1
|
Sun R, Zhao D, Yu X, Zhang F, You R, Luo X, Li L. Discovery of a family of menaquinone-targeting cyclic lipodepsipeptides for multidrug-resistant Gram-positive pathogens. Commun Biol 2024; 7:1453. [PMID: 39506023 PMCID: PMC11541763 DOI: 10.1038/s42003-024-07159-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Menaquinone (MK) in bacterial membrane is an attractive target for the development of novel therapeutic agents. Mining the untapped chemical diversity encoded by Gram-negative bacteria presents an opportunity to identify additional MK-binding antibiotics (MBAs). By MK-binding motif searching of bioinformatically predicted linear non-ribosomal peptides from 14,298 sequenced genomes of 45 underexplored Gram-negative bacterial genera, here we identify a novel MBA structural family, including silvmeb and pseudomeb, using structure prediction-guided chemical synthesis. Both MBAs show rapid bacteriolysis by MK-dependent membrane depolarization to achieve their potent activities against a panel of Gram-positive pathogens. Furthermore, both MBAs are proven to be effective against methicillin-resistant Staphylococcus aureus in a murine peritonitis-sepsis model. Our findings suggest that MBAs are a kind of structurally diverse and still underexplored antibacterial lipodepsipeptide class. The interrogation of underexplored bacterial taxa using synthetic bioinformatic natural product methods is an appealing strategy for discovering novel biomedically relevant agents to confront the crisis of antimicrobial resistance.
Collapse
Affiliation(s)
- Runze Sun
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China
| | - Di Zhao
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China
| | - Xuchang Yu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China
| | - Fei Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China
- College of Life Science, Tarim University, E1487 Tarim Avenue, Alar, 43300, China
| | - Ruixiang You
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China
| | - Xiaoxia Luo
- College of Life Science, Tarim University, E1487 Tarim Avenue, Alar, 43300, China
| | - Lei Li
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China.
| |
Collapse
|
2
|
Li Q, Feng H, Tian Q, Xiang Y, Wang X, He YX, Zhu K. Discovery of antibacterial diketones against gram-positive bacteria. Cell Chem Biol 2024:S2451-9456(24)00277-0. [PMID: 39089260 DOI: 10.1016/j.chembiol.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/21/2024] [Accepted: 06/28/2024] [Indexed: 08/03/2024]
Abstract
The rapid rise of antibiotic resistance calls for the discovery of new antibiotics with distinct antibacterial mechanisms. New target mining is indispensable for developing antibiotics. Plant-microbial antibiotics are appealing to underexplored sources due to a dearth of comprehensive understanding of antibacterial activity and the excavation of new targets. Here, a series of phloroglucinol derivatives of plant-root-associated Pseudomonas fluorescens were synthesized for structure-activity relationship analysis. Notably, 2,4-diproylphloroglucinol (DPPG) displayed efficient bactericidal activity against a wide range of gram-positive bacteria. Importantly, mechanistic study exhibits that DPPG binds to type II NADH dehydrogenase (NDH-2), an essential enzyme catalyzing the transfer of electrons from NADH to quinones in the electron transport chain (ETC), blocking electron transfer in S. aureus. Last, we validated the efficacy of DPPG in vivo through animal infection models. Our findings not only provide a distinct antibiotic lead to treat multidrug resistant pathogens but also identify a promising antibacterial target.
Collapse
Affiliation(s)
- Qian Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hanzhong Feng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qiong Tian
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry and School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yun Xiang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaolei Wang
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry and School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| | - Yong-Xing He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China.
| | - Kui Zhu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Avci FG. Unraveling bacterial stress responses: implications for next-generation antimicrobial solutions. World J Microbiol Biotechnol 2024; 40:285. [PMID: 39073503 PMCID: PMC11286680 DOI: 10.1007/s11274-024-04090-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
The accelerated spread of antimicrobial-resistant bacteria has caused a serious health problem and rendered antimicrobial treatments ineffective. Innovative approaches are crucial to overcome the health threat posed by resistant pathogens and prevent the emergence of untreatable infections. Triggering stress responses in bacteria can diminish susceptibility to various antimicrobials by inducing resistance mechanisms. Therefore, a thorough understanding of stress response control, especially in relation to antimicrobial resistance, offers valuable perspectives for innovative and efficient therapeutic approaches to combat antimicrobial resistance. The aim of this study was to evaluate the stress responses of 8 different bacteria by analyzing reporter metabolites, around which significant alterations were observed, using a pathway-driven computational approach. For this purpose, the transcriptomic data that the bacterial pathogens were grown under 11 different stress conditions mimicking the human host environments were integrated with the genome-scale metabolic models of 8 pathogenic species (Enterococcus faecalis OG1R, Escherichia coli EPEC O127:H6 E2348/69, Escherichia coli ETEC H10407, Escherichia coli UPEC 536, Klebsiella pneumoniae MGH 78578, Pseudomonas aeruginosa PAO1, Staphylococcus aureus MRSA252, and Staphylococcus aureus MSSA476). The resulting reporter metabolites were enriched in multiple metabolic pathways, with cofactor biosynthesis being the most important. The results of this study will serve as a guide for the development of antimicrobial agents as they provide a first insight into potential drug targets.
Collapse
Affiliation(s)
- Fatma Gizem Avci
- Department of Bioengineering, Faculty of Engineering and Natural Sciences, Üsküdar University, Istanbul, Türkiye.
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
4
|
Duraisamy R, Ganapathy D, Shanmugam R, Devaraj E, Shenoy A. Assessment of Antimicrobial Activity of Nanocomposites Based on Nano-Hydroxyapatite (HAP), Chitosan, and Vitamin K2. Cureus 2024; 16:e53339. [PMID: 38435891 PMCID: PMC10908433 DOI: 10.7759/cureus.53339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/31/2024] [Indexed: 03/05/2024] Open
Abstract
OBJECTIVE The objective of this study was to evaluate the antimicrobial potential of nanocomposites containing vitamin K2, hydroxyapatite nanoparticles (nHAP), and chitosan (Chito)-coated dental implants against clinically relevant microbial strains. MATERIALS AND METHODS Four test compounds were prepared: vitamin K2 + nHAP, K2 + Chito + nHAP, vitamin K2, and vitamin K2 + Chito. Agar well diffusion test was conducted to assess the antimicrobial activity of these compounds against Staphylococcus aureus (S. aureus), Streptococcus mutans (S. mutans), Enterococcus faecalis (E. faecalis), and Candida albicans (C. albicans). Results: The vitamin K2 + nHAP nanocomposite exhibited antimicrobial activity against all tested microorganisms, with E. faecalis showing the highest sensitivity (25 mm zone of inhibition at 100 µL concentration). The K2 + Chito + nHAP nanocomposite demonstrated potent antimicrobial activity with C. albicans displaying the highest sensitivity (28 mm zone of inhibition at 100 µL concentration). Pure vitamin K2 showed limited antimicrobial activity, vitamin K2 combined with chitosan exhibited significant susceptibility to C. albicans, resulting in a substantial inhibition zone of 24 mm diameter at a concentration of 100 µL. CONCLUSION The synergistic effects of vitamin K2 with nHAP and chitosan highlight the potential of these nanocomposites for biomedical applications. These findings contribute to the development of effective nanocomposites to address antimicrobial resistance and improve infection control in various biomedical fields.
