1
|
Liu J, He XY, Yang KL, Zhao Y, Dai EY, Chen WJ, Raj AK, Li D, Zhuang M, Yin XH, Ling H. Oropharyngeal microbiome profiling and its association with age and heart failure in the elderly population from the northernmost province of China. Microbiol Spectr 2024; 12:e0021624. [PMID: 39162522 PMCID: PMC11448084 DOI: 10.1128/spectrum.00216-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/07/2024] [Indexed: 08/21/2024] Open
Abstract
Respiratory tract infections are the most common triggers for heart failure in elderly people. The healthy respiratory commensal microbiota can prevent invasion by infectious pathogens and decrease the risk of respiratory tract infections. However, upper respiratory tract (URT) microbiome in the elderly is not well understood. To comprehend the profiles of URT microbiota in the elderly, and the link between the microbiome and heart failure, we investigated the oropharyngeal (OP) microbiome of these populations in Heilongjiang Province, located in the North-East of China, a high-latitude and cold area with a high prevalence of respiratory tract infection and heart failure. Taxonomy-based analysis showed that six dominant phyla were represented in the OP microbial profiles. Compared with young adults, the OP in the elderly exhibited a significantly different microbial community, mainly characterized by highly prevalent Streptococcus, unidentified_Saccharibacteria, Veillonella, unidentified_Pre votellaceae, and Neisseria. While unidentified_Prevotellaceae dominated in the young OP microbiome. There was competition for niche dominance between Streptococcus and member of Prevotellaceae in the OP. Correlation analysis revealed that the abundance of unidentified_Saccharibacteria was positive, while Streptococcus was negatively correlated to age among healthy elderly. The bacterial structure and abundance in the elderly with heart failure were much like healthy controls. Certain changes in microbial diversity indicated the potential OP microbial disorder in heart failure patients. These results presented here identify the respiratory tract core microbiota in high latitude and cold regions, and reveal the robustness of OP microbiome in the aged, supplying the basis for microbiome-targeted interventions.IMPORTANCETo date, we still lack available data on the oropharyngeal (OP) microbial communities in healthy populations, especially the elderly, in high latitude and cold regions. A better understanding of the significantly changed respiratory tract microbiota in aging can provide greater insight into characteristics of longevity and age-related diseases. In addition, determining the relationship between heart failure and OP microbiome may provide novel prevention and therapeutic strategies. Here, we compared OP microbiome in different age groups and elderly people with or without heart failure in northeastern China. We found that OP microbial communities are strongly linked to healthy aging. And the disease status of heart failure was not a powerful factor affecting OP microbiome. The findings may provide basic data to reveal respiratory bacterial signatures of individuals in a cold geographic region.
Collapse
Affiliation(s)
- Jian Liu
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Xiao-Yu He
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Ke-Laier Yang
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital, Shenzhen, China
| | - Yue Zhao
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - En-Yu Dai
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Wen-Jia Chen
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Aditya Kumar Raj
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Di Li
- Department of Microbiology, Harbin Medical University, Harbin, China
- Wu Lien-Teh Institute, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China
| | - Min Zhuang
- Department of Microbiology, Harbin Medical University, Harbin, China
- Wu Lien-Teh Institute, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China
| | - Xin-Hua Yin
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Cardiology, Shenzhen University General Hospital, Shenzhen, China
| | - Hong Ling
- Department of Microbiology, Harbin Medical University, Harbin, China
- Wu Lien-Teh Institute, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China
| |
Collapse
|
2
|
Liu M, Heizhati M, Li N, Gan L, Cai L, Yuan Y, Yao L, Li M, Li X, Aierken X, Wang H, Maitituersun A, Nuermaimaiti Q, Nusufujiang A, Hong J, Jiang W. Association between obstructive sleep apnea and 24-h urine protein quantification in patients with hypertension. Sci Rep 2024; 14:20876. [PMID: 39242689 PMCID: PMC11379924 DOI: 10.1038/s41598-024-71883-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024] Open
Abstract
The association between obstructive sleep apnea (OSA) and proteinuria is undetermined, with few studies on hypertension, a high-risk group for renal impairment. Therefore, we aimed to explore whether OSA is an independent risk factor for proteinuria in patients with hypertension. We investigated the cross-sectional association between OSA and proteinuria. Participants were divided into groups by apnea hypopnea index (AHI) category. Multivariable Logistic regression analysis was used to evaluate the association between OSA severity, objectively measured sleep dimensions, and proteinuria which is mainly defined by 24-h urine protein quantification > 300 mg/24 h. Sensitivity analyses were performed by excluding those with comorbidities (primary aldosteronism and homocysteine ≥ 15 μmol/L). Of the 2106 participants, the mean age was 47.57 ± 10.50 years, 67.2% were men, and 75.9% were OSA patients. In total participants, compared with those without OSA, patients with mild OSA, moderate OSA, and severe OSA showed 1.09 (95% CI 0.80-1.40), 1.24 (95% CI 0.89-1.74) and 1.47 (95% CI 1.04-2.08) fold risk for proteinuria with a trend test P trend < 0.05. Each 10-unit increase in the AHI, oxygen desaturation index (ODI), and time spent with oxygen saturation < 90% (T90) was found to be associated with 13%, 10%, and 2% higher likelihood of proteinuria in the crude model, significant in adjusted models. The more severe the OSA is, the higher the risk of proteinuria. AHI and T90 are independently associated with a higher risk of structural renal damage in the population with hypertension.
Collapse
Affiliation(s)
- Miaomiao Liu
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region; Xinjiang Hypertension Institute; NHC Key Laboratory of Hypertension Clinical Research; Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory"; Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Address: No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Mulalibieke Heizhati
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region; Xinjiang Hypertension Institute; NHC Key Laboratory of Hypertension Clinical Research; Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory"; Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Address: No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Nanfang Li
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region; Xinjiang Hypertension Institute; NHC Key Laboratory of Hypertension Clinical Research; Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory"; Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Address: No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China.
| | - Lin Gan
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region; Xinjiang Hypertension Institute; NHC Key Laboratory of Hypertension Clinical Research; Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory"; Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Address: No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Li Cai
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region; Xinjiang Hypertension Institute; NHC Key Laboratory of Hypertension Clinical Research; Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory"; Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Address: No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Yujuan Yuan
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region; Xinjiang Hypertension Institute; NHC Key Laboratory of Hypertension Clinical Research; Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory"; Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Address: No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Ling Yao
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region; Xinjiang Hypertension Institute; NHC Key Laboratory of Hypertension Clinical Research; Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory"; Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Address: No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Mei Li
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region; Xinjiang Hypertension Institute; NHC Key Laboratory of Hypertension Clinical Research; Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory"; Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Address: No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Xiufang Li
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region; Xinjiang Hypertension Institute; NHC Key Laboratory of Hypertension Clinical Research; Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory"; Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Address: No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Xiayire Aierken
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region; Xinjiang Hypertension Institute; NHC Key Laboratory of Hypertension Clinical Research; Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory"; Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Address: No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Hui Wang
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region; Xinjiang Hypertension Institute; NHC Key Laboratory of Hypertension Clinical Research; Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory"; Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Address: No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Adalaiti Maitituersun
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region; Xinjiang Hypertension Institute; NHC Key Laboratory of Hypertension Clinical Research; Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory"; Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Address: No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Qiaolifanayi Nuermaimaiti
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region; Xinjiang Hypertension Institute; NHC Key Laboratory of Hypertension Clinical Research; Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory"; Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Address: No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Aketiliebieke Nusufujiang
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region; Xinjiang Hypertension Institute; NHC Key Laboratory of Hypertension Clinical Research; Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory"; Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Address: No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Jing Hong
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region; Xinjiang Hypertension Institute; NHC Key Laboratory of Hypertension Clinical Research; Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory"; Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Address: No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Wen Jiang
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region; Xinjiang Hypertension Institute; NHC Key Laboratory of Hypertension Clinical Research; Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory"; Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Address: No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| |
Collapse
|
3
|
Chung RS, Wong S, Lin D, Kokot NC, Sinha UK, Han AY. Mechanisms of crosstalk between the oropharyngeal microbiome and human papillomavirus in oropharyngeal carcinogenesis: a mini review. Front Oncol 2024; 14:1425545. [PMID: 39211550 PMCID: PMC11357953 DOI: 10.3389/fonc.2024.1425545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/24/2024] [Indexed: 09/04/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer globally. Notably, human papillomavirus (HPV)-positive oropharyngeal squamous cell carcinoma (OPSCC) is on the rise, accounting for 70% of all OPSCC cases. Persistent high-risk HPV infection is linked to various cancers, but HPV infection alone is not sufficient to cause cancer. Advances in next-generation sequencing have improved our understanding of changes in the human microbiome of cancerous environments. Yet, there remains a dearth of knowledge on the impact of HPV-microbiome crosstalk in HPV-positive OPSCC. In this review, we examine what is known about the oropharyngeal microbiome and the compositional shifts in this microbiome in HPV-positive OPSCC. We also review potential mechanisms of crosstalk between HPV and specific microorganisms. Additional research is needed to understand these interactions and their roles on cancer development and progression.
