1
|
Singh H, Mishra AK, Mohanto S, Kumar A, Mishra A, Amin R, Darwin CR, Emran TB. A recent update on the connection between dietary phytochemicals and skin cancer: emerging understanding of the molecular mechanism. Ann Med Surg (Lond) 2024; 86:5877-5913. [PMID: 39359831 PMCID: PMC11444613 DOI: 10.1097/ms9.0000000000002392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/08/2024] [Indexed: 10/04/2024] Open
Abstract
Constant exposure to harmful substances from both inside and outside the body can mess up the body's natural ways of keeping itself in balance. This can cause severe skin damage, including basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma. However, plant-derived compounds found in fruits and vegetables have been shown to protect against skin cancer-causing free radicals and other harmful substances. It has been determined that these dietary phytochemicals are effective in preventing skin cancer and are widely available, inexpensive, and well-tolerated. Studies have shown that these phytochemicals possess anti-inflammatory, antioxidant, and antiangiogenic properties that can aid in the prevention of skin cancers. In addition, they influence crucial cellular processes such as angiogenesis and cell cycle control, which can halt the progression of skin cancer. The present paper discusses the benefits of specific dietary phytochemicals found in fruits and vegetables, as well as the signaling pathways they regulate, the molecular mechanisms involved in the prevention of skin cancer, and their drawbacks.
Collapse
Affiliation(s)
- Harpreet Singh
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh
| | | | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka
| | - Arvind Kumar
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh
| | - Amrita Mishra
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi
| | - Ruhul Amin
- Faculty of Pharmaceutical Science, Assam downtown University, Panikhaiti, Gandhinagar, Guwahati, Assam
| | | | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
2
|
Jacquier EF, Kassis A, Marcu D, Contractor N, Hong J, Hu C, Kuehn M, Lenderink C, Rajgopal A. Phytonutrients in the promotion of healthspan: a new perspective. Front Nutr 2024; 11:1409339. [PMID: 39070259 PMCID: PMC11272662 DOI: 10.3389/fnut.2024.1409339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/12/2024] [Indexed: 07/30/2024] Open
Abstract
Considering a growing, aging population, the need for interventions to improve the healthspan in aging are tantamount. Diet and nutrition are important determinants of the aging trajectory. Plant-based diets that provide bioactive phytonutrients may contribute to offsetting hallmarks of aging and reducing the risk of chronic disease. Researchers now advocate moving toward a positive model of aging which focuses on the preservation of functional abilities, rather than an emphasis on the absence of disease. This narrative review discusses the modulatory effect of nutrition on aging, with an emphasis on promising phytonutrients, and their potential to influence cellular, organ and functional parameters in aging. The literature is discussed against the backdrop of a recent conceptual framework which describes vitality, intrinsic capacity and expressed capacities in aging. This aims to better elucidate the role of phytonutrients on vitality and intrinsic capacity in aging adults. Such a review contributes to this new scientific perspective-namely-how nutrition might help to preserve functional abilities in aging, rather than purely offsetting the risk of chronic disease.
Collapse
Affiliation(s)
| | | | - Diana Marcu
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Jina Hong
- Amway Innovation and Science, Ada, MI, United States
| | - Chun Hu
- Amway Innovation and Science, Ada, MI, United States
| | - Marissa Kuehn
- Amway Innovation and Science, Ada, MI, United States
| | | | - Arun Rajgopal
- Amway Innovation and Science, Ada, MI, United States
| |
Collapse
|
3
|
Yu X, Chen M, Wu J, Song R. Research progress of SIRTs activator resveratrol and its derivatives in autoimmune diseases. Front Immunol 2024; 15:1390907. [PMID: 38962006 PMCID: PMC11219927 DOI: 10.3389/fimmu.2024.1390907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Autoimmune diseases (AID) have emerged as prominent contributors to disability and mortality worldwide, characterized by intricate pathogenic mechanisms involving genetic, environmental, and autoimmune factors. In response to this challenge, a growing body of research in recent years has delved into genetic modifications, yielding valuable insights into AID prevention and treatment. Sirtuins (SIRTs) constitute a class of NAD-dependent histone deacetylases that orchestrate deacetylation processes, wielding significant regulatory influence over cellular metabolism, oxidative stress, immune response, apoptosis, and aging through epigenetic modifications. Resveratrol, the pioneering activator of the SIRTs family, and its derivatives have captured global scholarly interest. In the context of AID, these compounds hold promise for therapeutic intervention by modulating the SIRTs pathway, impacting immune cell functionality, suppressing the release of inflammatory mediators, and mitigating tissue damage. This review endeavors to explore the potential of resveratrol and its derivatives in AID treatment, elucidating their mechanisms of action and providing a comprehensive analysis of current research advancements and obstacles. Through a thorough examination of existing literature, our objective is to advocate for the utilization of resveratrol and its derivatives in AID treatment while offering crucial insights for the formulation of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Xiaolong Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
- The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - Mingkai Chen
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Jiabiao Wu
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Ruixiao Song
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
- The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
4
|
Najafiyan B, Bokaii Hosseini Z, Esmaelian S, Firuzpour F, Rahimipour Anaraki S, Kalantari L, Hheidari A, Mesgari H, Nabi-Afjadi M. Unveiling the potential effects of resveratrol in lung cancer treatment: Mechanisms and nanoparticle-based drug delivery strategies. Biomed Pharmacother 2024; 172:116207. [PMID: 38295754 DOI: 10.1016/j.biopha.2024.116207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 03/03/2024] Open
Abstract
Lung cancer ranks among the most prevalent forms of cancer and remains a significant factor in cancer-related mortality across the world. It poses significant challenges to healthcare systems and society as a whole due to its high incidence, mortality rates, and late-stage diagnosis. Resveratrol (RV), a natural compound found in various plants, has shown potential as a nanomedicine for lung cancer treatment. RV has varied effects on cancer cells, including promoting apoptosis by increasing pro-apoptotic proteins (Bax and Bak) and decreasing anti-apoptotic proteins (Bcl-2). It also hinders cell proliferation by influencing important signaling pathways (MAPK, mTOR, PI3K/Akt, and Wnt/β-catenin) that govern cancer progression. In addition, RV acts as a potent antioxidant, diminishing oxidative stress and safeguarding cells against DNA damage. However, using RV alone in cancer treatment has drawbacks, such as low bioavailability, lack of targeting ability, and susceptibility to degradation. In contrast, nanoparticle-based delivery systems address these limitations and hold promise for improving treatment outcomes in lung cancer; nanoparticle formulations of RV offer advantages such as improved drug delivery, increased stability, controlled release, and targeted delivery to lung cancer cells. This article will provide an overview of lung cancer, explore the potential of RV as a therapeutic agent, discuss the benefits and challenges of nanoparticle-based drug delivery, and highlight the promise of RV nanoparticles for cancer treatment, including lung cancer. By optimizing these systems for clinical application, future studies aim to enhance overall treatment outcomes and improve the prognosis for lung cancer patients.
