1
|
Yang C, Li J, Luo M, Zhou W, Xing J, Yang Y, Wang L, Rao W, Tao W. Unveiling the molecular mechanisms of Dendrobium officinale polysaccharides on intestinal immunity: An integrated study of network pharmacology, molecular dynamics and in vivo experiments. Int J Biol Macromol 2024; 276:133859. [PMID: 39009260 DOI: 10.1016/j.ijbiomac.2024.133859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/13/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Intestinal immunity plays a pivotal role in overall immunological defenses, constructing mechanisms against pathogens while maintaining balance with commensal microbial communities. Existing therapeutic interventions may lead to drug resistance and potential toxicity when immune capacity is compromised. Dendrobium officinale, a traditional Chinese medicine, contains components identified to bolster immunity. Employing network pharmacology strategies, this study identified constituents of Dendrobium officinale and their action targets in the TCMSP and Swiss Target Prediction databases, and compared them with intestinal immunity-related targets. Protein-protein interaction networks revealed the core targets of Dendrobium officinale polysaccharides, encompassing key pathways such as cell proliferation, inflammatory response, and immune reactions, particularly in association with the Toll-like receptor 4. Molecular docking and molecular dynamics simulation further confirmed the high affinity and stability between Dendrobium officinale polysaccharides and Toll-like receptor 4. In vivo experiments demonstrated that Dendrobium officinale polysaccharides modulates the expression of Toll-like receptor 4 and its downstream key proteins in the colonic mucosa of mice. Consequently, these findings suggest that Dendrobium officinale polysaccharides may serve as a potential modulator for intestinal immune functions, with its mechanism potentially related to the Toll-like receptor 4.
Collapse
Affiliation(s)
- Chenchen Yang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jingrui Li
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Mengfan Luo
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wanyi Zhou
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jianrong Xing
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ying Yang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lu Wang
- School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Wenjia Rao
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Wenyang Tao
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
2
|
Li X, Li Q, Wang L, Ding H, Wang Y, Liu Y, Gong T. The interaction between oral microbiota and gut microbiota in atherosclerosis. Front Cardiovasc Med 2024; 11:1406220. [PMID: 38932989 PMCID: PMC11199871 DOI: 10.3389/fcvm.2024.1406220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Atherosclerosis (AS) is a complex disease caused by multiple pathological factors threatening human health-the pathogenesis is yet to be fully elucidated. In recent years, studies have exhibited that the onset of AS is closely involved with oral and gut microbiota, which may initiate or worsen atherosclerotic processes through several mechanisms. As for how the two microbiomes affect AS, existing mechanisms include invading plaque, producing active metabolites, releasing lipopolysaccharide (LPS), and inducing elevated levels of inflammatory mediators. Considering the possible profound connection between oral and gut microbiota, the effect of the interaction between the two microbiomes on the initiation and progression of AS has been investigated. Findings are oral microbiota can lead to gut dysbiosis, and exacerbate intestinal inflammation. Nevertheless, relevant research is not commendably refined and a concrete review is needed. Hence, in this review, we summarize the most recent mechanisms of the oral microbiota and gut microbiota on AS, illustrate an overview of the current clinical and epidemiological evidence to support the bidirectional connection between the two microbiomes and AS.
Collapse
Affiliation(s)
- Xinsi Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Qian Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Li Wang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Department of Implantology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Huifen Ding
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Department of Prosthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yizhong Wang
- Department of Research & Development, Zhejiang Charioteer Pharmaceutical Co., Ltd, Taizhou, China
| | - Yunfei Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Department of Implantology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Gong
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Department of Implantology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Park S, Kim I, Han SJ, Kwon S, Min EJ, Cho W, Koh H, Koo BN, Lee JS, Kwon JS, Seo KY, Ha JW, Park YM. Oral Porphyromonas gingivalis infection affects intestinal microbiota and promotes atherosclerosis. J Clin Periodontol 2023; 50:1553-1567. [PMID: 37621247 DOI: 10.1111/jcpe.13864] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 06/19/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
AIM The link between periodontitis and intestinal dysbiosis, two factors that contribute to atherosclerosis, has not been clearly defined. We investigated the integrative effects of oral infection with Porphyromonas gingivalis (PG), the major pathogen for periodontitis, on intestinal microbiota and atherosclerosis. MATERIALS AND METHODS ApoE-/- mice were fed a normal chow diet (NC), a Western diet (WD) or a WD with oral PG infection (PG). The PG infection was investigated by placing a total of 109 CFUs of live PG into the oral cavity of each mouse using a feeding needle five times a week for 3 weeks. Atherosclerotic lesions of the aortae were measured, and blood lipoproteins and the expression of molecules related to lipid metabolism in the liver were analysed. We also performed 16S RNA sequencing and a microbiome analysis using faeces. RESULTS En face bloc preparation of the aortae showed that the PG group had a 1.7-fold increase in atherosclerotic lesions compared with the WD group (p < .01). Serum analyses showed that oral PG infection induced a significant decrease in high-density lipoprotein (HDL) and triglyceride. Western blots of hepatic tissue lysates revealed that PG infection reduced the expression of scavenger receptor class B type 1 (SR-B1) in the liver by 50%. Faecal microbiota analysis revealed that species richness estimates (Chao1, ACE) decreased immediately after PG infection. PG infection also induced a significant decrease in Shannon diversity and an increase in Simpson's indices in the WD-fed mice. PG infection significantly increased the phyla Actinobacteria and Deferribacteres, along with the species Mucispirillum schaedleri and Lactobacillus gasseri, in the mice. The functional study showed that PG infection increased the expression of proteins that function in carbohydrate and glucose metabolism, including phosphotransferase system (PTS) proteins and the GntR family transcriptional regulator. CONCLUSIONS Oral PG infection promotes atherosclerosis and induces significant metabolic changes, including reduced serum HDL and reduced hepatic SR-B1 and ABCA1 expression, as well as changes in intestinal microbiota. Our study suggests that intestinal dysbiosis accompanies periodontitis and could play a role in atherosclerosis.
Collapse
Affiliation(s)
- Sowon Park
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Inyoung Kim
- Department of Molecular Medicine, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Soo Jung Han
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Soyeon Kwon
- Department of Molecular Medicine, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Eun-Ji Min
- Department of Molecular Medicine, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Wonkyoung Cho
- Department of Molecular Medicine, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Hong Koh
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Bon-Nyeo Koo
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jung Seok Lee
- Department of Periodontics, Yonsei University College of Dentistry, Seoul, South Korea
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, South Korea
| | - Kyoung Yul Seo
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong-Won Ha
- Cardiology Division, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Mi Park
- Department of Molecular Medicine, Ewha Womans University College of Medicine, Seoul, South Korea
| |
Collapse
|
4
|
Ciccone MM, Lepera ME, Guaricci AI, Forleo C, Cafiero C, Colella M, Palmirotta R, Santacroce L. Might Gut Microbiota Be a Target for a Personalized Therapeutic Approach in Patients Affected by Atherosclerosis Disease? J Pers Med 2023; 13:1360. [PMID: 37763128 PMCID: PMC10532785 DOI: 10.3390/jpm13091360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
In recent years, the increasing number of studies on the relationship between the gut microbiota and atherosclerosis have led to significant interest in this subject. The gut microbiota, its metabolites (metabolome), such as TMAO, and gut dysbiosis play an important role in the development of atherosclerosis. Furthermore, inflammation, originating from the intestinal tract, adds yet another mechanism by which the human ecosystem is disrupted, resulting in the manifestation of metabolic diseases and, by extension, cardiovascular diseases. The scientific community must understand and elucidate these mechanisms in depth, to gain a better understanding of the relationship between atherosclerosis and the gut microbiome and to promote the development of new therapeutic targets in the coming years. This review aims to present the knowledge acquired so far, to trigger others to further investigate this intriguing topic.
Collapse
Affiliation(s)
- Marco Matteo Ciccone
- Cardiology Unit, Interdisciplinary Department of Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.M.C.); (M.E.L.); (A.I.G.); (C.F.)
| | - Mario Erminio Lepera
- Cardiology Unit, Interdisciplinary Department of Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.M.C.); (M.E.L.); (A.I.G.); (C.F.)
| | - Andrea Igoren Guaricci
- Cardiology Unit, Interdisciplinary Department of Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.M.C.); (M.E.L.); (A.I.G.); (C.F.)
| | - Cinzia Forleo
- Cardiology Unit, Interdisciplinary Department of Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.M.C.); (M.E.L.); (A.I.G.); (C.F.)
| | - Concetta Cafiero
- Area of Molecular Pathology, Anatomic Pathology Unit, Fabrizio Spaziani Hospital, 03100 Frosinone, Italy;
| | - Marica Colella
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.C.); (L.S.)
| | - Raffele Palmirotta
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.C.); (L.S.)