Collapse
Affiliation(s)
| | | | | | | | | | - Albert Y. Han
- Department of Otolaryngology—Head and Neck Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
4
|
Ye J, Lv Y, Xie H, Lian K, Xu X. Whole-Genome Metagenomic Analysis of the Oral Microbiota in Patients with Obstructive Sleep Apnea Comorbid with Major Depressive Disorder. Nat Sci Sleep 2024; 16:1091-1108. [PMID: 39100910 PMCID: PMC11296376 DOI: 10.2147/nss.s474052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024] Open
Abstract
Background Obstructive sleep apnea (OSA) patients commonly experience high rates of depression. This study aims to examine the oral microbiota characteristics of OSA and those with comorbid major depressive disorder (OSA+MDD) patients. Methods Participants were enrolled from Aug 2022 to Apr 2023. Polysomnography, psychiatrist interviews, and scales were used to diagnose OSA and MDD. Oral samples were collected from participants by rubbing swabs on buccal mucosa, palate, and gums. Oral microbiota was analyzed via whole-genome metagenomics and bioinformatic analysis followed sequencing. Venous blood was drawn to detect plasma inflammatory factor levels. Results The study enrolled 33 OSA patients, 28 OSA+MDD patients, and 28 healthy controls. Significant differences were found in 8 phyla, 229 genera, and 700 species of oral microbiota among the three groups. Prevotellaceae abundance in the OSA and OSA+MDD groups was significantly lower than that in healthy controls. Linear discriminant analysis effect size (LEfSe) analysis showed that Streptococcaceae and Actinobacteria were the characteristic oral microbiota of the OSA and OSA+MDD groups, respectively. KEGG analysis indicates 30 pathways were changed in the OSA and OSA+MDD groups compared with healthy controls, and 23 pathways were changed in the OSA group compared with the OSA+MDD group. Levels of IL-6 in the OSA+MDD group were significantly higher than in the healthy group, correlating positively with the abundance of Schaalia, Campylobacter, Fusobacterium, Alloprevotella, and Candidatus Nanosynbacter in the oral, as well as with Hamilton Anxiety Rating Scale and Hamilton Depression Rating Scale scores. Conclusion Significant differences in oral microbiota populations and gene function were observed among the three groups. OSA patients were characterized by a decreased abundance of Prevotellaceae and an increased abundance of Streptococcaceae. OSA+MDD patients had an increased abundance of Actinobacteria. IL-6 might regulate the relationship between depression and the oral microbiota in OSA+MDD patients.
Collapse
Affiliation(s)
- Jing Ye
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China
- Sleep Medicine Center, The First People’s Hospital of Yunnan, Kunming, Yunnan, People’s Republic of China
| | - Yunhui Lv
- Sleep Medicine Center, The First People’s Hospital of Yunnan, Kunming, Yunnan, People’s Republic of China
| | - Hui Xie
- Department of Traumatology, The First People’s Hospital of Yunnan, Kunming, Yunnan, People’s Republic of China
| | - Kun Lian
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Xiufeng Xu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| |
Collapse
|
5
|
Epstein S, Jun D, Deng JC, Zeidler M. Effects of Obstructive Sleep Apnea on Airway Immunity and Susceptibility to Respiratory Infections. Sleep Med Clin 2024; 19:219-228. [PMID: 38692747 DOI: 10.1016/j.jsmc.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Obstructive sleep apnea is a prevalent sleep disorder characterized by recurrent episodes of partial or complete upper airway collapse during sleep, leading to disrupted breathing patterns and intermittent hypoxia. OSA results in systemic inflammation but also directly affects the upper and lower airways leading to upregulation of inflammatory pathways and alterations of the local microbiome. These changes result in increased susceptibility to respiratory infections such as influenza, COVID-19, and bacterial pneumonia. This relationship is more complex and bidirectional in individuals with chronic lung disease such as chronic obstructive lung disease, interstitial lung disease and bronchiectasis.
Collapse
Affiliation(s)
- Samuel Epstein
- Division of Pulmonary, Critical Care and Sleep Medicine, David Geffen School of Medicine, UCLA, 10833 Le Conte Ave, Los Angeles, CA 90095, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Greater Los Angeles VA Healthcare System, 11301 Wilshire Boulevard 111Q, Los Angeles, CA 90073, USA
| | - Dale Jun
- Division of Pulmonary, Critical Care and Sleep Medicine, David Geffen School of Medicine, UCLA, 10833 Le Conte Ave, Los Angeles, CA 90095, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Greater Los Angeles VA Healthcare System, 11301 Wilshire Boulevard 111Q, Los Angeles, CA 90073, USA
| | - Jane C Deng
- Pulmonary Medicine, VA Ann Arbor Healthcare System, 2215 Fuller Road, Ann Arbor, MI 48105, USA; Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Michelle Zeidler
- Division of Pulmonary, Critical Care and Sleep Medicine, David Geffen School of Medicine, UCLA, 10833 Le Conte Ave, Los Angeles, CA 90095, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Greater Los Angeles VA Healthcare System, 11301 Wilshire Boulevard 111Q, Los Angeles, CA 90073, USA.
| |
Collapse
|
6
|
Fang L, Tuohuti A, Cai W, Chen X. Changes in the nasopharyngeal and oropharyngeal microbiota in pediatric obstructive sleep apnea before and after surgery: a prospective study. BMC Microbiol 2024; 24:79. [PMID: 38459431 PMCID: PMC10921815 DOI: 10.1186/s12866-024-03230-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/21/2024] [Indexed: 03/10/2024] Open
Abstract
OBJECTIVE To explore the changes and potential mechanisms of microbiome in different parts of the upper airway in the development of pediatric OSA and observe the impact of surgical intervention on oral microbiome for pediatric OSA. METHODS Before adeno-tonsillectomy, we collected throat swab samples from different parts of the oropharynx and nasopharynx of 30 OSA patients and 10 non-OSA patients and collected throat swab samples from the oropharynx of the above patients one month after the adeno-tonsillectomy. The 16 S rRNA V3-V4 region was sequenced to identify the microbial communities. The correlation analysis was conducted based on clinical characteristics. RESULTS There was a significant difference of alpha diversity in different parts of the upper airway of pediatric OSA, but this difference was not found in children with non-OSA. Beta diversity was significantly different between non-OSA and pediatric OSA. At the genus level, the composition of flora in different parts is different between non-OSA and pediatric OSA. The correlation analysis revealed that the relative abundance of Neisseria was significantly correlated with obstructive apnea hypopnea index. Furthermore, the functional prediction revealed that pathways related to cell proliferation and material metabolism were significantly different between non-OSA and pediatric OSA. Besides, the adeno-tonsillectomy has minimal impact on oral microbiota composition in short term. CONCLUSION The changes in upper airway microbiome are highly associated with pediatric OSA. The relative abundance of some bacteria was significantly different between OSA and non-OSA. These bacteria have the potential to become new diagnostic and early warning biomarkers.
Collapse
Affiliation(s)
- Lucheng Fang
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Sleep medicine centre, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Aikebaier Tuohuti
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Sleep medicine centre, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wanyue Cai
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Sleep medicine centre, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiong Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
- Sleep medicine centre, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Oberste M, Böse BE, Dos Anjos Borges LG, Junca H, Plumeier I, Kahl S, Simon F, Beule AG, Rudack C, Pieper DH. Effects of squamous cell carcinoma and smoking status on oropharyngeal and laryngeal microbial communities. Head Neck 2024; 46:145-160. [PMID: 37905455 DOI: 10.1002/hed.27562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Still, little is known about microbial dysbiosis in oropharyngeal and laryngeal tissue as risk factor for development of local squamous cell carcinoma. The site-specific microbiota at these regions in healthy and cancer tissue and their modulation by environmental factors need to be defined. METHODS The local microbiota of cancer tissue and healthy controls was profiled by 16S rRNA gene amplicon sequencing and statistical analysis using 111 oropharyngeal and 72 laryngeal intraoperative swabs. RESULTS Oropharynx and larynx harbor distinct microbial communities. Clear effects of both smoking and cancer were seen in the oropharynx whereas effects in the larynx were minor. CONCLUSION The distinct microbial communities at larynx and oropharynx partially explain why the effects of cancer and smoking were distinct at those sites. Thus, the use of microbiota supposed to mirror community changes in another target location should be avoided and more studies on the actual cancerous environment are necessary.