Collapse
Affiliation(s)
- Behnam Najafiyan
- Faculty of Pharmacy, Shiraz University of Medical Science, Shiraz, Iran
| | | | - Samar Esmaelian
- Faculty of Dentistry, Islamic Azad University, Tehran Branch, Tehran, Iran
| | - Faezeh Firuzpour
- Student of Research Committee, Babol University of Medical Sciences, Babol, Iran
| | | | - Leila Kalantari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Hheidari
- Department of Mechanical Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Hassan Mesgari
- Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Islamic Azad University, Tehran Branch, Tehran, Iran.
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
5
|
Singh K, Gupta JK, Kumar S. The Pharmacological Potential of Resveratrol in Reducing Soft Tissue Damage in Osteoarthritis Patients. Curr Rheumatol Rev 2024; 20:27-38. [PMID: 37694798 DOI: 10.2174/1573397119666230911113134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/04/2023] [Accepted: 08/13/2023] [Indexed: 09/12/2023]
Abstract
Osteoarthritis is a degenerative joint disease that causes the cartilage and bone underneath the joint to break down. This causes pain and stiffness. Resveratrol, a polyphenolic compound found in various vegetables, fruits, and red wine, has been studied for its beneficial effects on osteoarthritis. Resveratrol has been shown to target a variety of pathways, including the NF-κB, PI3K/Akt, MAPK/ERK, and AMPK pathways. In particular, resveratrol has been studied for its potential use in treating osteoarthritis, and it has been shown to reduce inflammation, reduce cartilage degradation, and improve joint function. In this review, we discuss the evidence for the pharmacological use of resveratrol in minimizing soft tissue damage associated with osteoarthritis. We summarize the studies on how resveratrol has anti-inflammatory, anti-oxidant, and anti-apoptotic effects, as well as effects on cartilage degradation, osteoblast and synoviocyte proliferation, and cytokine production. We also discuss the possible mechanisms of action of resveratrol in osteoarthritis and its potential as a therapeutic agent. Finally, we discuss the potential risks and adverse effects of long-term resveratrol supplementation. Overall, resveratrol has been found to be a possible treatment for osteoarthritis because of its anti-inflammatory, anti-oxidant, and anti-apoptotic properties, and its ability to control the production of enzymes that break down cartilage, osteoblasts, and synoviocytes. Although numerous clinical studies have demonstrated resveratrol's efficacy as an osteoarthritis management agent, further long-term studies are needed to better understand the safety and potential benefits of using resveratrol for osteoarthritis management.
Collapse
Affiliation(s)
- Kuldeep Singh
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Shivendra Kumar
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| |
Collapse
|
6
|
Wang X, Chen H, Song F, Zuo K, Chen X, Zhang X, Liang L, Ta Q, Zhang L, Li J. Resveratrol: a potential medication for the prevention and treatment of varicella zoster virus-induced ischemic stroke. Eur J Med Res 2023; 28:400. [PMID: 37794518 PMCID: PMC10552394 DOI: 10.1186/s40001-023-01291-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/14/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Infection rate of varicella zoster virus (VZV) is 95% in humans, and VZV infection is strongly associated with ischemic stroke (IS). However, the underlying molecular mechanisms of VZV-induced IS are still unclear, and there are no effective agents to treat and prevent VZV-induced IS. OBJECTIVE By integrating bioinformatics, this study explored the interactions between VZV and IS and potential medication to treat and prevent VZV-induced IS. METHODS In this study, the VZV and IS datasets from the GEO database were used to specify the common genes. Then, bioinformatics analysis including Gene Ontology, Kyoto Encyclopedia Genes Genomes and Protein-Protein Interaction network analysis was performed. Further, the hub genes, transcription factor (TF) gene interactions, TF-miRNA co-regulatory network and potential drug were obtained. Finally, validation was performed using molecular docking and molecular dynamics simulations. RESULTS The potential molecular mechanisms of VZV-induced IS were studied using multiple bioinformatics tools. Ten hub genes were COL1A2, DCN, PDGFRB, ACTA2, etc. TF genes and miRNAs included JUN, FOS, CREB, BRCA1, PPARG, STAT3, miR-29, etc. A series of mechanism may be involved, such as inflammation, oxidative stress, blood-brain barrier disruption, foam cell generation and among others. Finally, we proposed resveratrol as a potential therapeutic medicine for the prevention and treatment of VZV-induced IS. Molecular docking and molecular dynamics results showed that resveratrol and hub genes exhibited strong binding score. CONCLUSIONS Resveratrol could be an alternative for the prevention and treatment of VZV-IS. More in vivo and in vitro studies are needed in the future to fully explore the molecular mechanisms between VZV and IS and for medication development.
Collapse
Affiliation(s)
- Xu Wang
- School of Public Health, Jilin University, Changchun, 130021, Jilin, China
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Hao Chen
- Department of Neurovascular Surgery, First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Feiyu Song
- Jilin Connell Pharmaceutical Co., Ltd, JilinJilin, 132013, China
| | - Kuiyang Zuo
- School of Public Health, Jilin University, Changchun, 130021, Jilin, China
| | - Xin Chen
- School of Public Health, Jilin University, Changchun, 130021, Jilin, China
| | - Xu Zhang
- School of Public Health, Jilin University, Changchun, 130021, Jilin, China
| | - Lanqian Liang
- School of Public Health, Jilin University, Changchun, 130021, Jilin, China
| | - Qiyi Ta
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Lin Zhang
- China-Japan Union Hospital of Jilin University, Changchun, 130021, Jilin, China.
