1
|
Kuşi M, Becer E, Vatansever HS. Basic approach on the protective effects of hesperidin and naringin in Alzheimer's disease. Nutr Neurosci 2024:1-13. [PMID: 39225173 DOI: 10.1080/1028415x.2024.2397136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
OBJECTIVES Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive impairment. This situation imposes a great burden on individuals, both economically and socially. Today, an effective method for treating the disease and protective approach to tau accumulation has not been developed yet. Studies have been conducted on the effects of hesperidin and naringin flavonoids found in citrus fruits on many diseases. METHODS In this review, the pathophysiology of AD is defined, and the effects of hesperidin and naringin on these factors are summarized. RESULTS Studies have shown that both components may potentially affect AD due to their antioxidative and anti-inflammatory properties. Based on these effects of the components, it has been shown that they may have ameliorative effects on Aβ, α-synuclein aggregation, tau pathology, and cognitive functions in the pathophysiology of AD. DISCUSSION There are studies suggesting that hesperidin and naringin may be effective in the prevention/treatment of AD. When these studies are examined, it is seen that more studies should be conducted on the subject.
Collapse
Affiliation(s)
- Müjgan Kuşi
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Near East University, Nicosia, North Cyprus via Mersin 10, Turkey
- Research Center for Science, Technology and Engineering (BILTEM), Near East University, Nicosia, North Cyprus via Mersin 10, Turkey
| | - Eda Becer
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus via Mersin 10, Turkey
| | - Hafize Seda Vatansever
- DESAM Institute, Near East University, Nicosia, North Cyprus via Mersin 10, Turkey
- Faculty of Medicine, Department of Histology and Embryology, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
2
|
Shah MA, Faheem HI, Hamid A, Yousaf R, Haris M, Saleem U, Shah GM, Alhasani RH, Althobaiti NA, Alsharif I, Silva AS. The entrancing role of dietary polyphenols against the most frequent aging-associated diseases. Med Res Rev 2024; 44:235-274. [PMID: 37486109 DOI: 10.1002/med.21985] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 01/27/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
Aging, a fundamental physiological process influenced by innumerable biological and genetic pathways, is an important driving factor for several aging-associated disorders like diabetes mellitus, osteoporosis, cancer, and neurodegenerative diseases including Alzheimer's and Parkinson's diseases. In the modern era, the several mechanisms associated with aging have been deeply studied. Treatment and therapeutics for age-related diseases have also made considerable advances; however, for the effective and long-lasting treatment, nutritional therapy particularly including dietary polyphenols from the natural origin are endorsed. These dietary polyphenols (e.g., apigenin, baicalin, curcumin, epigallocatechin gallate, kaempferol, quercetin, resveratrol, and theaflavin), and many other phytochemicals target certain molecular, genetic mechanisms. The most common pathways of age-associated diseases are mitogen-activated protein kinase, reactive oxygen species production, nuclear factor kappa light chain enhancer of activated B cells signaling pathways, metal chelation, c-Jun N-terminal kinase, and inflammation. Polyphenols slow down the course of aging and help in combatting age-linked disorders. This exemplified in the form of clinical trials on specific dietary polyphenols in various aging-associated diseases. With this context in mind, this review reveals the new insights to slow down the aging process, and consequently reduce some classic diseases associated with age such as aforementioned, and targeting age-associated diseases by the activities of dietary polyphenols of natural origin.