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.C.); (L.S.)
| |
Collapse
|
5
|
Muacevic A, Adler JR, Rizwan S, Mohamed AE, Elshafey AE, Khadka A, Mosuka EM, Thilakarathne KN, Mohammed L. Role of Gut Microbiome in Cardiovascular Events: A Systematic Review. Cureus 2022; 14:e32465. [PMID: 36644080 PMCID: PMC9835843 DOI: 10.7759/cureus.32465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
The gut microbiome helps maintain homeostasis in the body, but what if the gut experiences imbalance? It would lead to dysbiosis - which is involved in multiple diseases, including but not limited to cardiovascular diseases, the most common cause of mortality around the globe. This research paper aims to explain all the possible mechanisms known linking the gut microbiome to the contribution of worsening cardiovascular events. PubMed and Google Scholar were thoroughly explored to learn the role of the gut microbiome in cardiovascular events. A systematic review was performed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to analyze the possible pathways and the metabolites included in the study. Thirteen review articles were selected based on the assessment of multiple systematic reviews (AMSTAR) and the scale for the assessment of non-systematic review articles (SANRA) checklist scores. In this article, we have discussed the role of the gut microbiome in atherosclerosis, hypertension, metabolic disorders such as diabetes and obesity, coronary artery disease, etc. Various pathways to modify the gut microbiome are also discussed, along with the use of probiotics. Finally, we discussed the role of trimethylamine N-oxide (TMAO), a gut microbiome metabolite, as a biomarker for the prognosis of various diseases. This study concluded that the gut microbiome does play a crucial role in the worsening of cardiovascular diseases and the metabolites of which can be used as biomarkers in the prognosis of cardiovascular events.
Collapse
|
6
|
Salt-Sensitive Ileal Microbiota Plays a Role in Atrial Natriuretic Peptide Deficiency-Induced Cardiac Injury. Nutrients 2022; 14:nu14153129. [PMID: 35956306 PMCID: PMC9370783 DOI: 10.3390/nu14153129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Atrial natriuretic peptide (ANP) activity deficiency contributes to salt-sensitive hypertension in humans and mice. However, the role of ileal microbiota in salt sensitivity in ANP deficiency-related cardiac injury has not been investigated yet. This study used ANP−/− mice to analyze the role of the salt-sensitive ileal microbiome on cardiac injury. ANP−/− mice showed an increase in blood pressure (BP), the heart weight/body weight (HW/BW) ratio, and cardiac hypertrophy compared with wild-type (WT) mice. ANP deficiency did not impact the histological structure but reduced occludin expression in the ileum. Antibiotics significantly relieved BP and cardiac hypertrophy in ANP−/− mice. A high-salt diet (HSD) increased BP, the HW/BW ratio, and cardiac hypertrophy/fibrosis in WT and ANP−/− mice, and an HSD treatment in ANP−/− mice exacerbated these cardiac parameters. The HSD markedly decreased muscularis layer thickening, villus length, and numbers of Paneth and goblet cells in the ileum of WT and ANP−/− mice. Furthermore, the HSD increased the level of TLR4 and IL-1β in ANP−/− mice ileum compared with WT mice. Antibiotics reduced the HW/BW ratio, cardiac hypertrophy/fibrosis, and the level of TLR4 and IL-1β in the ileum, and rescued the muscularis layer thickening, villus length, and numbers of Paneth and goblet cells in the ileum of HSD-ANP−/− mice. Importantly, ANP deficiency induced the colonization of Burkholderiales bacterium YL45, Lactobacillus johnsonii, and Lactobacillus reuteri in the ileum on the NSD diet, which was only observed in HSD-induced WT mice but not in WT mice on the NSD. Besides, the HSD significantly enhanced the sum of the percentage of the colonization of Burkholderiales bacterium YL45, Lactobacillus johnsonii, and Lactobacillus reuteri in the ileum of ANP−/− mice. Ileal microbiota transfer (IMT) from ANP−/− mice to healthy C57BL/6J mice drove Lactobacillus johnsonii and Lactobacillus reuteri colonization in the ileum, which manifested an increase in BP, the HW/BW ratio, cardiac hypertrophy, and ileal pathology compared with IMT from WT mice. The HSD in C57BL/6J mice with IMT from ANP−/− mice drove the colonization of Burkholderiales bacterium YL45, Lactobacillus johnsonii, and Lactobacillus reuteri in the ileum and further exacerbated the cardiac and ileal pathology. Our results suggest that salt-sensitive ileal microbiota is probably related to ANP deficiency-induced cardiac injury.
Collapse
|
7
|
Zhao Z, Liu J, Hu Y, Zhang X, Cao L, Dong Z, Li L, Hu Z. Bacterial diversity in the intestinal mucosa of heart failure rats treated with Sini Decoction. BMC Complement Med Ther 2022; 22:93. [PMID: 35354453 PMCID: PMC8969309 DOI: 10.1186/s12906-022-03575-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/21/2022] [Indexed: 11/10/2022] Open
Abstract
Background Sini Decoction (SND), a classic Chinese medicine prescription, has been proved to have a good effect on heart failure (HF), whereas its underlying mechanism is still unclear. In order to explore the therapeutic mechanism of SND, we combined with 16S rRNA gene sequencing to analyze the composition of gut microflora in rats with HF. Material and methods Twenty Sprague–Dawley (SD) rats were divided into four groups (n = 5): normal group, model group, SND treatment group (SNT group), and metoprolol (Met) treatment group (Meto group). All the rats except the normal group were intraperitoneally injected with doxorubicin (concentration 2 mg/mL, dose 0.15 mL/100 g) once a week to induce HF. After successfully modeling, SND and Met were gavaged to rats, respectively. After the treatment period, blood was collected for hematological analyses, myocardial tissue and colon tissues were collected for Hematoxylin–Eosin (H&E) staining, and mucosal scrapings were collected for Illumina Miseq high-throughput sequencing. Results Echocardiographic results suggested that both left ventricular ejection fraction (LVEF) and left ventricular fraction shortening (LVFS) in Model rats decreased compared with normal rats. The results of H&E staining showed that compared with the model group, the structures of myocardial tissue and colon tissue in the SNT group and Meto group showed a recovery trend. Alpha results showed that the model group had higher species diversity and richness compared with the normal group. After treatment, the richness and diversity of intestinal bacteria in the SNT group were significantly restored, and Met also showed the effect of adjusting bacterial diversity, but its effect on bacterial richness was not ideal. At the Family level, we found that the number of several bacteria associated with HF in the model group increased significantly. Excitingly, SND and Met had shown positive effects in restoring these HF-associated bacteria. Similarly, the results of Linear discriminant analysis (LDA) showed that both SND and Met could reduce the accumulation of bacteria in the model group caused by HF. Conclusion Collectively, SND can improve HF by regulating the intestinal flora. This will provide new ideas for the clinical treatment of patients with HF. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03575-4.
Collapse
Affiliation(s)
- Zhenyu Zhao
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jiahao Liu
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yanzhi Hu
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xining Zhang
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Liqin Cao
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhenhua Dong
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lin Li
- Institute of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China. .,The Domestic First-Class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China.
| | - Zhixi Hu
- Institute of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China. .,The Domestic First-Class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
8
|
Kim ES, Yoon BH, Lee SM, Choi M, Kim EH, Lee BW, Kim SY, Pack CG, Sung YH, Baek IJ, Jung CH, Kim TB, Jeong JY, Ha CH. Fecal microbiota transplantation ameliorates atherosclerosis in mice with C1q/TNF-related protein 9 genetic deficiency. Exp Mol Med 2022; 54:103-114. [PMID: 35115674 PMCID: PMC8894390 DOI: 10.1038/s12276-022-00728-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the strong influence of the gut microbiota on atherosclerosis, a causal relationship between atherosclerosis pathophysiology and gut microbiota is still unverified. This study was performed to determine the impact of the gut microbiota on the pathogenesis of atherosclerosis caused by genetic deficiency. To elucidate the influence of the gut microbiota on atherosclerosis pathogenesis, an atherosclerosis-prone mouse model (C1q/TNF-related protein 9-knockout (CTRP9-KO) mice) was generated. The gut microbial compositions of CTRP9-KO and WT control mice were compared. Fecal microbiota transplantation (FMT) was performed to confirm the association between gut microbial composition and the progression of atherosclerosis. FMT largely affected the gut microbiota in both CTRP9-KO and WT mice, and all transplanted mice acquired the gut microbiotas of the donor mice. Atherosclerotic lesions in the carotid arteries were decreased in transplanted CTRP9-KO mice compared to CTRP9-KO mice prior to transplantation. Conversely, WT mice transplanted with the gut microbiotas of CTRP9-KO mice showed the opposite effect as that of CTRP9-KO mice transplanted with the gut microbiotas of WT mice. Here, we show that CTRP9 gene deficiency is related to the distribution of the gut microbiota in subjects with atherosclerosis. Transplantation of WT microbiotas into CTRP9-KO mice protected against the progression of atherosclerosis. Conversely, the transplantation of CTRP9-KO microbiotas into WT mice promoted the progression of atherosclerosis. Treating atherosclerosis by restoring gut microbial homeostasis may be an effective therapeutic strategy.