Collapse
Affiliation(s)
- Maximilian Oberste
- Department of Otorhinolaryngology - Head and Neck Surgery, University Hospital of Münster, Münster, Germany
| | - Brit Elisabeth Böse
- Department of Otorhinolaryngology - Head and Neck Surgery, University Hospital of Münster, Münster, Germany
| | | | - Howard Junca
- Research Group Microbial Interactions and Processes, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Iris Plumeier
- Research Group Microbial Interactions and Processes, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Silke Kahl
- Research Group Microbial Interactions and Processes, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Frank Simon
- Department of Otorhinolaryngology - Head and Neck Surgery, University Hospital of Münster, Münster, Germany
| | - Achim Georg Beule
- Department of Otorhinolaryngology - Head and Neck Surgery, University Hospital of Münster, Münster, Germany
| | - Claudia Rudack
- Department of Otorhinolaryngology - Head and Neck Surgery, University Hospital of Münster, Münster, Germany
| | - Dietmar H Pieper
- Research Group Microbial Interactions and Processes, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
8
|
Elgart M, Zhang Y, Zhang Y, Yu B, Kim Y, Zee PC, Gellman MD, Boerwinkle E, Daviglus ML, Cai J, Redline S, Burk RD, Kaplan R, Sofer T. Anaerobic pathogens associated with OSA may contribute to pathophysiology via amino-acid depletion. EBioMedicine 2023; 98:104891. [PMID: 38006744 PMCID: PMC10709109 DOI: 10.1016/j.ebiom.2023.104891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND The human microbiome is linked to multiple metabolic disorders such as obesity and diabetes. Obstructive sleep apnoea (OSA) is a common sleep disorder with several metabolic risk factors. We investigated the associations between the gut microbiome composition and function, and measures of OSA severity in participants from a prospective community-based cohort study: the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). METHODS Bacterial-Wide Association Analysis (BWAS) of gut microbiome measured via metagenomics with OSA measures was performed adjusting for clinical, lifestyle and co-morbidities. This was followed by functional analysis of the OSA-enriched bacteria. We utilized additional metabolomic and transcriptomic associations to suggest possible mechanisms explaining the microbiome effects on OSA. FINDINGS Several uncommon anaerobic human pathogens were associated with OSA severity. These belong to the Lachnospira, Actinomyces, Kingella and Eubacterium genera. Functional analysis revealed enrichment in 49 processes including many anaerobic-related ones. Severe OSA was associated with the depletion of the amino acids glycine and glutamine in the blood, yet neither diet nor gene expression revealed any changes in the production or consumption of these amino acids. INTERPRETATION We show anaerobic bacterial communities to be a novel component of OSA pathophysiology. These are established in the oxygen-poor environments characteristic of OSA. We hypothesize that these bacteria deplete certain amino acids required for normal human homeostasis and muscle tone, contributing to OSA phenotypes. Future work should test this hypothesis as well as consider diagnostics via anaerobic bacteria detection and possible interventions via antibiotics and amino-acid supplementation. FUNDING Described in methods.
Collapse
Affiliation(s)
- Michael Elgart
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Ying Zhang
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Yuan Zhang
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Bing Yu
- Human Genetics Centre, The University of Texas Health Science Centre at Houston, Houston, TX, USA; Human Genome Sequencing Centre, Baylor College of Medicine, Houston, TX, USA
| | - Youngmee Kim
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - Phyllis C Zee
- Department of Neurology and Sleep Medicine Centre, Northwestern University, Chicago, IL, USA
| | - Marc D Gellman
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - Eric Boerwinkle
- Human Genetics Centre, The University of Texas Health Science Centre at Houston, Houston, TX, USA; Human Genome Sequencing Centre, Baylor College of Medicine, Houston, TX, USA
| | - Martha L Daviglus
- Institute for Minority Health Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Jianwen Cai
- Collaborative Studies Coordinating Centre, University of North Carolina at Chapel Hill, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Robert D Burk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, New York, NY, USA
| | - Robert Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, New York, NY, USA; Fred Hutchinson Cancer Research Centre, Division of Public Health Sciences, Seattle, WA, USA
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA; CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
9
|
Widjaja F, Rietjens IMCM. From-Toilet-to-Freezer: A Review on Requirements for an Automatic Protocol to Collect and Store Human Fecal Samples for Research Purposes. Biomedicines 2023; 11:2658. [PMID: 37893032 PMCID: PMC10603957 DOI: 10.3390/biomedicines11102658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The composition, viability and metabolic functionality of intestinal microbiota play an important role in human health and disease. Studies on intestinal microbiota are often based on fecal samples, because these can be sampled in a non-invasive way, although procedures for sampling, processing and storage vary. This review presents factors to consider when developing an automated protocol for sampling, processing and storing fecal samples: donor inclusion criteria, urine-feces separation in smart toilets, homogenization, aliquoting, usage or type of buffer to dissolve and store fecal material, temperature and time for processing and storage and quality control. The lack of standardization and low-throughput of state-of-the-art fecal collection procedures promote a more automated protocol. Based on this review, an automated protocol is proposed. Fecal samples should be collected and immediately processed under anaerobic conditions at either room temperature (RT) for a maximum of 4 h or at 4 °C for no more than 24 h. Upon homogenization, preferably in the absence of added solvent to allow addition of a buffer of choice at a later stage, aliquots obtained should be stored at either -20 °C for up to a few months or -80 °C for a longer period-up to 2 years. Protocols for quality control should characterize microbial composition and viability as well as metabolic functionality.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | | |
Collapse
|
10
|
Liu M, Heizhati M, Li N, Lin M, Gan L, Zhu Q, Cai L, Yuan Y, Yao L, Li M, Li X, Aierken X, Wang H, Maitituersun A, Hong J, Luo Q. The relationship between obstructive sleep apnea and risk of renal impairment in patients with hypertension, a longitudinal study. Sleep Med 2023; 109:18-24. [PMID: 37393718 DOI: 10.1016/j.sleep.2023.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/21/2023] [Indexed: 07/04/2023]
Abstract
OBJECTIVE Association of obstructive sleep apnea (OSA) with renal damage is undetermined, especially in the population with hypertension, a high-risk group for chronic kidney disease. Therefore, we aimed to explore whether OSA is an independent risk factor for renal impairment in patients with hypertension, by considering the effects of gender, age, obesity and OSA severity. METHODS The longitudinal observational study included patients with hypertension and suspected OSA without renal damage at baseline who visited Hypertension Center between January 2011 and December 2018, and followed up till renal outcomes, death, loss to follow-up, or May 31, 2022, using annual health check-ups, hospital readmission or out-patient visits. Main renal outcome was chronic kidney disease (CKD), defined as estimated glomerular filtration rate <60 ml/min per 1.73 m2 and/or positive proteinuria. Cox proportional hazard models were used to evaluate the association, and repeated after propensity score matching. Sensitivity analysis were performed by excluding those with primary aldosteronism. RESULTS 7961 patients with hypertension were included with 5022 ones with OSA, and 82% were followed up. During median follow-up of 3.42 years, 1486 patients developed CKD. Per 1000 person-year incidence of CKD was 56.72 in OSA group. In Cox regression analysis, OSA and severe OSA group respectively showed 1.21 (95% CI: 1.08-1.35) and 1.27 (95% CI: 1.09-1.47) fold risk for CKD in total, compared with non-OSA group. Overall results remained consistent in propensity score matching and sensitivity analysis. CONCLUSION OSA is independently associated with higher risk of chronic kidney disease in hypertension.
Collapse
Affiliation(s)
- Miaomiao Liu
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, China
| | - Mulalibieke Heizhati
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, China
| | - Nanfang Li
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, China.
| | - Mengyue Lin
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, China
| | - Lin Gan
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, China
| | - Qing Zhu
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, China
| | - Li Cai
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, China
| | - Yujuan Yuan
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, China
| | - Ling Yao
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, China
| | - Mei Li
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, China
| | - Xiufang Li
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, China
| | - Xiayire Aierken
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, China
| | - Hui Wang
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, China
| | - Adalaiti Maitituersun
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, China
| | - Jing Hong
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, China
| | - Qin Luo
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, China
| |
Collapse
|
11
|
Xie L, Zhang X, Gao X, Wang L, Cheng Y, Zhang S, Yue J, Tang Y, Deng Y, Zhang B, He X, Tang M, Yang H, Zheng T, You J, Song X, Xiong J, Zuo H, Pei X. Microbiota and mycobiota in bronchoalveolar lavage fluid of silicosis patients. J Occup Med Toxicol 2023; 18:10. [PMID: 37430310 DOI: 10.1186/s12995-023-00377-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/29/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND The contribution of bronchoalveolar lavage fluid (BALF) microbiota and mycobiota to silicosis has recently been noticed. However, many confounding factors can influence the accuracy of BALF microbiota and mycobiota studies, resulting in inconsistencies in the published results. In this cross-sectional study, we systematically investigated the effects of "sampling in different rounds of BALF" on its microbiota and mycobiota. We further explored the relationship between silicosis fatigue and the microbiota and mycobiota. METHODS After obtaining approval from the ethics board, we collected 100 BALF samples from 10 patients with silicosis. Demographic data, clinical information, and blood test results were also collected from each patient. The characteristics of the microbiota and mycobiota were defined using next-generation sequencing. However, no non-silicosis referent group was examined, which was a major limitation of this study. RESULTS Our analysis indicated that subsampling from different rounds of BALF did not affect the alpha- and beta-diversities of microbial and fungal communities when the centrifuged BALF sediment was sufficient for DNA extraction. In contrast, fatigue status significantly influenced the beta-diversity of microbes and fungi (Principal Coordinates Analysis, P = 0.001; P = 0.002). The abundance of Vibrio alone could distinguish silicosis patients with fatigue from those without fatigue (area under the curve = 0.938, 95% confidence interval [CI] 0.870-1.000). Significant correlations were found between Vibrio and haemoglobin levels (P < 0.001, ρ = -0.64). CONCLUSIONS Sampling in different rounds of BALF showed minimal effect on BALF microbial and fungal diversities; the first round of BALF collection was recommended for microbial and fungal analyses for convenience. In addition, Vibrio may be a potential biomarker for silicosis fatigue screening.
