results have been reported in bowel, cardiovascular, and rheumatic inflammatory diseases, consolidated by preclinical studies. Limitations of TSPO PET imaging in PSIDs, regarding both its large expression in healthy peripheral tissues, unlike in central nervous system, and the production of peripheral radiolabeled metabolites, are also discussed, regarding their possible consequences on TSPO PET signal's quantification.
Collapse
|
14
|
Lekic A, Brekalo Z, Kvesic A, Kovacevic M, Baricev-Novakovic Z, Sutic I, Bulog A, Sutic I, Pavisic V, Mrakovcic-Sutic I. Crosstalk Between Enzyme Matrix Metalloproteinases 2 and 9 and Regulatory T Cell Immunity in the Global Burden of Atherosclerosis. Scand J Immunol 2017; 86:65-71. [PMID: 28500763 DOI: 10.1111/sji.12563] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 04/30/2017] [Indexed: 01/14/2023]
Abstract
Changes in immune and inflammatory responses may play a crucial role in the development and progression of atherosclerosis, as an autoimmune, chronic and progressive inflammatory disease. Immunological activity and vascular inflammation during atherosclerosis can be modulated by autoimmune responses against self-antigens, according to changeable risk factors (cholesterol, oxidized low-density lipoprotein (ox-LDL) in the vascular wall, fatty acids, etc.), and accompanied by accumulation of leucocytes and proinflammatory cytokines, which stimulate the transcription of matrix metalloproteinases (MMPs), whose concentration are increased in foam cell-rich regions. Regulatory T cells (Tregs) represent a unique subpopulation of T cells specialized in the regulation of immune response and in the suppression of proatherogenic T cells. The aim of our study was to examine the interactions between the concentration of enzyme matrix metalloproteinases 2 and 9 (MMP-2 and 9) in urine and the percentage of Tregs in peripheral blood of two groups of patients: with carotid artery stenosis (CAS), undergoing surgery and with mild atherosclerosis (A) from general practice. The method of enzyme immunoassay (ELISA) was used to determine enzyme MMP expression, and Tregs was examined by flow cytometric analysis. Our data have showed a large increase in the enzyme MMP-2 and 9 in the urine of CAS and A patients in comparison with healthy controls and indicated this method as an easy marker for the monitoring of the development of atherosclerosis. Simultaneously, the diminished number of Tregs in the same patients pointed the importance of these regulatory mechanisms in the etiopathogenesis of atherosclerosis and possible Tregs-mediated therapy.
Collapse
Affiliation(s)
- A Lekic
- Department of Basic Medical Sciences, Faculty of Health Studies, University of Rijeka, Rijeka, Croatia
| | - Z Brekalo
- Department of Surgery, University Hospital Mostar, Mostar, Bosnia and Herzegovina
| | - A Kvesic
- Department of Surgery, University Hospital Mostar, Mostar, Bosnia and Herzegovina
| | - M Kovacevic
- Department of Cardiovascular Surgery, Medical Faculty, University of Rijeka, Rijeka, Croatia
| | - Z Baricev-Novakovic
- Department of Family Medicine, Medical Faculty, University of Rijeka, Rijeka, Croatia
| | - I Sutic
- Department of Family Medicine, Medical Faculty, University of Rijeka, Rijeka, Croatia
| | - A Bulog
- Department of Public Health, Medical Faculty, University of Rijeka, Rijeka, Croatia
| | - I Sutic
- Medical Faculty, University of Rijeka, Rijeka, Croatia
| | - V Pavisic
- Department of Physiology and Immunology, Medical Faculty, University of Rijeka, Rijeka, Croatia
| | - I Mrakovcic-Sutic
- Department of Physiology and Immunology, Medical Faculty, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
15
|
Caveolin-1 Promotes the Imbalance of Th17/Treg in Patients with Chronic Obstructive Pulmonary Disease. Inflammation 2017; 39:2008-2015. [PMID: 27613621 DOI: 10.1007/s10753-016-0436-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The imbalance of Th17/Treg cells plays an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD). Caveolin-1 (Cav-1) has been regarded as a potential critical regulatory protein in pathological mechanisms of chronic inflammatory respiratory diseases. Therefore, we investigated whether the loss of Cav-1 is involved in the homeostasis of Th17/Treg cells in COPD. We examined the expressions of plasma Cav-1 and circulating Th17, Treg cells, and the related cytokines in patients with COPD. Enzyme-linked immunosorbent assay (ELISA) analyses showed a significant reduction of plasma Cav-1 levels in patients with stable COPD (SCOPD) and acutely exacerbated COPD (AECOPD) compared to smokers without COPD. This loss was associated with an increase in frequency of Treg and decreased in frequency of Th17 cells. To further identify the role of Cav-1, we studied the effects of Cav-1 overexpression or downregulation on frequencies of Treg and Th17 cells in peripheral blood mononuclear cells (PBMCs) from subjects. Interestingly, small interfering RNA (siRNA) downregulation of Cav-1 was accompanied by an augmentation of Treg and reduction of Th17 expression. Together, our study demonstrated that the loss of Cav-1 contributed to the imbalance of Th17/Treg cells in patients with COPD.