Collapse
Affiliation(s)
| | - Hafiza Ishmal Faheem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Ayesha Hamid
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Rimsha Yousaf
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Haris
- Faculty of Pharmaceutical Sciences, Universiteit Gent, Ghent, Belgium
| | - Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Ghulam Mujtaba Shah
- Department of Botany, Faculty of Health and Biological Sciences, Hazara University, Mansehra, Pakistan
| | - Reem H Alhasani
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Norah A Althobaiti
- Department of Biology, College of Science and Humanities, Shaqra University, Al-Quwaiiyah, Saudi Arabia
| | - Ifat Alsharif
- Department of Biology, Jamoum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ana Sanches Silva
- National Institute for Agrarian and Veterinary Research (INIAV), I.P., Rua dos Lágidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal
- University of Coimbra, Faculty of Pharmacy, Polo III, Azinhaga de St Comba, Coimbra, Portugal
- Centre for Animal Science Studies (CECA), ICETA, University of Porto, Porto, Portugal
| |
Collapse
|
3
|
Kuşi M, Becer E, Vatansever HS, Yücecan S. Neuroprotective Effects of Hesperidin and Naringin in SK-N-AS Cell as an In Vitro Model for Alzheimer's Disease. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2023; 42:418-426. [PMID: 35776430 DOI: 10.1080/07315724.2022.2062488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Hesperidin and naringin are flavonoids that are found in citrus fruits. Our aim was to create an in vitro model of Alzheimer's disease (AD) and to evaluate the neuroprotective effects of hesperidin and naringin in SK-N-AS and AD model cells. Aβ25-35 was used to create an AD model in SK-N-AS cells. The cytotoxicity of hesperidin and naringin was evaluated using MTT. β-amyloid, tau and α-synuclein distributions were analyzed using indirect immunoperoxidase staining to investigate the neuroprotective effects of hesperidin and naringin. The AD model was created by 1 µM of Aβ25-35 for 48 hours after ThT staining. The intensity of β-amyloid was reduced through both hesperidin and naringin treatment in AD model cells. Both flavonoids significantly decreased the intensity of α-synuclein in SK-N-AS and AD model cells. Hesperidin and naringin can be potentially used as neuroprotective agents. Naringin may be more effective than hesperidin in the accumulation of β-amyloid and tau proteins.
Collapse
Affiliation(s)
- Müjgan Kuşi
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Near East University, Nicosia, Mersin 10 Turkey
| | - Eda Becer
- Faculty of Pharmacy, Department of Biochemistry, Near East University, Nicosia, Mersin 10 Turkey
- DESAM Institute, Near East University, Nicosia, Mersin 10 Turkey
| | - Hafize Seda Vatansever
- DESAM Institute, Near East University, Nicosia, Mersin 10 Turkey
- Faculty of Medicine, Department of Histology and Embryology, Manisa Celal Bayar University, Manisa, Turkey
| | - Sevinç Yücecan
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Lokman Hekim University, Ankara, Turkey
| |
Collapse
|
4
|
Contaldi E, Magistrelli L, Comi C. Disease mechanisms as subtypes: Immune dysfunction in Parkinson's disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:67-93. [PMID: 36803824 DOI: 10.1016/b978-0-323-85555-6.00008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
In recent years, the contraposition between inflammatory and neurodegenerative processes has been increasingly challenged. Inflammation has been emphasized as a key player in the onset and progression of Parkinson disease (PD) and other neurodegenerative disorders. The strongest indicators of the involvement of the immune system derived from evidence of microglial activation, profound imbalance in phenotype and composition of peripheral immune cells, and impaired humoral immune responses. Moreover, peripheral inflammatory mechanisms (e.g., involving the gut-brain axis) and immunogenetic factors are likely to be implicated. Even though several lines of preclinical and clinical studies are supporting and defining the complex relationship between the immune system and PD, the exact mechanisms are currently unknown. Similarly, the temporal and causal connections between innate and adaptive immune responses and neurodegeneration are unsettled, challenging our ambition to define an integrated and holistic model of the disease. Despite these difficulties, current evidence is providing the unique opportunity to develop immune-targeted approaches for PD, thus enriching our therapeutic armamentarium. This chapter aims to provide an extensive overview of past and present studies that explored the implication of the immune system in neurodegeneration, thus paving the road for the concept of disease modification in PD.
Collapse
Affiliation(s)
- Elena Contaldi
- Movement Disorders Centre, "Maggiore della Carità" University Hospital, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Luca Magistrelli
- Movement Disorders Centre, "Maggiore della Carità" University Hospital, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Cristoforo Comi
- Neurology Unit, S.Andrea Hospital, Department of Translational Medicine, University of Piemonte Orientale, Vercelli, Italy.
