1
|
Vrzalova A, Vrzal R. Orchestra of ligand-activated transcription factors in the molecular symphony of SERPINE 1 / PAI-1 gene regulation. Biochimie 2024:S0300-9084(24)00220-7. [PMID: 39321911 DOI: 10.1016/j.biochi.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Plasminogen activator inhibitor 1 (PAI-1) is a crucial serine protease inhibitor that prevents plasminogen activation by inhibiting tissue- and urokinase-type plasminogen activators (tPA, uPA). PAI-1 is well-known for its role in modulating hemocoagulation or extracellular matrix formation by inhibiting plasmin or matrix metalloproteinases, respectively. PAI-1 is induced by pro-inflammatory cytokines across various tissues, yet its regulation by ligand-activated transcription factors is partly disregarded. Therefore, we have attempted to summarize the current knowledge on the transcriptional regulation of PAI-1 expression by the most relevant xenobiotic and endocrine receptors implicated in modulating PAI-1 levels. This review aims to contribute to the understanding of the specific, often tissue-dependent regulation of PAI-1 and provide insights into the modulation of PAI-1 levels beyond its direct inhibition.
Collapse
Affiliation(s)
- Aneta Vrzalova
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
2
|
Strekalova T, Svirin E, Gorlova A, Sheveleva E, Burova A, Khairetdinova A, Sitdikova K, Zakharova E, Dudchenko AM, Lyundup A, Morozov S. Resilience and Vulnerability to Stress-Induced Anhedonia: Unveiling Brain Gene Expression and Mitochondrial Dynamics in a Mouse Chronic Stress Depression Model. Biomolecules 2023; 13:1782. [PMID: 38136653 PMCID: PMC10741640 DOI: 10.3390/biom13121782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
The role of altered brain mitochondrial regulation in psychiatric pathologies, including Major Depressive Disorder (MDD), has attracted increasing attention. Aberrant mitochondrial functions were suggested to underlie distinct inter-individual vulnerability to stress-related MDD syndrome. In this context, insulin receptor sensitizers (IRSs) that regulate brain metabolism have become a focus of recent research, as their use in pre-clinical studies can help to elucidate the role of mitochondrial dynamics in this disorder and contribute to the development of new antidepressant treatment. Here, following 2-week chronic mild stress (CMS) using predation, social defeat, and restraint, MDD-related behaviour and brain molecular markers have been investigated along with the hippocampus-dependent performance and emotionality in mice that received the IRS dicholine succinate (DS). In a sucrose test, mice were studied for the key feature of MDD, a decreased sensitivity to reward, called anhedonia. Based on this test, animals were assigned to anhedonic and resilient-to-stress-induced-anhedonia groups, using a previously established criterion of a decrease in sucrose preference below 65%. Such assignment was based on the fact that none of control, non-stressed animals displayed sucrose preference that would be smaller than this value. DS-treated stressed mice displayed ameliorated behaviours in a battery of assays: sucrose preference, coat state, the Y-maze, the marble test, tail suspension, and nest building. CMS-vulnerable mice exhibited overexpression of the inflammatory markers Il-1β, tnf, and Cox-1, as well as 5-htt and 5-ht2a-R, in various brain regions. The alterations in hippocampal gene expression were the closest to clinical findings and were studied further. DS-treated, stressed mice showed normalised hippocampal expression of the plasticity markers Camk4, Camk2, Pka, Adcy1, Creb-ar, Nmda-2r-ar, and Nmda-2r-s. DS-treated and non-treated stressed mice who were resilient or vulnerable to anhedonia were compared for hippocampal mitochondrial pathway regulation using Illumina profiling. Resilient mice revealed overexpression of the mitochondrial complexes NADH dehydrogenase, succinate dehydrogenase, cytochrome bc1, cytochrome c oxidase, F-type and V-type ATPases, and inorganic pyrophosphatase, which were decreased in anhedonic mice. DS partially normalised the expression of both ATPases. We conclude that hippocampal reduction in ATP synthesis is associated with anhedonia and pro-inflammatory brain changes that are ameliorated by DS.
Collapse
Affiliation(s)
- Tatyana Strekalova
- Division of Molecular Psychiatry, Center of Mental Health, University of Hospital Würzburg, 97080 Wuerzburg, Germany
| | - Evgeniy Svirin
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Anna Gorlova
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Elizaveta Sheveleva
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Alisa Burova
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Adel Khairetdinova
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Kseniia Sitdikova
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Elena Zakharova
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Alexander M. Dudchenko
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Aleksey Lyundup
- Endocrinology Research Centre, Dmitry Ulyanov St. 19, Moscow 117036, Russia;
- Research and Education Resource Center, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow 117198, Russia
| | - Sergey Morozov
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| |
Collapse
|
3
|
Gorlova A, Svirin E, Pavlov D, Cespuglio R, Proshin A, Schroeter CA, Lesch KP, Strekalova T. Understanding the Role of Oxidative Stress, Neuroinflammation and Abnormal Myelination in Excessive Aggression Associated with Depression: Recent Input from Mechanistic Studies. Int J Mol Sci 2023; 24:915. [PMID: 36674429 PMCID: PMC9861430 DOI: 10.3390/ijms24020915] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Aggression and deficient cognitive control problems are widespread in psychiatric disorders, including major depressive disorder (MDD). These abnormalities are known to contribute significantly to the accompanying functional impairment and the global burden of disease. Progress in the development of targeted treatments of excessive aggression and accompanying symptoms has been limited, and there exists a major unmet need to develop more efficacious treatments for depressed patients. Due to the complex nature and the clinical heterogeneity of MDD and the lack of precise knowledge regarding its pathophysiology, effective management is challenging. Nonetheless, the aetiology and pathophysiology of MDD has been the subject of extensive research and there is a vast body of the latest literature that points to new mechanisms for this disorder. Here, we overview the key mechanisms, which include neuroinflammation, oxidative stress, insulin receptor signalling and abnormal myelination. We discuss the hypotheses that have been proposed to unify these processes, as many of these pathways are integrated for the neurobiology of MDD. We also describe the current translational approaches in modelling depression, including the recent advances in stress models of MDD, and emerging novel therapies, including novel approaches to management of excessive aggression, such as anti-diabetic drugs, antioxidant treatment and herbal compositions.