Collapse
|
16
|
Govea-Alonso DO, Beltrán-López J, Salazar-González JA, Vargas-Morales J, Rosales-Mendoza S. Progress and future opportunities in the development of vaccines against atherosclerosis. Expert Rev Vaccines 2016; 16:337-350. [DOI: 10.1080/14760584.2017.1258309] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Dania O. Govea-Alonso
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, SLP, México
| | - Josué Beltrán-López
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, SLP, México
| | - Jorge A. Salazar-González
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, SLP, México
| | - Juan Vargas-Morales
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, SLP, México
| | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, SLP, México
| |
Collapse
|
17
|
Takata K, Imaizumi S, Zhang B, Miura SI, Saku K. Stabilization of high-risk plaques. Cardiovasc Diagn Ther 2016; 6:304-21. [PMID: 27500090 DOI: 10.21037/cdt.2015.10.03] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The prevalence of atherosclerotic cardiovascular diseases (ASCVDs) is increasing globally and they have become the leading cause of death in most countries. Numerous experimental and clinical studies have been conducted to identify major risk factors and effective control strategies for ASCVDs. The development of imaging modalities with the ability to determine the plaque composition enables us to further identify high-risk plaque and evaluate the effectiveness of different treatment strategies. While intensive lipid-lowering by statins can stabilize or even regress plaque by various mechanisms, such as the reduction of lipid accumulation in a necrotic lipid core, the reduction of inflammation, and improvement of endothelial function, there are still considerable residual risks that need to be understood. We reviewed important findings regarding plaque vulnerability and some encouraging emerging approaches for plaque stabilization.
Collapse
Affiliation(s)
- Kohei Takata
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | - Satoshi Imaizumi
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | - Bo Zhang
- Department of Biochemistry, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | - Shin-Ichiro Miura
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | - Keijiro Saku
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| |
Collapse
|
18
|
Ding JW, Zheng XX, Zhou T, Tong XH, Luo CY, Wang XA. HMGB1Modulates the Treg/Th17 Ratio in Atherosclerotic Patients. J Atheroscler Thromb 2016; 23:737-45. [PMID: 26830200 PMCID: PMC7399277 DOI: 10.5551/jat.31088] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 11/16/2015] [Indexed: 01/14/2023] Open
Abstract
AIM Atherosclerosis (AS) characterized as a chronic inflammatory disease. Multiple immune cells and inflammatory cytokines, such as high mobility group protein (HMGB1), regulatory T (Treg) cells, T helper (Th17) cells, and inflammation-related cytokines, play a key role in its pathophysiology. A large number of studies report that HMGB1 and Th17 cells may promote atherosclerosis progression, whereas Treg cells may play a protective role in atherosclerosis; thus, alterations in the Treg/Th17 ratio may exist in atherosclerosis diseases. Up till now, the relationships between HMGB1 levels and the Treg/Th17 ratio remain incompletely understood. The major purpose of this study was to investigate the relationship between HMGB1 levels and the Treg/Th17 ratio in patients with coronary artery atherosclerotic plaques. METHODS We enrolled patients with coronary atherosclerosis and normal coronary artery as the research subjects. Flow cytometry was used to analyze the Treg cells, the Th17 cells frequency, and the Treg/Th17 ratio. Otherwise, real-time polymerase chain reaction was used for assays the mRNA expressions of HMGB1, retinoic acid-related orphan nuclear receptor C (RORC), and forkhead-winged helix transcription factor (Foxp3). Moreover, enzyme-linked immunosorbent assays were used to detect the level of protein and cytokines, such as HMGB1, IL-10, TGF-β1, IL-17A, and IL-23. RESULTS Using flow cytometry, we observed a significantly increased of Th17 cell frequency, whereas Treg cell frequency significantly decreased in atherosclerotic patients. Consistently, the levels of RORC mRNA were significantly increased in coronary atherosclerosis (AS) group compared to normal coronary artery (NCA) group (P<0.01). In contrast, the expression of Foxp3 mRNA was markedly lower in the AS group than in the NCA group (P<0.01). Furthermore, we observed the serum concentrations of HMGB1, IL-17A, and IL-23 were significantly higher in the AS group than in the NCA group (P<0.01, respectively), whereas the concentrations of serum IL-10 and TGF-β1 were significantly lower in the AS group than in the NCA group (P<0.01, respectively). In addition, we also found that HMGB1 levels showed negative correlation with the Treg/Th17 ratio in the two groups (r=-0.6984, P<0.01). CONCLUSIONS The data in our study indicated that HMGB1 may promote atherosclerosis progression via modulating the imbalance in the Treg/Th17 ratio.
