1
|
Arnold E, Soler-Llavina G, Kambara K, Bertrand D. The importance of ligand gated ion channels in sleep and sleep disorders. Biochem Pharmacol 2023; 212:115532. [PMID: 37019187 DOI: 10.1016/j.bcp.2023.115532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
On average, humans spend about 26 years of their life sleeping. Increased sleep duration and quality has been linked to reduced disease risk; however, the cellular and molecular underpinnings of sleep remain open questions. It has been known for some time that pharmacological modulation of neurotransmission in the brain can promote either sleep or wakefulness thereby providing some clues about the molecular mechanisms at play. However, the field of sleep research has developed an increasingly detailed understanding of the requisite neuronal circuitry and key neurotransmitter receptor subtypes, suggesting that it may be possible to identify next generation pharmacological interventions to treat sleep disorders within this same space. The aim of this work is to examine the latest physiological and pharmacological findings highlighting the contribution of ligand gated ion channels including the inhibitory GABAA and glycine receptors and excitatory nicotinic acetylcholine receptors and glutamate receptors in the sleep-wake cycle regulation. Overall, a better understanding of ligand gated ion channels in sleep will help determine if these highly druggable targets could facilitate a better night's sleep.
Collapse
|
2
|
Sibilska S, Mofleh R, Kocsis B. Development of network oscillations through adolescence in male and female rats. Front Cell Neurosci 2023; 17:1135154. [PMID: 37213214 PMCID: PMC10196069 DOI: 10.3389/fncel.2023.1135154] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/19/2023] [Indexed: 05/23/2023] Open
Abstract
The primary aim of this research was to study the developmental trajectory of oscillatory synchronization in neural networks of normal healthy rats during adolescence, corresponding to the vulnerable age of schizophrenia prodrome in human. To monitor the development of oscillatory networks through adolescence we used a "pseudo-longitudinal" design. Recordings were performed in terminal experiments under urethane anesthesia, every day from PN32 to PN52 using rats-siblings from the same mother, to reduce individual innate differences between subjects. We found that hippocampal theta power decreased and delta power in prefrontal cortex increased through adolescence, indicating that the oscillations in the two different frequency bands follow distinct developmental trajectories to reach the characteristic oscillatory activity found in adults. Perhaps even more importantly, theta rhythm showed age-dependent stabilization toward late adolescence. Furthermore, sex differences was found in both networks, more prominent in the prefrontal cortex compared with hippocampus. Delta increase was stronger in females and theta stabilization was completed earlier in females, in postnatal days PN41-47, while in males it was only completed in late adolescence. Our finding of a protracted maturation of theta-generating networks in late adolescence is overall consistent with the findings of longitudinal studies in human adolescents, in which oscillatory networks demonstrated a similar pattern of maturation.
Collapse
|
3
|
Staszelis A, Mofleh R, Kocsis B. The effect of ketamine on delta-range coupling between prefrontal cortex and hippocampus supported by respiratory rhythmic input from the olfactory bulb. Brain Res 2022; 1791:147996. [PMID: 35779582 PMCID: PMC10038235 DOI: 10.1016/j.brainres.2022.147996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 12/22/2022]
Abstract
Respiratory rhythm plays an important role in cognitive functions in rodents, as well as in humans. Respiratory related oscillation (RRO), generated in the olfactory bulb (OB), is an extrinsic rhythm imposed on brain networks. In rats, RRO can couple with intrinsic brain oscillations at theta frequency during sniffing and in the delta range outside of such episodes. Disruption of gamma synchronization in cortical networks by ketamine is well established whereas its effects on slow rhythms are poorly understood. We found in this study, that RRO in prefrontal cortex (PFC) and hippocampus (HC) remains present after ketamine injection, even on the background of highly unstable respiratory rate, co-incident with "psychotic-like" behavior and abnormal cortical gamma activity. Guided by the timing of ketamine-induced gamma reaction, pairwise coherences between structures exhibiting RRO and their correlation structure was statistically tested in 5-min segments post-injection (0-25 min) and during recovery (1, 5, 10 h). As in control, RRO in the OB was firmly followed by cortical-bound OB exits directed toward PFC but not to HC. RRO between these structures, however, significantly correlated with OB-HC but not with OB-PFC. The only exception to this general observation was observed during a short transitional period, immediately after injection. Ketamine has a remarkable history in psychiatric research. Modeling chronic NMDA-hypofunction using acute NMDA-receptor blockade shifted the primary focus of schizophrenia research to dysfunctional cortical microcircuitry and the recent discovery of ketamine's antidepressant actions extended investigations to neurophysiology of anxiety and depression. Cortical oscillations are relevant for understanding their pathomechanism.