Collapse
Affiliation(s)
- Revathi Duraisamy
- Department of Prosthodontics, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Dhanraj Ganapathy
- Department of Prosthodontics, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Rajeshkumar Shanmugam
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Ezhilarasan Devaraj
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Amrutha Shenoy
- Department of Prosthodontics and Implantology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
5
|
Verma A, Naik B, Kumar V, Mishra S, Choudhary M, Khan JM, Gupta AK, Pandey P, Rustagi S, Kakati B, Gupta S. Revolutionizing Tuberculosis Treatment: Uncovering New Drugs and Breakthrough Inhibitors to Combat Drug-Resistant Mycobacterium tuberculosis. ACS Infect Dis 2023; 9:2369-2385. [PMID: 37944023 DOI: 10.1021/acsinfecdis.3c00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Tuberculosis (TB) is a global health threat that causes significant mortality. This review explores chemotherapeutics that target essential processes in Mycobacterium tuberculosis, such as DNA replication, protein synthesis, cell wall formation, energy metabolism, and proteolysis. We emphasize the need for new drugs to treat drug-resistant strains and shorten the treatment duration. Emerging targets and promising inhibitors were identified by examining the intricate biology of TB. This review provides an overview of recent developments in the search for anti-TB drugs with a focus on newly validated targets and inhibitors. We aimed to contribute to efforts to combat TB and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Ankit Verma
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, Uttarakhand, India
| | - Bindu Naik
- Department of Food Science and Technology, Graphic Era Deemed to be University, Bell Road, Clement Town, Dehradun 248002, Uttarakhand, India
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, Uttarakhand, India
| | - Sadhna Mishra
- Faculty of Agricultural Sciences, GLA University, Mathura 281406, UP, India
| | - Megha Choudhary
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, Uttarakhand, India
| | - Javed Masood Khan
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia
| | - Arun Kumar Gupta
- Department of Food Science and Technology, Graphic Era Deemed to be University, Bell Road, Clement Town, Dehradun 248002, Uttarakhand, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchur 788011, Assam, India
| | - Sarvesh Rustagi
- Department of Food Technology, UCALS, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| | - Barnali Kakati
- Department of Microbiology, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, U.K., India
| | - Sanjay Gupta
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, Uttarakhand, India
| |
Collapse
|
6
|
Liu Y, Wang J, Huang JB, Li XF, Chen Y, Liu K, Zhao M, Huang XL, Gao XL, Luo YN, Tao W, Wu J, Xue ZL. Advances in regulating vitamin K 2 production through metabolic engineering strategies. World J Microbiol Biotechnol 2023; 40:8. [PMID: 37938463 DOI: 10.1007/s11274-023-03828-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023]
Abstract
Vitamin K2 (menaquinone, VK2, MK) is an essential lipid-soluble vitamin that plays critical roles in inhibiting cell ferroptosis, improving blood clotting, and preventing osteoporosis. The increased global demand for VK2 has inspired interest in novel production strategies. In this review, various novel metabolic regulation strategies, including static and dynamic metabolic regulation, are summarized and discussed. Furthermore, the advantages and disadvantages of both strategies are analyzed in-depth to highlight the bottlenecks facing microbial VK2 production on an industrial scale. Finally, advanced metabolic engineering biotechnology for future microbial VK2 production will also be discussed. In summary, this review provides in-depth information and offers an outlook on metabolic engineering strategies for VK2 production.
Collapse
Affiliation(s)
- Yan Liu
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China.
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, 241000, Wuhu, China.
| | - Jian Wang
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China
| | - Jun-Bao Huang
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China
| | - Xiang-Fei Li
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, 241000, Wuhu, China
| | - Yu Chen
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, 241000, Wuhu, China
| | - Kun Liu
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, 241000, Wuhu, China
| | - Ming Zhao
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China.
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, 241000, Wuhu, China.
| | - Xi-Lin Huang
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China
| | - Xu-Li Gao
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China
| | - Ya-Ni Luo
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China
| | - Wei Tao
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China
| | - Jing Wu
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China
| | - Zheng-Lian Xue
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, 241000, Wuhu, China
| |
Collapse
|
7
|
Brown M, Schramm VL. Decreased Transition-State Analogue Affinity in Isotopically Heavy MTAN with Increased Catalysis. Biochemistry 2023; 62:2928-2933. [PMID: 37788145 PMCID: PMC10636763 DOI: 10.1021/acs.biochem.3c00434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
5'-Methylthioadenosine/S-adenosylhomocysteine nucleosidase from Helicobacter pylori (HpMTAN) demonstrated faster chemistry when expressed as an isotopically heavy protein, with 2H, 13C, and 15N replacing the bulk of normal isotopes. The inverse heavy enzyme isotope effect has been attributed to improved enzyme-reactant interactions causing more frequent transition-state formation ( Proc. Natl. Acad. Sci. U.S.A. 2021, 118, e2109118118). Transition-state analogues stabilize the transient dynamic geometry of the transition state and inform on transition-state dynamics. Here, a slow-onset, tight-binding transition-state analogue of HpMTAN is characterized with heavy and light enzymes. Dissociation constants for the initial encounter complex (Ki) and for the tightly bound complex after slow-onset inhibition (Ki*) with hexylthio-DADMe-Immucillin-A (HTDIA) gave Ki values for light and heavy HpMTAN = 52 ± 10 and 85 ± 13 pM and Ki* values = 5.9 ± 0.3 and 10.0 ± 1.2 pM, respectively. HTDIA dissociates from heavy HpMTAN at 0.063 ± 0.002 min-1, faster than that from light HpMTAN at 0.032 ± 0.004 min-1. These values are consistent with transition-state formation by an improved catalytic site dynamic search and inconsistent with catalytic efficiency proportional to tight binding of the transition state.
Collapse
Affiliation(s)
- Morais Brown
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
8
|
Choi SR, Narayanasamy P. In Vitro and In Vivo Antimicrobial Activity of an Oxidative Stress-Mediated Bicyclic Menaquinone Biosynthesis Inhibitor against MRSA. ACS Infect Dis 2023; 9:2016-2024. [PMID: 37655755 DOI: 10.1021/acsinfecdis.3c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Menaquinone (MK) is an essential component in the oxidative phosphorylation pathway of Gram-positive bacteria. Drugs targeting enzymes involved in MK biosynthesis can prevent electron transfer, which leads to ATP starvation and thereby death of microorganisms. Previously, we reported a series of MenA inhibitors and demonstrated their antimicrobial activity against Gram-positive bacteria, including Methicillin-resistant Staphylococcus aureus (MRSA) and mycobacteria. These inhibitors were developed by mimicking demethylmenaquinone, a product of MenA enzymatic reaction in MK biosynthesis. In this study, compound NM4, MK biosynthesis inhibitor, inhibited the formation of MRSA biofilm and it was screened against 1952 transposon mutants to elucidate mechanisms of action; however, no resistant mutants were found. Also, compound NM4 induced the production of reactive oxygen species (ROS) by blocking electron transfer in the oxidative phosphorylation pathway as observed by MRSA growth recovery using various ROS scavengers. An oxygen consumption assay also showed that NM4 blocks the oxygen consumption by MRSA, but the addition of menaquinone (MK) restores growth of MRSA. The NM4-treated MRSA induced the expression of catalase by more than 25%, as quantified by the native gel. A pulmonary murine model exhibited that NM4 significantly reduced bacterial lung load in mice without toxicity. An NM4-resistant USA300 strain was developed to attempt to identify the targets participating in the mechanism of resistance. Our results support that respiration and oxidative phosphorylation are potential targets for developing antimicrobial agents against MRSA. Altogether, our findings suggest the potential use of MK biosynthesis inhibitors as an effective antimicrobial agent against MRSA.