Collapse
Affiliation(s)
- Jia-wang Ding
- Department of Cardiology, the First College of Clinical Medical Sciences, China Three Gorges University, Hubei Province, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Hubei Province, China
| | - Xia-xia Zheng
- Department of Cardiology, the First College of Clinical Medical Sciences, China Three Gorges University, Hubei Province, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Hubei Province, China
| | - Tian Zhou
- Department of Cardiology, the First College of Clinical Medical Sciences, China Three Gorges University, Hubei Province, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Hubei Province, China
| | - Xiao-hong Tong
- Department of Cardiology, the First College of Clinical Medical Sciences, China Three Gorges University, Hubei Province, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Hubei Province, China
| | - Cai-yun Luo
- Department of Cardiology, the First College of Clinical Medical Sciences, China Three Gorges University, Hubei Province, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Hubei Province, China
| | - Xin-an Wang
- Department of Cardiology, the First College of Clinical Medical Sciences, China Three Gorges University, Hubei Province, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Hubei Province, China
| |
Collapse
|
19
|
Hirata KI. [Programs for Continuing Medical Education: B session; 1. Pathogenesis of atherosclerosis and an approach to reduce cardiovascular events]. NIHON NAIKA GAKKAI ZASSHI. THE JOURNAL OF THE JAPANESE SOCIETY OF INTERNAL MEDICINE 2016; 105:471-476. [PMID: 27319195 DOI: 10.2169/naika.105.471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
|
20
|
Yamashita T, Sasaki N, Kasahara K, Hirata KI. Anti-inflammatory and immune-modulatory therapies for preventing atherosclerotic cardiovascular disease. J Cardiol 2015; 66:1-8. [DOI: 10.1016/j.jjcc.2015.02.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 01/31/2015] [Indexed: 12/28/2022]
|
21
|
Yang WY, Shao Y, Lopez-Pastrana J, Mai J, Wang H, Yang XF. Pathological conditions re-shape physiological Tregs into pathological Tregs. BURNS & TRAUMA 2015; 3. [PMID: 26623425 PMCID: PMC4662545 DOI: 10.1186/s41038-015-0001-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CD4+FOXP3+ regulatory T cells (Tregs) are a subset of CD4 T cells that play an essential role in maintaining peripheral immune tolerance, controlling acute and chronic inflammation, allergy, autoimmune diseases, and anti-cancer immune responses. Over the past 20 years, significant progress has been made since Tregs were first characterized in 1995. Many concepts and principles regarding Tregs generation, phenotypic features, subsets (tTregs, pTregs, iTregs, and iTreg35), tissue specificity (central Tregs, effector Tregs, and tissue resident Tregs), homeostasis (highly dynamic and apoptotic), regulation of Tregs by receptors for PAMPs and DAMPs, Treg plasticity (re-differentiation to other CD4 T helper cell subsets, Th1, Th2, Tfh and Th17), and epigenetic regulation of Tregs phenotypes and functions have been innovated. In this concise review, we want to briefly analyze these eight new progresses in the study of Tregs. We have also proposed for the first time a novel concept that "physiological Tregs" have been re-shaped into "pathological Tregs" in various pathological environments. Continuing of the improvement in our understanding on this important cellular component about the immune tolerance and immune suppression, would lead to the future development of novel therapeutics approaches for acute and chronic inflammatory diseases, allergy, allogeneic transplantation-related immunity, sepsis, autoimmune diseases, and cancers.
Collapse
Affiliation(s)
- William Y Yang
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, U.S.A
| | - Ying Shao
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, U.S.A
| | - Jahaira Lopez-Pastrana
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, U.S.A
| | - Jietang Mai
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, U.S.A
| | - Hong Wang
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, U.S.A
| | - Xiao-Feng Yang
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, U.S.A ; Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA 19140, U.S.A
| |
Collapse
|
22
|
Yodoi K, Yamashita T, Sasaki N, Kasahara K, Emoto T, Matsumoto T, Kita T, Sasaki Y, Mizoguchi T, Sparwasser T, Hirata KI. Foxp3
+
Regulatory T Cells Play a Protective Role in Angiotensin II–Induced Aortic Aneurysm Formation in Mice. Hypertension 2015; 65:889-95. [DOI: 10.1161/hypertensionaha.114.04934] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although regulatory T cells (Tregs) have been shown to play a protective role in abdominal aortic aneurysm (AAA) formation, it remains unclear whether expansion of endogenous Foxp3
+
Tregs prevents AAA. In the current study, we determined the effects of endogenous Foxp3
+
Treg expansion or depletion in an experimental model of AAA. We continuously infused 12-week-old apolipoprotein E–deficient mice fed a high-cholesterol diet with angiotensin II (n=60) or normal saline (n=12) by implanting osmotic mini-pumps and evaluated AAA formation at 16 weeks. The angiotensin II–infused mice received interleukin-2/anti–interleukin-2 monoclonal antibody complex (interleukin-2 complex; n=31) or PBS (n=29). Eighty-one percent of angiotensin II–infused mice developed AAA, with 42% mortality possibly because of aneurysm rupture. Interleukin-2 complex treatment systemically increased the number of Foxp3
+
Tregs and significantly decreased the incidence (52%) and mortality (17%) of AAA. Immunohistochemical analysis showed reduced accumulation of macrophages and increased numbers of Foxp3
+
Tregs in aneurysmal tissues, suggesting that expansion of Tregs may suppress local inflammation in the vessel wall and provide protection against AAA formation. Furthermore, genetic depletion of Foxp3
+
Tregs led to a significant increase in the mortality of AAA, suggesting the protective role of Foxp3
+
Tregs against AAA. Our findings suggest that Foxp3
+
Tregs may play a protective role in AAA formation and that promotion of an endogenous regulatory immune response may be a potentially valuable therapeutic approach for preventing AAA.
Collapse
Affiliation(s)
- Keiko Yodoi
- From the Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan (K.Y., T.Y., N.S., K.K., T.E., T.M., T.K., Y.S., T.M., K.-i.H.); and Institute of Infection Immunology, TWINCORE, Center for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany (T.S.)
| | - Tomoya Yamashita
- From the Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan (K.Y., T.Y., N.S., K.K., T.E., T.M., T.K., Y.S., T.M., K.-i.H.); and Institute of Infection Immunology, TWINCORE, Center for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany (T.S.)
| | - Naoto Sasaki
- From the Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan (K.Y., T.Y., N.S., K.K., T.E., T.M., T.K., Y.S., T.M., K.-i.H.); and Institute of Infection Immunology, TWINCORE, Center for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany (T.S.)
| | - Kazuyuki Kasahara
- From the Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan (K.Y., T.Y., N.S., K.K., T.E., T.M., T.K., Y.S., T.M., K.-i.H.); and Institute of Infection Immunology, TWINCORE, Center for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany (T.S.)