Collapse
Affiliation(s)
- Eun Sil Kim
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Bo Hyun Yoon
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung Min Lee
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Min Choi
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eun Hye Kim
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Byong-Wook Lee
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Sang-Yeob Kim
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Chan-Gi Pack
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Young Hoon Sung
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - In-Jeoung Baek
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Chang Hee Jung
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Tae-Bum Kim
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Jin-Yong Jeong
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
- Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Chang Hoon Ha
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
- Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Choroszy M, Sobieszczańska B, Litwinowicz K, Łaczmański Ł, Chmielarz M, Walczuk U, Roleder T, Radziejewska J, Wawrzyńska M. Co-toxicity of Endotoxin and Indoxyl Sulfate, Gut-Derived Bacterial Metabolites, to Vascular Endothelial Cells in Coronary Arterial Disease Accompanied by Gut Dysbiosis. Nutrients 2022; 14:nu14030424. [PMID: 35276782 PMCID: PMC8840142 DOI: 10.3390/nu14030424] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Gut dysbiosis, alongside a high-fat diet and cigarette smoking, is considered one of the factors promoting coronary arterial disease (CAD) development. The present study aimed to research whether gut dysbiosis can increase bacterial metabolites concentration in the blood of CAD patients and what impact these metabolites can exert on endothelial cells. The gut microbiomes of 15 age-matched CAD patients and healthy controls were analyzed by 16S rRNA sequencing analysis. The in vitro impact of LPS and indoxyl sulfate at concentrations present in patients' sera on endothelial cells was investigated. 16S rRNA sequencing analysis revealed gut dysbiosis in CAD patients, further confirmed by elevated LPS and indoxyl sulfate levels in patients' sera. CAD was associated with depletion of Bacteroidetes and Alistipes. LPS and indoxyl sulfate demonstrated co-toxicity to endothelial cells inducing reactive oxygen species, E-selectin, and monocyte chemoattractant protein-1 (MCP-1) production. Moreover, both of these metabolites promoted thrombogenicity of endothelial cells confirmed by monocyte adherence. The co-toxicity of LPS and indoxyl sulfate was associated with harmful effects on endothelial cells, strongly suggesting that gut dysbiosis-associated increased intestinal permeability can initiate or promote endothelial inflammation and atherosclerosis progression.
Collapse
Affiliation(s)
- Marcin Choroszy
- Department of Microbiology, Wrocław Medical University, Chalubinskiego 4 Street, 51-657 Wroclaw, Poland; (M.C.); (M.C.); (U.W.)
| | - Beata Sobieszczańska
- Department of Microbiology, Wrocław Medical University, Chalubinskiego 4 Street, 51-657 Wroclaw, Poland; (M.C.); (M.C.); (U.W.)
- Correspondence:
| | - Kamil Litwinowicz
- Department of Medical Biochemistry, Wroclaw Medical University, Chalubińskiego 10 Street, 50-368 Wroclaw, Poland;
| | - Łukasz Łaczmański
- Laboratory of Genomics & Bioinformatics, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12 Street, 53-114 Wroclaw, Poland;
| | - Mateusz Chmielarz
- Department of Microbiology, Wrocław Medical University, Chalubinskiego 4 Street, 51-657 Wroclaw, Poland; (M.C.); (M.C.); (U.W.)
| | - Urszula Walczuk
- Department of Microbiology, Wrocław Medical University, Chalubinskiego 4 Street, 51-657 Wroclaw, Poland; (M.C.); (M.C.); (U.W.)
| | - Tomasz Roleder
- Research and Development Centre, Regional Specialist Hospital, Kamienskiego 73a Street, 51-124 Wroclaw, Poland;
| | | | - Magdalena Wawrzyńska
- Department of Preclinical Studies, Faculty of Health Sciences, Wrocław Medical University, 50-367 Wrocław, Poland;
| |
Collapse
|
10
|
Jose A, Apewokin S, Hussein WE, Ollberding NJ, Elwing JM, Haslam DB. A unique gut microbiota signature in pulmonary arterial hypertension: A pilot study. Pulm Circ 2022; 12:e12051. [PMID: 35506110 PMCID: PMC9052999 DOI: 10.1002/pul2.12051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/20/2022] [Accepted: 02/08/2022] [Indexed: 11/10/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive, ultimately fatal cardiopulmonary disease associated with a number of physiologic changes, which is believed to result in imbalances in the intestinal microbiota. To date, comprehensive investigational analysis of the intestinal microbiota in human subjects is still limited. To address this, we performed a pilot study of the intestinal microbiome in 20 PAH and 20 non-PAH healthy control subjects, recruited from a single center, with each PAH subject recruited simultaneously with a cohabitating non-PAH control subject. Shotgun metagenomic sequencing was used to analyze the microbiome profiles. There were no differences between PAH and non-PAH subjects across several measures of microbial abundance and diversity (Alpha Diversity, Beta Diversity, F/B ratio). The relative abundance of Lachnospiraceae bacterium GAM79 was lower in PAH stool samples as compared to non-PAH control subject' stool. There was no strong or reproducible association between PAH disease severity and global microbial abundance, but several bacterial species (a relative abundance of Anaerostipes rhamnosivorans and a relative deficiency of Amedibacterium intestinale, Ruminococcus bicirculans, and Ruminococcus albus species were associated with disease severity (most proximal right heart catheterization hemodynamics and six-minute walk test distance) in PAH subjects. Our results support further investigation into the presence, significance, and potential physiologic effects of a PAH-specific intestinal microbiome.
Collapse
Affiliation(s)
- Arun Jose
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep MedicineUniversity of CincinnatiCincinnatiOhioUSA
| | - Senu Apewokin
- Department of Medicine, Division of Infectious DiseasesUniversity of CincinnatiCincinnatiOhioUSA
| | - Walaa E. Hussein
- Department of Medicine, Division of Infectious DiseasesUniversity of CincinnatiCincinnatiOhioUSA
| | - Nicholas J. Ollberding
- Department of Pediatrics, Division of Biostatistics and EpidemiologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Department of PediatricsUniversity of CincinnatiCincinnatiOhioUSA
| | - Jean M. Elwing
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep MedicineUniversity of CincinnatiCincinnatiOhioUSA
| | - David B. Haslam
- Department of PediatricsUniversity of CincinnatiCincinnatiOhioUSA
| |
Collapse
|
11
|
Molina-Vega M, Picón-César MJ, Gutiérrez-Repiso C, Fernández-Valero A, Lima-Rubio F, González-Romero S, Moreno-Indias I, Tinahones FJ. Metformin action over gut microbiota is related to weight and glycemic control in gestational diabetes mellitus: A randomized trial. Biomed Pharmacother 2021; 145:112465. [PMID: 34844107 DOI: 10.1016/j.biopha.2021.112465] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Metformin, which is known to produce profound changes in gut microbiota, is being increasingly used in gestational diabetes mellitus (GDM). The aim of this study was to elucidate the differences in gut microbiota composition and function in women with GDM treated with metformin compared to those treated with insulin. METHODS From May to December 2018, 58 women with GDM were randomized to receive insulin (INS; n = 28) or metformin (MET; n = 30) at the University Hospital Virgen de la Victoria, Málaga, Spain. Basal visits, with at least 1 follow-up visit and prepartum visit, were performed. At the basal and prepartum visits, blood and stool samples were collected. The gut microbiota profile was determined through 16S rRNA analysis. RESULTS Compared to INS, women on MET presented a lower mean postprandial glycemia and a lower increase in weight and body mass index (BMI). Firmicutes and Peptostreptococcaceae abundance declined, while Proteobacteria and Enterobacteriaceae abundance increased in the MET group. We found inverse correlations between changes in the abundance of Proteobacteria and mean postprandial glycemia (p = 0.023), as well as between Enterobacteriaceae and a rise in BMI and weight gain (p = 0.031 and p = 0.036, respectively). Regarding the metabolic profile of gut microbiota, predicted metabolic pathways related to propionate degradation and ubiquinol biosynthesis predominated in the MET group. CONCLUSION Metformin in GDM affects the composition and metabolic profile of gut microbiota. These changes could mediate, at least in part, its clinical effects. Studies designed to assess how these changes influence metabolic control during and after pregnancy are necessary.