Collapse
Affiliation(s)
- Anna Gorlova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Evgeniy Svirin
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
- Neuroplast BV, 6222 NK Maastricht, The Netherlands
| | - Dmitrii Pavlov
- Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Raymond Cespuglio
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Centre de Recherche en Neurosciences de Lyon (CRNL), 69500 Bron, France
| | - Andrey Proshin
- P.K. Anokhin Research Institute of Normal Physiology, 125315 Moscow, Russia
| | - Careen A. Schroeter
- Preventive and Environmental Medicine, Kastanienhof Clinic, 50858 Köln-Junkersdorf, Germany
| | - Klaus-Peter Lesch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, The Netherlands
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, The Netherlands
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
4
|
Wang X, Li R, Zacharek A, Landschoot-Ward J, Chopp M, Chen J, Cui X. ApoA-I Mimetic Peptide Reduces Vascular and White Matter Damage After Stroke in Type-2 Diabetic Mice. Front Neurosci 2019; 13:1127. [PMID: 31708728 PMCID: PMC6823666 DOI: 10.3389/fnins.2019.01127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/04/2019] [Indexed: 01/04/2023] Open
Abstract
Diabetes leads to an elevated risk of stroke and worse functional outcome compared to the general population. We investigate whether L-4F, an economical ApoA-I mimetic peptide, reduces neurovascular and white-matter damage in db/db type-2 diabetic (T2DM) stroke mice. L-4F (16 mg/kg, subcutaneously administered initially 2 h after stroke and subsequently daily for 4 days) reduced hemorrhagic transformation, decreased infarct-volume and mortality, and treated mice exhibited increased cerebral arteriole diameter and smooth muscle cell number, decreased blood-brain barrier leakage and white-matter damage in the ischemic brain as well as improved neurological functional outcome after stroke compared with vehicle-control T2DM mice (p < 0.05, n = 11/group). Moreover, administration of L-4F mitigated macrophage infiltration, and reduced the level of proinflammatory mediators tumor necrosis factor alpha (TNFα), high-mobility group box-1 (HMGB-1)/advanced glycation end-product receptor (RAGE) and plasminogen activator inhibitor-1 (PAI-1) in the ischemic brain in T2DM mice (p < 0.05, n = 6/group). In vitro, L-4F treatment did not increase capillary-like tube formation in mouse-brain endothelial cells, but increased primary artery explant cell migration derived from C57BL/6-aorta 1 day after middle cerebral artery occlusion (MCAo), and enhanced neurite-outgrowth after 2 h of oxygen-glucose deprivation and axonal-outgrowth in primary cortical neurons derived from the C57BL/6-embryos subjected to high-glucose condition. This study suggests that early treatment with L-4F provides a potential strategy to reduce neuroinflammation and vascular and white-matter damage in the T2DM stroke population.
Collapse
Affiliation(s)
- Xiaohui Wang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Rongwen Li
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Alex Zacharek
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | | | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States.,Department of Physics, Oakland University, Rochester, MI, United States
| | - Jieli Chen
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Xu Cui
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| |
Collapse
|
5
|
Pomytkin I, Costa‐Nunes JP, Kasatkin V, Veniaminova E, Demchenko A, Lyundup A, Lesch K, Ponomarev ED, Strekalova T. Insulin receptor in the brain: Mechanisms of activation and the role in the CNS pathology and treatment. CNS Neurosci Ther 2018; 24:763-774. [PMID: 29691988 PMCID: PMC6489906 DOI: 10.1111/cns.12866] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 12/16/2022] Open
Abstract
While the insulin receptor (IR) was found in the CNS decades ago, the brain was long considered to be an insulin-insensitive organ. This view is currently revisited, given emerging evidence of critical roles of IR-mediated signaling in development, neuroprotection, metabolism, and plasticity in the brain. These diverse cellular and physiological IR activities are distinct from metabolic IR functions in peripheral tissues, thus highlighting region specificity of IR properties. This particularly concerns the fact that two IR isoforms, A and B, are predominantly expressed in either the brain or peripheral tissues, respectively, and neurons express exclusively IR-A. Intriguingly, in comparison with IR-B, IR-A displays high binding affinity and is also activated by low concentrations of insulin-like growth factor-2 (IGF-2), a regulator of neuronal plasticity, whose dysregulation is associated with neuropathologic processes. Deficiencies in IR activation, insulin availability, and downstream IR-related mechanisms may result in aberrant IR-mediated functions and, subsequently, a broad range of brain disorders, including neurodevelopmental syndromes, neoplasms, neurodegenerative conditions, and depression. Here, we discuss findings on the brain-specific features of IR-mediated signaling with focus on mechanisms of primary receptor activation and their roles in the neuropathology. We aimed to uncover the remaining gaps in current knowledge on IR physiology and highlight new therapies targeting IR, such as IR sensitizers.