| | - Takuo Emoto
- From the Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan (K.Y., T.Y., N.S., K.K., T.E., T.M., T.K., Y.S., T.M., K.-i.H.); and Institute of Infection Immunology, TWINCORE, Center for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany (T.S.)
| | - Takuya Matsumoto
- From the Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan (K.Y., T.Y., N.S., K.K., T.E., T.M., T.K., Y.S., T.M., K.-i.H.); and Institute of Infection Immunology, TWINCORE, Center for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany (T.S.)
| | - Tomoyuki Kita
- From the Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan (K.Y., T.Y., N.S., K.K., T.E., T.M., T.K., Y.S., T.M., K.-i.H.); and Institute of Infection Immunology, TWINCORE, Center for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany (T.S.)
| | - Yoshihiro Sasaki
- From the Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan (K.Y., T.Y., N.S., K.K., T.E., T.M., T.K., Y.S., T.M., K.-i.H.); and Institute of Infection Immunology, TWINCORE, Center for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany (T.S.)
| | - Taiji Mizoguchi
- From the Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan (K.Y., T.Y., N.S., K.K., T.E., T.M., T.K., Y.S., T.M., K.-i.H.); and Institute of Infection Immunology, TWINCORE, Center for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany (T.S.)
| | - Tim Sparwasser
- From the Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan (K.Y., T.Y., N.S., K.K., T.E., T.M., T.K., Y.S., T.M., K.-i.H.); and Institute of Infection Immunology, TWINCORE, Center for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany (T.S.)
| | - Ken-ichi Hirata
- From the Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan (K.Y., T.Y., N.S., K.K., T.E., T.M., T.K., Y.S., T.M., K.-i.H.); and Institute of Infection Immunology, TWINCORE, Center for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany (T.S.)
| |
Collapse
|
23
|
Harada E, D'Alessandro-Gabazza CN, Toda M, Morizono T, Chelakkot-Govindalayathil AL, Roeen Z, Urawa M, Yasuma T, Yano Y, Sumiya T, Gabazza EC. Amelioration of Atherosclerosis by the New Medicinal Mushroom Grifola gargal Singer. J Med Food 2015; 18:872-81. [PMID: 25799023 DOI: 10.1089/jmf.2014.3315] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The beneficial effects of edible mushrooms for improving chronic intractable diseases have been documented. However, the antiatherogenic activity of the new medicinal mushroom Grifola gargal is unknown. Therefore, we evaluated whether Grifola gargal can prevent or delay the progression of atherosclerosis. Atherosclerosis was induced in ApoE lipoprotein-deficient mice by subcutaneous infusion of angiotensin II. Grifola gargal extract (GGE) was prepared and intraperitoneally injected. The weight of heart and vessels, dilatation/atheroma formation of thoracic and abdominal aorta, the percentage of peripheral granulocytes, and the blood concentration of MCP-1/CCL2 were significantly reduced in mice treated with GGE compared to untreated mice. By contrast, the percentage of regulatory T cells and the plasma concentration of SDF-1/CXCL12 were significantly increased in mice treated with the mushroom extract compared to untreated mice. In vitro, GGE significantly increased the secretion of SDF-1/CXCL12, VEGF, and TGF-β1 from fibroblasts compared to control. This study demonstrated for the first time that Grifola gargal therapy can enhance regulatory T cells and ameliorate atherosclerosis in mice.
Collapse
Affiliation(s)
- Etsuko Harada
- 1 Department of Immunology, Mie University Graduate School of Medicine , Tsu, Japan .,2 Iwade Research Institute of Mycology , Tsu, Japan
| | | | - Masaaki Toda
- 1 Department of Immunology, Mie University Graduate School of Medicine , Tsu, Japan
| | | | | | - Ziaurahman Roeen
- 1 Department of Immunology, Mie University Graduate School of Medicine , Tsu, Japan
| | - Masahito Urawa
- 3 Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine , Tsu, Japan
| | - Taro Yasuma
- 4 Department of Diabetes, Metabolism and Endocrinology, Mie University Graduate School of Medicine , Tsu, Japan
| | - Yutaka Yano
- 4 Department of Diabetes, Metabolism and Endocrinology, Mie University Graduate School of Medicine , Tsu, Japan
| | | | - Esteban C Gabazza
- 1 Department of Immunology, Mie University Graduate School of Medicine , Tsu, Japan
| |
Collapse
|
24
|
Heterogeneity of Tregs and the complexity in the IL-12 cytokine family signaling in driving T-cell immune responses in atherosclerotic vessels. Mol Immunol 2015; 65:133-8. [PMID: 25659084 DOI: 10.1016/j.molimm.2015.01.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 01/14/2015] [Accepted: 01/15/2015] [Indexed: 01/03/2023]
Abstract
The importance of immune inflammation in the development and progression of atherosclerotic lesions is well recognized. Accumulated evidence shows striking features of heterogeneity of regulatory T cells (Tregs) and the importance of the IL-12 cytokine family in regulation of Tregs in atherogenesis. The present review briefly summarized the current knowledge about the impact of the IL-12 cytokine family in regulation of immune processes in atherogenesis.