Collapse
Affiliation(s)
- María Molina-Vega
- Department of Endocrinology and Nutrition, Hospital Universitario Virgen de la Victoria, Málaga, Spain; Laboratory of the Biomedical Research Institute of Málaga, Virgen de la Victoria University Hospital, Universidad de Málaga, Málaga, Spain
| | - María J Picón-César
- Department of Endocrinology and Nutrition, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Carolina Gutiérrez-Repiso
- Laboratory of the Biomedical Research Institute of Málaga, Virgen de la Victoria University Hospital, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición, Instituto Salud Carlos III, Madrid, Spain
| | - Andrea Fernández-Valero
- Department of Endocrinology and Nutrition, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Fuensanta Lima-Rubio
- Laboratory of the Biomedical Research Institute of Málaga, Virgen de la Victoria University Hospital, Universidad de Málaga, Málaga, Spain
| | - Stella González-Romero
- Department of Endocrinology and Nutrition, Hospital Regional Universitario Carlos Haya, Málaga, Spain
| | - Isabel Moreno-Indias
- Laboratory of the Biomedical Research Institute of Málaga, Virgen de la Victoria University Hospital, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición, Instituto Salud Carlos III, Madrid, Spain.
| | - Francisco J Tinahones
- Department of Endocrinology and Nutrition, Hospital Universitario Virgen de la Victoria, Málaga, Spain; Laboratory of the Biomedical Research Institute of Málaga, Virgen de la Victoria University Hospital, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición, Instituto Salud Carlos III, Madrid, Spain
| |
Collapse
|
12
|
Annunziata G, Ciampaglia R, Maisto M, D'Avino M, Caruso D, Tenore GC, Novellino E. Taurisolo®, a Grape Pomace Polyphenol Nutraceutical Reducing the Levels of Serum Biomarkers Associated With Atherosclerosis. Front Cardiovasc Med 2021; 8:697272. [PMID: 34350218 PMCID: PMC8326362 DOI: 10.3389/fcvm.2021.697272] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
Trimethylamine-N-oxide (TMAO) is a gut microbiota-derived metabolite recognized as strongly related to cardiovascular diseases (CVD), mainly increasing the risk of atherosclerosis development. Currently, no pharmacological approaches have been licensed for reduction of TMAO serum levels and conventional anti-atherosclerosis treatments only target the traditional risk factors, and the cardiovascular risk (CVR) still persist. This underlines the need to find novel targeted strategies for management of atherosclerosis. In this study we tested the ability of a novel nutraceutical formulation based on grape pomace polyphenols (Taurisolo®) in reducing both the serum levels of TMAO and oxidative stress-related biomarkers in humans (n = 213). After chronic treatment with Taurisolo® we observed significantly reduced levels of TMAO (−49.78 and −75.80%, after 4-week and 8-week treatment, respectively), oxidized LDL (oxLDL; −43.12 and −65.05%, after 4-week and 8-week treatment, respectively), and reactive oxygen species (D-ROMs; −34.37 and −49.68%, after 4-week and 8-week treatment, respectively). On the other hand, no significant changes were observed in control group. Such promising, the results observed allow indicating Taurisolo® as an effective nutraceutical strategy for prevention of atherosclerosis. Clinical Trial Registration: This study is listed on the ISRCTN registry with ID ISRCTN10794277 (doi: 10.1186/ISRCTN10794277).
Collapse
Affiliation(s)
- Giuseppe Annunziata
- NutraPharmaLabs, Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Roberto Ciampaglia
- NutraPharmaLabs, Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Maria Maisto
- NutraPharmaLabs, Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Maria D'Avino
- Department of Internal Medicine, Hospital Cardarelli, Naples, Italy
| | - Domenico Caruso
- Department of Internal Medicine, Hospital Cardarelli, Naples, Italy
| | - Gian Carlo Tenore
- NutraPharmaLabs, Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Ettore Novellino
- NutraPharmaLabs, Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
13
|
Anselmi G, Gagliardi L, Egidi G, Leone S, Gasbarrini A, Miggiano GAD, Galiuto L. Gut Microbiota and Cardiovascular Diseases: A Critical Review. Cardiol Rev 2021; 29:195-204. [PMID: 32639240 DOI: 10.1097/crd.0000000000000327] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The human intestine contains the largest and most diverse ecosystem of microbes. The main function of the intestinal bacterial flora is to limit the growth of potentially pathogenic microorganisms. However, the intestinal microbiota is increasingly emerging as a risk factor for the development of cardiovascular disease (CVD). The gut microbiota-derived metabolites, such as short-chain fatty acids, trimethylamine-N-oxide, bile acids, and polyphenols play a pivotal role in maintaining healthy cardiovascular function, and when dysregulated, can potentially lead to CVD. In particular, changes in the composition and diversity of gut microbiota, known as dysbiosis, have been associated with atherosclerosis, hypertension, and heart failure. Nonetheless, the underlying mechanisms remain yet to be fully understood. Therefore, the microbiota and its metabolites have become a new therapeutic target for the prevention and treatment of CVD. In addition to a varied and balanced diet, the use of prebiotic and probiotic treatments or selective trimethylamine-N-oxide inhibitors could play a pivotal role in the prevention of CVD, especially in patients with a high metabolic risk.
Collapse
Affiliation(s)
- Gaia Anselmi
- From the UOC di Nutrizione Clinica, Area Medicina Interna, Gastroenterologia e Oncologia Medica, Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lucilla Gagliardi
- From the UOC di Nutrizione Clinica, Area Medicina Interna, Gastroenterologia e Oncologia Medica, Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gabriele Egidi
- From the UOC di Nutrizione Clinica, Area Medicina Interna, Gastroenterologia e Oncologia Medica, Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sabrina Leone
- From the UOC di Nutrizione Clinica, Area Medicina Interna, Gastroenterologia e Oncologia Medica, Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio Gasbarrini
- UOC di Medicina Interna e Gastroenterologia, Area Medicina Interna, Gastroenterologia e Oncologia Medica, Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giacinto Abele Donato Miggiano
- From the UOC di Nutrizione Clinica, Area Medicina Interna, Gastroenterologia e Oncologia Medica, Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Leonarda Galiuto
- From the UOC di Nutrizione Clinica, Area Medicina Interna, Gastroenterologia e Oncologia Medica, Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
14
|
Bazzocchi G, Turroni S, Bulzamini MC, D'Amico F, Bava A, Castiglioni M, Cagnetta V, Losavio E, Cazzaniga M, Terenghi L, De Palma L, Frasca G, Aiachini B, Cremascoli S, Massone A, Oggerino C, Onesta MP, Rapisarda L, Pagliacci MC, Biscotto S, Scarazzato M, Giovannini T, Balloni M, Candela M, Brigidi P, Kiekens C. Changes in gut microbiota in the acute phase after spinal cord injury correlate with severity of the lesion. Sci Rep 2021; 11:12743. [PMID: 34140572 PMCID: PMC8211659 DOI: 10.1038/s41598-021-92027-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023] Open
Abstract
After spinal cord injury (SCI), patients face many physical and psychological issues including intestinal dysfunction and comorbidities, strongly affecting quality of life. The gut microbiota has recently been suggested to influence the course of the disease in these patients. However, to date only two studies have profiled the gut microbiota in SCI patients, months after a traumatic injury. Here we characterized the gut microbiota in a large Italian SCI population, within a short time from a not only traumatic injury. Feces were collected within the first week at the rehabilitation center (no later than 60 days after SCI), and profiled by 16S rRNA gene-based next-generation sequencing. Microbial profiles were compared to those publicly available of healthy age- and gender-matched Italians, and correlated to patient metadata, including type of SCI, spinal unit location, nutrition and concomitant antibiotic therapies. The gut microbiota of SCI patients shows distinct dysbiotic signatures, i.e. increase in potentially pathogenic, pro-inflammatory and mucus-degrading bacteria, and depletion of short-chain fatty acid producers. While robust to most host variables, such dysbiosis varies by lesion level and completeness, with the most neurologically impaired patients showing an even more unbalanced microbial profile. The SCI-related gut microbiome dysbiosis is very likely secondary to injury and closely related to the degree of completeness and severity of the lesion, regardless of etiology and time interval. This microbial layout could variously contribute to increased gut permeability and inflammation, potentially predisposing patients to the onset of severe comorbidities.