Collapse
Affiliation(s)
| | - Rola Mofleh
- Dept Psychiatry at BIDMC, Harvard Medical School, USA
| | - Bernat Kocsis
- Dept Psychiatry at BIDMC, Harvard Medical School, USA.
| |
Collapse
|
4
|
Cellular Effects of Rhynchophylline and Relevance to Sleep Regulation. Clocks Sleep 2021; 3:312-341. [PMID: 34207633 PMCID: PMC8293156 DOI: 10.3390/clockssleep3020020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/25/2021] [Accepted: 06/03/2021] [Indexed: 01/06/2023] Open
Abstract
Uncaria rhynchophylla is a plant highly used in the traditional Chinese and Japanese medicines. It has numerous health benefits, which are often attributed to its alkaloid components. Recent studies in humans show that drugs containing Uncaria ameliorate sleep quality and increase sleep time, both in physiological and pathological conditions. Rhynchophylline (Rhy) is one of the principal alkaloids in Uncaria species. Although treatment with Rhy alone has not been tested in humans, observations in rodents show that Rhy increases sleep time. However, the mechanisms by which Rhy could modulate sleep have not been comprehensively described. In this review, we are highlighting cellular pathways that are shown to be targeted by Rhy and which are also known for their implications in the regulation of wakefulness and sleep. We conclude that Rhy can impact sleep through mechanisms involving ion channels, N-methyl-d-aspartate (NMDA) receptors, tyrosine kinase receptors, extracellular signal-regulated kinases (ERK)/mitogen-activated protein kinases (MAPK), phosphoinositide 3-kinase (PI3K)/RAC serine/threonine-protein kinase (AKT), and nuclear factor-kappa B (NF-κB) pathways. In modulating multiple cellular responses, Rhy impacts neuronal communication in a way that could have substantial effects on sleep phenotypes. Thus, understanding the mechanisms of action of Rhy will have implications for sleep pharmacology.
Collapse
|
5
|
EEG and Sleep Effects of Tramadol Suggest Potential Antidepressant Effects with Different Mechanisms of Action. Pharmaceuticals (Basel) 2021; 14:ph14050431. [PMID: 34064349 PMCID: PMC8147808 DOI: 10.3390/ph14050431] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 01/18/2023] Open
Abstract
Tramadol is a widely used, centrally acting, opioid analgesic compound, with additional inhibitory effects on the synaptic reuptake of serotonin and noradrenaline, as well as on the 5-HT2 and NMDA receptors. Preclinical and clinical evidence also suggests its therapeutic potential in the treatment of depression and anxiety. The effects of most widely used antidepressants on sleep and quantitative electroencephalogram (qEEG) are well characterized; however, such studies of tramadol are scarce. Our aim was to characterize the effects of tramadol on sleep architecture and qEEG in different sleep–wake stages. EEG-equipped Wistar rats were treated with tramadol (0, 5, 15 and 45 mg/kg) at the beginning of the passive phase, and EEG, electromyogram and motor activity were recorded. Tramadol dose-dependently reduced the time spent in rapid eye movement (REM) sleep and increased the REM onset latency. Lower doses of tramadol had wake-promoting effects in the first hours, while 45 mg/kg of tramadol promoted sleep first, but induced wakefulness thereafter. During non-REM sleep, tramadol (15 and 45 mg/kg) increased delta and decreased alpha power, while all doses increased gamma power. In conclusion, the sleep-related and qEEG effects of tramadol suggest antidepressant-like properties, including specific beneficial effects in selected patient groups, and raise the possibility of a faster acting antidepressant action.