Collapse
Affiliation(s)
- Linshen Xie
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoyan Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaosi Gao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Linyao Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Yiyang Cheng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Shirong Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Ji Yue
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Yingru Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Yufeng Deng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Baochao Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Xun He
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Mingyuan Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Hua Yang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Tianli Zheng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Jia You
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Xuejiao Song
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingyuan Xiong
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China.
| | - Haojiang Zuo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China.
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, 610041, China.
| | - Xiaofang Pei
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, 610041, China
| |
Collapse
|
12
|
Giampá SQC, Lorenzi-Filho G, Drager LF. Obstructive sleep apnea and metabolic syndrome. Obesity (Silver Spring) 2023; 31:900-911. [PMID: 36863747 DOI: 10.1002/oby.23679] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 03/04/2023]
Abstract
Metabolic syndrome (MS) is a heterogeneous condition associated with increased cardiovascular risk. There is growing evidence from experimental, translational, and clinical investigations that has suggested that obstructive sleep apnea (OSA) is associated with prevalent and incident components of MS and MS itself. The biological plausibility is supportive, primarily related to one of the main features of OSA, namely intermittent hypoxia: increased sympathetic activation with hemodynamic repercussions, increased hepatic glucose output, insulin resistance through adipose tissue inflammation, pancreatic β-cell dysfunction, hyperlipidemia through the worsening of fasting lipid profiles, and the reduced clearance of triglyceride-rich lipoproteins. Although there are multiple related pathways, the clinical evidence relies mainly on cross-sectional data preventing any causality assumptions. The overlapping presence of visceral obesity or other confounders such as medications challenges the ability to understand the independent contribution of OSA on MS. In this review, we revisit the evidence on how OSA/intermittent hypoxia could mediate adverse effects of MS parameters independent of adiposity. Particular attention is devoted to discussing recent evidence from interventional studies. This review describes the research gaps, the challenges in the field, perspectives, and the need for additional high-quality data from interventional studies addressing the impact of not only established but promising therapies for OSA/obesity.
Collapse
Affiliation(s)
- Sara Q C Giampá
- Graduate Program in Cardiology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Geraldo Lorenzi-Filho
- Laboratório do Sono, Divisão de Pneumologia, Instituto do Coração (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Luciano F Drager
- Unidade de Hipertensão, Instituto do Coração (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- Unidade de Hipertensão, Disciplina de Nefrologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Heizhati M, Aierken X, Gan L, Lin M, Luo Q, Wang M, Hu J, Maimaiti N, Duiyimuhan G, Yang W, Yao L, Zhu Q, Li N. Prevalence of primary aldosteronism in patients with concomitant hypertension and obstructive sleep apnea, baseline data of a cohort. Hypertens Res 2023:10.1038/s41440-023-01226-w. [PMID: 36882631 DOI: 10.1038/s41440-023-01226-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 03/09/2023]
Abstract
Obstructive sleep apnea (OSA) and primary aldosteronism (PA) often coexist in hypertension, whereas whether hypertensive patients with OSA should be screened for PA is controversial and whether gender, age, obesity and OSA severity should be considered is unexplored. We explored cross-sectionally prevalence and associated factors of PA in co-existent hypertension and OSA by considering gender, age, obesity and OSA severity. OSA was defined as AHI ≥5 events/h. PA diagnosis was defined, based on the 2016 Endocrine Society Guideline. We included 3306 patients with hypertension (2564 with OSA). PA prevalence was significantly higher in hypertensives with OSA than in those without OSA (13.2 vs 10.0%, P = 0.018). In gender-specific analysis, PA prevalence was significantly higher in hypertensive men with OSA, compared to non-OSA ones (13.8 vs 7.7%, P = 0.001). In further analysis, PA prevalence was significantly higher in hypertensive men with OSA aged <45 years (12.7 vs 7.0%), 45-59 years (16.6 vs 8.5%), and with overweight and obesity (14.1 vs 7.1%) than did their counterparts (P < 0.05). For OSA severity, men participants showed increased PA prevalence from non to moderate OSA and a decrease in the severe OSA group (7.7 vs 12.9 vs 15.1 vs 13.7%, P = 0.008). Young and middle age, moderate-severe OSA, weight, and blood pressure showed a positive independent association with PA presence in logistic regression. In conclusion, PA is prevalent in co-existent hypertension and OSA, indicating the need for PA screening. Studies are needed for women, older and lean population due to the smaller samples in this study.
Collapse
Affiliation(s)
- Mulalibieke Heizhati
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Xiayire Aierken
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Lin Gan
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Mengyue Lin
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Qin Luo
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Menghui Wang
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Junli Hu
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Nuerguli Maimaiti
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Gulinuer Duiyimuhan
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Wenbo Yang
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Ling Yao
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Qing Zhu
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Nanfang Li
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China.
| |
Collapse
|
14
|
Loughman A, Adler CJ, Macpherson H. Unlocking Modifiable Risk Factors for Alzheimer's Disease: Does the Oral Microbiome Hold Some of the Keys? J Alzheimers Dis 2023; 92:1111-1129. [PMID: 36872775 DOI: 10.3233/jad-220760] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Advancing age is recognized as the primary risk factor for Alzheimer's disease (AD); however approximately one third of dementia cases are attributable to modifiable risk factors such as hypertension, diabetes, smoking, and obesity. Recent research also implicates oral health and the oral microbiome in AD risk and pathophysiology. The oral microbiome contributes to the cerebrovascular and neurodegenerative pathology of AD via the inflammatory, vascular, neurotoxic, and oxidative stress pathways of known modifiable risk factors. This review proposes a conceptual framework that integrates the emerging evidence regarding the oral microbiome with established modifiable risk factors. There are numerous mechanisms by which the oral microbiome may interact with AD pathophysiology. Microbiota have immunomodulatory functions, including the activation of systemic pro-inflammatory cytokines. This inflammation can affect the integrity of the blood-brain barrier, which in turn modulates translocation of bacteria and their metabolites to brain parenchyma. Amyloid-β is an antimicrobial peptide, a feature which may in part explain its accumulation. There are microbial interactions with cardiovascular health, glucose tolerance, physical activity, and sleep, suggesting that these modifiable lifestyle risk factors of dementia may have microbial contributors. There is mounting evidence to suggest the relevance of oral health practices and the microbiome to AD. The conceptual framework presented here additionally demonstrates the potential for the oral microbiome to comprise a mechanistic intermediary between some lifestyle risk factors and AD pathophysiology. Future clinical studies may identify specific oral microbial targets and the optimum oral health practices to reduce dementia risk.
Collapse
Affiliation(s)
- Amy Loughman
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, Barwon Health, Geelong, Victoria, Australia
| | - Christina J Adler
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Helen Macpherson
- Deakin University, IPAN - the Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Geelong, Victoria, Australia
| |
Collapse
|
15
|
Obstructive sleep apnea is related to alterations in fecal microbiome and impaired intestinal barrier function. Sci Rep 2023; 13:778. [PMID: 36642764 PMCID: PMC9841009 DOI: 10.1038/s41598-023-27784-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/09/2023] [Indexed: 01/16/2023] Open
Abstract
Obstructive Sleep Apnea (OSA) is related to repeated upper airway collapse, intermittent hypoxia, and intestinal barrier dysfunction. The resulting damage to the intestinal barrier may affect or be affected by the intestinal microbiota. A prospective case-control was used, including 48 subjects from Sleep Medicine Center of Nanfang Hospital. Sleep apnea was diagnosed by overnight polysomnography. Fecal samples and blood samples were collected from subjects to detect fecal microbiome composition (by 16S rDNA gene amplification and sequencing) and intestinal barrier biomarkers-intestinal fatty acid-binding protein (I-FABP) and D-lactic acid (D-LA) (by ELISA and colorimetry, respectively). Plasma D-LA and I-FABP were significantly elevated in patients with OSA. The severity of OSA was related to differences in the structure and composition of the fecal microbiome. Enriched Fusobacterium, Megamonas, Lachnospiraceae_UCG_006, and reduced Anaerostipes was found in patients with severe OSA. Enriched Ruminococcus_2, Lachnoclostridium, Lachnospiraceae_UCG_006, and Alloprevotella was found in patients with high intestinal barrier biomarkers. Lachnoclostridium and Lachnospiraceae_UCG_006 were the common dominant bacteria of OSA and intestinal barrier damage. Fusobacterium and Peptoclostridium was independently associated with apnea-hypopnea index (AHI). The dominant genera of severe OSA were also related to glucose, lipid, neutrophils, monocytes and BMI. Network analysis identified links between the fecal microbiome, intestinal barrier biomarkers, and AHI. The study confirms that changes in the intestinal microbiota are associated with intestinal barrier biomarkers among patients in OSA. These changes may play a pathophysiological role in the systemic inflammation and metabolic comorbidities associated with OSA, leading to multi-organ morbidity of OSA.