Collapse
Affiliation(s)
- Seoung-Ryoung Choi
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Prabagaran Narayanasamy
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
9
|
Zhang L, Yan Y, Zhu J, Xia X, Yuan G, Li S, Deng B, Luo X. Quinone Pool, a Key Target of Plant Flavonoids Inhibiting Gram-Positive Bacteria. Molecules 2023; 28:4972. [PMID: 37446632 DOI: 10.3390/molecules28134972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Plant flavonoids have attracted increasing attention as new antimicrobial agents or adjuvants. In our previous work, it was confirmed that the cell membrane is the major site of plant flavonoids acting on the Gram-positive bacteria, which likely involves the inhibition of the respiratory chain. Inspired by the similar structural and antioxidant characters of plant flavonoids to hydro-menaquinone (MKH2), we deduced that the quinone pool is probably a key target of plant flavonoids inhibiting Gram-positive bacteria. To verify this, twelve plant flavonoids with six structural subtypes were preliminarily selected, and their minimum inhibitory concentrations (MICs) against Gram-positive bacteria were predicted from the antimicrobial quantitative relationship of plant flavonoids to Gram-positive bacteria. The results showed they have different antimicrobial activities. After their MICs against Staphylococcus aureus were determined using the broth microdilution method, nine compounds with MICs ranging from 2 to 4096 μg/mL or more than 1024 μg/mL were eventually selected, and then their MICs against S. aureus were determined interfered with different concentrations of menaquinone-4 (MK-4) and the MKs extracted from S. aureus. The results showed that the greater the antibacterial activities of plant flavonoids were, the more greatly their antibacterial activities decreased along with the increase in the interfering concentrations of MK-4 (from 2 to 256 μg/mL) and the MK extract (from 4 to 512 μg/mL), while those with the MICs equal to or more than 512 μg/mL decreased a little or remained unchanged. In particular, under the interference of MK-4 (256 μg/mL) and the MK extract (512 μg/mL), the MICs of α-mangostin, a compound with the greatest inhibitory activity to S. aureus out of these twelve plant flavonoids, increased by 16 times and 8 to 16 times, respectively. Based on the above, it was proposed that the quinone pool is a key target of plant flavonoids inhibiting Gram-positive bacteria, and which likely involves multiple mechanisms including some enzyme and non-enzyme inhibitions.
Collapse
Affiliation(s)
- Li Zhang
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yu Yan
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jianping Zhu
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xuexue Xia
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ganjun Yuan
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shimin Li
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Beibei Deng
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xinrong Luo
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
10
|
Pujari V, Rozman K, Dhiman RK, Aldrich CC, Crick DC. Mycobacterial MenG: Partial Purification, Characterization, and Inhibition. ACS Infect Dis 2022; 8:2430-2440. [PMID: 36417754 DOI: 10.1021/acsinfecdis.2c00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Menaquinone (MK) is an essential component of the electron transport chain (ETC) in the gram-variable Mycobacterium tuberculosis and many Gram-positive pathogens. Three genes in the M. tuberculosis genome were annotated as methyltransferases involved in lipoquinone synthesis in mycobacteria. Heterologous expression of Rv0558 complemented an ubiE (the quinone C-methyltransferase involved in ubiquinone and menaquinone synthesis) deletion in Escherichia coli, and expression in a wild-type E. coli strain increased quinone C-methyltransferase specific activity by threefold. Rv0558 encodes a canonical C-methyltransferase or, more specifically, a S-adenosylmethionine/demethylmenaquinol methyltransferase. Partially purified recombinant protein catalyzed the formation of MK from demethylmenaquinone (DMK), although the activity of the recombinant protein was low and appeared to require a cofactor or intact membrane structure for activity. Membrane preparations from irradiated M. tuberculosis also showed poor activity; however, membrane preparations from wild-type Mycobacterium smegmatis showed robust, substrate-dependent activity. The apparent Km values for demethylmenaquinone and SAM were 14 ± 5.0 and 17 ± 7.0 μM, respectively. Interestingly, addition of dithiothreitol, dithionite, NADH, or other substrates of primary dehydrogenases to reaction mixtures containing membrane preparations stimulated the activity. Thus, these observations strongly suggest that demethylmenaquinol is the actual substrate of MenG. Ro 48-8071, previously reported to inhibit mycobacterial MK synthesis and growth, inhibited Rv0558 activity with an IC50 value of 5.1 ± 0.5 μM, and DG70 (GSK1733953A), first described as a respiration inhibitor in M. tuberculosis, inhibits MenG activity with an IC50 value of 2.6 ± 0.6 μM.
Collapse
Affiliation(s)
- Venugopal Pujari
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Kaja Rozman
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Rakesh K Dhiman
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Dean C Crick
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
11
|
Lysocin E Targeting Menaquinone in the Membrane of Mycobacterium tuberculosis Is a Promising Lead Compound for Antituberculosis Drugs. Antimicrob Agents Chemother 2022; 66:e0017122. [PMID: 35969044 PMCID: PMC9487456 DOI: 10.1128/aac.00171-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tuberculosis remains a public health crisis and a health security threat. There is an urgent need to develop new antituberculosis drugs with novel modes of action to cure drug-resistant tuberculosis and shorten the chemotherapy period by sterilizing tissues infected with dormant bacteria. Lysocin E is an antibiotic that showed antibacterial activity against Staphylococcus aureus by binding to its menaquinone (commonly known as vitamin K2). Unlike S. aureus, menaquinone is essential in both growing and dormant Mycobacterium tuberculosis. This study aims to evaluate the antituberculosis activities of lysocin E and decipher its mode of action. We show that lysocin E has high in vitro activity against both drug-susceptible and drug-resistant Mycobacterium tuberculosis var. tuberculosis and dormant mycobacteria. Lysocin E is likely bound to menaquinone, causing M. tuberculosis membrane disruption, inhibition of oxygen consumption, and ATP synthesis. Thus, we have concluded that the high antituberculosis activity of lysocin E is attributable to its synergistic effects of membrane disruption and respiratory inhibition. The efficacy of lysocin E against intracellular M. tuberculosis in macrophages was lower than its potent activity against M. tuberculosis in culture medium, probably due to its low ability to penetrate cells, but its efficacy in mice was still superior to that of streptomycin. Our findings indicate that lysocin E is a promising lead compound for the development of a new tuberculosis drug that cures drug-resistant and latent tuberculosis in a shorter period.