Collapse
|
6
|
A single psychotomimetic dose of ketamine decreases thalamocortical spindles and delta oscillations in the sedated rat. Schizophr Res 2020; 222:362-374. [PMID: 32507548 DOI: 10.1016/j.schres.2020.04.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/18/2020] [Accepted: 04/19/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND In patients with psychotic disorders, sleep spindles are reduced, supporting the hypothesis that the thalamus and glutamate receptors play a crucial etio-pathophysiological role, whose underlying mechanisms remain unknown. We hypothesized that a reduced function of NMDA receptors is involved in the spindle deficit observed in schizophrenia. METHODS An electrophysiological multisite cell-to-network exploration was used to investigate, in pentobarbital-sedated rats, the effects of a single psychotomimetic dose of the NMDA glutamate receptor antagonist ketamine in the sensorimotor and associative/cognitive thalamocortical (TC) systems. RESULTS Under the control condition, spontaneously-occurring spindles (intra-frequency: 10-16 waves/s) and delta-frequency (1-4 Hz) oscillations were recorded in the frontoparietal cortical EEG, in thalamic extracellular recordings, in dual juxtacellularly recorded GABAergic thalamic reticular nucleus (TRN) and glutamatergic TC neurons, and in intracellularly recorded TC neurons. The TRN cells rhythmically exhibited robust high-frequency bursts of action potentials (7 to 15 APs at 200-700 Hz). A single administration of low-dose ketamine fleetingly reduced TC spindles and delta oscillations, amplified ongoing gamma-(30-80 Hz) and higher-frequency oscillations, and switched the firing pattern of both TC and TRN neurons from a burst mode to a single AP mode. Furthermore, ketamine strengthened the gamma-frequency band TRN-TC connectivity. The antipsychotic clozapine consistently prevented the ketamine effects on spindles, delta- and gamma-/higher-frequency TC oscillations. CONCLUSION The present findings support the hypothesis that NMDA receptor hypofunction is involved in the reduction in sleep spindles and delta oscillations. The ketamine-induced swift conversion of ongoing TC-TRN activities may have involved at least both the ascending reticular activating system and the corticothalamic pathway.
Collapse
|
7
|
Raith H, Schuelert N, Duveau V, Roucard C, Plano A, Dorner-Ciossek C, Ferger B. Differential effects of traxoprodil and S-ketamine on quantitative EEG and auditory event-related potentials as translational biomarkers in preclinical trials in rats and mice. Neuropharmacology 2020; 171:108072. [PMID: 32243874 DOI: 10.1016/j.neuropharm.2020.108072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/14/2020] [Accepted: 03/25/2020] [Indexed: 12/16/2022]
Abstract
Quantitative Electroencephalography (qEEG) and event-related potential (ERP) assessment have emerged as powerful tools to unravel translational biomarkers in preclinical and clinical psychiatric drug discovery trials. The aim of the present study was to compare the GluN2B negative allosteric modulator (NAM) traxoprodil (CP-101,606) with the unselective NMDA receptor channel blocker S-ketamine to give insight into central target engagement and differentiation on multiple EEG readouts. For qEEG recordings telemetric transmitters were implanted in male Wistar rats. Recorded EEG data were analyzed using fast Fourier transformation to determine power spectra and vigilance states. Additionally, body temperature and locomotor activity were assessed via telemetry. For recordings of auditory event-related potentials (AERP) male C57Bl/6J mice were chronically implanted with deep electrodes using a tethered system. Power spectral analysis revealed a significant increase in gamma power following ketamine treatment, whereas traxoprodil (6&18 mg/kg) induced an overall decrease primarily within alpha and beta bands. Additionally, ketamine disrupted sleep and enhanced time spent in wake vigilance states, whereas traxoprodil did not alter sleep-wake architecture. AERP and mismatch negativity (MMN) revealed that ketamine (10 mg/kg) selectively disrupts auditory deviance detection, whereas traxoprodil (6 mg/kg) did not alter MMN at clinically relevant doses. In contrast to ketamine treatment, traxoprodil did not produce hyperactivity and hypothermia. In conclusion, ketamine and traxoprodil showed very different effects on diverse EEG readouts differentiating selective GluN2B antagonism from non-selective pan-NMDA-R antagonists like ketamine. These readouts are thus perfectly suited to support drug discovery efforts on NMDA-R and understanding the different functions of NMDA-R subtypes.
Collapse
Affiliation(s)
- Henrike Raith
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research Germany, Birkendorferstr. 65, 88397, Biberach an der Riß, Germany.
| | - Niklas Schuelert
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research Germany, Birkendorferstr. 65, 88397, Biberach an der Riß, Germany.
| | - Venceslas Duveau
- SynapCell SAS, Biopolis and Institut Jean Roget, Université Joseph Fourier-Grenoble 1, Domaine de la merci, 38700, La Tronche, France.
| | - Corinne Roucard
- SynapCell SAS, Biopolis and Institut Jean Roget, Université Joseph Fourier-Grenoble 1, Domaine de la merci, 38700, La Tronche, France.
| | - Andrea Plano
- Plano Consulting, Georg-Schinbain-Str. 70, 88400, Biberach an der Riß, Germany.
| | - Cornelia Dorner-Ciossek
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research Germany, Birkendorferstr. 65, 88397, Biberach an der Riß, Germany.
| | - Boris Ferger
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research Germany, Birkendorferstr. 65, 88397, Biberach an der Riß, Germany.