Collapse
|
16
|
Huang X, Chen X, Gong X, Xu Y, Xu Z, Gao X. Characteristics of salivary microbiota in children with obstructive sleep apnea: A prospective study with polysomnography. Front Cell Infect Microbiol 2022; 12:945284. [PMID: 36105146 PMCID: PMC9465092 DOI: 10.3389/fcimb.2022.945284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivesThe present study aimed to investigate the characteristics of salivary microbiota of children with obstructive sleep apnea (OSA) and to assess longitudinal alterations in salivary microbiota before and after adenotonsillectomy.MethodsA set of cross-sectional samples consisted of 36 OSA children (17 boys and 19 girls, 7.47 ± 2.24 years old) and 22 controls (9 boys and 13 girls, 7.55 ± 2.48 years old) were included in the study, among which eight OSA children (five boys and three girls, 8.8 ± 2.0 years old) who underwent treatment of adenotonsillectomy were followed up after 1 year. Saliva samples were collected, and microbial profiles were analyzed by bioinformatics analysis based on 16S rRNA sequencing.ResultsIn cross-sectional samples, the OSA group had higher α-diversity as estimated by Chao1, Shannon, Simpson, Pielou_e, and observed species as compared with the control group (p < 0.05). β-Diversity based on the Bray–Curtis dissimilarities (p = 0.004) and Jaccard distances (p = 0.001) revealed a significant separation between the OSA group and control group. Nested cross-validated random forest classifier identified the 10 most important genera (Lactobacillus, Escherichia, Bifidobacterium, Capnocytophaga, Bacteroidetes_[G-7], Parvimonas, Bacteroides, Klebsiella, Lautropia, and Prevotella) that could differentiate OSA children from controls with an area under the curve (AUC) of 0.94. Linear discriminant analysis effect size (LEfSe) analysis revealed a significantly higher abundance of genera such as Prevotella (p = 0.027), Actinomyces (p = 0.015), Bifidobacterium (p < 0.001), Escherichia (p < 0.001), and Lactobacillus (p < 0.001) in the OSA group, among which Prevotella was further corroborated in longitudinal samples. Prevotella sp_HMT_396 was found to be significantly enriched in the OSA group (p = 0.02) with significantly higher levels as OSA severity increased (p = 0.014), and it had a lower abundance in the post-treatment group (p = 0.003) with a decline in each OSA child 1 year after adenotonsillectomy.ConclusionsA significantly higher microbial diversity and a significant difference in microbial composition and abundance were identified in salivary microbiota of OSA children compared with controls. Meanwhile, some characteristic genera (Prevotella, Actinomyces, Lactobacillus, Escherichia, and Bifidobacterium) were found in OSA children, among which the relationship between Prevotella spp. and OSA is worth further studies.
Collapse
Affiliation(s)
- Xin Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xuehui Chen
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xu Gong
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Ying Xu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Zhifei Xu
- Department of Respiratory Medicine, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- *Correspondence: Xuemei Gao,
| | - Xuemei Gao
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- *Correspondence: Xuemei Gao,
| |
Collapse
|
17
|
Adolf LA, Heilbronner S. Nutritional Interactions between Bacterial Species Colonising the Human Nasal Cavity: Current Knowledge and Future Prospects. Metabolites 2022; 12:489. [PMID: 35736422 PMCID: PMC9229137 DOI: 10.3390/metabo12060489] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022] Open
Abstract
The human nasal microbiome can be a reservoir for several pathogens, including Staphylococcus aureus. However, certain harmless nasal commensals can interfere with pathogen colonisation, an ability that could be exploited to prevent infection. Although attractive as a prophylactic strategy, manipulation of nasal microbiomes to prevent pathogen colonisation requires a better understanding of the molecular mechanisms of interaction that occur between nasal commensals as well as between commensals and pathogens. Our knowledge concerning the mechanisms of pathogen exclusion and how stable community structures are established is patchy and incomplete. Nutrients are scarce in nasal cavities, which makes competitive or mutualistic traits in nutrient acquisition very likely. In this review, we focus on nutritional interactions that have been shown to or might occur between nasal microbiome members. We summarise concepts of nutrient release from complex host molecules and host cells as well as of intracommunity exchange of energy-rich fermentation products and siderophores. Finally, we discuss the potential of genome-based metabolic models to predict complex nutritional interactions between members of the nasal microbiome.
Collapse
Affiliation(s)
- Lea A. Adolf
- Interfaculty Institute for Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, UKT Tübingen, 72076 Tübingen, Germany;
| | - Simon Heilbronner
- Interfaculty Institute for Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, UKT Tübingen, 72076 Tübingen, Germany;
- German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
| |
Collapse
|
18
|
Hong SN, Kim KJ, Baek MG, Yi H, Lee SH, Kim DY, Lee CH, Shin C, Rhee CS. Association of obstructive sleep apnea severity with the composition of the upper airway microbiome. J Clin Sleep Med 2022; 18:505-515. [PMID: 34463248 PMCID: PMC8804986 DOI: 10.5664/jcsm.9640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
STUDY OBJECTIVES Although the airway mucosal system plays a pivotal role in the pathogenesis of obstructive sleep apnea (OSA), the underlying disease mechanism remains unclear. The microbiome greatly impacts human health and disease, particularly in the mucosa, where it can have direct interactions. In this study, we aimed to analyze the microbiome composition in the upper airway mucosa of individuals with and without OSA to identify potential disease severity-related microbial signatures. METHODS This population-based cohort study involved 92 participants (mean age = 62.7 ± 5.8 years; male-to-female ratio = 0.74) who underwent a physical examination and sleep study. Upper airway swab samples were collected from the nasopharyngeal mucosa to evaluate the microbiome based on 16S rRNA gene pyrosequencing. The relationship between microbiome composition and sleep parameters was explored through bioinformatics analysis. RESULTS The average apnea-hypopnea index was 7.75 ± 6.5 events/h. Proteobacteria, Firmicutes, and Actinobacteria were the predominant phyla in the nasopharyngeal microbiota in all participants. Simpson diversity indexes were higher in patients with OSA (0.6435 ± 0.2827) than in the control patients (0.6095 ± 0.2683); however, the difference was not significant (P = .1155). Specific anaerobes negatively correlated with the lowest oxygen saturation level during sleep (sum of powered score (1) = -117.47; P = .0052). CONCLUSIONS The upper airway microbiome of older patients with mild-moderate OSA exhibited minor differences in composition compared with that of individuals without OSA, possibly owing to environmental changes in the upper airway mucosa resulting from recurrent airway obstruction and intermittent hypoxia in patients with OSA. CITATION Hong S-N, Kim KJ, Baek M-G, et al. Association of obstructive sleep apnea severity with the composition of the upper airway microbiome. J Clin Sleep Med. 2022;18(2):505-515.