Collapse
|
12
|
De La Cruz-Jiménez L, Hernández-Torres MA, Monroy-García IN, Rivas-Morales C, Verde-Star MJ, Gonzalez-Villasana V, Viveros-Valdez E. Biological Activities of Seven Medicinal Plants Used in Chiapas, Mexico. PLANTS (BASEL, SWITZERLAND) 2022; 11:1790. [PMID: 35890424 PMCID: PMC9316193 DOI: 10.3390/plants11141790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 05/17/2023]
Abstract
Seven medicinal plants from Chiapas, Mexico, used by Native Americans were analyzed, aiming to improve the understanding of their medicinal properties through the evaluation of various biological activities, i.e., bactericidal, antioxidant, α-glucosidase inhibition, and toxicity, to provide a scientific basis for the management of infectious and hyperglycemic diseases in the Mexican southeast. Plant extracts were obtained from Cordia dodecandra, Gaultheria odorata, Heliotropium angiospermum, Justicia spicigera, Leucaena collinsii spp. collinsii, Tagetes nelsonii, and Talisia oliviformis through maceration techniques using methanol and chloroform (1:1). Minimum Inhibitory Concentration (MIC) was employed to determine the antibacterial activity against Staphylococcus aureus, Enterobacter faecalis, Escherichia coli, Enterobacter aerogenes, Enterobacter cloacae, Klebsiella pneumoniae, and Pseudomonas aeuroginosa. The antiradical/antioxidant activity was determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays and antihemolytic activity using the 2,2’-Azobis(2-amidinopropane) dihydrochloride radical (APPH). The anti-α-glucosidase activity was evaluated in vitro through the chromogenic PNPG assay. The toxicity was assessed using the brine shrimp lethality assay. The highest antimicrobial activity was displayed by T. nelsonii, mainly against E. faecalis and P. aeuroginosa. The extracts of L. collinsii, J. spicigera, and T. nelsonii possess antioxidant properties with EC50 < 50 μg/mL. J. spicigera and T. nelsonii extracts showed the highest antihemolytic activity with IC50 < 14 μg/mL. T. nelsonii exhibited a remarkable inhibitor effect on the α-glucosidase enzyme and the greatest toxic effect on Artemia salina with IC50 = 193 ± 20 μg/mL and LD50 = 14 ± 1 μg/mL, respectively. According to our results, G. odorata, J. spicigera, T. nelsonii, and T. oliviformis extracts contained active antimicrobial compounds. At the same time, T. nelsonii stands to be a possible source of effective antineoplastic and antihyperglycemic compounds.
Collapse
Affiliation(s)
- Liliana De La Cruz-Jiménez
- Department of Chemistry, College of Biological Sciences, Universidad Autónoma de Nuevo León, Av. Pedro de Alba S/N, San Nicolás de los Garza 66450, Nuevo León, Mexico; (L.D.L.C.-J.); (M.A.H.-T.); (I.N.M.-G.); (C.R.-M.); (M.J.V.-S.)
| | - Mario Alberto Hernández-Torres
- Department of Chemistry, College of Biological Sciences, Universidad Autónoma de Nuevo León, Av. Pedro de Alba S/N, San Nicolás de los Garza 66450, Nuevo León, Mexico; (L.D.L.C.-J.); (M.A.H.-T.); (I.N.M.-G.); (C.R.-M.); (M.J.V.-S.)
| | - Imelda N. Monroy-García
- Department of Chemistry, College of Biological Sciences, Universidad Autónoma de Nuevo León, Av. Pedro de Alba S/N, San Nicolás de los Garza 66450, Nuevo León, Mexico; (L.D.L.C.-J.); (M.A.H.-T.); (I.N.M.-G.); (C.R.-M.); (M.J.V.-S.)
- Tecnológico Nacional de México, Instiuto Tecnológico de Los Mochis, Departamento de Ingeniería Química y Bioquímica, Juan de Dios Bátiz y 20 de Noviembre, Los Mochis 81259, Sinaloa, Mexico
| | - Catalina Rivas-Morales
- Department of Chemistry, College of Biological Sciences, Universidad Autónoma de Nuevo León, Av. Pedro de Alba S/N, San Nicolás de los Garza 66450, Nuevo León, Mexico; (L.D.L.C.-J.); (M.A.H.-T.); (I.N.M.-G.); (C.R.-M.); (M.J.V.-S.)
| | - María Julia Verde-Star
- Department of Chemistry, College of Biological Sciences, Universidad Autónoma de Nuevo León, Av. Pedro de Alba S/N, San Nicolás de los Garza 66450, Nuevo León, Mexico; (L.D.L.C.-J.); (M.A.H.-T.); (I.N.M.-G.); (C.R.-M.); (M.J.V.-S.)
| | - Vianey Gonzalez-Villasana
- Department of Cellular Biology and Genetics, College of Biological Sciences, Universidad Autónoma de Nuevo León, Av. Pedro de Alba S/N, San Nicolás de los Garza 66450, Nuevo León, Mexico;
| | - Ezequiel Viveros-Valdez
- Department of Chemistry, College of Biological Sciences, Universidad Autónoma de Nuevo León, Av. Pedro de Alba S/N, San Nicolás de los Garza 66450, Nuevo León, Mexico; (L.D.L.C.-J.); (M.A.H.-T.); (I.N.M.-G.); (C.R.-M.); (M.J.V.-S.)
| |
Collapse
|
13
|
Li L, Koirala B, Hernandez Y, MacIntyre LW, Ternei MA, Russo R, Brady SF. Identification of structurally diverse menaquinone-binding antibiotics with in vivo activity against multidrug-resistant pathogens. Nat Microbiol 2022; 7:120-131. [PMID: 34949828 PMCID: PMC8732328 DOI: 10.1038/s41564-021-01013-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022]
Abstract
The emergence of multidrug-resistant bacteria poses a threat to global health and necessitates the development of additional in vivo active antibiotics with diverse modes of action. Directly targeting menaquinone (MK), which plays an important role in bacterial electron transport, is an appealing, yet underexplored, mode of action due to a dearth of MK-binding molecules. Here we combine sequence-based metagenomic mining with a motif search of bioinformatically predicted natural product structures to identify six biosynthetic gene clusters that we predicted encode MK-binding antibiotics (MBAs). Their predicted products (MBA1-6) were rapidly accessed using a synthetic bioinformatic natural product approach, which relies on bioinformatic structure prediction followed by chemical synthesis. Among these six structurally diverse MBAs, four make up two new MBA structural families. The most potent member of each new family (MBA3, MBA6) proved effective at treating methicillin-resistant Staphylococcus aureus infection in a murine peritonitis-sepsis model. The only conserved feature present in all MBAs is the sequence 'GXLXXXW', which we propose represents a minimum MK-binding motif. Notably, we found that a subset of MBAs were active against Mycobacterium tuberculosis both in vitro and in macrophages. Our findings suggest that naturally occurring MBAs are a structurally diverse and untapped class of mechanistically interesting, in vivo active antibiotics.
Collapse
Affiliation(s)
- Lei Li
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY, USA
| | - Bimal Koirala
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY, USA
| | - Yozen Hernandez
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY, USA
| | - Logan W MacIntyre
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY, USA
| | - Melinda A Ternei
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY, USA
| | - Riccardo Russo
- Department of Medicine, Center for Emerging and Re-emerging Pathogens, Rutgers University-New Jersey Medical School, Newark, NJ, USA
| | - Sean F Brady
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
14
|
Hematian A, Goudarzi H, Ghalavand Z, Goudarzi M, Shafieian M, Hashemi A, Ghafourian S. The relationship between phoH and colistin-heteroresistant in clinical isolates of Acinetobacter baumannii. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Choi SR, Narayanasamy P. Synthesis, optimization, in vitro and in vivo study of bicyclic substituted amine as MenA inhibitor. Bioorg Med Chem Lett 2021; 47:128203. [PMID: 34139327 DOI: 10.1016/j.bmcl.2021.128203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/10/2021] [Indexed: 11/16/2022]
Abstract
Menaquinone (MK) plays essential role in the electron transport chain (ETC), suggesting MK biosynthesis enzymes as potential targets for drug development. Previously, we demonstrated that Methicillin-resistant Staphylococcus aureus (MRSA) is susceptible to naphthol-based compounds which were developed by mimicking demethylmenaquinone, a product of MenA enzymatic reaction. Here, a series of new MenA inhibitors (4-19) were synthesized and evaluated as MenA inhibitors in this study. The inhibitors were designed to improve growth inhibitory activity against MRSA. Among the MenA inhibitors, bicyclic substituted amine 3 showed MIC of 3 µg/mL, and alkenyl substituted amine 11 showed MIC of 8 µg/mL against USA300. Regrowth of MRSA was observed on addition of MK when exposed to 8 µg/mL of inhibitor 11, supporting inhibition of MK biosynthesis. However, inhibitor 11 did not show efficacy in treating USA300 infected C. elegans up to 25 µg/mL concentration. However, all infected C. elegans survived when exposed to a bicyclic substituted amine 3. Hence, a bicyclic substituted amine was tested in mice for tolerability and biodistribution and observed 100% tolerable and high level of compound accumulation in lungs.