Collapse
Affiliation(s)
- Igor Pomytkin
- Department of Advanced Cell TechnologiesInstitute of Regenerative MedicineSechenov First Moscow State Medical UniversityMoscowRussia
| | - João P. Costa‐Nunes
- Department of Normal PhysiologyLaboratory of Psychiatric NeurobiologyInstitute of Molecular MedicineSechenov First Moscow State Medical UniversityMoscowRussia
- Faculdade de Medicina de LisboaInstituto de Medicina MolecularUniversidade de LisboaLisboaPortugal
| | - Vladimir Kasatkin
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and ImmunologyMoscowRussia
| | - Ekaterina Veniaminova
- Department of Normal PhysiologyLaboratory of Psychiatric NeurobiologyInstitute of Molecular MedicineSechenov First Moscow State Medical UniversityMoscowRussia
- Laboratory of Cognitive DysfunctionsInstitute of General Pathology and PathophysiologyMoscowRussia
- Department of NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| | - Anna Demchenko
- Department of Advanced Cell TechnologiesInstitute of Regenerative MedicineSechenov First Moscow State Medical UniversityMoscowRussia
| | - Alexey Lyundup
- Department of Advanced Cell TechnologiesInstitute of Regenerative MedicineSechenov First Moscow State Medical UniversityMoscowRussia
| | - Klaus‐Peter Lesch
- Department of Normal PhysiologyLaboratory of Psychiatric NeurobiologyInstitute of Molecular MedicineSechenov First Moscow State Medical UniversityMoscowRussia
- Department of NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
- Division of Molecular PsychiatryCenter of Mental HealthClinical Research Unit on Disorders of Neurodevelopment and CognitionUniversity of WürzburgWürzburgGermany
| | - Eugene D. Ponomarev
- Faculty of MedicineSchool of Biomedical SciencesThe Chinese University of Hong KongHong KongHong Kong
| | - Tatyana Strekalova
- Department of Normal PhysiologyLaboratory of Psychiatric NeurobiologyInstitute of Molecular MedicineSechenov First Moscow State Medical UniversityMoscowRussia
- Laboratory of Cognitive DysfunctionsInstitute of General Pathology and PathophysiologyMoscowRussia
- Department of NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
6
|
Tanaka A, Komukai S, Shibata Y, Yokoi H, Iwasaki Y, Kawasaki T, Horiuchi K, Nakao K, Ueno T, Nakashima H, Tamashiro M, Hikichi Y, Shimomura M, Tago M, Toyoda S, Inoue T, Kawaguchi A, Node K. Effect of pioglitazone on cardiometabolic profiles and safety in patients with type 2 diabetes undergoing percutaneous coronary artery intervention: a prospective, multicenter, randomized trial. Heart Vessels 2018; 33:965-977. [PMID: 29487991 DOI: 10.1007/s00380-018-1143-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/23/2018] [Indexed: 12/18/2022]
Abstract
Pioglitazone has superior antiatherosclerotic effects compared with other classes of antidiabetic agents, and there is substantial evidence that pioglitazone improves cardiovascular (CV) outcomes. However, there is also a potential risk of worsening heart failure (HF). Therefore, it is clinically important to determine whether pioglitazone is safe in patients with type 2 diabetes mellitus (T2DM) who require treatment for secondary prevention of CV disease, since they have an intrinsically higher risk of HF. This prospective, multicenter, open-label, randomized study investigated the effects of pioglitazone on cardiometabolic profiles and CV safety in T2DM patients undergoing elective percutaneous coronary intervention (PCI) using bare-metal stents or first-generation drug-eluting stents. A total of 94 eligible patients were randomly assigned to either a pioglitazone or conventional (control) group, and pioglitazone was started the day before PCI. Cardiometabolic profiles were evaluated before PCI and at primary follow-up coronary angiography (5-8 months). Pioglitazone treatment reduced HbA1c levels to a similar degree as conventional treatment (pioglitazone group 6.5 to 6.0%, P < 0.01; control group 6.5 to 5.9%, P < 0.001), without body weight gain. Levels of high-molecular weight adiponectin increased more in the pioglitazone group than the control group (P < 0.001), and the changes were irrespective of baseline glycemic control. Furthermore, pioglitazone significantly reduced plasma levels of natriuretic peptides and preserved cardiac systolic and diastolic function (assessed by echocardiography) without incident hospitalization for worsening HF. The incidence of clinical adverse events was also comparable between the groups. These results indicate that pioglitazone treatment before and after elective PCI may be tolerable and clinically safe and may improve cardiometabolic profiles in T2DM patients.