Collapse
Affiliation(s)
- Seung-No Hong
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Boramae Medical Center, Seoul, Korea
| | - Kang Jin Kim
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Min-Gyung Baek
- Department of Public Health Sciences, Korea University, Seoul, Korea
| | - Hana Yi
- School of Biosystems and Biomedical Sciences, Korea University, Seoul, Korea
| | - Seung Hoon Lee
- Department of Otorhinolaryngology, Korea University College of Medicine, Korea University Ansan Hospital, Ansan, Korea
| | - Dong-Young Kim
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Chul Hee Lee
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Chol Shin
- Division of Pulmonary, Sleep, and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Korea University Ansan Hospital, Ansan, Korea
| | - Chae-Seo Rhee
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea,Sensory Organ Research Institute, Medical Research Center, Seoul National University, Seoul, Korea,Address correspondence to: Chae-Seo Rhee, MD, PhD, Department of Otorhinolaryngology, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul 110-744, Korea; Tel: +82-2-2072-2440; Fax: +82-2-745-2387;
| |
Collapse
|
19
|
Chronic intermittent hypoxia induces gut microbial dysbiosis and infers metabolic dysfunction in mice. Sleep Med 2022; 91:84-92. [DOI: 10.1016/j.sleep.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/19/2022] [Accepted: 02/07/2022] [Indexed: 11/19/2022]
|
20
|
Ding D, Zhu J, Gao Y, Yang F, Ma Y, Cheng X, Li J, Dong P, Yang H, Chen S. Effect of cattle farm exposure on oropharyngeal and gut microbial communities and antibiotic resistance genes in workers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150685. [PMID: 34600986 DOI: 10.1016/j.scitotenv.2021.150685] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Livestock farms are recognized as the main sources of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) with potential implications for human health. In this study, we systematically analyzed microbiome composition, distribution of ARGs and mobile genetic elements (MGEs) in the oropharynx and gut of workers in cattle farms and surrounding villagers, cattle feces and farm air, and the relationship of microbial communities among farm air, cattle feces and farmworkers (oropharynx and gut). Exposure to the farm environment may have remodeled farmworkers' oropharynx and gut microbiota, with reduced microbial diversity (P < 0.05) and enrichment of some opportunistic pathogenic bacteria like Shigella, Streptococcus, and Neisseria in the oropharynx. Meanwhile, compared with villagers, ARG abundance in oropharynx of farmworkers increased significantly (P < 0.05), but, no significant difference in gut (P > 0.05). Microbial composition and ARG profile in farmworkers might be influenced by working time and work type, ARG abundance in farmworkers' gut was positively correlated with working time (P < 0.01), and higher ARG abundance was found in the oropharynx of drovers. The network analysis revealed that 4 MGEs (tnpA-01, tnpA-04, Tp614, and IS613), 5 phyla (e.g. Bacteroidetes, Fusobacteria, and TM7), and 6 genera were significantly associated with 37 ARGs (ρ > 0.6, P < 0.01). Overall, our results indicated that farm exposure may have affected the microbial composition and increased ARG abundance of farmworkers. Transmission of some ARGs may have occurred among the environment, animals and humans via host bacteria, which might pose a potential threat to human health.
Collapse
Affiliation(s)
- Dong Ding
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jingyuan Zhu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yanling Gao
- Henan Vocational College of Agriculture, Zhengzhou 450001, Henan, China; Henan Institute of Veterinary Drug and Feed Control, Zhengzhou 450001, Henan, China
| | - Fan Yang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yan Ma
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xuemin Cheng
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jinlei Li
- Henan Institute of Veterinary Drug and Feed Control, Zhengzhou 450001, Henan, China
| | - Peng Dong
- Henan Institute of Veterinary Drug and Feed Control, Zhengzhou 450001, Henan, China
| | - Haiyan Yang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Shuaiyin Chen
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
21
|
Cai X, Li N, Hu J, Wen W, Yao X, Zhu Q, Heizhati M, Hong J, Sun L, Tuerxun G, Zhang D, Luo Q. Nonlinear Relationship Between Chinese Visceral Adiposity Index and New-Onset Myocardial Infarction in Patients with Hypertension and Obstructive Sleep Apnoea: Insights from a Cohort Study. J Inflamm Res 2022; 15:687-700. [PMID: 35140499 PMCID: PMC8819537 DOI: 10.2147/jir.s351238] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/15/2022] [Indexed: 12/13/2022] Open
Abstract
Purpose We aimed to investigate the relationship between the Chinese visceral adiposity index (CVAI) and the risk of new-onset myocardial infarction (MI) in patients with hypertension and obstructive sleep apnoea (OSA) and to inspect possible modifiers of the effect. Methods The Cox regression model was used to evaluate the relationship between baseline CVAI and risk of new-onset MI. A generalized additive model was used to identify the nonlinear relationship. Besides, we conducted subgroup analyses and interaction tests. Results A total of 2177 patients with hypertension and OSA undergoing polysomnography were enrolled in this study. During a median follow-up period of 87 months, 82 participants developed new-onset MI. Overall, CVAI was positively related to the risk of new-onset MI (per 1 SD increase; HR = 1.54, 95% CI: 1.28–1.85). In multivariable-adjusted models, the risk of new-onset MI increased with quartiles of CVAI, with an HR of 3.64 (95% CI: 1.94–6.83) for quartile 4 compared with quartile 1. The generalized additive model and smoothed curve fit revealed a nonlinear relationship between CVAI and risk of new-onset MI with an inflection point of approximately 112. None of the stratification variables had a significant effect on the relationship between CVAI and new-onset MI. Similar outcomes were observed in the sensitivity analysis. The addition of CVAI significantly improved reclassification and discrimination over the conventional model, with a category-free NRI of 0.132 (95% CI 0.021 to 0.236, P = 0.021) and an IDI of 0.012 (95% CI 0.005 to 0.023, P < 0.001). Conclusion This study demonstrated a nonlinear relationship between CVAI and the risk of new-onset MI in patients with hypertension and OSA. Higher CVAI was significantly associated with the risk of new-onset MI when CVAI was ≥112.
Collapse
Affiliation(s)
- Xintian Cai
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Medical Research Center for Hypertension Diseases, Urumqi, Xinjiang, People’s Republic of China
- Graduate School, Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Nanfang Li
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Medical Research Center for Hypertension Diseases, Urumqi, Xinjiang, People’s Republic of China
- Correspondence: Nanfang Li, Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Medical Research Center for Hypertension Diseases, Urumqi, Xinjiang, People’s Republic of China, Email
| | - Junli Hu
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Medical Research Center for Hypertension Diseases, Urumqi, Xinjiang, People’s Republic of China
| | - Wen Wen
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Medical Research Center for Hypertension Diseases, Urumqi, Xinjiang, People’s Republic of China
- Graduate School, Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Xiaoguang Yao
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Medical Research Center for Hypertension Diseases, Urumqi, Xinjiang, People’s Republic of China
| | - Qing Zhu
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Medical Research Center for Hypertension Diseases, Urumqi, Xinjiang, People’s Republic of China
- Graduate School, Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Mulalibieke Heizhati
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Medical Research Center for Hypertension Diseases, Urumqi, Xinjiang, People’s Republic of China
| | - Jing Hong
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Medical Research Center for Hypertension Diseases, Urumqi, Xinjiang, People’s Republic of China
| | - Le Sun
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Medical Research Center for Hypertension Diseases, Urumqi, Xinjiang, People’s Republic of China
| | - Guzailinuer Tuerxun
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Medical Research Center for Hypertension Diseases, Urumqi, Xinjiang, People’s Republic of China
| | - Delian Zhang
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Medical Research Center for Hypertension Diseases, Urumqi, Xinjiang, People’s Republic of China
| | - Qin Luo
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Medical Research Center for Hypertension Diseases, Urumqi, Xinjiang, People’s Republic of China
| |
Collapse
|
22
|
Wang H, Heizhati M, Li N, Gan L, Lin M, Yang W, Li M, Yao L, Liu M, Maitituersun A, Liu S, Wu Z, Xiamili Z, Tong L, Lin Y, Luo Q, Hong J. Association of objective and subjective parameters of obstructive sleep apnea with plasma aldosterone concentration in 2,066 hypertensive and 25,368 general population. Front Endocrinol (Lausanne) 2022; 13:1016804. [PMID: 36726467 PMCID: PMC9884816 DOI: 10.3389/fendo.2022.1016804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/13/2022] [Indexed: 01/19/2023] Open
Abstract
STUDY OBJECTIVES Obstructive sleep apnea (OSA) severity has been suggested in aldosterone elevation in resistant hypertension, whereas it is undetermined in the rest population. We explored the association of OSA parameters with plasma aldosterone concentration (PAC) in participants with and without hypertension. METHODS We enrolled clinically hypertensive patients with polysomnography and PAC data under no interfering agents, compared (log) PAC, and assessed the linearity of log PAC by tertiles (T1/2/3) of sleep parameters and their association using linear regression by gender and age. We enrolled participants with and without hypertension who had No-SAS scale and PAC data from the community and duplicated the observations from clinical setting considering age, gender, and presence of hypertension. RESULTS Of the 2,066 clinical patients with hypertension (1,546 with OSA), men participants (n=1,412), log apnea-hypopnea index (p=0.043), apnea index (AI, p=0.010), and lowest oxygen saturation (LSaO2, p=0.013) showed significant linearity with log PAC. Log AI (B=0.04, 95%CI: 0.01,0.07, p=0.022) and log LSaO2 (B=-0.39, 95%CI: -0.78,-0.01, p=0.044) showed significant positive and negative linear associations with log PAC in regression. In community dwellers, 6,417 participants with untreated hypertension (2,642 with OSA) and 18,951 normotensive participants (3,000 with OSA) were included. Of the men participants with and without hypertension, the OSA group showed significantly higher (log) PAC than did their counterparts, and log No-SAS score showed positive association with log PAC (hypertension: B=0.072, 95%CI: 0.002,0.142, p=0.043; normotension: B=0.103, 95%CI: 0.067,0.139, p<0.001) in linear regression analysis, which were consistent in all age groups. CONCLUSIONS OSA parameters were positively associated with PAC in normotensive and hypertensive participants, indicating that OSA may increase circulating aldosterone, especially in men.