Collapse
Affiliation(s)
- Seoung-Ryoung Choi
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Prabagaran Narayanasamy
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| |
Collapse
|
16
|
Feng M, Harijan RK, Harris LD, Tyler PC, Fröhlich RFG, Brown M, Schramm VL. Aminofutalosine Deaminase in the Menaquinone Pathway of Helicobacter pylori. Biochemistry 2021; 60:1933-1946. [PMID: 34077175 DOI: 10.1021/acs.biochem.1c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Helicobacter pylori is a Gram-negative bacterium that is responsible for gastric and duodenal ulcers. H. pylori uses the unusual mqn pathway with aminofutalosine (AFL) as an intermediate for menaquinone biosynthesis. Previous reports indicate that hydrolysis of AFL by 5'-methylthioadenosine nucleosidase (HpMTAN) is the direct path for producing downstream metabolites in the mqn pathway. However, genomic analysis indicates jhp0252 is a candidate for encoding AFL deaminase (AFLDA), an activity for deaminating aminofutolasine. The product, futalosine, is not a known substrate for bacterial MTANs. Recombinant jhp0252 was expressed and characterized as an AFL deaminase (HpAFLDA). Its catalytic specificity includes AFL, 5'-methylthioadenosine, 5'-deoxyadenosine, adenosine, and S-adenosylhomocysteine. The kcat/Km value for AFL is 6.8 × 104 M-1 s-1, 26-fold greater than that for adenosine. 5'-Methylthiocoformycin (MTCF) is a slow-onset inhibitor for HpAFLDA and demonstrated inhibitory effects on H. pylori growth. Supplementation with futalosine partially restored H. pylori growth under MTCF treatment, suggesting AFL deamination is significant for cell growth. The crystal structures of apo-HpAFLDA and with MTCF at the catalytic sites show a catalytic site Zn2+ or Fe2+ as the water-activating group. With bound MTCF, the metal ion is 2.0 Å from the sp3 hydroxyl group of the transition state analogue. Metabolomics analysis revealed that HpAFLDA has intracellular activity and is inhibited by MTCF. The mqn pathway in H. pylori bifurcates at aminofutalosine with HpMTAN producing adenine and depurinated futalosine and HpAFLDA producing futalosine. Inhibition of cellular HpMTAN or HpAFLDA decreased the cellular content of menaquinone-6, supporting roles for both enzymes in the pathway.
Collapse
Affiliation(s)
- Mu Feng
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Rajesh K Harijan
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Lawrence D Harris
- The Ferrier Research Institute, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Peter C Tyler
- The Ferrier Research Institute, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Richard F G Fröhlich
- The Ferrier Research Institute, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Morais Brown
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
17
|
Chen BC, Ding ZS, Dai JS, Chen NP, Gong XW, Ma LF, Qian CD. New Insights Into the Antibacterial Mechanism of Cryptotanshinone, a Representative Diterpenoid Quinone From Salvia miltiorrhiza Bunge. Front Microbiol 2021; 12:647289. [PMID: 33717044 PMCID: PMC7950322 DOI: 10.3389/fmicb.2021.647289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/08/2021] [Indexed: 11/16/2022] Open
Abstract
The rapid rise of antibiotic resistance causes an urgent need for new antimicrobial agents with unique and different mechanisms of action. The respiratory chain is one such target involved in the redox balance and energy metabolism. As a natural quinone compound isolated from the root of Salvia miltiorrhiza Bunge, cryptotanshinone (CT) has been previously demonstrated against a wide range of Gram-positive bacteria including multidrug-resistant pathogens. Although superoxide radicals induced by CT are proposed to play an important role in the antibacterial effect of this agent, its mechanism of action is still unclear. In this study, we have shown that CT is a bacteriostatic agent rather than a bactericidal agent. Metabolome analysis suggested that CT might act as an antibacterial agent targeting the cell membrane. CT did not cause severe damage to the bacterial membrane but rapidly dissipated membrane potential, implying that this compound could be a respiratory chain inhibitor. Oxygen consumption analysis in staphylococcal membrane vesicles implied that CT acted as respiratory chain inhibitor probably by targeting type II NADH:quinone dehydrogenase (NDH-2). Molecular docking study suggested that the compound would competitively inhibit the binding of quinone to NDH-2. Consistent with the hypothesis, the antimicrobial activity of CT was blocked by menaquinone, and the combination of CT with thioridazine but not 2-n-heptyl-4-hydroxyquinoline-N-oxide exerted synergistic activity against Staphylococcus aureus. Additionally, combinations of CT with other inhibitors targeting different components of the bacterial respiratory chain exhibit potent synergistic activities against S. aureus, suggesting a promising role in combination therapies.
Collapse
Affiliation(s)
- Bo-Chen Chen
- College of Life Science, Institute of Molecular Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhi-Shan Ding
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jian-Sheng Dai
- College of Life Science, Institute of Molecular Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ni-Pi Chen
- College of Life Science, Institute of Molecular Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xing-Wen Gong
- Department of Biological Engineering, Zhejiang Gongshang University, Hangzhou, China
| | - Lie-Feng Ma
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Chao-Dong Qian
- College of Life Science, Institute of Molecular Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
18
|
Panthee S, Paudel A, Hamamoto H, Uhlemann AC, Sekimizu K. The Role of Amino Acid Substitution in HepT Toward Menaquinone Isoprenoid Chain Length Definition and Lysocin E Sensitivity in Staphylococcus aureus. Front Microbiol 2020; 11:2076. [PMID: 32983054 PMCID: PMC7479192 DOI: 10.3389/fmicb.2020.02076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/06/2020] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Staphylococcus aureus Smith strain is a historical strain widely used for research purposes in animal infection models for testing the therapeutic activity of antimicrobial agents. We found that it displayed higher sensitivity toward lysocin E, a menaquinone (MK) targeting antibiotic, compared to other S. aureus strains. Therefore, we further explored the mechanism of this hypersensitivity. METHODS MK production was analyzed by high-performance liquid chromatography and mass spectrometric analysis. S. aureus Smith genome sequence was completed using a hybrid assembly approach, and the MK biosynthetic genes were compared with other S. aureus strains. The hepT gene was cloned and introduced into S. aureus RN4220 strain using phage mediated recombination, and lysocin E sensitivity was analyzed by the measurement of colony-forming units. RESULTS We found that Smith strain produced MKs with the length of the side chain ranging between 8 and 10, as opposed to other S. aureus strains that produce MKs 7-9. We revealed that Smith strain possessed the classical pathway for MK biosynthesis like the other S. aureus. HepT, a polyprenyl diphosphate synthase involved in chain elongation of isoprenoid, in Smith strain harbored a Q25P substitution. Introduction of hepT from Smith to RN4220 led to the production of MK-10 and an increased sensitivity toward lysocin E. CONCLUSION We found that HepT was responsible for the definition of isoprenoid chain length of MKs and antibiotic sensitivity.