Collapse
Affiliation(s)
- Atsushi Tanaka
- Department of Cardiovascular Medicine, Saga University, 5-5-1 Nabeshima, Saga, Japan.
| | - Sho Komukai
- Clinical Research Center, Saga University Hospital, Saga, Japan
| | - Yoshisato Shibata
- Miyazaki Medical Association Hospital, Cardiovascular Center, Miyazaki, Japan
| | - Hiroyoshi Yokoi
- Department of Cardiology, Kokura Memorial Hospital, Kitakyushu, Japan
| | - Yoshihiro Iwasaki
- Department of Cardiology, Nagasaki Kouseikai Hospital, Nagasaki, Japan
| | - Tomohiro Kawasaki
- Department of Cardiology, Cardiovascular Center, Shin-Koga Hospital, Kurume, Japan
| | - Kenji Horiuchi
- Division of Cardiology, Saiseikai Kumamoto Hospital Cardiovascular Center, Kumamoto, Japan
| | - Koichi Nakao
- Division of Cardiology, Saiseikai Kumamoto Hospital Cardiovascular Center, Kumamoto, Japan
| | - Takafumi Ueno
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Hitoshi Nakashima
- Department of Cardiology, National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan
| | | | - Yutaka Hikichi
- Department of Cardiovascular Medicine, Saga University, 5-5-1 Nabeshima, Saga, Japan
| | - Mitsuhiro Shimomura
- Department of Cardiovascular Medicine, Saga University, 5-5-1 Nabeshima, Saga, Japan
| | - Motoko Tago
- Department of Cardiovascular Medicine, Saga University, 5-5-1 Nabeshima, Saga, Japan
| | - Shigeru Toyoda
- Department of Cardiovascular Medicine, Dokkyo Medical University, Mibu, Japan
| | - Teruo Inoue
- Department of Cardiovascular Medicine, Dokkyo Medical University, Mibu, Japan
| | | | - Koichi Node
- Department of Cardiovascular Medicine, Saga University, 5-5-1 Nabeshima, Saga, Japan.
| | | |
Collapse
|
7
|
Strekalova T, Costa-Nunes JP, Veniaminova E, Kubatiev A, Lesch KP, Chekhonin VP, Evans MC, Steinbusch HWM. Insulin receptor sensitizer, dicholine succinate, prevents both Toll-like receptor 4 (TLR4) upregulation and affective changes induced by a high-cholesterol diet in mice. J Affect Disord 2016; 196:109-16. [PMID: 26921863 DOI: 10.1016/j.jad.2016.02.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 02/03/2016] [Accepted: 02/16/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND High cholesterol intake in mice induces hepatic lipid dystrophy and inflammation, signs of non-alcoholic fatty liver disease (NAFLD), depressive- and anxiety-like behaviors, and the up-regulation of brain and liver Toll-like receptor 4 (Tlr4). Here, we investigated whether dicholine succinate (DS), an insulin receptor sensitizer and mitochondrial complex II substrate would interact with these effects. METHODS C57BL/6J mice were given a 0.2%-cholesterol diet for 3 weeks, alone or along with oral DS administration, or a control feed. Outcomes included behavioral measures of anxiety/depression, and Tlr4 and peroxisome-proliferator-activated-receptor-gamma coactivator-1b (PPARGC1b) expression. RESULTS 50mg/kg DS treatment for 3 weeks partially ameliorated the cholesterol-induced anxiety- and depressive-like changes. Mice were next treated at the higher dose (180mg/kg), either for the 3-week period of dietary intervention, or for the last two weeks. Three-week DS administration normalized behaviors in the forced swim and O-maze tests and abolished the Tlr4 up-regulation in the brain and liver. The delayed, 2-week DS treatment had similar effects on Tlr4 expression and largely rescued the above-mentioned behaviors. Suppression of PPARGC1b, a master regulator of mitochondrial biogenesis, by the high cholesterol diet, was prevented with the 3-week administration, and markedly diminished by the a 2-week administration of DS. None of treatments prevented hepatic dystrophy and triglyceride accumulation. LIMITATIONS Other conditions have to be tested to define possible limitations of reported effects of DS. CONCLUSIONS DS treatment did not alter the patho-morphological substrates of NAFLD syndrome in mice, but ameliorated its molecular and behavioral consequences, likely by activating mitochondrial functions and anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Tatyana Strekalova
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 40, 6200 MD Maastricht, The Netherlands.