| |
Collapse
|
5
|
Goyal A, Verma A, Dubey N, Raghav J, Agrawal A. Naringenin: A prospective therapeutic agent for Alzheimer's and Parkinson's disease. J Food Biochem 2022; 46:e14415. [PMID: 36106706 DOI: 10.1111/jfbc.14415] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/01/2022] [Accepted: 08/16/2022] [Indexed: 01/13/2023]
Abstract
Neurodegenerative disorders (NDs) are a cluster of progressive, severe, and disabling disorders that affect millions of people worldwide and are on the surge. These disorders are characterized by the gradual loss of a selectively vulnerable group of neurons. Due to the complex pathophysiological mechanisms behind neurodegeneration and despite enormous efforts and understanding of the occurrence and progression of NDs, there is still a lack of an effective treatment for such diseases. Therefore, the development of a new therapeutic strategy for NDs is an unmet clinical need. Various natural compounds extracted from medicinal plants or fruits have shown promising activities in treating different types of NDs by targeting multiple signaling pathways. Among natural entities, flavonoids have incited a rise in public and scientific interest in recent years because of their purported health-promoting effects. Dietary supplementation of flavonoids has been shown to mitigate the severity of NDs such as Parkinson's disease (PD), Alzheimer's disease (AD), and dementia by their antioxidant effects. Naringenin is a citrus flavonoid that is known to possess numerous biological activities like antioxidant, anti-proliferative, and anti-inflammatory activities. Therefore, naringenin has emerged as a potential therapeutic agent that exerts preventive and curative effects on several neurological disorders. Increasing evidence has attained special attention on the variety of therapeutic targets along with complex signaling pathways of naringenin, which suggest its possible therapeutic applications in several NDs. Derived from the results of several pre-clinical research and considering the therapeutic effects of this compound, this review focuses on the potential role of naringenin as a pharmacological agent for the treatment and management of Alzheimer's and Parkinson's disease. The overall neuroprotective effects and different possible underlying mechanisms related to naringenin are discussed. In the light of substantial evidence for naringenin's neuroprotective efficacy in several experimental paradigms, this review suggests that this molecule should be investigated further as a viable candidate for the management of Alzheimer's and Parkinson's disease, with an emphasis on mechanistic and clinical trials to determine its efficacy. PRACTICAL APPLICATIONS: Naringenin is a flavanone, aglycone of Naringin, predominantly found in citrus fruits with a variety of pharmacological actions. Naringenin has been shown to exhibit remarkable therapeutic efficacy and has emerged as a potential therapeutic agent for the management of a variety of diseases such as various heart, liver, and metabolic disorders. Similarly, it has shown efficacy in neurodegenerative illnesses. Therefore, this review enables us to better understand the neuroprotective effects and different possible underlying mechanisms of naringenin. Also, this review provides a new indication to manage the symptoms of NDs like AD and PD. Furthermore, naringenin will be useful in the field of medicine as a new active ingredient for the treatment of neurodegenerative disorders like AD and PD.
Collapse
Affiliation(s)
- Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Aanchal Verma
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Nandini Dubey
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Jyoti Raghav
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Anant Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| |
Collapse
|
6
|
Kim TY, Leem E, Lee JM, Kim SR. Control of Reactive Oxygen Species for the Prevention of Parkinson's Disease: The Possible Application of Flavonoids. Antioxidants (Basel) 2020; 9:antiox9070583. [PMID: 32635299 PMCID: PMC7402123 DOI: 10.3390/antiox9070583] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress reflects an imbalance between the production of reactive oxygen species (ROS) and antioxidant defense systems, and it can be associated with the pathogenesis and progression of neurodegenerative diseases such as multiple sclerosis, stroke, and Parkinson's disease (PD). The application of antioxidants, which can defend against oxidative stress, is able to detoxify the reactive intermediates and prevent neurodegeneration resulting from excessive ROS production. There are many reports showing that numerous flavonoids, a large group of natural phenolic compounds, can act as antioxidants and the application of flavonoids has beneficial effects in the adult brain. For instance, it is well known that the long-term consumption of the green tea-derived flavonoids catechin and epigallocatechin gallate (EGCG) can attenuate the onset of PD. Also, flavonoids such as ampelopsin and pinocembrin can inhibit mitochondrial dysfunction and neuronal death through the regulation of gene expression of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. Additionally, it is well established that many flavonoids exhibit anti-apoptosis and anti-inflammatory effects through cellular signaling pathways, such as those involving (ERK), glycogen synthase kinase-3β (GSK-3β), and (Akt), resulting in neuroprotection. In this review article, we have described the oxidative stress involved in PD and explained the therapeutic potential of flavonoids to protect the nigrostriatal DA system, which may be useful to prevent PD.
Collapse
Affiliation(s)
- Tae Yeon Kim
- School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea; (T.Y.K.); (E.L.)
| | - Eunju Leem
- School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea; (T.Y.K.); (E.L.)
| | - Jae Man Lee
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Sang Ryong Kim
- School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea; (T.Y.K.); (E.L.)