Collapse
Affiliation(s)
- Suresh Panthee
- Teikyo University Institute of Medical Mycology, Hachioji, Japan
| | - Atmika Paudel
- Teikyo University Institute of Medical Mycology, Hachioji, Japan
| | - Hiroshi Hamamoto
- Teikyo University Institute of Medical Mycology, Hachioji, Japan
| | - Anne-Catrin Uhlemann
- Department of Medicine, Columbia University Medical Center, New York, NY, United States
| | | |
Collapse
|
19
|
Hu LX, Feng JJ, Wu J, Li W, Gningue SM, Yang ZM, Wang Z, Liu Y, Xue ZL. Identification of six important amino acid residues of MenA from Bacillus subtilis natto for enzyme activity and formation of menaquinone. Enzyme Microb Technol 2020; 138:109583. [PMID: 32527527 DOI: 10.1016/j.enzmictec.2020.109583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/01/2020] [Accepted: 04/20/2020] [Indexed: 11/26/2022]
Abstract
The enzyme 1, 4-dihydroxy-2-naphthoic acid (DHNA) prenyltransferase (MenA) is a critical player in determining the efficiency of the menaquinone (MK) synthesis pathway and is an attractive target for the development of novel chemotherapeutics against pathogenic Gram-positive bacteria. However, there has been no report on structural properties or active region of MenA. To solve this challenge, we predicted the three-dimensiona structure and critical amino acid sites of MenA by bioinformatics analysis. Six amino acid sites were chosen by alligning the amino acid sequence of MenA from Bacillus subtilis natto with 4-hydroxybenzoate octaprenyl transferase (UbiA) from Escherichia coli, Aeropyrum pernix and Archaeoglobus fulgidus. Among them, four Asp sites located in two Asp-rich motifs (D78XXXXXD84 and D208XXXD212) were found to be indispensable amino acid residues in maintaining MenA activity. Site-directed mutagenesis of two other sites (Q67th, N74th) positively affected the catalytic activity of MenA and the MK titer. Q67R resulted in more than a 5-fold increase in specific 2-demethylmenaquinone (DMK) content (YP1/x) compared to wild-type, and the hydrophobic interaction between Cys63 and Arg67 could be the main reason according to the three-dimensional structure analysis. Moreover, a dramatic increase in specific MK content (YP2/x) was realized by co-expressing menG in EcMenA (Q67R). The results obtained could be useful not only in developing novel chemotherapeutics to combat potentially pathogenic Gram-positive bacteria, but also in regulating and optimizating E. coli mutant cultures for the efficient production of MK metabolites.
Collapse
Affiliation(s)
- Liu-Xiu Hu
- College of Biochemical Engineering, Anhui Polytechnic University, 241000, Wuhu, China; Wuhu Zhanghengchun Medicine CO., LTD, 241000, Wuhu, China
| | - Jing-Jing Feng
- College of Biochemical Engineering, Anhui Polytechnic University, 241000, Wuhu, China
| | - Jing Wu
- College of Biochemical Engineering, Anhui Polytechnic University, 241000, Wuhu, China
| | - Wei Li
- College of Biochemical Engineering, Anhui Polytechnic University, 241000, Wuhu, China
| | - Sokhna Mbacke Gningue
- College of Biochemical Engineering, Anhui Polytechnic University, 241000, Wuhu, China
| | - Zi-Ming Yang
- College of Biochemical Engineering, Anhui Polytechnic University, 241000, Wuhu, China
| | - Zhou Wang
- College of Biochemical Engineering, Anhui Polytechnic University, 241000, Wuhu, China
| | - Yan Liu
- College of Biochemical Engineering, Anhui Polytechnic University, 241000, Wuhu, China.
| | - Zheng-Lian Xue
- College of Biochemical Engineering, Anhui Polytechnic University, 241000, Wuhu, China.
| |
Collapse
|
20
|
Choi H, Hwang BK, Kim BS, Choi SH. Influence of pathogen contamination on beef microbiota under different storage temperatures. Food Res Int 2020; 132:109118. [DOI: 10.1016/j.foodres.2020.109118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 01/10/2023]
|
21
|
Jun D, Richardson-Sanchez T, Mahey A, Murphy MEP, Fernandez RC, Beatty JT. Introduction of the Menaquinone Biosynthetic Pathway into Rhodobacter sphaeroides and de Novo Synthesis of Menaquinone for Incorporation into Heterologously Expressed Integral Membrane Proteins. ACS Synth Biol 2020; 9:1190-1200. [PMID: 32271543 DOI: 10.1021/acssynbio.0c00066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Quinones are redox-active molecules that transport electrons and protons in organelles and cell membranes during respiration and photosynthesis. In addition to the fundamental importance of these processes in supporting life, there has been considerable interest in exploiting their mechanisms for diverse applications ranging from medical advances to innovative biotechnologies. Such applications include novel treatments to target pathogenic bacterial infections and fabricating biohybrid solar cells as an alternative renewable energy source. Ubiquinone (UQ) is the predominant charge-transfer mediator in both respiration and photosynthesis. Other quinones, such as menaquinone (MK), are additional or alternative redox mediators, for example in bacterial photosynthesis of species such as Thermochromatium tepidum and Chloroflexus aurantiacus. Rhodobacter sphaeroides has been used extensively to study electron transfer processes, and recently as a platform to produce integral membrane proteins from other species. To expand the diversity of redox mediators in R. sphaeroides, nine Escherichia coli genes encoding the synthesis of MK from chorismate and polyprenyl diphosphate were assembled into a synthetic operon in a newly designed expression plasmid. We show that the menFDHBCE, menI, menA, and ubiE genes are sufficient for MK synthesis when expressed in R. sphaeroides cells, on the basis of high performance liquid chromatography and mass spectrometry. The T. tepidum and C. aurantiacus photosynthetic reaction centers produced in R. sphaeroides were found to contain MK. We also measured in vitro charge recombination kinetics of the T. tepidum reaction center to demonstrate that the MK is redox-active and incorporated into the QA pocket of this heterologously expressed reaction center.
Collapse
Affiliation(s)
- Daniel Jun
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Tomas Richardson-Sanchez
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Amita Mahey
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Michael E. P. Murphy
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Rachel C. Fernandez
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - J. Thomas Beatty
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
22
|
Marie-Joelle Virolle. Antibiotics (Basel) 2020; 9:antibiotics9020083. [PMID: 32069930 PMCID: PMC7168255 DOI: 10.3390/antibiotics9020083] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/15/2022] Open
Abstract
Antibiotics are often considered as weapons conferring a competitive advantage to their producers in their ecological niche. However, since these molecules are produced in specific environmental conditions, notably phosphate limitation that triggers a specific metabolic state, they are likely to play important roles in the physiology of the producing bacteria that have been overlooked. Our recent experimental data as well as careful analysis of the scientific literature led us to propose that, in conditions of moderate to severe phosphate limitation—conditions known to generate energetic stress—antibiotics play crucial roles in the regulation of the energetic metabolism of the producing bacteria. A novel classification of antibiotics into types I, II, and III, based on the nature of the targets of these molecules and on their impact on the cellular physiology, is proposed. Type I antibiotics are known to target cellular membranes, inducing energy spilling and cell lysis of a fraction of the population to provide nutrients, and especially phosphate, to the surviving population. Type II antibiotics inhibit respiration through different strategies, to reduce ATP generation in conditions of low phosphate availability. Lastly, Type III antibiotics that are known to inhibit ATP consuming anabolic processes contribute to ATP saving in conditions of phosphate starvation.