| | - João P Costa-Nunes
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 40, 6200 MD Maastricht, The Netherlands; CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, FCM, Universidade Nova de Lisboa, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| | - Ekaterina Veniaminova
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 40, 6200 MD Maastricht, The Netherlands; Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Baltiyskaya 8, Moscow 125315, Russia
| | - Aslan Kubatiev
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Baltiyskaya 8, Moscow 125315, Russia
| | - Klaus-Peter Lesch
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 40, 6200 MD Maastricht, The Netherlands; Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Fuechsleinstr. 15, 97080 Wuerzburg, Germany
| | - Vladimir P Chekhonin
- Serbsky National Research Center for Social and Forensic Psychiatry, Department of Fundamental and Applied Neurobiology, per. Kropotkin 23, Moscow 119034, Russian Federation
| | - Matthew C Evans
- Department of Pharmacology, Oxford University, Mansfield Road, OX1 3QT Oxford, UK
| | - Harry W M Steinbusch
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 40, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
8
|
Cline BH, Costa-Nunes JP, Cespuglio R, Markova N, Santos AI, Bukhman YV, Kubatiev A, Steinbusch HWM, Lesch KP, Strekalova T. Dicholine succinate, the neuronal insulin sensitizer, normalizes behavior, REM sleep, hippocampal pGSK3 beta and mRNAs of NMDA receptor subunits in mouse models of depression. Front Behav Neurosci 2015; 9:37. [PMID: 25767439 PMCID: PMC4341562 DOI: 10.3389/fnbeh.2015.00037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/01/2015] [Indexed: 11/13/2022] Open
Abstract
Central insulin receptor-mediated signaling is attracting the growing attention of researchers because of rapidly accumulating evidence implicating it in the mechanisms of plasticity, stress response, and neuropsychiatric disorders including depression. Dicholine succinate (DS), a mitochondrial complex II substrate, was shown to enhance insulin-receptor mediated signaling in neurons and is regarded as a sensitizer of the neuronal insulin receptor. Compounds enhancing neuronal insulin receptor-mediated transmission exert an antidepressant-like effect in several pre-clinical paradigms of depression; similarly, such properties for DS were found with a stress-induced anhedonia model. Here, we additionally studied the effects of DS on several variables which were ameliorated by other insulin receptor sensitizers in mice. Pre-treatment with DS of chronically stressed C57BL6 mice rescued normal contextual fear conditioning, hippocampal gene expression of NMDA receptor subunit NR2A, the NR2A/NR2B ratio and increased REM sleep rebound after acute predation. In 18-month-old C57BL6 mice, a model of elderly depression, DS restored normal sucrose preference and activated the expression of neural plasticity factors in the hippocampus as shown by Illumina microarray. Finally, young naïve DS-treated C57BL6 mice had reduced depressive- and anxiety-like behaviors and, similarly to imipramine-treated mice, preserved hippocampal levels of the phosphorylated (inactive) form of GSK3 beta that was lowered by forced swimming in pharmacologically naïve animals. Thus, DS can ameliorate behavioral and molecular outcomes under a variety of stress- and depression-related conditions. This further highlights neuronal insulin signaling as a new factor of pathogenesis and a potential pharmacotherapy of affective pathologies.
Collapse
Affiliation(s)
- Brandon H Cline
- Faculté de Médecine, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg Strasbourg, France
| | - Joao P Costa-Nunes
- Department of Neuroscience, Maastricht University Maastricht, Netherlands ; Group of Behavioural Neuroscience and Pharmacology, Institute for Hygiene and Tropical Medicine, New University of Lisbon Lisbon, Portugal
| | - Raymond Cespuglio
- Faculty of Medicine, Neuroscience Research Center of Lyon, INSERM U1028, C. Bernard University Lyon, France
| | - Natalyia Markova
- Laboratory of Biomolecular Screening, Institute of Physiologically Active Compounds, Russian Academy of Sciences Moscow, Russia ; Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences Moscow, Russia
| | - Ana I Santos
- Faculdade de Ciências Médicas, NOVA Medical School, Universidade Nova de Lisboa Lisboa, Portugal
| | - Yury V Bukhman
- Great Lakes Bioenergy Research Center, Computational Biology, Wisconsin Energy Institute, University of Wisconsin Madison, WI, USA
| | - Aslan Kubatiev
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences Moscow, Russia
| | | | - Klaus-Peter Lesch
- Department of Neuroscience, Maastricht University Maastricht, Netherlands ; Laboratory of Translational Neuroscience, Division of Molecular Psychiatry, Centre of Mental Health, University of Wuerzburg Wuerzburg, Germany
| | - Tatyana Strekalova
- Department of Neuroscience, Maastricht University Maastricht, Netherlands ; Group of Behavioural Neuroscience and Pharmacology, Institute for Hygiene and Tropical Medicine, New University of Lisbon Lisbon, Portugal ; Laboratory of Biomolecular Screening, Institute of Physiologically Active Compounds, Russian Academy of Sciences Moscow, Russia
| |
Collapse
|
9
|
Cline BH, Steinbusch HWM, Malin D, Revishchin AV, Pavlova GV, Cespuglio R, Strekalova T. The neuronal insulin sensitizer dicholine succinate reduces stress-induced depressive traits and memory deficit: possible role of insulin-like growth factor 2. BMC Neurosci 2012; 13:110. [PMID: 22989159 PMCID: PMC3564824 DOI: 10.1186/1471-2202-13-110] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 09/14/2012] [Indexed: 12/16/2022] Open
Abstract
Background A number of epidemiological studies have established a link between insulin resistance and the prevalence of depression. The occurrence of depression was found to precede the onset of diabetes and was hypothesized to be associated with inherited inter-related insufficiency of the peripheral and central insulin receptors. Recently, dicholine succinate, a sensitizer of the neuronal insulin receptor, was shown to stimulate insulin-dependent H2O2 production of the mitochondrial respiratory chain leading to an enhancement of insulin receptor autophosphorylation in neurons. As such, this mechanism can be a novel target for the elevation of insulin signaling. Results Administration of DS (25 mg/kg/day, intraperitoneal) in CD1 mice for 7 days prior to the onset of stress procedure, diminished manifestations of anhedonia defined in a sucrose test and behavioral despair in the forced swim test. Treatment with dicholine succinate reduced the anxiety scores of stressed mice in the dark/light box paradigm, precluded stress-induced decreases of long-term contextual memory in the step-down avoidance test and hippocampal gene expression of IGF2. Conclusions Our data suggest that dicholine succinate has an antidepressant-like effect, which might be mediated via the up-regulation of hippocampal expression of IGF2, and implicate the neuronal insulin receptor in the pathogenesis of stress-induced depressive syndrome.