| | - Jinhua Li
- School of Public Health, Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
7
|
Kabir T, Yoshiba H, Agista AZ, Sultana H, Ohsaki Y, Yeh CL, Hirakawa R, Tani H, Ikuta T, Nochi T, Yang SC, Shirakawa H. Protective Effects of Gnetin C from Melinjo Seed Extract against High-Fat Diet-Induced Hepatic Steatosis and Liver Fibrosis in NAFLD Mice Model. Nutrients 2023; 15:3888. [PMID: 37764672 PMCID: PMC10538079 DOI: 10.3390/nu15183888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), the most common form of chronic liver disease, can progress to hepatic steatosis, inflammation, and advanced fibrosis, increasing the risk of cirrhosis. Resveratrol, a natural polyphenol with antioxidant and anti-inflammatory properties, is beneficial in treating multiple metabolic diseases. Gnetin C, a resveratrol derivative obtained from Melinjo seed extract (MSE), shares similar health-promoting properties. We investigated the role of gnetin C in preventing NAFLD in a mouse model and compared it with resveratrol. Male C57BL/6J mice were fed a control diet (10% calories from fat), a high-fat choline-deficient (HFCD) diet (46% calories from fat) and HFCD diet supplemented with gnetin C (150 mg/kg BW·day-1) or resveratrol (150 mg/kg BW·day-1) for 12 weeks. Gnetin C supplementation reduced body and liver weight, and improved blood glucose levels and insulin sensitivity. Both gnetin C- and resveratrol reduced hepatic steatosis, with gnetin C also decreasing liver lipid content. Gnetin C and resveratrol ameliorated HFCD diet-induced hepatic fibrosis. The mRNA expression results, and western blot analyses showed that gnetin C and, to some extent, resveratrol downregulated fibrosis markers in the TGF-β1 signaling pathway, indicating a possible safeguarding mechanism against NAFLD. These results suggest that gnetin C supplementation may protect against lipid deposition and hepatic fibrosis.
Collapse
Affiliation(s)
- Tohfa Kabir
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Haruki Yoshiba
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Afifah Zahra Agista
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Halima Sultana
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Yusuke Ohsaki
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Chiu-Li Yeh
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan
| | - Ryota Hirakawa
- Laboratory of Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Hiroko Tani
- Institute for Bee Products and Health Science, Yamada Bee Company, Inc., Okayama 708-0393, Japan
| | - Tomoki Ikuta
- Institute for Bee Products and Health Science, Yamada Bee Company, Inc., Okayama 708-0393, Japan
| | - Tomonori Nochi
- International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Laboratory of Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Suh-Ching Yang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan
| | - Hitoshi Shirakawa
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
8
|
Lv MW, Zhang C, Ge J, Sun XH, Li JY, Li JL. Resveratrol protects against cadmium-induced cerebrum toxicity through modifications of the cytochrome P450 enzyme system in microsomes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37115015 DOI: 10.1002/jsfa.12668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/14/2023]
Abstract
BACKGROUND Cadmium (Cd), known as a vital contaminant in the environment, penetrates the blood-brain barrier and accumulates in the cerebrum. Acute toxicosis of Cd, which leads to lethal cerebral edema, intracellular accumulation and cellular dysfunction, remains to be illuminated with regard to the exact molecular mechanism of cerebral toxicity. Resveratrol (RES), present in the edible portions of numerous plants, is a simply acquirable and correspondingly less toxic natural compound with neuroprotective potential, which provides some theoretical bases for antagonizing Cd-induced cerebral toxicity. RESULTS This work was executed to research the protective effects of RES against Cd-induced toxicity in chicken cerebrum. Markedly, these lesions were increased in the Cd group, which also exhibited a thinner cortex, reduced granule cells, vacuolar degeneration, and an enlarged medullary space in the cerebrum. Furthermore, Cd induced CYP450 enzyme metabolism disorders by disrupting the nuclear xenobiotic receptor response (NXRs), enabling the cerebrum to reduce the ability to metabolize exogenous substances, eventually leading to Cd accumulation. Meanwhile, accumulated Cd promoted oxidative damage and synergistically promoted the damage to neurons and glial cells. CONCLUSION RES initiated NXRs (especially for aromatic receptor and pregnancy alkane X receptor), decreasing the expression of CYP450 genes, changing the content of CYP450, maintaining CYP450 enzyme normal activities, and exerting antagonistic action against the Cd-induced abnormal response of nuclear receptors. These results suggest that the cerebrum toxicity caused by Cd was reduced by pretreatment with RES. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mei-Wei Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - Cong Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China
| | - Xiao-Han Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - Jin-Yang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, PR China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, PR China
| |
Collapse
|
9
|
Kubatka P, Mazurakova A, Koklesova L, Samec M, Sokol J, Samuel SM, Kudela E, Biringer K, Bugos O, Pec M, Link B, Adamkov M, Smejkal K, Büsselberg D, Golubnitschaja O. Antithrombotic and antiplatelet effects of plant-derived compounds: a great utility potential for primary, secondary, and tertiary care in the framework of 3P medicine. EPMA J 2022; 13:407-431. [PMID: 35990779 PMCID: PMC9376584 DOI: 10.1007/s13167-022-00293-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 12/29/2022]
Abstract
Thromboembolism is the third leading vascular disease, with a high annual incidence of 1 to 2 cases per 1000 individuals within the general population. The broader term venous thromboembolism generally refers to deep vein thrombosis, pulmonary embolism, and/or a combination of both. Therefore, thromboembolism can affect both - the central and peripheral veins. Arterial thromboembolism causes systemic ischemia by disturbing blood flow and oxygen supply to organs, tissues, and cells causing, therefore, apoptosis and/or necrosis in the affected tissues. Currently applied antithrombotic drugs used, e.g. to protect affected individuals against ischemic stroke, demonstrate significant limitations. For example, platelet inhibitors possess only moderate efficacy. On the other hand, thrombolytics and anticoagulants significantly increase hemorrhage. Contextually, new approaches are extensively under consideration to develop next-generation antithrombotics with improved efficacy and more personalized and targeted application. To this end, phytochemicals show potent antithrombotic efficacy demonstrated in numerous in vitro, ex vivo, and in vivo models as well as in clinical evaluations conducted on healthy individuals and persons at high risk of thrombotic events, such as pregnant women (primary care), cancer, and COVID-19-affected patients (secondary and tertiary care). Here, we hypothesized that specific antithrombotic and antiplatelet effects of plant-derived compounds might be of great clinical utility in primary, secondary, and tertiary care. To increase the efficacy, precise patient stratification based on predictive diagnostics is essential for targeted protection and treatments tailored to the person in the framework of 3P medicine. Contextually, this paper aims at critical review toward the involvement of specific classes of phytochemicals in antiplatelet and anticoagulation adapted to clinical needs. The paper exemplifies selected plant-derived drugs, plant extracts, and whole plant foods/herbs demonstrating their specific antithrombotic, antiplatelet, and fibrinolytic activities relevant for primary, secondary, and tertiary care. One of the examples considered is antithrombotic and antiplatelet protection specifically relevant for COVID-19-affected patient groups.