Collapse
Affiliation(s)
- Gabriele Bazzocchi
- Neurogastroenterology Unit, Montecatone Rehabilitation Institute, via Montecatone 37, 40026, Imola, Bologna, Italy.
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | - Federica D'Amico
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Mimosa Balloni
- Neurogastroenterology Unit, Montecatone Rehabilitation Institute, via Montecatone 37, 40026, Imola, Bologna, Italy
| | - Marco Candela
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Patrizia Brigidi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Carlotte Kiekens
- Spinal Unit, Montecatone Rehabilitation Institute, Imola, Bologna, Italy
| |
Collapse
|
15
|
Garshick MS, Nikain C, Tawil M, Pena S, Barrett TJ, Wu BG, Gao Z, Blaser MJ, Fisher EA. Reshaping of the gastrointestinal microbiome alters atherosclerotic plaque inflammation resolution in mice. Sci Rep 2021; 11:8966. [PMID: 33903700 PMCID: PMC8076321 DOI: 10.1038/s41598-021-88479-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/13/2021] [Indexed: 02/08/2023] Open
Abstract
Since alterations in the intestinal microbiota may induce systemic inflammation and polarization of macrophages to the M1 state, the microbiome role in atherosclerosis, an M1-driven disease, requires evaluation. We aimed to determine if antibiotic (Abx) induced alterations to the intestinal microbiota interferes with atherosclerotic plaque inflammation resolution after lipid-lowering in mice. Hyperlipidemic Apoe−/− mice were fed a western diet to develop aortic atherosclerosis with aortas then transplanted into normolipidemic wild-type (WT) mice to model clinically aggressive lipid management and promote atherosclerosis inflammation resolution. Gut microbial composition pre and post-transplant was altered via an enteral antibiotic or not. Post aortic transplant, after Abx treatment, while plaque size did not differ, compared to Apoe−/− mice, Abx– WT recipient mice had a 32% reduction in CD68-expressing cells (p = 0.02) vs. a non-significant 12% reduction in Abx+ WT mice. A trend toward an M1 plaque CD68-expresing cell phenotype was noted in Abx+ mice. By 16S rRNA sequence analysis, the Abx+ mice had reduced alpha diversity and increased Firmicutes/Bacteroidetes relative abundance ratio with a correlation between gut Firmicutes abundance and plaque CD68-expressing cell content (p < 0.05). These results indicate that in a murine atherosclerotic plaque inflammation resolution model, antibiotic-induced microbiome perturbation may blunt the effectiveness of lipid-lowering to reduce the content of plaque inflammatory CD68-expressing cells.
Collapse
Affiliation(s)
- Michael S Garshick
- Center for the Prevention of Cardiovascular Disease, Department of Medicine, New York University School of Medicine, New York, USA.,Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, USA
| | - Cyrus Nikain
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, USA
| | - Michael Tawil
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, USA
| | - Stephanie Pena
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, USA
| | - Tessa J Barrett
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, USA
| | - Benjamin G Wu
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, USA.,Division of Pulmonary and Critical Care, Veterans Affairs New York Harbor Healthcare System, New York, NY, USA
| | - Zhan Gao
- Center for Advanced Biotechnology and Medicine, Rutgers University, 679 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Martin J Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, 679 Hoes Lane West, Piscataway, NJ, 08854, USA.
| | - Edward A Fisher
- Center for the Prevention of Cardiovascular Disease, Department of Medicine, New York University School of Medicine, New York, USA. .,Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, USA. .,Marc and Ruti Bell Vascular Biology Program, Cardiovascular Research Center, New York University Langone Health, New York, USA.
| |
Collapse
|
16
|
The Relationship of Large-Artery Atherothrombotic Stroke with Plasma Trimethylamine N-Oxide Level and Blood Lipid-Related Indices: A Cross-Sectional Comparative Study. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5549796. [PMID: 33977104 PMCID: PMC8087478 DOI: 10.1155/2021/5549796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/29/2021] [Accepted: 04/11/2021] [Indexed: 11/17/2022]
Abstract
Objective The role of trimethylamine N-oxide (TMAO) in cardiovascular diseases has been highlighted. Nevertheless, the associations of large-artery atherosclerotic (LAA) stroke with TMAO and blood lipid-related indices are little investigated. Methods A cross-sectional comparative study was performed on 50 patients with LAA stroke and 50 healthy controls. Basic demographic data, common vascular risk factors, and blood lipid-related indices were collected. Plasma TMAO was detected through liquid chromatography tandem mass spectrometry. Multivariable unconditional logistic regression analyses were run to assess the associations of LAA stroke with plasma TMAO level and blood lipid-related indices. The area under the curve (AUC) of the receiver operating characteristic (ROC) was computed to assess the diagnostic performance of plasma TMAO level and blood lipid-related indices for LAA stroke. Results Compared with healthy controls, the elevated plasma TMAO level (odds ratio [OR], 7.03; 95% confidence interval [CI], 2.86, 17.25; p < 0.01) and Apo-B (OR, 1.74; 95% CI, 1.06, 2.85; p = 0.03) were observed in LAA stroke patients, while lower Apo-A1 (OR, 0.56; 95% CI, 0.34, 0.91; p = 0.02), Apo-A1 to Apo-B ratio (OR, 0.29; 95% CI, 0.15, 0.56; p < 0.01), and HDL-C (OR, 0.56; 95% CI, 0.35, 0.91; p = 0.02) were found in LAA stroke patients after adjusted for age and gender. Moreover, plasma TMAO (AUC, 0.89; 95% CI, 0.83, 0.95), Apo-A1 (AUC, 0.81; 95% CI, 0.72, 0.89), Apo-B (AUC, 0.81; 95% CI, 0.73, 0.90), Apo-A1 to Apo-B ratio (AUC, 0.85; 95% CI, 0.78, 0.93), and HDL-C (AUC, 0.81; 95% CI, 0.72, 0.89) showed good diagnostic values for LAA stroke in adjusted models. Conclusions The plasma TMAO level, Apo-A1, Apo-B, and HDL-C are important biomarkers for LAA stroke patients.
Collapse
|
17
|
Developmental programming of cardiovascular function: a translational perspective. Clin Sci (Lond) 2021; 134:3023-3046. [PMID: 33231619 DOI: 10.1042/cs20191210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022]
Abstract
The developmental origins of health and disease (DOHaD) is a concept linking pre- and early postnatal exposures to environmental influences with long-term health outcomes and susceptibility to disease. It has provided a new perspective on the etiology and evolution of chronic disease risk, and as such is a classic example of a paradigm shift. What first emerged as the 'fetal origins of disease', the evolution of the DOHaD conceptual framework is a storied one in which preclinical studies played an important role. With its potential clinical applications of DOHaD, there is increasing desire to leverage this growing body of preclinical work to improve health outcomes in populations all over the world. In this review, we provide a perspective on the values and limitations of preclinical research, and the challenges that impede its translation. The review focuses largely on the developmental programming of cardiovascular function and begins with a brief discussion on the emergence of the 'Barker hypothesis', and its subsequent evolution into the more-encompassing DOHaD framework. We then discuss some fundamental pathophysiological processes by which developmental programming may occur, and attempt to define these as 'instigator' and 'effector' mechanisms, according to their role in early adversity. We conclude with a brief discussion of some notable challenges that hinder the translation of this preclinical work.
Collapse
|
18
|
Livzan MA, Krolevets TS, Mozgovoy SI, Nikolaev NA, Nelidova AV. [Features of intestinal microbiota disorders in the development of metabolic disorders in non-alcoholic fatty liver disease]. TERAPEVT ARKH 2021; 93:222-227. [PMID: 36286641 DOI: 10.26442/00403660.2021.02.200614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/05/2021] [Indexed: 11/22/2022]
Abstract
We discussed about the term intestinal permeability like as the mucosal barrier a single structural and functional conception that includes the layer of mucus, the indigenous microbiota and the epithelium of the mucosa in this publication. Information was presented about the role of the microbiota, the composition of intestinal mucus, epithelial cells and proteins of tight junctions which lead to various metabolic diseases. The complex pathogenetic interactions are formed between the intestinal mucosal barrier, metabolic disorders such as non-alcoholic fatty liver disease and cardiovascular diseases. The complex researches and modification of this interactions will allow to create personalized approaches and to prevent of these diseases.