Collapse
|
25
|
Lopez-Pastrana J, Shao Y, Chernaya V, Wang H, Yang XF. Epigenetic enzymes are the therapeutic targets for CD4(+)CD25(+/high)Foxp3(+) regulatory T cells. Transl Res 2015; 165:221-40. [PMID: 25193380 PMCID: PMC4259825 DOI: 10.1016/j.trsl.2014.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 07/15/2014] [Accepted: 08/11/2014] [Indexed: 02/08/2023]
Abstract
CD4(+)CD25(+/high)Foxp3(+) regulatory T (Treg) cells are a subset of CD4(+) T cells that play an essential role in maintaining peripheral immune tolerance. Several transcriptional cofactors have been recently identified, which form complexes with transcription factor Foxp3 of Treg cells and contribute in the suppressive function of Treg cells. However, Foxp3 is still defined as a "master" (multiple pathway) regulator gene that controls the development and stability of Treg cells. Because of its importance, the regulatory mechanisms underlying Foxp3 expression have been a focus of intensive investigation. Recent progress suggests that the epigenetic mechanisms responsible for regulating the Foxp3 gene expression are key components of suppressive activity of Treg cells. This review not only discusses the basic concepts of biology and epigenetic modifications of Treg cells, but also analyzes the translational clinical aspect of epigenetic modifications of Treg cells, focusing on several ongoing clinical trials and the Food and Drugs administration (FDA) approved epigenetic-based drugs. The new progress in identifying epigenetic enzymes functional in Treg cells is a new target for the development of novel therapeutic approaches for autoimmune and inflammatory diseases, graft-vs-host disease and cancers.
Collapse
Affiliation(s)
- Jahaira Lopez-Pastrana
- Centers for Metabolic Disease Research and Cardiovascular Research, Temple University School of Medicine, Philadelphia, Penn
| | - Ying Shao
- Centers for Metabolic Disease Research and Cardiovascular Research, Temple University School of Medicine, Philadelphia, Penn
| | - Valeria Chernaya
- Centers for Metabolic Disease Research and Cardiovascular Research, Temple University School of Medicine, Philadelphia, Penn
| | - Hong Wang
- Centers for Metabolic Disease Research and Cardiovascular Research, Temple University School of Medicine, Philadelphia, Penn
| | - Xiao-Feng Yang
- Centers for Metabolic Disease Research and Cardiovascular Research, Temple University School of Medicine, Philadelphia, Penn; Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Penn.
| |
Collapse
|
26
|
Wang ZX, Wang CQ, Li XY, Ding Y, Feng GK, Jiang XJ. Changes of Naturally Occurring CD4 +CD25 + FOXP3 + Regulatory T Cells in Patients With Acute Coronary Syndrome and the Beneficial Effects of Atorvastatin Treatment. Int Heart J 2015; 56:163-9. [DOI: 10.1536/ihj.14-245] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Zhi Xiao Wang
- Department of Cardiology, Renmin Hospital of Wuhan University
| | - Chong Quan Wang
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine
| | - Xiao Yan Li
- Department of Cardiology, Renmin Hospital of Wuhan University
| | - Yan Ding
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine
| | - Gao Ke Feng
- Department of Cardiology, Renmin Hospital of Wuhan University
| | - Xue Jun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University
| |
Collapse
|
27
|
Cao Q, Wang X, Jia L, Mondal AK, Diallo A, Hawkins GA, Das SK, Parks JS, Yu L, Shi H, Shi H, Xue B. Inhibiting DNA Methylation by 5-Aza-2'-deoxycytidine ameliorates atherosclerosis through suppressing macrophage inflammation. Endocrinology 2014; 155:4925-38. [PMID: 25251587 PMCID: PMC4239421 DOI: 10.1210/en.2014-1595] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Inflammation marks all stages of atherogenesis. DNA hypermethylation in the whole genome or specific genes is associated with inflammation and cardiovascular diseases. Therefore, we aimed to study whether inhibiting DNA methylation by DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-aza-dC) ameliorates atherosclerosis in low-density lipoprotein receptor knockout (Ldlr(-/-)) mice. Ldlr(-/-) mice were fed an atherogenic diet and adminisered saline or 5-aza-dC (0.25 mg/kg) for up to 30 weeks. 5-aza-dC treatment markedly decreased atherosclerosis development in Ldlr(-/-) mice without changes in body weight, plasma lipid profile, macrophage cholesterol levels and plaque lipid content. Instead, this effect was associated with decreased macrophage inflammation. Macrophages with 5-aza-dC treatment had downregulated expression of genes involved in inflammation (TNF-α, IL-6, IL-1β, and inducible nitric oxidase) and chemotaxis (CD62/L-selectin, chemokine [C-C motif] ligand 2/MCP-1 [CCL2/MCP-1], CCL5, CCL9, and CCL2 receptor CCR2). This resulted in attenuated macrophage migration and adhesion to endothelial cells and reduced macrophage infiltration into atherosclerotic plaques. 5-aza-dC also suppressed macrophage endoplasmic reticulum stress, a key upstream signal that activates macrophage inflammation and apoptotic pathways. Finally, 5-aza-dC demethylated liver X receptor α (LXRα) and peroxisome proliferator-activated receptor γ1 (PPARγ1) promoters, which are both enriched with CpG sites. This led to overexpression of LXRα and PPARγ, which may be responsible for 5-aza-dC's anti-inflammatory and atheroprotective effect. Our findings provide strong evidence that DNA methylation may play a significant role in cardiovascular diseases and serve as a therapeutic target for prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Qiang Cao