Collapse
|
23
|
Microbial production of vitamin K2: current status and future prospects. Biotechnol Adv 2019; 39:107453. [PMID: 31629792 DOI: 10.1016/j.biotechadv.2019.107453] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/24/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022]
Abstract
Vitamin K2, also called menaquinone, is an essential lipid-soluble vitamin that plays a critical role in blood clotting and prevention of osteoporosis. It has become a focus of research in recent years and has been widely used in the food and pharmaceutical industries. This review will briefly introduce the functions and applications of vitamin K2 first, after which the biosynthesis pathways and enzymes will be analyzed in-depth to highlight the bottlenecks facing the microbial vitamin K2 production on the industrial scale. Then, various strategies, including strain mutagenesis and genetic modification, different cultivation modes, fermentation and separation processes, will be summarized and discussed. The future prospects and perspectives of microbial menaquinone production will also be discussed finally.
Collapse
|
24
|
Gatadi S, Gour J, Nanduri S. Natural product derived promising anti-MRSA drug leads: A review. Bioorg Med Chem 2019; 27:3760-3774. [DOI: 10.1016/j.bmc.2019.07.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/07/2019] [Accepted: 07/11/2019] [Indexed: 12/20/2022]
|
25
|
Lux MC, Standke LC, Tan DS. Targeting adenylate-forming enzymes with designed sulfonyladenosine inhibitors. J Antibiot (Tokyo) 2019; 72:325-349. [PMID: 30982830 PMCID: PMC6594144 DOI: 10.1038/s41429-019-0171-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/19/2019] [Accepted: 02/26/2019] [Indexed: 02/07/2023]
Abstract
Adenylate-forming enzymes are a mechanistic superfamily that are involved in diverse biochemical pathways. They catalyze ATP-dependent activation of carboxylic acid substrates as reactive acyl adenylate (acyl-AMP) intermediates and subsequent coupling to various nucleophiles to generate ester, thioester, and amide products. Inspired by natural products, acyl sulfonyladenosines (acyl-AMS) that mimic the tightly bound acyl-AMP reaction intermediates have been developed as potent inhibitors of adenylate-forming enzymes. This simple yet powerful inhibitor design platform has provided a wide range of biological probes as well as several therapeutic lead compounds. Herein, we provide an overview of the nine structural classes of adenylate-forming enzymes and examples of acyl-AMS inhibitors that have been developed for each.
Collapse
Affiliation(s)
- Michaelyn C Lux
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Lisa C Standke
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Derek S Tan
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Chemical Biology Program, Sloan Kettering Institute, and Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
26
|
Dhiman RK, Pujari V, Kincaid JM, Ikeh MA, Parish T, Crick DC. Characterization of MenA (isoprenyl diphosphate:1,4-dihydroxy-2-naphthoate isoprenyltransferase) from Mycobacterium tuberculosis. PLoS One 2019; 14:e0214958. [PMID: 30978223 PMCID: PMC6461227 DOI: 10.1371/journal.pone.0214958] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/22/2019] [Indexed: 12/18/2022] Open
Abstract
The menaquinone biosynthetic pathway presents a promising drug target against Mycobacterium tuberculosis and potentially other Gram-positive pathogens. In the present study, the essentiality, steady state kinetics of MenA from M. tuberculosis and the mechanism of MenA inhibition by Ro 48-8071 were characterized. MenA [isoprenyl diphosphate:1,4-dihydroxy-2-naphthoate (DHNA) isoprenyltransferase] catalyzes a critical reaction in menaquinone biosynthesis that involves the conversion of cytosolic DHNA, to membrane bound demethylmenaquinone by transferring a hydrophobic 45-carbon isoprenoid chain (in the case of mycobacteria) to the ring nucleus of DHNA. Rv0534c previously identified as the gene encoding MenA in M. tuberculosis complemented a menA deletion in E. coli and an E. coli host expressing Rv0534c exhibited an eight-fold increase in MenA specific activity over the control strain harboring empty vector under similar assay conditions. Expression of Rv0534c is essential for mycobacterial survival and the native enzyme from M. tuberculosis H37Rv was characterized using membrane preparations as it was not possible to solubilize and purify the recombinant enzyme. The enzyme is absolutely dependent on the presence of a divalent cation for optimal activity with Mg+2 being the most effective and is active over a wide pH range, with pH 8.5 being optimal. The apparent Km values for DHNA and farnesyl diphosphate were found to be 8.2 and 4.3 μM, respectively. Ro 48-8071, a compound previously reported to inhibit mycobacterial MenA activity, is non-competitive with regard to DHNA and competitive with regard to the isoprenyldiphosphate substrate.
Collapse
Affiliation(s)
- Rakesh K. Dhiman
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States of America
| | - Venugopal Pujari
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States of America
| | - James M. Kincaid
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States of America
| | - Melanie A. Ikeh
- Queen Mary University of London, Barts & The London School of Medicine and Dentistry, London, United Kingdom
| | - Tanya Parish
- Queen Mary University of London, Barts & The London School of Medicine and Dentistry, London, United Kingdom
- TB Discovery Research, Infectious Disease Research Institute, Seattle, WA, United States of America
| | - Dean C. Crick
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States of America
| |
Collapse
|
27
|
Evans CE, Si Y, Matarlo JS, Yin Y, French JB, Tonge PJ, Tan DS. Structure-Based Design, Synthesis, and Biological Evaluation of Non-Acyl Sulfamate Inhibitors of the Adenylate-Forming Enzyme MenE. Biochemistry 2019; 58:1918-1930. [PMID: 30912442 PMCID: PMC6653581 DOI: 10.1021/acs.biochem.9b00003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
N-Acyl sulfamoyladenosines (acyl-AMS) have been used
extensively to inhibit adenylate-forming enzymes that are involved in a wide
range of biological processes. These acyl-AMS inhibitors are nonhydrolyzable
mimics of the cognate acyl adenylate intermediates that are bound tightly by
adenylate-forming enzymes. However, the anionic acyl sulfamate moiety presents a
pharmacological liability that may be detrimental to cell permeability and
pharmacokinetic profiles. We have previously developed the acyl sulfamate
OSB-AMS (1) as a potent inhibitor of the adenylate-forming enzyme
MenE, an o-succinylbenzoate-CoA (OSB-CoA) synthetase that is
required for bacterial menaquinone biosynthesis. Herein, we report the use of
computational docking to develop novel, non-acyl sulfamate inhibitors of MenE. A
m-phenyl ether-linked analogue (5) was found
to be the most potent inhibitor (IC50 = 8 μM;
Kd = 244 nM), and its X-ray co-crystal structure
was determined to characterize its binding mode in comparison to the
computational prediction. This work provides a framework for the development of
potent non-acyl sulfamate inhibitors of other adenylate-forming enzymes in the
future.
Collapse
|
28
|
Belete TM. Novel targets to develop new antibacterial agents and novel alternatives to antibacterial agents. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.humic.2019.01.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Abstract
Transition state theory teaches that chemically stable mimics of enzymatic transition states will bind tightly to their cognate enzymes. Kinetic isotope effects combined with computational quantum chemistry provides enzymatic transition state information with sufficient fidelity to design transition state analogues. Examples are selected from various stages of drug development to demonstrate the application of transition state theory, inhibitor design, physicochemical characterization of transition state analogues, and their progress in drug development.