- Institute of Life Science & Biotechnology, Kyungpook National University, Daegu 41566, Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea
- Correspondence: ; Tel.: +82-53-950-7362
| |
Collapse
|
7
|
Promising Polyphenols in Parkinson’s Disease Therapeutics. Neurochem Res 2020; 45:1731-1745. [DOI: 10.1007/s11064-020-03058-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/15/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022]
|
8
|
Zhao J, Zhu M, Kumar M, Ngo FY, Li Y, Lao L, Rong J. A Pharmacological Appraisal of Neuroprotective and Neurorestorative Flavonoids Against Neurodegenerative Diseases. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:103-114. [PMID: 30394219 DOI: 10.2174/1871527317666181105093834] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND & OBJECTIVE Alzheimer's disease (AD) and Parkinson's disease (PD) affect an increasing number of the elderly population worldwide. The existing treatments mainly improve the core symptoms of AD and PD in a temporary manner and cause alarming side effects. Naturally occurring flavonoids are well-documented for neuroprotective and neurorestorative effects against various neurodegenerative diseases. Thus, we analyzed the pharmacokinetics of eight potent natural products flavonoids for the druggability and discussed the neuroprotective and neurorestorative effects and the underlying mechanisms. CONCLUSION This review provides valuable clues for the development of novel therapeutics against neurodegenerative diseases.
Collapse
Affiliation(s)
- Jia Zhao
- Department of Chinese Medicine, The University of Hong Kong Shenzhen Hospital, Shenzhen, China.,School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Mengxia Zhu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Mukesh Kumar
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Fung Yin Ngo
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Yinghui Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Lixing Lao
- Department of Chinese Medicine, The University of Hong Kong Shenzhen Hospital, Shenzhen, China.,School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Jianhui Rong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China.,Institute of Research and Innovation (HKU-SIRI), The University of Hong Kong Shenzhen, Shenzhen, China
| |
Collapse
|
9
|
Schneider A, Sari AT, Alhaddad H, Sari Y. Overview of Therapeutic Drugs and Methods for the Treatment of Parkinson's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2020; 19:195-206. [PMID: 32448109 DOI: 10.2174/1871527319666200525011110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/28/2022]
Abstract
Parkinson's Disease (PD) is a neurodegenerative disease involving degeneration of dopaminergic neurons of the nigrostriatal pathways. Over the past decades, most of the medications for the treatment of PD patients have been used to modulate dopamine concentrations in the basal ganglia. This includes levodopa and its inhibitory metabolizing enzymes. In addition to modulating dopamine concentrations in the brain, there are D2-like dopamine receptor agonists that mimic the action of dopamine to compensate for the deficit in dopamine found in PD patients. Muscarinic antagonists' drugs are used rarely due to some side effects. Monoamine oxidase inhibitors are among the first in line, and are considered popular drugs that reduce the metabolism of dopamine in PD patients. Furthermore, we discussed in this review the existence of certain glutamate receptor antagonists for the treatment of PD. Alternatively, we further discussed the potential therapeutic role of adenosine (2A) receptor antagonists, such as tozadenant and istradefylline in the treatment of PD. We also discussed the important role of serotonin1A receptor agonist, adrenergic autoreceptors (α2) antagonists and calcium channel blockers in the treatment of PD. Finally, neurotrophic factors, such as glial cell line-derived neurotrophic growth factor and brain-derived neurotrophic factor are considered the primary factors for neuroprotection in PD.
Collapse
Affiliation(s)
- Andrew Schneider
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, United States
| | - Adam T Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, United States
| | - Hasan Alhaddad
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, United States
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, United States
| |
Collapse
|
10
|
Therapeutic potential of naringin in neurological disorders. Food Chem Toxicol 2019; 132:110646. [PMID: 31252025 DOI: 10.1016/j.fct.2019.110646] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/26/2019] [Accepted: 06/23/2019] [Indexed: 12/23/2022]
Abstract
Neurological illnesses are multifactorial incurable debilitating disorders that may cause neurodegeneration. These diseases influence approximately 30 million people around the world. Despite several therapies, effective management of such disorders remains a global challenge. Thus, natural products might offer an alternative therapy for the treatment of various neurological disorders. Polyphenols, such as curcumin, resveratrol, myricetin, mangiferin and naringin (NRG) have been shown to possess promising potential in the treatment of neurogenerative illness. In this review, we have targeted the therapeutic potential of naringin as a neuroprotective agent. The overall neuroprotective effects and different possible underlying mechanisms related to NRG are discussed. In light of the strong evidence for the neuropharmacological efficacy of NRG in various experimental paradigms, it is concluded that this molecule should be further considered and studied as a potential candidate for neurotherapeutics, focusing on mechanistic and clinical trials to ascertain its efficacy.