| |
Collapse
|
8
|
Mao Z, He S, Mesnard C, Synowicki P, Zhang Y, Chung L, Wiesman AI, Wilson TW, Monaghan DT. NMDA receptors containing GluN2C and GluN2D subunits have opposing roles in modulating neuronal oscillations; potential mechanism for bidirectional feedback. Brain Res 2019; 1727:146571. [PMID: 31786200 DOI: 10.1016/j.brainres.2019.146571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 12/22/2022]
Abstract
NMDA receptor (NMDAR) antagonists such as ketamine, can reproduce many of the symptoms of schizophrenia. A reliable indicator of NMDAR channel blocker action in vivo is the augmentation of neuronal oscillation power. Since the coordinated and rhythmic activation of neuronal assemblies (oscillations) is necessary for perception, cognition and working memory, their disruption (inappropriate augmentation or inhibition of oscillatory power or inter-regional coherence) both in psychiatric conditions and with NMDAR antagonists may reflect the underlying defects causing schizophrenia symptoms. NMDAR antagonists and knockout (KO) mice were used to evaluate the role of GluN2C and GluN2D NMDAR subunits in generating NMDAR antagonist-induced oscillations. We find that basal oscillatory power was elevated in GluN2C-KO mice, especially in the low gamma frequencies while there was no statistically significant difference in basal oscillations between WT and GluN2D-KO mice. Compared to wildtype (WT) mice, NMDAR channel blockers caused a greater increase in oscillatory power in GluN2C-KO mice and were relatively ineffective in inducing oscillations in GluN2D-KO mice. In contrast, preferential blockade of GluN2A- and GluN2B-containing receptors induced oscillations that did not appear to be changed in either KO animal. We propose a model wherein NMDARs containing GluN2C in astrocytes and GluN2D in interneurons serve to detect local cortical excitatory synaptic activity and provide excitatory and inhibitory feedback, respectively, to local populations of postsynaptic excitatory neurons and thereby bidirectionally modulate oscillatory power.
Collapse
Affiliation(s)
- Zhihao Mao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Shengxi He
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Christopher Mesnard
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Paul Synowicki
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Yuning Zhang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Lucy Chung
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Alex I Wiesman
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Tony W Wilson
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Daniel T Monaghan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA.
| |
Collapse
|
9
|
Yin D, Dong H, Wang TX, Hu ZZ, Cheng NN, Qu WM, Huang ZL. Glutamate Activates the Histaminergic Tuberomammillary Nucleus and Increases Wakefulness in Rats. Neuroscience 2019; 413:86-98. [DOI: 10.1016/j.neuroscience.2019.05.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 05/10/2019] [Accepted: 05/17/2019] [Indexed: 01/23/2023]
|
10
|
Pittman-Polletta B, Hu K, Kocsis B. Subunit-specific NMDAR antagonism dissociates schizophrenia subtype-relevant oscillopathies associated with frontal hypofunction and hippocampal hyperfunction. Sci Rep 2018; 8:11588. [PMID: 30072757 PMCID: PMC6072790 DOI: 10.1038/s41598-018-29331-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 06/20/2018] [Indexed: 01/01/2023] Open
Abstract
NMDAR antagonism alters mesolimbic, hippocampal, and cortical function, acutely reproducing the positive, cognitive, and negative symptoms of schizophrenia. These physiological and behavioral effects may depend differentially on NMDAR subtype- and region-specific effects. The dramatic electrophysiological signatures of NMDAR blockade in rodents include potentiated high frequency oscillations (HFOs, ∼140 Hz), likely generated in mesolimbic structures, and increased HFO phase-amplitude coupling (PAC), a phenomenon related to goal-directed behavior and dopaminergic tone. This study examined the impact of subtype-specific NMDAR antagonism on HFOs and PAC. We found that positive-symptom-associated NR2A-preferring antagonism (NVP-AAM077), but not NR2B-specific antagonism (Ro25-6985) or saline control, replicated increases in HFO power seen with nonspecific antagonism (MK-801). However, PAC following NR2A-preferring antagonism was distinct from all other conditions. While θ-HFO PAC was prominent or potentiated in other conditions, NVP-AAM077 increased δ-HFO PAC and decreased θ-HFO PAC. Furthermore, active wake epochs exhibiting narrowband frontal δ oscillations, and not broadband sleep-associated δ, selectively exhibited δ-HFO coupling, while paradoxical sleep epochs having a high CA1 θ to frontal δ ratio selectively exhibited θ-HFO coupling. Our results suggest: (1) NR2A-preferring antagonism induces oscillopathies reflecting frontal hyperfunction and hippocampal hypofunction; and (2) HFO PAC indexes cortical vs. hippocampal control of mesolimbic circuits.
Collapse
Affiliation(s)
- Benjamin Pittman-Polletta
- Harvard Medical School, Boston, MA, USA.