Collapse
Affiliation(s)
- Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Alena Mazurakova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Marek Samec
- Department of Pathological Physiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Juraj Sokol
- Department of Hematology and Transfusion Medicine, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, 24144 Doha, Qatar
| | - Erik Kudela
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | | | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Barbara Link
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Marian Adamkov
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Karel Smejkal
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, 61200 Brno, Czech Republic
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, 24144 Doha, Qatar
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| |
Collapse
|
10
|
Poór M, Kaci H, Bodnárová S, Mohos V, Fliszár-Nyúl E, Kunsági-Máté S, Özvegy-Laczka C, Lemli B. Interactions of resveratrol and its metabolites (resveratrol-3-sulfate, resveratrol-3-glucuronide, and dihydroresveratrol) with serum albumin, cytochrome P450 enzymes, and OATP transporters. Biomed Pharmacother 2022; 151:113136. [PMID: 35594715 DOI: 10.1016/j.biopha.2022.113136] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 11/19/2022] Open
Abstract
Resveratrol (RES) is a widely-known natural polyphenol which is also contained by several dietary supplements. Large doses of RES can result in high micromolar levels of its sulfate and glucuronide conjugates in the circulation, due to the high presystemic metabolism of the parent polyphenol. Pharmacokinetic interactions of RES have been extensively studied, while only limited data are available regarding its metabolites. Therefore, in the current study, we examined the interactions of resveratrol-3-sulfate (R3S), resveratrol-3-glucuronide, and dihydroresveratrol (DHR; a metabolite produced by the colon microbiota) with human serum albumin (HSA), cytochrome P450 (CYP) enzymes, and organic anion transporting polypeptides (OATP) employing in vitro models. Our results demonstrated that R3S and R3G may play a major role in the RES-induced pharmacokinetic interactions: (1) R3S can strongly displace the site I marker warfarin from HSA; (2) R3G showed similarly strong inhibitory action on CYP3A4 to RES; (3) R3S proved to be similarly strong (OATP1B1/3) or even stronger (OATP1A2 and OATP2B1) inhibitor of OATPs tested than RES, while R3G and RES showed comparable inhibitory actions on OATP2B1.
Collapse
Affiliation(s)
- Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, Pécs H-7624, Hungary; Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs H-7624, Hungary.
| | - Hana Kaci
- Drug Resistance Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok krt. 2., H-1117 Budapest, Hungary; Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Pázmány P. stny. 1/C, H-1117 Budapest, Hungary
| | - Slávka Bodnárová
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, Pécs H-7624, Hungary; Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs H-7624, Hungary
| | - Violetta Mohos
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, Pécs H-7624, Hungary; Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs H-7624, Hungary
| | - Eszter Fliszár-Nyúl
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, Pécs H-7624, Hungary; Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs H-7624, Hungary
| | - Sándor Kunsági-Máté
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Pécs, Szigeti út 12, Pécs H-7624, Hungary; Green Chemistry Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs H-7624, Hungary
| | - Csilla Özvegy-Laczka
- Drug Resistance Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok krt. 2., H-1117 Budapest, Hungary
| | - Beáta Lemli
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, Pécs H-7624, Hungary; Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Pécs, Szigeti út 12, Pécs H-7624, Hungary; Green Chemistry Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs H-7624, Hungary
| |
Collapse
|
11
|
Lin WY, Lin JH, Kuo YW, Chiang PFR, Ho HH. Probiotics and their Metabolites Reduce Oxidative Stress in Middle-Aged Mice. Curr Microbiol 2022; 79:104. [PMID: 35157139 PMCID: PMC8843923 DOI: 10.1007/s00284-022-02783-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/23/2022] [Indexed: 12/11/2022]
Abstract
Aging is an irreversible physiological degradation of living organisms. Accumulated oxidative stress and dysbiosis accelerate aging. Probiotics such as Lactobacillus and Bifidobacterium and their fermented metabolites (postbiotics) have been discovered to exhibit antioxidative activities that regulate oxidative stress and protect cells from oxidative damage. We screened selected Lactobacillus and Bifidobacterium strains and their postbiotics for potential antioxidative activity by using DPPH (2,2-Diphenyl-1-picrylhydrazyl) assay. Strains with their metabolites were selected for mixed formula in experiments involving aging mice. The aged groups presented higher oxidative stress in the brain, liver, heart, and kidney than did young mice. However, treatment with probiotic strains and their postbiotics elevated antioxidative levels, especially in the high-dose probiotics plus postbiotics group. Next-generation sequencing data revealed positive microbiota alterations of Lactobacillus and Bifidobacterium and Akkermansia in the gut. Lactobacillus johnsonii and Akkermansia muciniphila exhibited effective enlargement of relative abundance. Besides, high-dose probiotics and high-dose probiotics plus postbiotics showed significant elevation in serum SCFAs, especially in butyrate. In conclusion, the formula containing Bifidobacterium animalis subsp. infantis BLI-02, Bifidobacterium breve Bv889, Bifidobacterium bifidum VDD088, B. animalis subsp. lactis CP-9, and Lactobacillus plantarum PL-02 and their metabolites may benefit aged people's health.
Collapse
Affiliation(s)
- Wen-Yang Lin
- Department of Research and Design, Bioflag Biotech Co., Ltd., 4F.C2, No.17, Guoji Rd, Xinshi Dist, Tainan City, 744, Taiwan
| | - Jia-Hung Lin
- Department of Research and Design, Bioflag Biotech Co., Ltd., 4F.C2, No.17, Guoji Rd, Xinshi Dist, Tainan City, 744, Taiwan
| | - Yi-Wei Kuo
- Department of Research and Design, Bioflag Biotech Co., Ltd., 4F.C2, No.17, Guoji Rd, Xinshi Dist, Tainan City, 744, Taiwan
| | - Pei-Fang Rose Chiang
- Department of Psychology, Jacobs University Bremen, Campus Ring 1, Vegesack, 28759, Bremen, Germany
| | - Hsieh-Hsun Ho
- Department of Research and Design, Bioflag Biotech Co., Ltd., 4F.C2, No.17, Guoji Rd, Xinshi Dist, Tainan City, 744, Taiwan.