Collapse
|
11
|
Hussain G, Zhang L, Rasul A, Anwar H, Sohail MU, Razzaq A, Aziz N, Shabbir A, Ali M, Sun T. Role of Plant-Derived Flavonoids and Their Mechanism in Attenuation of Alzheimer's and Parkinson's Diseases: An Update of Recent Data. Molecules 2018; 23:E814. [PMID: 29614843 PMCID: PMC6017497 DOI: 10.3390/molecules23040814] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/25/2018] [Accepted: 03/27/2018] [Indexed: 12/13/2022] Open
Abstract
Neurodegeneration is a progressive loss of neuronal cells in certain regions of the brain. Most of the neurodegenerative disorders (NDDs) share the communal characteristic such as damage or reduction of various cell types typically including astrocytes and microglial activity. Several compounds are being trialed to treat NDDs but they possess solitary symptomatic advantages along with copious side effects. The finding of more enthralling and captivating compounds to suspend and standstill the pathology of NDDs will be considered as a hallmark of present times. Phytochemicals possess the potential to alternate the synthetic line of therapy against NDDs. The present review explores the potential efficacy of plant-derived flavonoids against most common NDDs including Alzheimer's disease (AD) and Parkinson's disease (PD). Flavonoids are biologically active phytochemicals which possess potential pharmacological effects, including antiviral, anti-allergic, antiplatelet, anti-inflammatory, anti-tumor, anti-apoptotic and anti-oxidant effects and are able to attenuate the pathology of various NDDs through down-regulating the nitric oxide (NO) production, by reducing the tumor necrosis factor-α (TNF-α), by reducing the excitotoxicity of superoxide as well as acting as tyrosine kinase (TK) and monoamine oxidase (MAO) inhibiting enzyme.
Collapse
Affiliation(s)
- Ghulam Hussain
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Longbin Zhang
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China.
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Haseeb Anwar
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Muhammad Umar Sohail
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Aroona Razzaq
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Nimra Aziz
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Asghar Shabbir
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad 44000, Pakistan.
| | - Muhammad Ali
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China.
| |
Collapse
|
12
|
Affiliation(s)
- Paweł Chmielarz
- Department of Physical Chemistry, Faculty of Chemistry; Rzeszow University of Technology; Al. Powstańców Warszawy 6 35-959 Rzeszow Poland
| |
Collapse
|
13
|
Viswanatha GL, Shylaja H, Moolemath Y. The beneficial role of Naringin- a citrus bioflavonoid, against oxidative stress-induced neurobehavioral disorders and cognitive dysfunction in rodents: A systematic review and meta-analysis. Biomed Pharmacother 2017; 94:909-929. [PMID: 28810519 DOI: 10.1016/j.biopha.2017.07.072] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/04/2017] [Accepted: 07/17/2017] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES Naringin is a bioflavonoid, very abundantly found in citrus species. In literature, naringin has been scientifically well documented for its beneficial effects in various neurological disorders. In this systematic review and meta-analysis, we have made an attempt to correlate the protective role of naringin against oxidative stress-induced neurological disorders in rodents. METHODS The systematic search was performed using electronic databases; the search was mainly focused on the role of naringin in oxidative stress-induced neuropathological conditions in rodents. While, the meta-analysis was performed on the effect of naringin on oxidative stress markers [superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), reduced glutathione (GSH), lipid peroxidation (LPO)], nitrite, mitochondrial complexes (I to IV) and enzymes (acetylcholinesterase, Na+-K+-ATPase, Ca2+-ATPase, and Mg2+-ATPase) in the rodent brain. The data was analyzed using Review Manager Software. THE RESULTS Based on the inclusion and exclusion criteria, twenty studies were selected. The meta-analysis revealed that, naringin could significantly inhibit various physical and chemical stimuli- induced neurological perturbances in the rodent brain, mediated through oxidative stress. Further, naringin also significantly restored the levels of all the oxidative stress markers (oxidative, nitrosative, enzymes, and mitochondrial complexes) in different parts of the rodent brain. SUMMARY This systematic review and meta-analysis supports the available scientific evidence on the beneficial role of naringin in the management of various neurological ailments. However, further studies involving human subjects is recommended to establish the safety and therapeutic efficacy in humans.