Collapse
Affiliation(s)
- Brandon H Cline
- Interdisciplinary Center for Neurosciences, Heidelberg University, and Institute for Neuroanatomy, University Clinic Heidelberg, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
10
|
Muldowney JAS, Chen Q, Blakemore DL, Vaughan DE. Pentoxifylline Lowers Plasminogen Activator Inhibitor 1 Levels in Obese Individuals: A Pilot Study. Angiology 2012; 63:429-34. [DOI: 10.1177/0003319712436755] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plasminogen activator inhibitor 1 (PAI-1), the primary inhibitor of fibrinolysis and C-reactive protein (CRP), is a predictor of myocardial infarction. Both are upregulated by tumor necrosis factor-alpha (TNF-α) within the obese population. This pilot study tested the hypothesis that TNF-α blockade with pentoxifylline lowers PAI-1 and high-sensitivity CRP (hsCRP) in obese individuals. Twenty participants were treated with pentoxifylline for 8 weeks. A proportional odds model was used to compare the change in PAI-1 and CRP in the pentoxifylline and placebo groups. Plasminogen activator inhibitor 1, but not hsCRP levels, decreased over the 8-week period of the study ( P = .025 and P = NS). There was significant dropout of participants due to drug tolerability. These findings suggest that these markers of cardiovascular risk are differentially regulated in obesity and that PAI-1 levels can be reduced by pentoxifylline in this population.
Collapse
Affiliation(s)
- James A. S. Muldowney
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qingxia Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dana L. Blakemore
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Douglas E. Vaughan
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
11
|
Kemp DE, Ismail-Beigi F, Ganocy SJ, Conroy C, Gao K, Obral S, Fein E, Findling RL, Calabrese JR. Use of insulin sensitizers for the treatment of major depressive disorder: a pilot study of pioglitazone for major depression accompanied by abdominal obesity. J Affect Disord 2012; 136:1164-73. [PMID: 21782251 PMCID: PMC3225727 DOI: 10.1016/j.jad.2011.06.033] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 06/07/2011] [Accepted: 06/23/2011] [Indexed: 12/21/2022]
Abstract
OBJECTIVE This study was conducted to examine the safety and efficacy of pioglitazone, a thiazolidinedione insulin sensitizer, in adult outpatients with major depressive disorder. METHOD In a 12-week, open-label, flexible-dose study, 23 patients with major depressive disorder received pioglitazone monotherapy or adjunctive therapy initiated at 15 mg daily. Subjects were required to meet criteria for abdominal obesity (waist circumference>35 in. in women and >40 in. in men) or metabolic syndrome. The primary efficacy measure was the change from baseline to Week 12 on the Inventory of Depressive Symptomatology (IDS) total score. Partial responders (≥25% decrease in IDS total score) were eligible to participate in an optional extension phase for an additional three months. RESULTS Pioglitazone decreased depression symptom severity from a total IDS score of 40.3±1.8 to 19.2±1.8 at Week 12 (p<.001). Among partial responders (≥25% decrease in IDS total score), an improvement in depressive symptoms was maintained during an additional 3-month extension phase (total duration=24 weeks) according to IDS total scores (p<.001). Patients experienced a reduction in insulin resistance from baseline to Week 12 according to the log homeostasis model assessment (-0.8±0.75; p<.001) and a significant reduction in inflammation as measured by log highly- sensitive C-reactive protein (-0.87±0.72; p<.001). During the current episode, the majority of participants (74%, n=17), had already failed at least one antidepressant trial. The most common side effects were headache and dizziness; no patient discontinued due to side effects. LIMITATIONS These data are limited by a small sample size and an open-label study design with no placebo control. CONCLUSION Although preliminary, pioglitazone appears to reduce depression severity and improve several markers of cardiometabolic risk, including insulin resistance and inflammation. Larger, placebo-controlled studies are indicated.