| |
Collapse
|
12
|
|
13
|
Chauhan PS, Yadav D, Koul B, Mohanta YK, Jin JO. Recent Advances in Nanotechnology: A Novel Therapeutic System for the Treatment of Alzheimer's Disease. Curr Drug Metab 2020; 21:1144-1151. [PMID: 33234100 DOI: 10.2174/1389200221666201124140518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/14/2020] [Accepted: 10/15/2020] [Indexed: 11/22/2022]
Abstract
A amyloid-β (Aβ) plaque formation in the brain is known to be the root cause of Alzheimer's disease (AD), which affects the behavior, memory, and cognitive ability in humans. The brain starts undergoing changes several years before the actual appearance of the symptoms. Nanotechnology could prove to be an alternative strategy for treating the disease effectively. It encompasses the diagnosis as well as the therapeutic aspect using validated biomarkers and nano-based drug delivery systems, respectively. A nano-based therapy may provide an alternate strategy, wherein one targets the protofibrillar amyloid-β (Aβ) structures, and this is followed by their disaggregation as random coils. Conventional/routine drug therapies are inefficient in crossing the blood-brain barrier; however, this hurdle can be overcome with the aid of nanoparticles. The present review highlights the various challenges in the diagnosis and treatment of AD. Meticulous and collaborative research using nanotherapeutic systems could provide remarkable breakthroughs in the early-stage diagnosis and therapy of AD.
Collapse
Affiliation(s)
- Pallavi Singh Chauhan
- Amity Institute of Biotechnology, Amity University Madhya Pradesh, Gwalior, 474005, India
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea
| | - Bhupendra Koul
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara-144411, Punjab, India
| | - Yugal Kishore Mohanta
- Biochemistry Laboratory, Department of Botany, North Orissa University Baripada- 757003, India
| | - Jun-O Jin
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea
| |
Collapse
|
14
|
Zhang Q, Zhang C, Ge J, Lv MW, Talukder M, Guo K, Li YH, Li JL. Ameliorative effects of resveratrol against cadmium-induced nephrotoxicity via modulating nuclear xenobiotic receptor response and PINK1/Parkin-mediated Mitophagy. Food Funct 2020; 11:1856-1868. [PMID: 32068207 DOI: 10.1039/c9fo02287b] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cadmium (Cd) is a toxic pollutant with high nephrotoxicity in the agricultural environment. Resveratrol has been found to have a renoprotective effect but the underlying mechanisms of this have not yet been fully elucidated. The aim of this study is to illustrate the antagonism of resveratrol against Cd-induced nephrotoxicity. A total of 80 birds were divided randomly into 4 groups and treated via diet for 90 days as follows: control group (Con); 400 mg kg-1 resveratrol group (Resv); 140 mg kg-1 Cd group (Cd 140); and 140 mg kg-1 Cd + 400 mg kg-1 resveratrol group (Cd + Resv). It was observed that resveratrol treatment dramatically alleviated Cd-induced histopathological lesions of the kidney. Simultaneously, resveratrol mitigated Cd-induced oxidative stress by reducing MDA and H2O2 production, alleviating GSH depletion and restoring the activity of antioxidant enzymes (T-SOD, Cu-Zn SOD, CAT, GST and GSH-Px). Resveratrol activated NXRs (CAR/PXR/AHR/Nrf2) signaling pathways and exerted antidotal roles by enhancing the phase I and II detoxification systems to relieve oxidative damage. Moreover, resveratrol ameliorated Cd-induced ultrastructural abnormality and mitochondria dysfunction by recovering mitochondrial function-related factors VDAC1, Cyt C and Sirt3 upregulation and Sirt1, PGC-1α, Nrf1 and TFAM transcription restrictions. Resveratrol attenuated Cd-induced excessive mitochondrial fission and promoted mitochondrial fusion, which reversed PINK1/Parkin-mediated mitophagy initiation. Collectively, our findings explicate the potential protection against Cd-induced nephrotoxicity and mitochondria damage.
Collapse
Affiliation(s)
- Qi Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Huang TY, Yu CP, Hsieh YW, Lin SP, Hou YC. Resveratrol stereoselectively affected (±)warfarin pharmacokinetics and enhanced the anticoagulation effect. Sci Rep 2020; 10:15910. [PMID: 32985569 PMCID: PMC7522226 DOI: 10.1038/s41598-020-72694-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/31/2020] [Indexed: 12/27/2022] Open
Abstract
Resveratrol (RVT) has various beneficial bioactivities and popularly used as a dietary supplement. RVT showed inhibitions on CYP1A2/2C9/3A4, breast cancer resistance protein (BCRP), and some conjugated metabolites of RVT also inhibited BCRP. (±)Warfarin, an anticoagulant for cardiovascular disease but with narrow therapeutic window, were substrates of CYP1A2/3A4(R-form), 2C9(S-form) and BCRP. We hypothesized that the concurrent use of RVT might affect the metabolism and excretion of warfarin. This study investigated the effect of RVT on the pharmacokinetics and anticoagulation effect of (±)warfarin. Rats were orally given (±)warfarin (0.2 mg/kg) without and with RVT (100 mg/kg) in a parallel design. The results showed that RVT significantly increased the AUC0-t of S-warfarin and international normalized ratio. Mechanism studies showed that both RVT and its serum metabolites (RSM) inhibited BCRP-mediated efflux of R- and S-warfarin. Moreover, RSM activated CYP1A2/3A4, but inhibited CYP2C9. In conclusion, concomitant intake of RVT increased the systemic exposure of warfarin and enhanced the anticoagulation effect mainly via inhibitions on BCRP and CYP2C9.
Collapse
Affiliation(s)
- Tse-Yin Huang
- Ph.D. Program for Biotech Pharmaceutical Industry, School of Pharmacy, China Medical University, Taichung, 40402, Taiwan, ROC
| | - Chung-Ping Yu
- School of Pharmacy, China Medical University, Taichung, 40402, Taiwan, ROC.,Department of Pharmacy, China Medical University Hospital, Taichung, 40447, Taiwan, ROC
| | - Yow-Wen Hsieh
- School of Pharmacy, China Medical University, Taichung, 40402, Taiwan, ROC.,Department of Pharmacy, China Medical University Hospital, Taichung, 40447, Taiwan, ROC
| | - Shiuan-Pey Lin
- School of Pharmacy, China Medical University, Taichung, 40402, Taiwan, ROC.
| | - Yu-Chi Hou
- School of Pharmacy, China Medical University, Taichung, 40402, Taiwan, ROC. .,Department of Pharmacy, China Medical University Hospital, Taichung, 40447, Taiwan, ROC.