- Department of Biology and Center for Obesity Reversal (Q.C., H.S., B.X.), Georgia State University, Atlanta, Georgia; Departments of Internal Medicine (Q.C., X.W., A.K.M., A.D., G.A.H., S.K.D., H.S., B.X.) and Pathology (J.S.P.), Wake Forest School of Medicine, Winston-Salem, North Carolina; Department of Internal Medicine (L.J.), University of Texas, Southwestern Medical Center, Dallas, Texas; Department of Animal and Avian Sciences (L.Y.), University of Maryland, College Park, Maryland; and Department of Biochemistry and Molecular Biology (H.S.), Georgia Regents University, Augusta, Georgia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Emoto T, Sasaki N, Yamashita T, Kasahara K, Yodoi K, Sasaki Y, Matsumoto T, Mizoguchi T, Hirata KI. Regulatory/effector T-cell ratio is reduced in coronary artery disease. Circ J 2014; 78:2935-41. [PMID: 25327882 DOI: 10.1253/circj.cj-14-0644] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The protective function of regulatory T cells (Treg) has been identified in experimental atherosclerosis, but the contribution of Treg to the pathogenesis of human coronary artery disease (CAD) remains poorly understood. We investigated Treg and regulatory T-cell/effector T-cell (Treg/Teff) ratio in peripheral blood samples from CAD patients using a new strategy for precise identification of Treg. METHODS AND RESULTS: Peripheral blood samples were collected from 73 stable CAD patients (55 middle-aged CAD patients and 18 old CAD patients) and 64 controls (47 middle-aged controls and 17 young controls). CD3(+)CD4(+)FoxP3(+)T cells were divided into 3 fractions: CD45RA(+)FoxP3(low)resting Treg(Fr1), CD45RA(-)FoxP3(high)activated Treg(Fr2), and CD45RA(-)FoxP3(low)non-Treg(Fr3). CAD patients had lower percentages of Fr1 and Fr2 and higher percentages of Fr3 and CD45RA(-)Foxp3(-)Teff(Fr4+5) within the CD3(+)CD4(+)T-cell population compared to age-matched controls. Treg/Teff ratio (Fr1+2/Fr3+4+5) in CAD patients was also markedly lower than in controls (middle-aged control, 0.17±0.09 vs. middle-aged CAD, 0.10±0.05; P<0.001). The percentage of CD4(+)CD28(null)T cells within the CD4(+)T-cell population was negatively correlated with Treg/Teff ratio, excluding CD4(+)CD28(null)T cells <0.3% (r=-0.27, P<0.05). High-sensitivity C-reactive protein was also negatively correlated with Treg/Teff ratio (r=-0.22, P<0.05). CONCLUSIONS CAD patients had reduced Treg and Treg/Teff ratio compared to healthy controls. The present findings may be helpful when developing immunotherapy for the prevention of CAD.
Collapse
Affiliation(s)
- Takuo Emoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kasahara K, Sasaki N, Yamashita T, Kita T, Yodoi K, Sasaki Y, Takeda M, Hirata KI. CD3 antibody and IL-2 complex combination therapy inhibits atherosclerosis by augmenting a regulatory immune response. J Am Heart Assoc 2014; 3:e000719. [PMID: 24755152 PMCID: PMC4187475 DOI: 10.1161/jaha.113.000719] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Accumulating evidence suggests that the balance between pathogenic effector T cells (Teffs) and regulatory T cells (Tregs) may be important for controlling atherosclerotic disease. We hypothesized that a combination therapy with anti‐CD3 antibody (CD3‐Ab) and IL‐2/anti‐IL‐2 monoclonal antibody complex (IL‐2 complex) aimed at increasing the ratio of Tregs to Teffs would effectively inhibit atherosclerosis in mice. Methods and Results We treated apolipoprotein E‐deficient mice fed a high‐cholesterol diet with vehicle, CD3‐Ab, IL‐2 complex, or their combination. Mice receiving the combination therapy had markedly reduced atherosclerotic lesions than mice treated with CD3‐Ab or IL‐2 complex alone. In addition, a striking increase in the Treg/Teff ratio of lymphoid organs and atherosclerotic lesions, along with plaque stabilization characterized by decreased macrophage content and increased collagen content was observed. The combination treatment also markedly reduced splenic Ly6Chigh inflammatory monocytes and might induce a favorable macrophage phenotype change in atherosclerotic lesions. Conclusions Our results indicate that in addition to suppressing Teff responses, enhancing Treg‐mediated immune responses is more efficacious in preventing atherosclerosis, suggesting a novel therapeutic approach for atherosclerosis.
Collapse
Affiliation(s)
- Kazuyuki Kasahara
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Hagiwara M, Kurita-Ochiai T, Kobayashi R, Hashizume-Takizawa T, Yamazaki K, Yamamoto M. Sublingual Vaccine with GroEL Attenuates Atherosclerosis. J Dent Res 2014; 93:382-7. [DOI: 10.1177/0022034514523784] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Autoimmune responses to heat-shock protein 60 (HSP60) contribute to the progression of atherosclerosis, whereas immunization with HSP60 may induce atheroprotective responses. We assessed the capacity of an atheroprotective vaccine that targeted a recombinant HSP60 from Porphyromonas gingivalis (rGroEL) to induce a protective mucosal immune response. Female apolipoprotein E-deficient spontaneously hyperlipidemic (Apoeshl) mice received sublingual delivery of rGroEL prior to P. gingivalis 381 injection. The animals were euthanized 16 weeks later. Sublingual immunization with rGroEL induced significant rGroEL-specific serum IgG responses. Antigen-specific cells isolated from spleen produced significantly high levels of IL-10 and IFN-γ after antigen re-stimulation in vitro. Flow cytometric analysis indicated that the frequencies of both IL-10+ and IFN-γ+ CD4+ Foxp3+ cells increased significantly in submandibular glands (SMG). Furthermore, sublingual immunization with rGroEL significantly reduced atherosclerosis lesion formation in the aortic sinus and decreased serum CRP, MCP-1, and ox-LDL levels. These findings suggest that sublingual immunization with rGroEL is associated with the increase of IFNγ+ or IL-10+ Foxp3+ cells in SMG and a systemic humoral response, which could be an effective strategy for the prevention of naturally occurring or P. gingivalis-accelerated atherosclerosis.