Collapse
Affiliation(s)
| | | | - Nanfang Li
- *Correspondence: Nanfang Li, ; Mulalibieke Heizhati, /
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Chen X, Chen Y, Feng M, Huang X, Li C, Han F, Zhang Q, Gao X. Altered Salivary Microbiota in Patients with Obstructive Sleep Apnea Comorbid Hypertension. Nat Sci Sleep 2022; 14:593-607. [PMID: 35422668 PMCID: PMC9005082 DOI: 10.2147/nss.s347630] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/11/2022] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Microorganisms contribute to the pathogenesis of obstructive sleep apnea (OSA)-associated hypertension (HTN), while more studies focus on intestinal microbiome. However, the relationship between oral microbiota and OSA-associated HTN has yet to be elucidated. This study aimed to identify differences in salivary microbiota between patients with OSA comorbid HTN compared with OSA patients, and furthermore evaluate the relationship between oral microbiome changes and increased blood pressure in patients with OSA. PATIENTS AND METHODS This study collected salivary samples from 103 participants, including 27 healthy controls, 27 patients with OSA, 23 patients with HTN, and 26 patients with OSA comorbid HTN, to explore alterations of the oral microbiome using 16S rRNA gene V3-V4 high-throughput sequencing. And ultra-high-performance liquid chromatography was used for metabolomic analysis. RESULTS Alpha- and beta-diversity analyses revealed a substantial difference in community structure and diversity in patients with OSA comorbid HTN compared with patients with OSA or HTN. The relative abundance of the genus Actinomyces was significantly decreased in patients with HTN compared with healthy controls, and those with OSA concomitant HTN compared with the patients in OSA, but was not significantly different between patients with OSA and healthy controls. Linear discriminant analysis effect size and variance analysis also indicated that the genera Haemophilus, Neisseria, and Lautropia were enriched in HTN. In addition, Oribacterium was an unique taxa in the OSA comorbid HTN group compared with the control group. Metabolomic analysis of saliva identified compounds associated with cardiovascular disease in patients with OSA comorbid HTN.2-hydroxyadenine, was significantly increased in the group of patients with OSA compared with controls, and L-carnitine was significantly decreased in patients with OSA comorbid HTN compared with OSA patients. CONCLUSION This study highlighted noninvasive biomarkers for patients with OSA comorbid HTN. As the first study to find alterations of the salivary microbiome in patients with OSA comorbid HTN, it may provide a theoretical foundation for clinical diagnosis and treatment of this condition.
Collapse
Affiliation(s)
- Xuehui Chen
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Yanlong Chen
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Mengqi Feng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Xin Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Changtao Li
- Department of Orthodontics, Beijing Haidian Hospital, Haidian Section of Peking University Third Hospital, Beijing, 100080, People's Republic of China
| | - Fang Han
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Qian Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China.,National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, People's Republic of China
| | - Xuemei Gao
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China.,National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, People's Republic of China
| |
Collapse
|
24
|
Association between Plasma Homocysteine Concentrations and the First Ischemic Stroke in Hypertensive Patients with Obstructive Sleep Apnea: A 7-Year Retrospective Cohort Study from China. DISEASE MARKERS 2021; 2021:9953858. [PMID: 34621408 PMCID: PMC8492296 DOI: 10.1155/2021/9953858] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022]
Abstract
Purpose This study was aimed at investigating the association between baseline plasma homocysteine (Hcy) concentrations and the risk of the first ischemic stroke (IS) and at investigating any possible influential modifying factors in hypertensive patients with obstructive sleep apnea (OSA). Methods Cox proportional hazards regression was employed to investigate the relationship between plasma Hcy concentration and the first IS. A generalized additive model was applied to determine the nonlinear relationship. In addition, we conducted subgroup analysis. Results A total of 2350 hypertensive patients with OSA without a history of IS were enrolled in this study. At a median follow-up of 7.15 years, we identified 93 cases of the first IS. After adjusting for potential confounding, the findings revealed that plasma Hcy concentration was strongly and positively associated with the occurrence of the first IS (per SD increment; HR = 1.37, 95% CI: 1.30-1.44). A nonlinear relationship was found between plasma Hcy concentration and the risk of developing the first IS with inflection points for plasma Hcy of 5 μmol/L. In stratified analysis, a greater positive correlation was found between baseline plasma Hcy concentrations and new-onset IS in patients with DBP ≥ 90 mmHg (per SD increment; HR = 1.48, 95% CI: 1.33-1.65 vs. <90 mmHg: HR = 1.20, 95% CI: 1.02-1.42; P‐interaction = 0.04) and BMI ≥ 24 and <28 kg/m2 (per SD increment; HR = 1.46, 95% CI: 1.26-1.70 vs. <24 kg/m2: HR = 1.13, 95% CI: 0.95-1.33 vs. ≥28 kg/m2: HR = 1.46, 95% CI: 1.25-1.70; P‐interaction = 0.03). Conclusion Elevated plasma Hcy concentrations are independently associated with the risk of the first IS in hypertensive patients with OSA. Plasma Hcy concentrations ≥ 5 μmol/L surely increased the risk of the first IS in hypertensive patients with OSA.
Collapse
|
25
|
Chuang HH, Hsu JF, Chuang LP, Chiu CH, Huang YL, Li HY, Chen NH, Huang YS, Chuang CW, Huang CG, Lai HC, Lee LA. Different Associations between Tonsil Microbiome, Chronic Tonsillitis, and Intermittent Hypoxemia among Obstructive Sleep Apnea Children of Different Weight Status: A Pilot Case-Control Study. J Pers Med 2021; 11:jpm11060486. [PMID: 34071547 PMCID: PMC8227284 DOI: 10.3390/jpm11060486] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
The tonsil microbiome is associated with chronic tonsillitis and obstructive sleep apnea (OSA) in children, and the gut microbiome is associated with host weight status. In this study, we hypothesized that weight status may be associated with clinical profiles and the tonsil microbiome in children with OSA. We prospectively enrolled 33 non-healthy-weight (cases) and 33 healthy-weight (controls) pediatric OSA patients matched by the proportion of chronic tonsillitis. Differences in the tonsil microbiome between the non-healthy-weight and healthy-weight subgroups and relationships between the tonsil microbiome and clinical variables were investigated. Non-healthy weight was associated with significant intermittent hypoxemia (oxygen desaturation index, mean blood saturation (SpO2), and minimal SpO2) and higher systolic blood pressure percentile, but was not related to the tonsil microbiome. However, chronic tonsillitis was related to Acidobacteria in the non-healthy-weight subgroup, and oxygen desaturation index was associated with Bacteroidetes in the healthy-weight subgroup. In post hoc analysis, the children with mean SpO2 ≤ 97% had reduced α and β diversities and a higher abundance of Bacteroidetes than those with mean SpO2 > 97%. These preliminary findings are novel and provide insights into future research to understand the pathogenesis of the disease and develop personalized treatments for pediatric OSA.
Collapse
Affiliation(s)
- Hai-Hua Chuang
- Department of Family Medicine, Chang Gung Memorial Hospital, Taipei Branch and Linkou Main Branch, Taoyuan 33305, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (J.-F.H.); (L.-P.C.); (C.-H.C.); (Y.-L.H.); (H.-Y.L.); (N.-H.C.); (Y.-S.H.)
- Department of Industrial Engineering and Management, National Taipei University of Technology, Taipei 10608, Taiwan
- Obesity Institute, Genomic Medicine Institute, Geisinger, Danville, PA 17822, USA
| | - Jen-Fu Hsu
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (J.-F.H.); (L.-P.C.); (C.-H.C.); (Y.-L.H.); (H.-Y.L.); (N.-H.C.); (Y.-S.H.)
- Department of Pediatrics, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan 33305, Taiwan
| | - Li-Pang Chuang
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (J.-F.H.); (L.-P.C.); (C.-H.C.); (Y.-L.H.); (H.-Y.L.); (N.-H.C.); (Y.-S.H.)
- Department of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan 33305, Taiwan
| | - Cheng-Hsun Chiu
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (J.-F.H.); (L.-P.C.); (C.-H.C.); (Y.-L.H.); (H.-Y.L.); (N.-H.C.); (Y.-S.H.)
- Department of Pediatrics, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan 33305, Taiwan
| | - Yen-Lin Huang
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (J.-F.H.); (L.-P.C.); (C.-H.C.); (Y.-L.H.); (H.-Y.L.); (N.-H.C.); (Y.-S.H.)