Collapse
|
19
|
The influence of gut microbiota in cardiovascular diseases-a brief review. Porto Biomed J 2021; 6:e106. [PMID: 33490701 PMCID: PMC7817281 DOI: 10.1097/j.pbj.0000000000000106] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 12/13/2022] Open
Abstract
Lately, the gut microbiota has emerged as an important mediator of the development and the outcomes of certain diseases. It's well known that the gut microbiota plays an important role in maintaining human health. Still far from being completely understood and analyzed is the complexity of this ecosystem, although a close relationship between the gut microbiota and cardiovascular diseases (CVD) has been established. A loss of diversity in the microbiota will lead to physiological changes, which can improve inflammatory or infection states like atherosclerosis and hypertension, the basic pathological process of CVD. Targeting the gut microbiota and its metabolites are new and promising strategies for the treatment and prognosis of CVD.
Collapse
|
20
|
Luo QJ, Sun MX, Guo YW, Tan SW, Wu XY, Abassa KK, Lin L, Liu HL, Jiang J, Wei XQ. Sodium butyrate protects against lipopolysaccharide-induced liver injury partially via the GPR43/ β-arrestin-2/NF-κB network. Gastroenterol Rep (Oxf) 2020; 9:154-165. [PMID: 34026223 PMCID: PMC8128024 DOI: 10.1093/gastro/goaa085] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/11/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Background Butyrate acts as a regulator in multiple inflammatory organ injuries. However, the role of butyrate in acute liver injury has not yet been fully explored. In the present study, we aimed to investigate the association between butyrate and lipopolysaccharide (LPS)-induced acute liver injury and the signaling pathways involved. Methods LPS-induced acute liver injury was induced by intraperitoneal injection of LPS (5 mg/kg) in G-protein-coupled receptor 43 (GPR43)-knockout (KO) and wild-type female C57BL/6 mice. Sodium butyrate (500mg/kg) was administered intraperitoneally 30 min prior to LPS exposure. Liver injury was detected by serum markers, tissue morphology, and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL). Pro-inflammatory-factor levels were detected by enzyme-linked immunosorbent assay and real-time polymerase chain reaction (RT-PCR). Cell models were first treated with sodium butyrate (4 μmol/mL), followed by LPS (1 μg/mL) half an hour later in GPR43 small interfering RNA (siRNA)-transfected or control RAW264.7 cells. Cell-inflammation status was evaluated through detecting pro-inflammatory-factor expression by RT-PCR and also through checking toll-like receptor 4/nuclear factor-κB (TLR4/NF-κB)-element levels including TLR4, TRAF6, IKKβ, IкBα, phospho-IкBα, p65, and phospho-p65 by Western blot. The interaction between GPR43 and β-arrestin-2 was tested by co-immunoprecipitation. Results Sodium butyrate reversed the LPS-induced tissue-morphology changes and high levels of serum alanine aminotransferase, aspartate transaminase, myeloperoxidase, TUNEL, and pro-inflammatory cytokines such as tumor necrosis factor-α and interleukin-6. The ameliorating effect of sodium butyrate was weakened in GPR43-KO mice and GPR43 siRNA RAW264.7 cells, compared with those of GPR43-positive controls. Sodium butyrate downregulated some elements of the TLR4/NF-κB pathway, including phospho-IκBα and phospho-p65, in RAW264.7 cells. Increased interactions between GPR43 and β-arrestin-2, and between β-arrestin-2 and IкBα were observed. Conclusion Sodium butyrate significantly attenuated LPS-induced liver injury by reducing the inflammatory response partially via the GPR43/β-arrestin-2/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Qian-Jiang Luo
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China.,Department of Gastroenterology, The Eighth Affiliated Hospital of Sun Yat-sen University (Shenzhen Futian Hospital), Shenzhen, Guangdong, P. R. China
| | - Mei-Xing Sun
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Yun-Wei Guo
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Si-Wei Tan
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Xiao-Ying Wu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Kodjo-Kunale Abassa
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Li Lin
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Hui-Ling Liu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Jie Jiang
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Xiu-Qing Wei
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
21
|
Vitamin D Decreases Plasma Trimethylamine-N-oxide Level in Mice by Regulating Gut Microbiota. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9896743. [PMID: 33083493 PMCID: PMC7558778 DOI: 10.1155/2020/9896743] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/15/2020] [Indexed: 01/11/2023]
Abstract
As a metabolite generated by gut microbiota, trimethylamine-N-oxide (TMAO) has been proven to promote atherosclerosis and is a novel potential risk factor for cardiovascular disease (CVD). The objective of this study was to examine whether regulating gut microbiota by vitamin D supplementation could reduce the plasma TMAO level in mice. For 16 weeks, C57BL/6J mice were fed a chow (C) or high-choline diet (HC) without or with supplementation of vitamin D3 (CD3 and HCD3) or a high-choline diet with vitamin D3 supplementation and antibiotics (HCD3A). The results indicate that the HC group exhibited higher plasma trimethylamine (TMA) and TMAO levels, lower richness of gut microbiota, and significantly increased Firmicutes and decreased Bacteroidetes as compared with group C. Vitamin D supplementation significantly reduced plasma TMA and TMAO levels in mice fed a high-choline diet. Furthermore, gut microbiota composition was regulated, and the Firmicutes/Bacteroidetes ratio was reduced by vitamin D. Spearman correlation analysis indicated that Bacteroides and Akkermansia were negatively correlated with plasma TMAO in the HC and HCD3 groups. Our study provides a novel avenue for the prevention and treatment of CVD with vitamin D.
Collapse
|
22
|
Abstract
Several studies have gathered interest in the relationship between gut microbiota and atherosclerosis. Gut microbiota and its metabolites, such as trimethylamine-N-oxide, and gut dysbiosis play an important role in the development of atherosclerosis. Also, inflammation, derived by the intestinal tract, adds another mechanism through which the ecosystem of the human body affects the metabolic diseases and, furthermore, cardiovascular diseases. The scientific world should fixate the understanding of the exact physiologic and pathophysiologic mechanisms for atherogenesis by gut microbiota and through that, new ways for novel therapeutic targets will be available in the coming years. This review summarizes the latest data on this matter.
Collapse
|
23
|
Zhu Y, Li Q, Jiang H. Gut microbiota in atherosclerosis: focus on trimethylamine N-oxide. APMIS 2020; 128:353-366. [PMID: 32108960 PMCID: PMC7318354 DOI: 10.1111/apm.13038] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 12/25/2022]
Abstract
The increasing prevalence of cardiovascular diseases cannot adequately be explained by traditional risk factors. Recently, accumulating evidence has suggested that gut microbiota‐derived numerous metabolites are contributors to atherosclerotic events. Among them, the role of trimethylamine N‐oxide (TMAO) in promoting atherosclerosis has gained attention. TMAO is reported to exert the proatherogenic effects by impacting on the traditional risk factors of atherosclerosis and is associated with high risk of cardiovascular events. Besides that, TMAO is involved in the complex pathological processes of atherosclerotic lesion formation, such as endothelial dysfunction, platelet activation and thrombus generation. In light of these promising findings, TMAO may serve as a potential target for atherosclerosis prevention and treatment, which is conceptually novel, when compared with existing traditional treatments. It is likely that regulating TMAO production and associated gut microbiota may become a promising strategy for the anti‐atherosclerosis therapy.