Collapse
Affiliation(s)
| | - T. Kurita-Ochiai
- Department of Microbiology and Immunology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - R. Kobayashi
- Department of Microbiology and Immunology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - T. Hashizume-Takizawa
- Department of Microbiology and Immunology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - K. Yamazaki
- Laboratory of Periodontology and Immunology, Division of Oral Science of Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - M. Yamamoto
- Department of Microbiology and Immunology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| |
Collapse
|
31
|
Kita T, Yamashita T, Sasaki N, Kasahara K, Sasaki Y, Yodoi K, Takeda M, Nakajima K, Hirata KI. Regression of atherosclerosis with anti-CD3 antibody via augmenting a regulatory T-cell response in mice. Cardiovasc Res 2014; 102:107-17. [PMID: 24403315 DOI: 10.1093/cvr/cvu002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
AIMS Although recent animal studies have investigated the cellular and molecular mechanisms underlying the process of atherosclerosis regression, it remains unknown whether adaptive immune responses including T cells are involved in this process. We investigated the role of T cells in atherosclerosis regression. METHODS AND RESULTS LDL receptor-deficient mice were fed a high-cholesterol diet for 8 weeks to form atherosclerotic lesions and were then changed to a standard diet, and atherosclerosis was assessed 4 weeks later. Just before changing the diet, the mice received an iv injection of anti-CD3 antibody (CD3-Ab) or control immunoglobulin G for 5 consecutive days. CD3-Ab treatment regressed atherosclerosis and decreased the accumulation of macrophages and CD4(+) T cells in the plaques. CD3-Ab treatment also dramatically reduced CD4(+) T cells and increased the proportion of regulatory T cells (Tregs). Depletion of Tregs by anti-CD25 antibody injection abolished the regression of atherosclerosis seen in CD3-Ab-treated mice, indicating the essential role for Tregs in this process. CONCLUSION CD3-Ab treatment induced rapid regression of established atherosclerosis via reducing CD4(+) T cells and increasing the proportion of Tregs. These findings suggest that therapeutic intervention for T-cell-mediated immune responses may represent a novel strategy to induce atherosclerosis regression in combination with lipid-lowering therapy.
Collapse
Affiliation(s)
- Tomoyuki Kita
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wang S, Ni B, Chen K, Shi S. Influences of cerebral stent implantation on CD4+CD25+FOXP3+Treg, Th1 and Th17 cells. Int Immunopharmacol 2013; 17:519-25. [DOI: 10.1016/j.intimp.2013.07.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/31/2013] [Accepted: 07/31/2013] [Indexed: 12/21/2022]
|
33
|
Olson NC, Doyle MF, Jenny NS, Huber SA, Psaty BM, Kronmal RA, Tracy RP. Decreased naive and increased memory CD4(+) T cells are associated with subclinical atherosclerosis: the multi-ethnic study of atherosclerosis. PLoS One 2013; 8:e71498. [PMID: 24009662 PMCID: PMC3751895 DOI: 10.1371/journal.pone.0071498] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 07/01/2013] [Indexed: 12/30/2022] Open
Abstract
Background Adaptive immunity has been implicated in atherosclerosis in animal models and small clinical studies. Whether chronic immune activation is associated with atherosclerosis in otherwise healthy individuals remains underexplored. We hypothesized that activation of adaptive immune responses, as reflected by higher proportions of circulating CD4+ memory cells and lower proportions of naive cells, would be associated with subclinical atherosclerosis. Methods and Findings We examined cross-sectional relationships of circulating CD4+ naive and memory T cells with biomarkers of inflammation, serologies, and subclinical atherosclerosis in 912 participants of the Multi-Ethnic Study of Atherosclerosis (MESA). Circulating CD4+ naive cells were higher in women than men and decreased with age (all p-values <0.0001). European-Americans had higher levels of naive cells and lower levels of memory cells compared with African-Americans and Hispanic-Americans (all p-values ≤0.0005). Lower naive/higher memory cells were associated with interleukin-6 levels. In multivariate models, cytomegalovirus (CMV) and H. Pylori titers were strongly associated with higher memory and lower naive cells (all p-values <0.05). Higher memory cells were associated with coronary artery calcification (CAC) level in the overall population [β-Coefficient (95% confidence interval (CI)) = 0.20 (0.03, 0.37)]. Memory and naive (inversely) cells were associated with common carotid artery intimal media thickness (CC IMT) in European-Americans [memory: β = 0.02 (0.006, 0.04); naive: β = −0.02 (−0.004, −0.03)]. Conclusions These results demonstrate that the degree of chronic adaptive immune activation is associated with both CAC and CC IMT in otherwise healthy individuals, consistent with the known role of CD4+ T cells, and with innate immunity (inflammation), in atherosclerosis. These data are also consistent with the hypothesis that immunosenescence accelerates chronic diseases by putting a greater burden on the innate immune system, and suggest the importance of prospective studies and research into strategies to modulate adaptive immune activation in chronic disease states such as atherosclerosis.