Collapse
Affiliation(s)
| | - H Shylaja
- Independent Researcher, Kengeri, Bangalore, 560060, Karnataka, India
| | - Yogananda Moolemath
- Vittarthaa Life Sciences, Bommasandra Industrial Area, Bangalore, 560099, Karnataka, India
| |
Collapse
|
14
|
Cheng L, Ren Y, Lin D, Peng S, Zhong B, Ma Z. The Anti-Inflammatory Properties of Citrus wilsonii Tanaka Extract in LPS-Induced RAW 264.7 and Primary Mouse Bone Marrow-Derived Dendritic Cells. Molecules 2017; 22:molecules22071213. [PMID: 28753918 PMCID: PMC6152223 DOI: 10.3390/molecules22071213] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 12/11/2022] Open
Abstract
‘Zhique’ (Citrus wilsonii Tanaka) is a traditional Chinese medicine. Its fruits have been used to treat inflammation-related symptoms, such as cough and sputum, though the underlying mechanism remains poorly understood. The aim of this study was to investigate the anti-inflammatory properties of ‘Zhique’ pulp extract (ZQE) in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages and primary mouse bone marrow-derived dendritic cells (BMDCs). The flavonoid profiles of the ZQE were determined by high performance liquid chromatography. The anti-inflammatory activity was evaluated in LPS-induced inflammatory RAW 264.7 macrophages and BMDCs through enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction, and Western blot assays. Naringin was a predominant flavonoid occurring in ZQE, followed by eriocitrin, hesperidin, neohesperidin, rhoifolin, naringenin, and poncirin. ZQE exhibited a very low cytotoxicity in LPS-stimulated RAW 264.7 macrophages. Meanwhile, ZQE significantly inhibited the production of prostaglandins E2 and secretion of cyclooxygenase-2 protein in LPS-stimulated RAW 264.7 macrophages, and markedly suppressed the mRNA expression of inflammatory mediators, such as cyclooxygenase-2, tumor necrosis factor alpha, interleukin-1 beta (IL-1β), and IL-6 in LPS-induced RAW 264.7 macrophages and/or primary BMDCs. The ZQE inhibited the inflammatory responses in RAW 264.7 macrophages and BMDCs triggered by LPS. The results suggested that ‘Zhique’ has a high potential as a novel therapeutic agent to treat chronic inflammatory diseases.
Collapse
Affiliation(s)
- Liping Cheng
- College of Horticulture and Forestry Sciences, Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China.
| | - Yujie Ren
- College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan 430072, China.
| | - Dingbo Lin
- Department of Nutritional Sciences, Oklahoma State University, 419 Human Sciences, Stillwater, OK 74078, USA.
| | - Shu'ang Peng
- College of Horticulture and Forestry Sciences, Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China.
| | - Bo Zhong
- College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan 430072, China.
| | - Zhaocheng Ma
- College of Horticulture and Forestry Sciences, Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China.