Collapse
Affiliation(s)
- Yingqian Zhu
- Department of Geriatrics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qingqing Li
- Department of Geriatrics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hua Jiang
- Department of Geriatrics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Silveira-Nunes G, Durso DF, Jr LRADO, Cunha EHM, Maioli TU, Vieira AT, Speziali E, Corrêa-Oliveira R, Martins-Filho OA, Teixeira-Carvalho A, Franceschi C, Rampelli S, Turroni S, Brigidi P, Faria AMC. Hypertension Is Associated With Intestinal Microbiota Dysbiosis and Inflammation in a Brazilian Population. Front Pharmacol 2020; 11:258. [PMID: 32226382 PMCID: PMC7080704 DOI: 10.3389/fphar.2020.00258] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
Hypertension is a major global health challenge, as it represents the main risk factor for stroke and cardiovascular disease. It is a multifactorial clinical condition characterized by high and sustained levels of blood pressure, likely resulting from a complex interplay of endogenous and environmental factors. The gut microbiota has been strongly supposed to be involved but its role in hypertension is still poorly understood. In an attempt to fill this gap, here we characterized the microbial composition of fecal samples from 48 hypertensive and 32 normotensive Brazilian individuals by next-generation sequencing of the 16S rRNA gene. In addition, the cytokine production of peripheral blood samples was investigated to build an immunological profile of these individuals. We identified a dysbiosis of the intestinal microbiota in hypertensive subjects, featured by reduced biodiversity and distinct bacterial signatures compared with the normotensive counterpart. Along with a reduction in Bacteroidetes members, hypertensive individuals were indeed mainly characterized by increased proportions of Lactobacillus and Akkermansia while decreased relative abundances of well-known butyrate-producing commensals, including Roseburia and Faecalibacterium within the Lachnospiraceae and Ruminococcaceae families. We also observed an inflamed immune profile in hypertensive individuals with an increase in TNF/IFN-γ ratio, and in TNF and IL-6 production when compared to normotensive ones. Our work provides the first evidence of association of hypertension with altered gut microbiota and inflammation in a Brazilian population. While lending support to the existence of potential microbial signatures of hypertension, likely to be robust to age and geography, our findings point to largely neglected bacteria as potential contributors to intestinal homeostasis loss and emphasize the high vulnerability of hypertensive individuals to inflammation-related disorders.
Collapse
Affiliation(s)
- Gabriela Silveira-Nunes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Departamento de Medicina, Instituto de Ciências da Vida, Universidade Federal de Juiz de Fora - Campus Avançado de Governador Valadares, Governador Valadares, Brazil
| | - Danielle Fernandes Durso
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luiz Roberto Alves de Oliveira Jr
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Tatiani Uceli Maioli
- Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Angélica Thomaz Vieira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Elaine Speziali
- Fundação Oswaldo Cruz-FIOCRUZ, Instituto René Rachou, Grupo Integrado de Pesquisas em Biomarcadores, Belo Horizonte, Brazil
| | - Rodrigo Corrêa-Oliveira
- Fundação Oswaldo Cruz-FIOCRUZ, Instituto René Rachou, Grupo Integrado de Pesquisas em Biomarcadores, Belo Horizonte, Brazil
| | - Olindo Assis Martins-Filho
- Fundação Oswaldo Cruz-FIOCRUZ, Instituto René Rachou, Grupo Integrado de Pesquisas em Biomarcadores, Belo Horizonte, Brazil
| | - Andrea Teixeira-Carvalho
- Fundação Oswaldo Cruz-FIOCRUZ, Instituto René Rachou, Grupo Integrado de Pesquisas em Biomarcadores, Belo Horizonte, Brazil
| | - Claudio Franceschi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Applied Mathematics, Institute of Information Technology, Mathematics and Mechanics (ITMM), Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Simone Rampelli
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Silvia Turroni
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Patrizia Brigidi
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Ana Maria Caetano Faria
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
25
|
Wu X, Chen L, Zeb F, Li C, Jiang P, Chen A, Xu C, Haq IU, Feng Q. Clock-Bmal1 mediates MMP9 induction in acrolein-promoted atherosclerosis associated with gut microbiota regulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1455-1463. [PMID: 31265956 DOI: 10.1016/j.envpol.2019.06.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/28/2019] [Accepted: 06/11/2019] [Indexed: 06/09/2023]
Abstract
Circadian rhythm is believed to play important roles in atherosclerosis. The gut microbiota is found to be closely related to atherogenesis, and shows compositional and functional circadian oscillation. However, it's still unclarified whether circadian clock and intestinal microbiota are involved in the progression of atherosclerosis induced by environmental pollutant acrolein. Herein, patients with atherosclerosis showed higher MMP9, a promising biomarker for atherosclerosis, and lower Bmal1 and Clock expression in the plasma. Interestingly, acrolein exposure contributed to the increased MMP9, decreased Clock and Bmal1, and activated MAPK pathways in human umbilical vein endothelial cells (HUVECs). We found that knockdown of Clock or Bmal1 lead to upregulation of MMP9 in HUVECs, and that Clock and Bmal1 expression was elevated while MAPK pathways were blocked. Atherosclerotic apolipoproteinE-deficient mice consumed a high-fat diet were used and treated with acrolein (3 mg/kg/day) in the drinking water for 12 weeks. Upregulation of MMP9, and downregulation of Clock and Bmal1 were also observed in plasma of the mice. Besides, acrolein feeding altered gut microbiota composition at a phylum level especially for an increased Firmicutes and a decreased Bacteroidetes. Additionally, gut microbiota showed correlation with atherosclerotic plaque, MMP9 and Bmal1 levels. Therefore, our findings indicated that acrolein increased the expression of MMP9 through MAPK regulating circadian clock, which was associated with gut microbiota regulation in atherosclerosis. Circadian rhythms and gut microbiota might be promising targets in the prevention of cardiovascular disease caused by environmental pollutants.
Collapse
Affiliation(s)
- Xiaoyue Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Lijun Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Falak Zeb
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chaofeng Li
- Department of Cardiology, The Second Affiliated Hospital of Southeast University, Nanjing, 210000, China
| | - Pan Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Aochang Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chuyue Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ijaz Ul Haq
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Qing Feng
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
26
|
Bresciani L, Dall'Asta M, Favari C, Calani L, Del Rio D, Brighenti F. An in vitro exploratory study of dietary strategies based on polyphenol-rich beverages, fruit juices and oils to control trimethylamine production in the colon. Food Funct 2019; 9:6470-6483. [PMID: 30465688 DOI: 10.1039/c8fo01778f] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Trimethylamine-N-oxide (TMAO) has been described as a new biomarker of cardiovascular disease (CVD), derived from gut microbial biotransformation of dietary choline and l-carnitine into trimethylamine (TMA) and subsequent hepatic oxidation. (Poly)phenols are among the dietary factors able to interfere with microbial enzymatic activity, possibly modulating TMA biotransformation at the gut level. The aim of this work was to investigate the in vitro biotransformation of choline and carnitine using faecal starters obtained from omnivorous and vegetarian subjects and the effect of (poly)phenol-rich foods on TMA production. Choline and l-carnitine were fermented with vegetarian or omnivorous faecal slurries, alone or in combination with 10 (poly)phenol-rich food items. TMA production from carnitine, but not from choline, was significantly lower when vegetarian faecal starters were used and, among the tested food items, blonde orange juice significantly reduced TMA formation during faecal biotransformation. Consequently, the main compounds of orange juice, namely phenolic compounds, terpenes, limonoids, organic acids and sugars, were tested individually. Sugars exerted the highest inhibitory effect on TMA production. Despite some limitations deriving from the applied in vitro model, this is the first work describing a possible role of some (poly)phenol-rich dietary products on the modulation of TMA colonic production. Free sugars were the main factor responsible for TMA inhibition, suggesting a potential beneficial role of colonic fermentation of carbohydrates in reducing TMA formation from its precursor molecules. This work opens new research directions to evaluate the effect of dietary fermentable fibre on TMA production and, potentially, on circulating TMAO levels.
Collapse
Affiliation(s)
- Letizia Bresciani
- The Laboratory of Phytochemicals in Physiology, Human Nutrition Unit, University of Parma, Via Volturno, 39 - 43125 Parma, Italy.