| |
Collapse
|
16
|
Berretta M, Bignucolo A, Di Francia R, Comello F, Facchini G, Ceccarelli M, Iaffaioli RV, Quagliariello V, Maurea N. Resveratrol in Cancer Patients: From Bench to Bedside. Int J Mol Sci 2020; 21:E2945. [PMID: 32331450 PMCID: PMC7216168 DOI: 10.3390/ijms21082945] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
Resveratrol (3,5,4'-trihydroxystilbene) is a natural phytoalexin that accumulates in several vegetables and fruits like nuts, grapes, apples, red fruits, black olives, capers, red rice as well as red wines. Being both an extremely reactive molecule and capable to interact with cytoplasmic and nuclear proteins in human cells, resveratrol has been studied over the years as complementary and alternative medicine (CAM) for the therapy of cancer, metabolic and cardiovascular diseases like myocardial ischemia, myocarditis, cardiac hypertrophy and heart failure. This review will describe the main biological targets, cardiovascular outcomes, physico-chemical and pharmacokinetic properties of resveratrol in preclinical and clinical models implementing its potential use in cancer patients.
Collapse
Affiliation(s)
- Massimiliano Berretta
- Department of Medical Oncology-Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Alessia Bignucolo
- Experimental and Clinical Pharmacology-Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (A.B.); (F.C.)
| | - Raffaele Di Francia
- Gruppo Oncologico Ricercatori Italiani, GORI-ONLUS, 33170 Pordenone (PN), Italy;
| | - Francesco Comello
- Experimental and Clinical Pharmacology-Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (A.B.); (F.C.)
| | - Gaetano Facchini
- UOC Oncologia, ASL Napoli 2 Nord, P.O. “S.M. delle Grazie”, Pozzuoli-Ischia, 80078 Napoli, Italy;
| | - Manuela Ceccarelli
- Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, University of Catania, 95122 Catania, Italy;
| | - Rosario Vincenzo Iaffaioli
- Association for Multidisciplinary Studies in Oncology and Mediterranean Diet, Piazza Nicola Amore, 80138 Naples, Italy;
| | - Vincenzo Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori- IRCCS- Fondazione G. Pascale, 80131 Napoli, Italy; (V.Q.); (N.M.)
| | - Nicola Maurea
- Division of Cardiology, Istituto Nazionale Tumori- IRCCS- Fondazione G. Pascale, 80131 Napoli, Italy; (V.Q.); (N.M.)
| |
Collapse
|
17
|
Shaito A, Posadino AM, Younes N, Hasan H, Halabi S, Alhababi D, Al-Mohannadi A, Abdel-Rahman WM, Eid AH, Nasrallah GK, Pintus G. Potential Adverse Effects of Resveratrol: A Literature Review. Int J Mol Sci 2020; 21:E2084. [PMID: 32197410 PMCID: PMC7139620 DOI: 10.3390/ijms21062084] [Citation(s) in RCA: 346] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/11/2020] [Accepted: 03/15/2020] [Indexed: 02/07/2023] Open
Abstract
Due to its health benefits, resveratrol (RE) is one of the most researched natural polyphenols. Resveratrol's health benefits were first highlighted in the early 1990s in the French paradox study, which opened extensive research activity into this compound. Ever since, several pharmacological activities including antioxidant, anti-aging, anti-inflammatory, anti-cancerous, anti-diabetic, cardioprotective, and neuroprotective properties, were attributed to RE. However, results from the available human clinical trials were controversial concerning the protective effects of RE against diseases and their sequelae. The reason for these conflicting findings is varied but differences in the characteristics of the enrolled patients, RE doses used, and duration of RE supplementation were proposed, at least in part, as possible causes. In particular, the optimal RE dosage capable of maximizing its health benefits without raising toxicity issues remains an area of extensive research. In this context, while there is a consistent body of literature on the protective effects of RE against diseases, there are relatively few reports investigating its possible toxicity. Indeed, toxicity and adverse effects were reported following consumption of RE; therefore, extensive future studies on the long-term effects, as well as the in vivo adverse effects, of RE supplementation in humans are needed. Furthermore, data on the interactions of RE when combined with other therapies are still lacking, as well as results related to its absorption and bioavailability in the human body. In this review, we collect and summarize the available literature about RE toxicity and side effects. In this process, we analyze in vitro and in vivo studies that have addressed this stilbenoid. These studies suggest that RE still has an unexplored side. Finally, we discuss the new delivery methods that are being employed to overcome the low bioavailability of RE.
Collapse
Affiliation(s)
- Abdullah Shaito
- Department of Biological and Chemical Sciences, Lebanese International University, 1105 Beirut, Lebanon;
| | - Anna Maria Posadino
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Nadin Younes
- Department of Biomedical Science, College of Health Sciences, and Biomedical Research Center Qatar University, P.O Box 2713 Doha, Qatar; (N.Y.); (D.A.); (A.A.-M.)
| | - Hiba Hasan
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, 35392 Giessen, Germany;
| | - Sarah Halabi
- Biology Department, Faculty of Arts and Sciences, American University of Beirut, 1105 Beirut, Lebanon;
| | - Dalal Alhababi
- Department of Biomedical Science, College of Health Sciences, and Biomedical Research Center Qatar University, P.O Box 2713 Doha, Qatar; (N.Y.); (D.A.); (A.A.-M.)
| | - Anjud Al-Mohannadi
- Department of Biomedical Science, College of Health Sciences, and Biomedical Research Center Qatar University, P.O Box 2713 Doha, Qatar; (N.Y.); (D.A.); (A.A.-M.)
| | - Wael M Abdel-Rahman
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O Box: 27272, United Arab Emirates;
| | - Ali H. Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Beirut, Lebanon
| | - Gheyath K. Nasrallah
- Department of Biomedical Science, College of Health Sciences, and Biomedical Research Center Qatar University, P.O Box 2713 Doha, Qatar; (N.Y.); (D.A.); (A.A.-M.)