| |
Collapse
|
15
|
Kim HD, Jeong KH, Jung UJ, Kim SR. Myricitrin Ameliorates 6-Hydroxydopamine-Induced Dopaminergic Neuronal Loss in the Substantia Nigra of Mouse Brain. J Med Food 2016; 19:374-82. [DOI: 10.1089/jmf.2015.3581] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Heung Deok Kim
- School of Life Sciences, Kyungpook National University, Daegu, Korea
- BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| | - Kyoung Hoon Jeong
- School of Life Sciences, Kyungpook National University, Daegu, Korea
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan, Korea
| | - Sang Ryong Kim
- School of Life Sciences, Kyungpook National University, Daegu, Korea
- BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, Korea
| |
Collapse
|
16
|
Kim HD, Jeong KH, Jung UJ, Kim SR. Naringin treatment induces neuroprotective effects in a mouse model of Parkinson's disease in vivo, but not enough to restore the lesioned dopaminergic system. J Nutr Biochem 2016; 28:140-6. [DOI: 10.1016/j.jnutbio.2015.10.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 09/30/2015] [Accepted: 10/16/2015] [Indexed: 12/29/2022]
|
17
|
Chen F, Zhang N, Ma X, Huang T, Shao Y, Wu C, Wang Q. Naringin Alleviates Diabetic Kidney Disease through Inhibiting Oxidative Stress and Inflammatory Reaction. PLoS One 2015; 10:e0143868. [PMID: 26619044 PMCID: PMC4664292 DOI: 10.1371/journal.pone.0143868] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/09/2015] [Indexed: 01/01/2023] Open
Abstract
Naringin, a flavanone glycoside extracted from Citrus grandis Osbeck, has a wide range of pharmacological effects. In the present study we aimed at demonstrating the protective effect of naringin against diabetic kidney disease (DKD) and elucidating its possible molecular mechanism underlying. The beneficial effect of naringin was assessed in rats with streptozotocin (STZ)-induced diabetes and high glucose-induced HBZY-1 cells. According to our results, first we found that naringin relieved kidney injury, improved renal function and inhibited collagen formation and renal interstitial fibrosis. Second, we confirmed that naringin restrained oxidative stress by activating Nrf2 antioxidant pathway. Moreover, the results suggested that naringin significantly resisted inflammatory reaction by inhibiting NF- κ B signaling pathway. Taken together, our results demonstrate that naringin effectively alleviates DKD, which provide theoretical basis for naringin clinically used to treatment of DKD.
Collapse
Affiliation(s)
- Fenqin Chen
- Department of Geratology for Cadres, The First Affiliated Hospital of China Medical University, Shenyang 110001, People’s Republic of China
| | - Ning Zhang
- Department of Pathphysiology, College of Basic Medical Sciences, China Medical University, Shenyang 110013, People’s Republic of China
| | - Xiaoyu Ma
- Department of Geratology for Cadres, The First Affiliated Hospital of China Medical University, Shenyang 110001, People’s Republic of China
| | - Ting Huang
- Department of Geratology for Cadres, The First Affiliated Hospital of China Medical University, Shenyang 110001, People’s Republic of China
| | - Ying Shao
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, People’s Republic of China
| | - Can Wu
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, People’s Republic of China
| | - Qiuyue Wang
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, People’s Republic of China
- * E-mail:
| |
Collapse
|
18
|
d'Anglemont de Tassigny X, Pascual A, López-Barneo J. GDNF-based therapies, GDNF-producing interneurons, and trophic support of the dopaminergic nigrostriatal pathway. Implications for Parkinson's disease. Front Neuroanat 2015; 9:10. [PMID: 25762899 PMCID: PMC4327623 DOI: 10.3389/fnana.2015.00010] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/21/2015] [Indexed: 01/09/2023] Open
Abstract
The glial cell line-derived neurotrophic factor (GDNF) is a well-established trophic agent for dopaminergic (DA) neurons in vitro and in vivo. GDNF is necessary for maintenance of neuronal morphological and neurochemical phenotype and protects DA neurons from toxic damage. Numerous studies on animal models of Parkinson’s disease (PD) have reported beneficial effects of GDNF on nigrostriatal DA neuron survival. However, translation of these observations to the clinical setting has been hampered so far by side effects associated with the chronic continuous intra-striatal infusion of recombinant GDNF. In addition, double blind and placebo-controlled clinical trials have not reported any clinically relevant effect of GDNF on PD patients. In the past few years, experiments with conditional Gdnf knockout mice have suggested that GDNF is necessary for maintenance of DA neurons in adulthood. In parallel, new methodologies for exogenous GDNF delivery have been developed. Recently, it has been shown that a small population of scattered, electrically interconnected, parvalbumin positive (PV+) GABAergic interneurons is responsible for most of the GDNF produced in the rodent striatum. In addition, cholinergic striatal interneurons appear to be also involved in the modulation of striatal GDNF. In this review, we summarize current knowledge on brain GDNF delivery, homeostasis, and its effects on nigrostriatal DA neurons. Special attention is paid to the therapeutic potential of endogenous GDNF stimulation in PD.