Collapse
Affiliation(s)
- David E. Kemp
- Case Western Reserve University, University Hospitals Case Medical Center, Department of Psychiatry, Cleveland, OH, USA
| | - Faramarz Ismail-Beigi
- University Hospitals Case Medical Center and Cleveland VA Medical Center, Cleveland, OH, USA
| | - Stephen J. Ganocy
- Case Western Reserve University, University Hospitals Case Medical Center, Department of Psychiatry, Cleveland, OH, USA
| | - Carla Conroy
- Case Western Reserve University, University Hospitals Case Medical Center, Department of Psychiatry, Cleveland, OH, USA
| | - Keming Gao
- Case Western Reserve University, University Hospitals Case Medical Center, Department of Psychiatry, Cleveland, OH, USA
| | - Sarah Obral
- Case Western Reserve University, University Hospitals Case Medical Center, Department of Psychiatry, Cleveland, OH, USA
| | - Elizabeth Fein
- Case Western Reserve University, University Hospitals Case Medical Center, Department of Psychiatry, Cleveland, OH, USA
| | - Robert L. Findling
- Case Western Reserve University, University Hospitals Case Medical Center, Department of Psychiatry, Cleveland, OH, USA
| | - Joseph R. Calabrese
- Case Western Reserve University, University Hospitals Case Medical Center, Department of Psychiatry, Cleveland, OH, USA
| |
Collapse
|
12
|
Oishi K, Tomita T, Itoh N, Ohkura N. PPARγ activation induces acute PAI-1 gene expression in the liver but not in adipose tissues of diabetic model mice. Thromb Res 2011; 128:e81-5. [DOI: 10.1016/j.thromres.2011.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 05/20/2011] [Accepted: 06/21/2011] [Indexed: 10/17/2022]
|
13
|
Moon JH, Kim HJ, Kim SK, Kang ES, Lee BW, Ahn CW, Lee HC, Cha BS. Fat redistribution preferentially reflects the anti-inflammatory benefits of pioglitazone treatment. Metabolism 2011; 60:165-72. [PMID: 20092860 DOI: 10.1016/j.metabol.2009.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 11/26/2009] [Accepted: 12/07/2009] [Indexed: 01/05/2023]
Abstract
Thiazoledinedione is known to have an anti-inflammatory effect besides a hypoglycemic effect. We investigated changes in high-sensitivity C-reactive protein (hsCRP), a proinflammatory marker, after pioglitazone treatment in association with the resulting changes in various metabolic and anthropometric parameters. A total of 93 type 2 diabetes mellitus patients (47 men and 46 women; mean age, 50.0 ± 10.8 years) who were being treated with a stable dose of sulfonylurea or metformin were enrolled in the study. Pioglitazone (15 mg/d) was added to their treatment regimen for 12 weeks, and metabolic and anthropometric measurements were taken before and after pioglitazone treatment. Pioglitazone treatment for 12 weeks decreased serum hsCRP levels (0.83 [1.14] to 0.52 [0.82] mg/L, P < .001) and improved glycemic control (fasting glucose, P < .001; glycosylated hemoglobin, P < .001) and lipid profiles (triglyceride, P = .016; high-density lipoprotein cholesterol, P < .001). Between responders and nonresponders to the hsCRP-lowering effect of pioglitazone, there were significant differences in baseline hsCRP levels and changes in the postprandial glucose and the ratio of visceral fat thickness (VFT) to subcutaneous fat thickness (SFT) (P = .004, .011, and .001, respectively). The percentage change in hsCRP levels after treatment was inversely correlated with baseline hsCRP levels (r = -0.497, P < .001) and directly correlated with the change in postprandial glucose (r = 0.251, P = .021), VFT (r = 0.246, P = .030), and VFT/SFT ratio (r = 0.276, P = .015). Logistic regression analysis revealed that the hsCRP-lowering effect of pioglitazone was affected by baseline hsCRP levels (odds ratio [OR] = 7.929, P = .007) as well as changes in postprandial 2-hour glucose (OR = 0.716, P = .025) and VFT/SFT ratio (OR = 0.055, P = .009). In conclusion, treatment with pioglitazone produced an anti-inflammatory effect, decreasing serum hsCRP levels; and a decrease in the VFT/SFT ratio was independently and most strongly associated with the hsCRP-decreasing effect. These results suggest that abdominal fat redistribution preferentially reflects the anti-inflammatory benefits of pioglitazone treatment.
Collapse
Affiliation(s)
- Jae Hoon Moon
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Katsiki N, Mikhailidis DP, Gotzamani-Psarrakou A, Yovos JG, Karamitsos D. Effect of various treatments on leptin, adiponectin, ghrelin and neuropeptide Y in patients with type 2 diabetes mellitus. Expert Opin Ther Targets 2011; 15:401-20. [DOI: 10.1517/14728222.2011.553609] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
15
|
Obesity and breast cancer: the roles of peroxisome proliferator-activated receptor-γ and plasminogen activator inhibitor-1. PPAR Res 2009; 2009:345320. [PMID: 19672469 PMCID: PMC2723729 DOI: 10.1155/2009/345320] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 05/18/2009] [Accepted: 06/10/2009] [Indexed: 01/01/2023] Open
Abstract
Breast cancer is the most prominent cancer among females in the United States. There are a number of risk factors associated with development of breast cancer, including consumption of a high-fat diet and obesity. Plasminogen activator inhibitor-1 (PAI-1) is a cytokine upregulated in obesity whose expression is correlated with a poor prognosis in breast cancer. As a key mediator of adipogenesis and regulator of adipokine production, peroxisome proliferator-activated receptor-γ (PPAR-γ) is involved in PAI-1 expression from adipose tissue. We summarize the current knowledge linking PPAR-γ and PAI-1 expression to high-fat diet and obesity in the risk of breast cancer.