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O Box: 27272, United Arab Emirates;
| |
Collapse
|
18
|
Singh AP, Singh R, Verma SS, Rai V, Kaschula CH, Maiti P, Gupta SC. Health benefits of resveratrol: Evidence from clinical studies. Med Res Rev 2019; 39:1851-1891. [PMID: 30741437 DOI: 10.1002/med.21565] [Citation(s) in RCA: 310] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/07/2018] [Accepted: 01/19/2019] [Indexed: 12/14/2022]
Abstract
Resveratrol is a polyphenolic nutraceutical that exhibits pleiotropic activities in human subjects. The efficacy, safety, and pharmacokinetics of resveratrol have been documented in over 244 clinical trials, with an additional 27 clinical trials currently ongoing. Resveretrol is reported to potentially improve the therapeutic outcome in patients suffering from diabetes mellitus, obesity, colorectal cancer, breast cancer, multiple myeloma, metabolic syndrome, hypertension, Alzheimer's disease, stroke, cardiovascular diseases, kidney diseases, inflammatory diseases, and rhinopharyngitis. The polyphenol is reported to be safe at doses up to 5 g/d, when used either alone or as a combination therapy. The molecular basis for the pleiotropic activities of resveratrol are based on its ability to modulate multiple cell signaling molecules such as cytokines, caspases, matrix metalloproteinases, Wnt, nuclear factor-κB, Notch, 5'-AMP-activated protein kinase, intercellular adhesion molecule, vascular cell adhesion molecule, sirtuin type 1, peroxisome proliferator-activated receptor-γ coactivator 1α, insulin-like growth factor 1, insulin-like growth factor-binding protein 3, Ras association domain family 1α, pAkt, vascular endothelial growth factor, cyclooxygenase 2, nuclear factor erythroid 2 like 2, and Kelch-like ECH-associated protein 1. Although the clinical utility of resveratrol is well documented, the rapid metabolism and poor bioavailability have limited its therapeutic use. In this regard, the recently produced micronized resveratrol formulation called SRT501, shows promise. This review discusses the currently available clinical data on resveratrol in the prevention, management, and treatment of various diseases and disorders. Based on the current evidence, the potential utility of this molecule in the clinic is discussed.
Collapse
Affiliation(s)
- Akhand Pratap Singh
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Rachna Singh
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sumit Singh Verma
- Laboratory for Translational Cancer Research, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Vipin Rai
- Laboratory for Translational Cancer Research, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Catherine H Kaschula
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, South Africa
| | - Pralay Maiti
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Subash Chandra Gupta
- Laboratory for Translational Cancer Research, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
19
|
Locatelli FM, Kawano T, Iwata H, Aoyama B, Eguchi S, Nishigaki A, Yamanaka D, Tateiwa H, Shigematsu-Locatelli M, Yokoyama M. Resveratrol-loaded nanoemulsion prevents cognitive decline after abdominal surgery in aged rats. J Pharmacol Sci 2018; 137:395-402. [PMID: 30196020 DOI: 10.1016/j.jphs.2018.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/12/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022] Open
Abstract
The maladaptive response of aged microglia to surgery and consequent neuroinflammation plays a key pathogenic role in postoperative cognitive dysfunction (POCD). Here, we assessed the preventive effect of resveratrol (RESV) for POCD in aged rats. The emulsified form of RESV (e-RESV) was selected to improve its oral and brain bioavailability. Animals were assigned to one of four groups: e-RESV (80 mg/kg) versus vehicle treatment by abdominal surgery versus isoflurane anesthesia alone (n = 8 in each group). The dose-dependent effects of e-RESV were also assessed in dose range of 0-60 mg/kg. Either vehicle or e-RESV was administered intragastrically 24 h before surgery. Seven days after procedure, cognitive function was evaluated using a novel object recognition test, followed by measurement of hippocampal pro-inflammatory cytokine levels. Our results showed that pre-treatment with e-RESV attenuated the surgery-induced cognitive impairment and related hippocampal neuroinflammation at 40 mg/kg or higher doses. Additionally, the ex-vivo experiments revealed that the preemptive e-RESV regimen reduced the hippocampal microglial immune reactivity to lipopolysaccharide. Furthermore, e-RESV induced neuroprotective benefits were inhibited by the concomitant administration of sirtinol, a specific SIRT1 inhibitor. Our findings imply the preventive potential of e-RESV for POCD via the SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Fabricio M Locatelli
- Department of Anesthesiology and Intensive Care Medicine, Kochi Medical School, Oko, Nankoku, Kochi 783-8505, Japan
| | - Takashi Kawano
- Department of Anesthesiology and Intensive Care Medicine, Kochi Medical School, Oko, Nankoku, Kochi 783-8505, Japan.
| | - Hideki Iwata
- Department of Anesthesiology and Intensive Care Medicine, Kochi Medical School, Oko, Nankoku, Kochi 783-8505, Japan
| | - Bun Aoyama
- Department of Anesthesiology and Intensive Care Medicine, Kochi Medical School, Oko, Nankoku, Kochi 783-8505, Japan
| | - Satoru Eguchi
- Department of Dental Anesthesiology, Tokushima University School of Dentistry, 3-18-15 Kuramoto, Tokushima, 770-8504, Japan
| | - Atsushi Nishigaki
- Department of Anesthesiology and Intensive Care Medicine, Kochi Medical School, Oko, Nankoku, Kochi 783-8505, Japan
| | - Daiki Yamanaka
- Department of Anesthesiology and Intensive Care Medicine, Kochi Medical School, Oko, Nankoku, Kochi 783-8505, Japan
| | - Hiroki Tateiwa
- Department of Anesthesiology and Intensive Care Medicine, Kochi Medical School, Oko, Nankoku, Kochi 783-8505, Japan
| | - Marie Shigematsu-Locatelli
- Department of Anesthesiology and Intensive Care Medicine, Kochi Medical School, Oko, Nankoku, Kochi 783-8505, Japan
| | - Masataka Yokoyama
- Department of Anesthesiology and Intensive Care Medicine, Kochi Medical School, Oko, Nankoku, Kochi 783-8505, Japan
| |
Collapse
|
20
|
N'guessan BB, Amponsah SK, Dugbartey GJ, Awuah KD, Dotse E, Aning A, Kukuia KKE, Asiedu-Gyekye IJ, Appiah-Opong R. In Vitro Antioxidant Potential and Effect of a Glutathione-Enhancer Dietary Supplement on Selected Rat Liver Cytochrome P450 Enzyme Activity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:7462839. [PMID: 29977317 PMCID: PMC5994258 DOI: 10.1155/2018/7462839] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/03/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND There is considerable evidence that many people take dietary supplements including those of herbal origin as an alternative therapy to improve their health. One such supplement, with an amalgam of constituents, is CellGevity®. However, the effect of this dietary supplement on drug-metabolizing enzymes is poorly understood, as it has not been studied extensively. Therefore, we investigated the effect of CellGevity dietary supplement on selected rat liver microsomal cytochrome P450 (CYP) enzymes, the most common drug-metabolizing enzymes. We also determined the total antioxidant potential of this dietary supplement in vitro. METHODS To determine the antioxidant potential of CellGevity dietary supplement, 2,2-diphenyl-2-picryl-hydrazyl (DPPH), total phenolic, and flavonoid assays were used after initial preparation of a solution form of the supplement (low dose, LD; 4 mg/kg and high dose, HD; 8 mg/kg). Rats received oral administration of these doses of the supplement for 7 days, after which the effect of the supplement on selected liver CYP enzymes was assessed using probe substrates and spectroscopic and high-performance liquid chromatographic methods. Rats which received daily administration of 80 mg/kg of phenobarbitone and distilled water served as positive and negative controls, respectively. RESULTS The IC50 value of the supplement 0.34 ± 0.07 mg/ml compared to 0.076 ± 0.03 mg/ml of the BHT (positive control). The total phenolic content of the supplement at a concentration of 2.5 mg/ml was 34.97 g gallic acid equivalent (GAE)/100 g while its total flavonoid content at a concentration of 2.5 mg/ml was 6 g quercetin equivalent (QE)/100 g. The supplement significantly inhibited rat CYP2B1/2B2 (LDT 92.4%; HDT 100%), CYP3A4 (LDT 81.2%; HDT 71.7%), and CYP2C9 (LDT 21.7%; HDT 28.5%) while it had no significant inhibitory effect on CYPs 1A1/1A2, CYP1A2, and CYP2D6. CONCLUSION CellGevity dietary supplement possesses moderate antioxidant activity in vitro and has an inhibitory effect on selected rat liver CYP enzymes, suggesting its potential interaction with drugs metabolized by CYP enzymes.