- Department of Pathology, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan 33305, Taiwan
| | - Hsueh-Yu Li
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (J.-F.H.); (L.-P.C.); (C.-H.C.); (Y.-L.H.); (H.-Y.L.); (N.-H.C.); (Y.-S.H.)
- Department of Otorhinolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan 33305, Taiwan
| | - Ning-Hung Chen
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (J.-F.H.); (L.-P.C.); (C.-H.C.); (Y.-L.H.); (H.-Y.L.); (N.-H.C.); (Y.-S.H.)
- Department of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan 33305, Taiwan
| | - Yu-Shu Huang
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (J.-F.H.); (L.-P.C.); (C.-H.C.); (Y.-L.H.); (H.-Y.L.); (N.-H.C.); (Y.-S.H.)
- Department of Child Psychiatry, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan 33305, Taiwan
| | - Chun-Wei Chuang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan 33305, Taiwan; (C.-W.C.); (C.-G.H.); (H.-C.L.)
| | - Chung-Guei Huang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan 33305, Taiwan; (C.-W.C.); (C.-G.H.); (H.-C.L.)
- Department of Medical Biotechnology and Laboratory Science, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
| | - Hsin-Chih Lai
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan 33305, Taiwan; (C.-W.C.); (C.-G.H.); (H.-C.L.)
- Department of Medical Biotechnology and Laboratory Science, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
| | - Li-Ang Lee
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (J.-F.H.); (L.-P.C.); (C.-H.C.); (Y.-L.H.); (H.-Y.L.); (N.-H.C.); (Y.-S.H.)
- Department of Otorhinolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan 33305, Taiwan
- Correspondence: ; Tel.: +886-3328-1200 (ext. 3968)
| |
Collapse
|
26
|
Zhang X, Wang S, Xu H, Yi H, Guan J, Yin S. Metabolomics and microbiome profiling as biomarkers in obstructive sleep apnoea: a comprehensive review. Eur Respir Rev 2021; 30:30/160/200220. [PMID: 33980666 PMCID: PMC9489097 DOI: 10.1183/16000617.0220-2020] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/03/2020] [Indexed: 11/25/2022] Open
Abstract
Introduction Obstructive sleep apnoea (OSA) is a common sleep disorder with a high social and economic burden. Thus, early prediction and diagnosis of OSA are important. Changes in metabolism and the microbiome may serve as biomarkers for OSA. Herein, we review the literature on the metabolomic and microbiome changes associated with OSA, and identify the metabolites and microorganisms involved. Methods We searched the PUBMED and EMBASE electronic databases using the following terms: “obstructive sleep apnea”, “OSA”, “sleep disordered breathing”, “SDB”, “intermittent hypoxia”, “sleep fragmentation”, and either “metabolomics” or “microbiome”. In total, 273 papers were identified, of which 28 were included in our study. Results Changes in the levels of certain metabolites related to fatty acid, carbohydrate and amino acid metabolism were associated with the incidence of OSA. The diversity and abundance of microflora, particularly Firmicutes and Bacteroidetes, were altered in humans and rodents with OSA. Conclusions Certain changes in metabolism and the microbiota play an integral role in the pathophysiology of OSA and OSA-induced cardiovascular complications. Metabolomic and microbiome biomarkers shed light on the pathogenesis of OSA, and facilitate early diagnosis and treatment. Unique alterations in metabolism and the microbiome play an integral role in the pathophysiology of OSA and OSA-induced cardiovascular complicationshttps://bit.ly/3mW2rD5
Collapse
Affiliation(s)
- Xiaoman Zhang
- Dept of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China.,Both authors contributed equally
| | - Shengming Wang
- Dept of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China.,Both authors contributed equally
| | - Huajun Xu
- Dept of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China .,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Hongliang Yi
- Dept of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Jian Guan
- Dept of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Shankai Yin
- Dept of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
27
|
Cai Y, Juszczak HM, Cope EK, Goldberg AN. The Microbiome in Obstructive Sleep Apnea. Sleep 2021; 44:6168416. [PMID: 33705556 DOI: 10.1093/sleep/zsab061] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/06/2021] [Indexed: 12/25/2022] Open
Abstract
Recent evidence has highlighted important associations between obstructive sleep apnea and the microbiome. Although the intricacies of the pathophysiologic mechanisms are not well understood, available evidence suggests a bidirectional relationship between OSA and microbiota composition. Sleep fragmentation, intermittent hypoxia, and intermittent hypercapnia all play significant roles in altering the microbiome, and initial evidence has shown that alterations of the microbiota affect sleep patterns. Animal model evidence strongly supports the idea that the microbiome mediates disease states associated with OSA including hypertension, atherosclerosis, and obesity. The majority of evidence focuses on changes in the gut microbiome, which may result from OSA as well as contribute to sleep pattern changes, OSA-related CVD, and obesity. Meanwhile, a developing body of work suggests changes in the upper airway microbiome may be associated with OSA and periodontitis-related oral cavity microbiome changes may have significance in OSA-related CVD. Lastly, while evidence is limited, several studies suggest there may be a role for treatment of OSA and OSA-related comorbidities through alteration of the microbiome with probiotics, prebiotics, and microbiota transplantation. These early animal and human studies begin to characterize the interrelationships of the microbiome and OSA and may lead to new avenues for treatment.
Collapse
Affiliation(s)
- Yi Cai
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, CA, USA
| | - Hailey M Juszczak
- School of Medicine, University of California, San Francisco, CA, USA
| | - Emily K Cope
- Center for Applied Microbiome Sciences, The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Andrew N Goldberg
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, CA, USA
| |
Collapse
|
28
|
Ma ZJ, Wang HJ, Ma XJ, Li Y, Yang HJ, Li H, Su JR, Zhang CE, Huang LQ. Modulation of gut microbiota and intestinal barrier function during alleviation of antibiotic-associated diarrhea with Rhizoma Zingiber officinale (Ginger) extract. Food Funct 2020; 11:10839-10851. [PMID: 33241234 DOI: 10.1039/d0fo01536a] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Antibiotic-associated diarrhea (AAD) is typically mediated by antibiotic therapy, which has increased in prevalence in recent years. Previous studies have suggested that ginger, a common spice and herbal medicine, can modulate the composition of gut microbiota and is beneficial against gastrointestinal disease. This study investigates the therapeutic effects of fresh ginger extract on AAD in a rat model. Gut microbiota and intestinal barrier function were also studied. Ginger was administered to rats with AAD. Diarrhea symptoms were assessed, and 16s rRNA sequencing analysis of gut microbiota was performed. An AAD model was successfully established, and ginger was found to effectively ameliorate AAD-related diarrhea symptoms. After the intervention of ginger decoction, the diversity (rather than richness) of gut microbiota was significantly improved, and the gut microbiota recovery was accelerated. At the genus level, Escherichia_Shigella and Bacteroides levels decreased and increased the most, respectively. Additionally, these changes were demonstrated to be coincidental with the moderate restoration of intestinal barrier function, especially the restoration of tight junction protein ZO-1. Our data indicate that ginger could restore gut microbiota and intestinal barrier function during alleviation of AAD.
Collapse
Affiliation(s)
- Zhi-Jie Ma
- Center for Post-doctoral Research, Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Update on Persistent Excessive Daytime Sleepiness in OSA. Chest 2020; 158:776-786. [PMID: 32147246 DOI: 10.1016/j.chest.2020.02.036] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/31/2020] [Accepted: 02/22/2020] [Indexed: 12/17/2022] Open
Abstract
OSA is a highly prevalent sleep disorder, and subjective excessive daytime sleepiness (EDS) is the cardinal symptom for which many individuals seek medical advice. Positive airway pressure (PAP) devices, first-line treatment for OSA, eliminates EDS in most patients. However, a subset of patients suffers from persistent EDS despite adherence to therapy. Multiple conditions, some reversible, could account for the residual sleepiness and need to be explored, requiring detailed history, review of PAP data from the smart card, and sometimes additional testing. When all known causes of EDS are excluded, in adequately treated subjects, the purported mechanisms could relate to long-term exposure to the OSA-related sleep fragmentation, sleep deprivation, and hypoxic injury to the arousal system, shifts in melatonin secretion, or altered microbiome. Independent of the mechanism, in well-treated OSA, pharmacological therapy with approved drugs can be considered. Modafinil is commonly prescribed to combat residual EDS, but more recently two drugs, solriamfetol, a dual dopamine-norepinephrine reuptake inhibitor, and pitolisant, a histamine H3 receptor inverse agonist, were approved for EDS. Solriamfetol has undergone randomized controlled trials for treatment of EDS associated with both OSA and narcolepsy, exhibiting robust efficacy. Solriamfetol is renally excreted, with no known drug interactions. Pitolisant, which is nonscheduled, has undergone multiple RCTs in narcolepsy, showing improvement in subjective and objective EDS and one OSA trial showing improvement in subjective EDS.
Collapse
|