Collapse
|
16
|
Dasu MR, Park S, Devaraj S, Jialal I. Pioglitazone inhibits Toll-like receptor expression and activity in human monocytes and db/db mice. Endocrinology 2009; 150:3457-64. [PMID: 19389833 PMCID: PMC2717888 DOI: 10.1210/en.2008-1757] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 04/10/2009] [Indexed: 12/11/2022]
Abstract
Toll-like receptors (TLRs) are key innate immune sensors of endogenous damage signals and play an important role in inflammatory diseases like diabetes and atherosclerosis. Pioglitazone (PIO), a peroxisome proliferator-activated receptor (PPAR)-gamma agonist, has been reported to be an antiinflammatory agent. Thus, in the present study, we examined the antiinflammatory effects of PIO on TLR2 and TLR4 expression in human monocytes exposed to Pam3CSK4 (Pam; TLR2 ligand) and purified lipopolysaccharide (LPS; TLR4 ligand) using flow cytometry and real-time RT-PCR. Monocytes were isolated from healthy human volunteers and pretreated with PIO (1 microM) followed by Pam (170 ng/ml) and LPS (160 ng/ml) challenge. PIO significantly decreased Pam- and LPS-induced TLR2 (-56%) and TLR4 (-78%) expression (P < 0.05). In addition, PIO decreased TLR ligand-induced nuclear factor-kappaB activity (-63%), IL-1beta (-50%), IL-6 (-52%), monocyte chemoattractant protein-1(-83%), and TNF-alpha (-87%) compared with control. Next, PIO-treated db/db mice (n = 6/group) showed decreased TLR2 (-60%) and TLR4 (-45%) expression in peritoneal macrophages compared with vehicle control mice (P < 0.001) with associated decrease in MyD88-dependent signaling and nuclear factor-kappaB activation. Data suggest that Pam- and LPS-induced TLR2 and TLR4 expression are inhibited by PIO in human monocytes and db/db mice. Thus, we define a novel pathway by which PIO could induce antiinflammatory effects.
Collapse
Affiliation(s)
- Mohan R Dasu
- Laboratory for Atherosclerosis and Metabolic Research, University of California, Davis, Medical Center, Sacramento, California 95817, USA.
| | | | | | | |
Collapse
|
17
|
Ardigò D, Franzini L, Valtueña S, Numeroso F, Piatti PM, Monti L, Reaven GM, Zavaroni I. The increase in plasma PAI-1 associated with insulin resistance may be mediated by the presence of hepatic steatosis. Atherosclerosis 2009; 208:240-5. [PMID: 19656511 DOI: 10.1016/j.atherosclerosis.2009.06.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 06/01/2009] [Accepted: 06/22/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Recent evidence suggests that plasminogen-activator inhibitor-1 (PAI-1) is abundantly produced by the fatty liver, but it is unclear whether hepatic steatosis (HS) can mediate the increase in plasma PAI-1 induced by insulin resistance/compensatory hyperinsulinemia (IR/CH). METHODS AND RESULTS To address this issue, we cross-sectionally evaluated IR/CH as area under the curve of plasma insulin (AUC-PI) concentrations during OGTT, metabolic profile, and ultrasound degree of HS in 235 healthy volunteers (132M, age: 60+/-7 years) with normal transaminase concentrations. Circulating PAI-1 was increased in subjects with classical features of IR/CH (overweight, high fasting and post-OGTT insulin and glucose, high triglycerides (TG), and low HDL-cholesterol), and significantly correlated to prevalence and degree of HS, but not to alcohol intake. In a multivariate model, AUC-PI, TG and degree of HS were independent predictors of plasma PAI-1 (R(2)=0.32). However, AUC-PI was significantly correlated to PAI-1 only in subjects with HS, suggesting an interaction between AUC-PI and HS. In addition, in the presence of HS and IR/CH, PAI-1 concentrations were increased to a similar extent both in heavy and moderate drinkers, suggesting that metabolic and alcoholic steatosis have a similar effect on the relationship between IR/CH and PAI-1. CONCLUSION These results support the hypothesis that HS has a major impact on the relationship between IR/CH and plasma PAI-1 concentrations, and this effect seems to be unaffected by the etiology of the HS.
Collapse
Affiliation(s)
- Diego Ardigò
- Department of Internal Medicine and Biomedical Sciences, Parma University, Via Gramsci 14, Parma, PR, Italy
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Nomura S, Shouzu A, Omoto S, Inami N, Ueba T, Urase F, Maeda Y. Effects of eicosapentaenoic acid on endothelial cell-derived microparticles, angiopoietins and adiponectin in patients with type 2 diabetes. J Atheroscler Thromb 2009; 16:83-90. [PMID: 19403992 DOI: 10.5551/jat.e091] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
AIM The aim of this study was to evaluate the significance of endothelial cell-derived microparticles (EDMP), angiopoietin-2 (Ang-2) and adiponectin in hyperlipidemic patients with and without type 2 diabetes mellitus, and to compare the two for the effects of eicosapentaenoic acid (EPA) on these markers. METHODS One hundred and twenty-six hyperlipidemic patients with and without type 2 diabetes mellitus received EPA 1,800 mg daily, and 50 of the patients were non-diabetic. RESULTS EDMP and Ang-2 levels prior to treatment were higher in diabetic patients than in non-diabetic patients, whereas adiponectin levels were lower in diabetics. When diabetic patients were classified into two groups on the basis of Ang-2 levels, the levels of all markers remained unchanged in those without a high Ang-2 level after EPA treatment. In contrast, all markers except for adiponectin were decreased significantly in diabetic patients with high Ang-2 levels after 6 months of EPA treatment. These diabetic patients with high Ang-2 levels displayed a more significant increase in adiponectin levels after EPA treatment than those who did not. CONCLUSION These results suggest that EPA possesses an adiponectin-dependent anti-atherosclerotic effect and may be beneficial for the prevention of vascular complications in diabetic patients with high Ang-2 levels.
Collapse
Affiliation(s)
- Shosaku Nomura
- Division of Hematology, Kishiwada City Hospital, Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|