Collapse
Affiliation(s)
- Nels C. Olson
- Department of Pathology, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Margaret F. Doyle
- Department of Pathology, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Nancy Swords Jenny
- Department of Pathology, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Sally A. Huber
- Department of Pathology, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Bruce M. Psaty
- Departments of Medicine, Epidemiology and Health Sciences, Cardiovascular Health Research Unit, University of Washington, Seattle, Washington, United States of America
- Group Health Research Institute, Group Health Cooperative, Seattle, Washington, United States of America
| | - Richard A. Kronmal
- Collaborative Health Studies Coordinating Center, Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Russell P. Tracy
- Department of Pathology, University of Vermont College of Medicine, Burlington, Vermont, United States of America
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont, United States of America
- * E-mail:
| |
Collapse
|
34
|
Olson NC, Sallam R, Doyle MF, Tracy RP, Huber SA. T helper cell polarization in healthy people: implications for cardiovascular disease. J Cardiovasc Transl Res 2013; 6:772-86. [PMID: 23921946 DOI: 10.1007/s12265-013-9496-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 06/25/2013] [Indexed: 12/13/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by T lymphocyte infiltration into the atherosclerotic plaque. Assessments of T cell subtypes have demonstrated a predominance of CD4(+) T helper (Th) cells, implicated Th1 and Th17 immunity in both human and mouse atherogenesis, and provided some evidence suggesting protective roles of Th2 and T regulatory cells. Observations that certain inbred mouse strains have an inherent T helper bias suggest a genetic predisposition toward developing a particular T helper phenotype. This review summarizes our current understanding of mechanisms of antigen processing for major histocompatibility complex molecules, describes the different T helper cell subsets and their roles in atherosclerosis, and discusses mechanisms of genetic predisposition toward Th1/Th2 bias in mice. We also present data from our laboratory demonstrating inherent Th1/Th2 phenotypes in apparently healthy human volunteers that are stable over time and discuss the potential implications for cardiovascular disease.
Collapse
Affiliation(s)
- Nels C Olson
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT, USA,
| | | | | | | | | |
Collapse
|
35
|
Pastrana JL, Sha X, Virtue A, Mai J, Cueto R, Lee IA, Wang H, Yang XF. Regulatory T cells and Atherosclerosis. ACTA ACUST UNITED AC 2013; 2012:2. [PMID: 23997979 DOI: 10.4172/2155-9880.s12-002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Atherosclerosis is a chronic autoimmune inflammatory disease. The involvement of both innate and adaptive immune responses in the pathogenesis of the disease has been well recognized. Tregs are an essential part of the immune system and have indispensable functions in maintaining immune system homeostasis, mediating peripheral tolerance, preventing autoimmune diseases, and suppressing inflammatory and proatherogenic immune response. Tregs carry out their immunosuppressive functions via several mechansims. One of the well-documented suppressive mechanisms of Tregs is the secretion of anti-inflammatory cytokines including IL-10, TGF-β, and IL-35. Studies have found that IL-10 and TGF-β have atheroprotective properties. In addition, Tregs can suppress the activity of proatherogenic effector T cells, suggesting an atheroprotective role. In fact, fewer Tregs are found in atherogenic ApoE-/- mice comparing to wild-type mice, suggesting an uncontrolled balance between weakened Tregs and effector T cells in atherogenesis. Some clinical studies of autoimmune diseases also suggest that decreased Tregs numbers are associated with increased disease activity. The importance of Tregs in many autoimmune diseases and experimental atherosclerosis has been established in in vivo and in vitro studies. However, the roles of Tregs in atherosclerosis in the clinical setting remains to be further characterized.
Collapse
Affiliation(s)
- Jahaira Lopez Pastrana
- Cardiovascular Research Center, Department of Pharmacology and Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA 19140
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Review: Preeclampsia, acute atherosis of the spiral arteries and future cardiovascular disease: two new hypotheses. Placenta 2012; 34 Suppl:S73-8. [PMID: 23246096 DOI: 10.1016/j.placenta.2012.11.022] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 11/18/2012] [Accepted: 11/21/2012] [Indexed: 11/23/2022]
Abstract
Preeclampsia is a serious complication of pregnancy, potentially lethal for women and offspring. Affected women have an augmented risk of later cardiovascular disease and premature death and may have risk factors in common with older persons developing cardiovascular disease. In some cases of preeclampsia, lipid-filled foam cells accumulate in the walls of the spiral arteries of the uteroplacental circulation (acute atherosis). These lesions resemble the early stages of atherosclerosis and are thought to regress after delivery. The mechanisms that contribute to acute atherosis are largely unknown, but are related to defective vascular remodeling of the spiral arteries in the first half of pregnancy. Spiral artery lipid deposition may also occur in normal pregnancies, which suggests that it may not be confined exclusively to maladapted spiral arteries or caused by hypertension. Our first hypothesis is that there are several pathways to the development of acute atherosis, which converge at the point of excessive decidual inflammation in the final common pathway. Our second hypothesis is that acute atherosis, evolving during the short time of pregnancy, identifies a subset of women at augmented risk for atherosclerosis and later chronic arterial disease better than the diagnosis of preeclampsia itself. If confirmed, this may enable better preventive management for the affected women.
Collapse
|
37
|
Regulation of collateral blood vessel development by the innate and adaptive immune system. Trends Mol Med 2012; 18:494-501. [PMID: 22818027 DOI: 10.1016/j.molmed.2012.06.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/11/2012] [Accepted: 06/15/2012] [Indexed: 12/21/2022]
|