Collapse
Affiliation(s)
- Xavier d'Anglemont de Tassigny
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Seville, Spain
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Seville, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Seville, Spain ; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla Seville, Spain ; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) Madrid, Spain
| |
Collapse
|
19
|
Jeon MT, Kim SR. Roles of Rheb(S16H) in substantia nigra pars compacta dopaminergic neurons in vivo. Biomed Rep 2014; 3:137-140. [PMID: 25798236 DOI: 10.3892/br.2014.397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 11/01/2014] [Indexed: 11/06/2022] Open
Abstract
Although there are ongoing intensive research efforts, no effective pharmacological therapies for Parkinson's disease (PD) have been developed thus far. However, with the development of efficient gene delivery systems, gene therapy for PD has become a focus of research and increasing evidence suggests that continuous production of neurotrophic factors play a significant role in the functional restoration of the nigrostriatal dopaminergic (DA) system. Our recent study reported that the transduction of DA neurons with ras homolog enriched in brain, which has an S16H mutation [Rheb(S16H)], protected the nigrostriatal DA projection in a neurotoxin model of PD in vivo. In addition, Rheb(S16H) expression significantly increased the levels of glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor, which contributed to the neuroprotective effects of Rheb(S16H) in DA neurons in the adult brain, indicating that the activation of the signaling pathways involved in cell survival by a specific gene delivery, such as Rheb(S16H) to adult neurons, may be a useful strategy to protect neural systems in the adult brain. In the present study, a brief overview of our recent studies is provided, which demonstrates the neuroprotective mechanisms of Rheb(S16H) on the nigrostriatal DA projection in the adult brain.
Collapse
Affiliation(s)
- Min-Tae Jeon
- School of Life Sciences, Kyungpook National University, Daegu 700-842, Republic of Korea ; BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 700-842, Republic of Korea
| | - Sang Ryong Kim
- School of Life Sciences, Kyungpook National University, Daegu 700-842, Republic of Korea ; BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 700-842, Republic of Korea ; Institute of Life Science and Biotechnology, Kyungpook National University, Daegu 702-701, Republic of Korea ; Brain Science and Engineering Institute, Kyungpook National University, Daegu 700-842, Republic of Korea
| |
Collapse
|
20
|
Kim SR. Mammalian target of rapamycin complex 1 as an inducer of neurotrophic factors in dopaminergic neurons. Neural Regen Res 2014; 9:2036-7. [PMID: 25657714 PMCID: PMC4316461 DOI: 10.4103/1673-5374.147923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2014] [Indexed: 11/04/2022] Open
Affiliation(s)
- Sang Ryong Kim
- School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Institute of Life Science & Biotechnology, Kyungpook National University, Daegu 702-701, Korea; Brain Science and Engineering Institute, Kyungpook National University, Daegu 700-842, Korea
| |
Collapse
|
21
|
Campos-Bedolla P, Walter FR, Veszelka S, Deli MA. Role of the Blood–Brain Barrier in the Nutrition of the Central Nervous System. Arch Med Res 2014; 45:610-38. [DOI: 10.1016/j.arcmed.2014.11.018] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 11/24/2014] [Indexed: 12/22/2022]
|
22
|
Jeong KH, Jeon MT, Kim HD, Jung UJ, Jang MC, Chu JW, Yang SJ, Choi IY, Choi MS, Kim SR. Nobiletin protects dopaminergic neurons in the 1-methyl-4-phenylpyridinium-treated rat model of Parkinson's disease. J Med Food 2014; 18:409-14. [PMID: 25325362 DOI: 10.1089/jmf.2014.3241] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
This study investigated the effect of nobiletin, a flavonoid found in citrus fruits, on the degeneration of dopaminergic (DA) neurons in a neurotoxin model of Parkinson's disease (PD). 1-Methyl-4-phenylpyridinium (MPP(+)) was unilaterally injected into the median forebrain bundle of rat brains (to generate a neurotoxin model of PD) with or without daily intraperitoneal injection of nobiletin. Our results showed that nobiletin treatment at 10 mg/kg bw, but not at 1 or 20 mg/kg bw, significantly protected DA neurons in the substantia nigra (SN) of MPP(+)-treated rats. In parallel to the neuroprotection, nobiletin treatment at 10 mg/kg inhibited microglial activation and preserved the expression of the glial cell line-derived neurotrophic factor, which is a therapeutic agent against PD, in the SN. These results suggest that the proper supplementation with nobiletin may protect against the neurodegeneration involved in PD.
Collapse
Affiliation(s)
- Kyoung Hoon Jeong
- 1 School of Life Sciences, Kyungpook National University , Daegu, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|