| | | | | | | | | | | |
Collapse
|
27
|
Di Ciaula A, Wang DQH, Portincasa P. Cholesterol cholelithiasis: part of a systemic metabolic disease, prone to primary prevention. Expert Rev Gastroenterol Hepatol 2019; 13:157-171. [PMID: 30791781 DOI: 10.1080/17474124.2019.1549988] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cholesterol gallstone disease have relationships with various conditions linked with insulin resistance, but also with heart disease, atherosclerosis, and cancer. These associations derive from mechanisms active at a local (i.e. gallbladder, bile) and a systemic level and are involved in inflammation, hormones, nuclear receptors, signaling molecules, epigenetic modulation of gene expression, and gut microbiota. Despite advanced knowledge of these pathways, the available therapeutic options for symptomatic gallstone patients remain limited. Therapy includes oral litholysis by the bile acid ursodeoxycholic acid (UDCA) in a small subgroup of patients at high risk of postdissolution recurrence, or laparoscopic cholecystectomy, which is the therapeutic radical gold standard treatment. Cholecystectomy, however, may not be a neutral event, and potentially generates health problems, including the metabolic syndrome. Areas covered: Several studies on risk factors and pathogenesis of cholesterol gallstone disease, acting at a systemic level have been reviewed through a PubMed search. Authors have focused on primary prevention and novel potential therapeutic strategies. Expert commentary: The ultimate goal appears to target the manageable systemic mechanisms responsible for gallstone occurrence, pointing to primary prevention measures. Changes must target lifestyles, as well as experimenting innovative pharmacological tools in subgroups of patients at high risk of developing gallstones.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- a Division of Internal Medicine , Hospital of Bisceglie , Bisceglie , Italy
| | - David Q-H Wang
- b Department of Medicine, Division of Gastroenterology and Liver Diseases , Marion Bessin Liver Research Center, Albert Einstein College of Medicine , Bronx , NY , USA
| | - Piero Portincasa
- c Department of Biomedical Sciences and Human Oncology, Clinica Medica "A. Murri" , University of Bari Medical School , Bari , Italy
| |
Collapse
|
28
|
Yoshida N, Sasaki K, Sasaki D, Yamashita T, Fukuda H, Hayashi T, Tabata T, Osawa R, Hirata KI, Kondo A. Effect of Resistant Starch on the Gut Microbiota and Its Metabolites in Patients with Coronary Artery Disease. J Atheroscler Thromb 2018; 26:705-719. [PMID: 30587666 PMCID: PMC6711844 DOI: 10.5551/jat.47415] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM Bacteroides vulgatus and B. dorei have a protective effect against atherosclerosis, suggesting that expansion of these species in the gut microbiota could help patients with coronary artery disease (CAD). This study aimed to investigate the effect of resistant starch (RS) on the gut microbiota and its metabolites in fecal sample cultures from patients with CAD and individuals without CAD, using a single-batch fermentation system. METHODS Fecal samples from 11 patients with CAD and 10 individuals without CAD were fermented for 30 h with or without RS in the Kobe University Human Intestinal Microbiota Model (KUHIMM). Gut microbiota and the abundance of B. vulgatus and B. dorei were analyzed using 16S ribosomal ribonucleic acid (rRNA) gene sequencing and the quantitative polymerase chain reaction. Short-chain fatty acids were analyzed using high-performance liquid chromatography. RESULTS Gut microbial analysis showed significantly lower levels of B. vulgatus and B. dorei in the original fecal samples from patients with CAD, which was simulated after 30 h of fermentation in the KUHIMM. Although RS significantly increased the absolute numbers of B. vulgatus and B. dorei, and butyrate levels in CAD fecal sample cultures, the numbers varied among each patient. CONCLUSIONS The effect of RS on gut microbiota and its metabolites in the KUHIMM varied between CAD and non-CAD fecal sample cultures. The KUHIMM may be useful for preclinical evaluations of the effects of RS on the gut microbiota and its metabolites.
Collapse
Affiliation(s)
- Naofumi Yoshida
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine
| | - Kengo Sasaki
- Graduate School of Science, Technology and Innovation, Kobe University
| | - Daisuke Sasaki
- Graduate School of Science, Technology and Innovation, Kobe University
| | - Tomoya Yamashita
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine
| | | | - Tomohiro Hayashi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine
| | - Tokiko Tabata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine
| | - Ro Osawa
- Research Center for Food Safety and Security, Graduate School of Agricultural Science, Kobe University.,Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University.,RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| |
Collapse
|
29
|
Qiu L, Tao X, Xiong H, Yu J, Wei H. Lactobacillus plantarum ZDY04 exhibits a strain-specific property of lowering TMAO via the modulation of gut microbiota in mice. Food Funct 2018; 9:4299-4309. [PMID: 30039147 DOI: 10.1039/c8fo00349a] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Trimethylamine N-oxide (TMAO), which is oxidized from trimethylamine (TMA) by hepatic flavin-containing monooxygenases (FMOs), promotes the development of atherosclerosis and is a new target for the prevention and treatment of cardiovascular disease from the perspective of intestinal flora. TMA is transformed by intestinal flora from TMA-containing nutrients, such as choline. Some small molecular agents lower serum TMAO and/or cecal TMA levels. However, probiotics that can effectively reduce serum TMAO levels are currently lacking. In this work, five potentially probiotic strains were administered to mice supplemented with 1.3% choline. Only Lactobacillus plantarum ZDY04 significantly reduced serum TMAO and cecal TMA levels by modulating the relative abundance of the families Lachnospiraceae, Erysipelotrichaceae and Bacteroidaceae and the genus Mucispirillum in mice and not by influencing the expression levels of hepatic FMO3 and metabolizing choline, TMA, and TMAO. In addition, L. plantarum ZDY04 can significantly inhibit the development of TMAO-induced atherosclerosis in ApoE-/- 1.3% choline-fed mice as compared with the untreated PBS group. In conclusion, the use of L. plantarum ZDY04 may be an alternative approach to reduce serum TMAO levels and TMAO-induced atherosclerosis in mice.
Collapse
Affiliation(s)
- Liang Qiu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P. R. China.
| | | | | | | | | |
Collapse
|
30
|
Cross-Talk between Gut Microbiota and Heart via the Routes of Metabolite and Immunity. Gastroenterol Res Pract 2018; 2018:6458094. [PMID: 29967639 PMCID: PMC6008745 DOI: 10.1155/2018/6458094] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 05/16/2018] [Indexed: 12/13/2022] Open
Abstract
Considering the prevalence of cardiovascular disease (CVD), significant interest has been focused on the gut microbiota-heart interaction because the gut microbiota has been recognized as a barometer of human health. Dysbiosis, characterized by changes in the gut microbiota in CVD, has been reported in cardiovascular pathologies, such as atherosclerosis, hypertension, and heart failure. Conversely, gut microbiota-derived metabolites, such as trimethylamine/trimethylamine N-oxide (TMA/TMAO), can impact host physiology. Further, bacterial dysbiosis can disturb gut immunity, which increases the risk of acute arterial events. Moreover, studies of germ-free mice have provided evidence that microbiota diversity and the presence of a specific microbe in the gut can affect immune cells in hosts. Therefore, the changes in the composition of the gut microbiota can affect host metabolism and immunity. Importantly, these effects are not only confined to the gut but also spreaded to distal organs. The purpose of the current review is to highlight the complex interplay between the microbiota and CVD via TMAO and different immune cells and discuss the roles of probiotics and nutrition interventions in modulating the intestinal microbiota as novel therapeutic targets of CVD.
Collapse
|
31
|
The Microbiota and Immune System Crosstalk in Health and Disease. Mediators Inflamm 2018; 2018:2912539. [PMID: 29849485 PMCID: PMC5937375 DOI: 10.1155/2018/2912539] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 03/04/2018] [Indexed: 12/12/2022] Open
|
32
|
Ohira H, Tsutsui W, Fujioka Y. Are Short Chain Fatty Acids in Gut Microbiota Defensive Players for Inflammation and Atherosclerosis? J Atheroscler Thromb 2017; 24:660-672. [PMID: 28552897 PMCID: PMC5517538 DOI: 10.5551/jat.rv17006] [Citation(s) in RCA: 302] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 04/07/2017] [Indexed: 12/15/2022] Open
Abstract
Intestinal flora (microbiota) have recently attracted attention among lipid and carbohydrate metabolism researchers. Microbiota metabolize resistant starches and dietary fibers through fermentation and decomposition, and provide short chain fatty acids (SCFAs) to the host. The major SCFAs acetates, propionate and butyrate, have different production ratios and physiological activities. Several receptors for SCFAs have been identified as the G-protein coupled receptor 41/free fatty acid receptor 3 (GPR41/FFAR3), GPR43/FFAR2, GPR109A, and olfactory receptor 78, which are present in intestinal epithelial cells, immune cells, and adipocytes, despite their expression levels differing between tissues and cell types. Many studies have indicated that SCFAs exhibit a wide range of functions from immune regulation to metabolism in a variety of tissues and organs, and therefore have both a direct and indirect influence on our bodies. This review will focus on SCFAs, especially butyrate, and their effects on various inflammatory mechanisms including atherosclerosis. In the future, SCFAs may provide new insights into understanding the pathophysiology of chronic inflammation, metabolic disorders, and atherosclerosis, and we can expect the development of novel therapeutic strategies for these diseases.
Collapse
Affiliation(s)
- Hideo Ohira
- Division of Clinical Nutrition, Faculty of Nutrition, Kobe Gakuin University, Kobe, Japan
| | - Wao Tsutsui
- Division of Clinical Nutrition, Faculty of Nutrition, Kobe Gakuin University, Kobe, Japan
| | - Yoshio Fujioka
- Division of Clinical Nutrition, Faculty of Nutrition, Kobe Gakuin University, Kobe, Japan
| |
Collapse
|