Collapse
Affiliation(s)
- Vern L. Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
30
|
Dias FR, Novais JS, Devillart TADNS, da Silva WA, Ferreira MO, Loureiro RDS, Campos VR, Ferreira VF, de Souza MC, Castro HC, Cunha AC. Synthesis and antimicrobial evaluation of amino sugar-based naphthoquinones and isoquinoline-5,8-diones and their halogenated compounds. Eur J Med Chem 2018; 156:1-12. [DOI: 10.1016/j.ejmech.2018.06.050] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 11/25/2022]
|
31
|
Kim L, Brudzynski K. Identification of menaquinones (vitamin K2 homologues) as novel constituents of honey. Food Chem 2018; 249:184-192. [DOI: 10.1016/j.foodchem.2018.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/29/2017] [Accepted: 01/01/2018] [Indexed: 11/26/2022]
|
32
|
Abstract
Prenylquinones are isoprenoid compounds with a characteristic quinone structure and isoprenyl tail that are ubiquitous in almost all living organisms. There are four major prenylquinone classes: ubiquinone (UQ), menaquinone (MK), plastoquinone (PQ), and rhodoquinone (RQ). The quinone structure and isoprenyl tail length differ among organisms. UQ, PQ, and RQ contain benzoquinone, while MK contains naphthoquinone. UQ, MK, and RQ are involved in oxidative phosphorylation, while PQ functions in photosynthetic electron transfer. Some organisms possess two types of prenylquinones; Escherichia coli has UQ8 and MK8, and Caenorhabditis elegans has UQ9 and RQ9. Crystal structures of most of the enzymes involved in MK synthesis have been solved. Studies on the biosynthesis and functions of quinones have advanced recently, including for phylloquinone (PhQ), which has a phytyl moiety instead of an isoprenyl tail. Herein, the synthesis and applications of prenylquinones are reviewed.
Collapse
Affiliation(s)
- Makoto Kawamukai
- a Department of Life Science and Biotechnology, Faculty of Life and Environmental Science , Shimane University , Matsue , Japan
| |
Collapse
|
33
|
Boersch M, Rudrawar S, Grant G, Zunk M. Menaquinone biosynthesis inhibition: a review of advancements toward a new antibiotic mechanism. RSC Adv 2018; 8:5099-5105. [PMID: 35542397 PMCID: PMC9078190 DOI: 10.1039/c7ra12950e] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/20/2018] [Accepted: 01/22/2018] [Indexed: 11/21/2022] Open
Abstract
Menaquinone is essential in electron transport and ATP generation in all Gram-positive, and anaerobically respiring Gram-negative bacteria. Inhibition of menaquinone production at different steps of the biosynthesis pathway has shown promising novel antibacterial action.
Collapse
Affiliation(s)
- M. Boersch
- School of Pharmacy and Pharmacology
- Griffith University
- Gold Coast
- Australia
- Quality Use of Medicines Network
| | - S. Rudrawar
- School of Pharmacy and Pharmacology
- Griffith University
- Gold Coast
- Australia
- Quality Use of Medicines Network
| | - G. Grant
- School of Pharmacy and Pharmacology
- Griffith University
- Gold Coast
- Australia
- Quality Use of Medicines Network
| | - M. Zunk
- School of Pharmacy and Pharmacology
- Griffith University
- Gold Coast
- Australia
- Quality Use of Medicines Network
| |
Collapse
|
34
|
Lohans CT, Wang DY, Wang J, Hamed RB, Schofield CJ. Crotonases: Nature’s Exceedingly Convertible Catalysts. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01699] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Christopher T. Lohans
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - David Y. Wang
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Jimmy Wang
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Refaat B. Hamed
- Department
of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Christopher J. Schofield
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
35
|
Panthee S, Paudel A, Hamamoto H, Sekimizu K. Advantages of the Silkworm As an Animal Model for Developing Novel Antimicrobial Agents. Front Microbiol 2017; 8:373. [PMID: 28326075 PMCID: PMC5339274 DOI: 10.3389/fmicb.2017.00373] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/23/2017] [Indexed: 11/13/2022] Open
Abstract
The demand for novel antibiotics to combat the global spread of multi drug-resistant pathogens continues to grow. Pathogenic bacteria and fungi that cause fatal human infections can also kill silkworms and the infected silkworms can be cured by the same antibiotics used to treat infections in the clinic. As an invertebrate model, silkworm model is characterized by its convenience, low cost, no ethical issues. The presence of conserved immune response and similar pharmacokinetics compared to mammals make silkworm infection model suitable to examine the therapeutic effectiveness of antimicrobial agents. Based on this, we utilized silkworm bacterial infection model to screen the therapeutic effectiveness of various microbial culture broths and successfully identified a therapeutically effective novel antibiotic, lysocin E, which has a novel mode of action of binding to menaquinone, thus leading to membrane damage and bactericidal activity. The similar approach to screen potential antibiotics resulted in the identification of other therapeutically effective novel antibiotics, such as nosokomycin and ASP2397 (VL-2397). In this regard, we propose that the silkworm antibiotic screening model is very effective for identifying novel antibiotics. In this review, we summarize the advantages of the silkworm model and propose that the utilization of silkworm infection model will facilitate the discovery of novel therapeutically effective antimicrobial agents.
Collapse
Affiliation(s)
- Suresh Panthee
- Institute of Medical Mycology, Teikyo University Tokyo, Japan
| | - Atmika Paudel
- Institute of Medical Mycology, Teikyo University Tokyo, Japan
| | | | | |
Collapse
|
36
|
Panthee S, Hamamoto H, Paudel A, Sekimizu K. Lysobacter species: a potential source of novel antibiotics. Arch Microbiol 2016; 198:839-45. [PMID: 27541998 DOI: 10.1007/s00203-016-1278-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/03/2016] [Accepted: 08/10/2016] [Indexed: 11/28/2022]
Abstract
Infectious diseases threaten global health due to the ability of microbes to acquire resistance against clinically used antibiotics. Continuous discovery of antibiotics with a novel mode of action is thus required. Actinomycetes and fungi are currently the major sources of antibiotics, but the decreasing rate of discovery of novel antibiotics suggests that the focus should be changed to previously untapped groups of microbes. Lysobacter species have a genome size of ~6 Mb with a relatively high G + C content of 61-70 % and are characterized by their ability to produce peptides that damage the cell walls or membranes of other microbes. Genome sequence analysis revealed that each Lysobacter species has gene clusters for the production of 12-16 secondary metabolites, most of which are peptides, thus making them 'peptide production specialists'. Given that the number of antibiotics isolated is much lower than the number of gene clusters harbored, further intensive studies of Lysobacter are likely to unearth novel antibiotics with profound biomedical applications. In this review, we summarize the structural diversity, activity and biosynthesis of lysobacterial antibiotics and highlight the importance of Lysobacter species for antibiotic production.
Collapse
Affiliation(s)
- Suresh Panthee
- Teikyo University Institute of Medical Mycology, 359 Otsuka, Hachioji, Tokyo, 192-0395, Japan.,Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroshi Hamamoto
- Teikyo University Institute of Medical Mycology, 359 Otsuka, Hachioji, Tokyo, 192-0395, Japan.,Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Atmika Paudel
- Teikyo University Institute of Medical Mycology, 359 Otsuka, Hachioji, Tokyo, 192-0395, Japan.,Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kazuhisa Sekimizu
- Teikyo University Institute of Medical Mycology, 359 Otsuka, Hachioji, Tokyo, 192-0395, Japan. .,Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,Genome Pharmaceutical Institute Co., Ltd., 1-27-8-1207 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|