Collapse
Affiliation(s)
- Benoit B. N'guessan
- 1Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Ghana
| | - Seth K. Amponsah
- 1Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Ghana
| | - George J. Dugbartey
- 1Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Ghana
| | - Kwabena D. Awuah
- 1Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Ghana
| | - Eunice Dotse
- 2Department of Clinical Pathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Ghana
| | - Abigail Aning
- 2Department of Clinical Pathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Ghana
| | - Kennedy K. E. Kukuia
- 1Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Ghana
| | - Isaac J. Asiedu-Gyekye
- 1Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Ghana
| | - Regina Appiah-Opong
- 2Department of Clinical Pathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Ghana
| |
Collapse
|
21
|
Guthrie AR, Chow HS, Martinez JA. Effects of resveratrol on drug- and carcinogen-metabolizing enzymes, implications for cancer prevention. Pharmacol Res Perspect 2017; 5:e00294. [PMID: 28596842 PMCID: PMC5461649 DOI: 10.1002/prp2.294] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 10/20/2016] [Accepted: 12/12/2016] [Indexed: 12/29/2022] Open
Abstract
Resveratrol is a polyphenol found in grape skins and peanuts that has demonstrated many health benefits including protection against aging, cardiovascular and metabolic disease, neurological decline, and cancer. The anticancer properties of resveratrol have been attributed to a variety of mechanisms, including its general inhibition of phase I metabolism and induction of phase II metabolism. The effects of resveratrol on these enzymes, however, are still unclear, as in vitro evidence often contrasts with animal studies and clinical trials. Reasons for these variances could include the low bioavailability of resveratrol and the effects of resveratrol metabolites. Due to resveratrol's interactions with drug-metabolizing enzymes and drug transporters, individuals concurrently taking pharmacological doses of resveratrol with other supplements or medications could potentially experience nutrient-drug interactions. This review summarizes the known effects of resveratrol and its main metabolites on drug metabolism in order to help characterize which populations might benefit from resveratrol for the prevention of cancer, as well as those that may need to avoid supplementation due to potential drug interactions.
Collapse
Affiliation(s)
- Ariane R. Guthrie
- Department of Nutritional SciencesUniversity of ArizonaTucsonArizona
| | | | - Jessica A. Martinez
- Department of Nutritional SciencesUniversity of ArizonaTucsonArizona
- University of Arizona Cancer CenterTucsonArizona
| |
Collapse
|
22
|
Enhanced Platelet Response to Clopidogrel in Abcc3-deficient Mice Due to Its Increased Bioactivation. J Cardiovasc Pharmacol 2016; 68:433-440. [DOI: 10.1097/fjc.0000000000000428] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
23
|
Chiba T, Noji K, Shinozaki S, Suzuki S, Umegaki K, Shimokado K. Diet-induced non-alcoholic fatty liver disease affects expression of major cytochrome P450 genes in a mouse model. ACTA ACUST UNITED AC 2016; 68:1567-1576. [PMID: 27757967 DOI: 10.1111/jphp.12646] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/04/2016] [Indexed: 01/21/2023]
Abstract
OBJECTIVES Non-alcoholic fatty liver disease (NAFLD) is associated with impaired liver function, and resveratrol could suppress NAFLD progression. This study examined the effects of NAFLD on the expression of major cytochrome P450 (CYP) subtypes in the liver and whether the expression could be attenuated by resveratrol. METHODS C57BL/6 mice (male, 10 weeks of age) were fed a high-fat and high-sucrose (HFHS) diet to induce NAFLD. Major Cyp subtype mRNA expression in the liver was measured by real-time RT-PCR. KEY FINDINGS Body and liver weights at 4 and 12 weeks were significantly higher in mice fed the HFHS diet compared with control. The HFHS diet significantly increased the accumulation of cholesterol and triglycerides at 12 weeks. Under this condition, the HFHS diet increased the expression of Cyp1a2 and decreased that of Cyp3a11 at 1 week and thereafter. On the other hand, Cyp1a1, 2b10 and 2c29 mRNA expression levels in the liver were significantly increased at 12 weeks only. Resveratrol (0.05% (w/w) in diet) slightly suppressed lipid accumulation in the liver, but failed to recover impaired Cyp gene expression levels in NAFLD. CONCLUSIONS Drug metabolism may be impaired in NAFLD, and each Cyp subtype is regulated in a different manner.
Collapse
Affiliation(s)
- Tsuyoshi Chiba
- Information Center, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Keiko Noji
- Department of Vascular Medicine and Geriatrics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.,Faculty of Health Science Technology, Bunkyo Gakuin University, Tokyo, Japan
| | - Shohei Shinozaki
- Department of Vascular Medicine and Geriatrics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sachina Suzuki
- Information Center, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Keizo Umegaki
- Information Center, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Kentaro Shimokado
- Department of Vascular Medicine and Geriatrics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|