- Brigham & Women's Hospital, Boston, MA, USA.
- Boston University, Boston, MA, USA.
| | - Kun Hu
- Harvard Medical School, Boston, MA, USA
- Brigham & Women's Hospital, Boston, MA, USA
| | - Bernat Kocsis
- Harvard Medical School, Boston, MA, USA
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
11
|
Abstract
Traditional pharmacological treatments for depression have a delayed therapeutic onset, ranging from several weeks to months, and there is a high percentage of individuals who never respond to treatment. In contrast, ketamine produces rapid-onset antidepressant, anti-suicidal, and anti-anhedonic actions following a single administration to patients with depression. Proposed mechanisms of the antidepressant action of ketamine include N-methyl-D-aspartate receptor (NMDAR) modulation, gamma aminobutyric acid (GABA)-ergic interneuron disinhibition, and direct actions of its hydroxynorketamine (HNK) metabolites. Downstream actions include activation of the mechanistic target of rapamycin (mTOR), deactivation of glycogen synthase kinase-3 and eukaryotic elongation factor 2 (eEF2), enhanced brain-derived neurotrophic factor (BDNF) signaling, and activation of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors (AMPARs). These putative mechanisms of ketamine action are not mutually exclusive and may complement each other to induce potentiation of excitatory synapses in affective-regulating brain circuits, which results in amelioration of depression symptoms. We review these proposed mechanisms of ketamine action in the context of how such mechanisms are informing the development of novel putative rapid-acting antidepressant drugs. Such drugs that have undergone pre-clinical, and in some cases clinical, testing include the muscarinic acetylcholine receptor antagonist scopolamine, GluN2B-NMDAR antagonists (i.e., CP-101,606, MK-0657), (2R,6R)-HNK, NMDAR glycine site modulators (i.e., 4-chlorokynurenine, pro-drug of the glycineB NMDAR antagonist 7-chlorokynurenic acid), NMDAR agonists [i.e., GLYX-13 (rapastinel)], metabotropic glutamate receptor 2/3 (mGluR2/3) antagonists, GABAA receptor modulators, and drugs acting on various serotonin receptor subtypes. These ongoing studies suggest that the future acute treatment of depression will typically occur within hours, rather than months, of treatment initiation.
Collapse
Affiliation(s)
- Panos Zanos
- Department of Psychiatry, University of Maryland School of Medicine, Rm. 934F MSTF, 685 W. Baltimore St., Baltimore, MD, 21201, USA.
| | - Scott M Thompson
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Physiology, University of Maryland School of Medicine, St. BRB 5-007, 655 W. Baltimore St., Baltimore, MD, 21201, USA, Baltimore, MD, 21201, USA
| | - Ronald S Duman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Todd D Gould
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, University of Maryland School of Medicine, Rm. 936 MSTF, 685 W. Baltimore St., Baltimore, MD, 21201, USA
| |
Collapse
|
12
|
A Neurophysiological Perspective on a Preventive Treatment against Schizophrenia Using Transcranial Electric Stimulation of the Corticothalamic Pathway. Brain Sci 2017; 7:brainsci7040034. [PMID: 28350371 PMCID: PMC5406691 DOI: 10.3390/brainsci7040034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/11/2017] [Accepted: 03/24/2017] [Indexed: 12/16/2022] Open
Abstract
Schizophrenia patients are waiting for a treatment free of detrimental effects. Psychotic disorders are devastating mental illnesses associated with dysfunctional brain networks. Ongoing brain network gamma frequency (30–80 Hz) oscillations, naturally implicated in integrative function, are excessively amplified during hallucinations, in at-risk mental states for psychosis and first-episode psychosis. So, gamma oscillations represent a bioelectrical marker for cerebral network disorders with prognostic and therapeutic potential. They accompany sensorimotor and cognitive deficits already present in prodromal schizophrenia. Abnormally amplified gamma oscillations are reproduced in the corticothalamic systems of healthy humans and rodents after a single systemic administration, at a psychotomimetic dose, of the glutamate N-methyl-d-aspartate receptor antagonist ketamine. These translational ketamine models of prodromal schizophrenia are thus promising to work out a preventive noninvasive treatment against first-episode psychosis and chronic schizophrenia. In the present essay, transcranial electric stimulation (TES) is considered an appropriate preventive therapeutic modality because it can influence cognitive performance and neural oscillations. Here, I highlight clinical and experimental findings showing that, together, the corticothalamic pathway, the thalamus, and the glutamatergic synaptic transmission form an etiopathophysiological backbone for schizophrenia and represent a potential therapeutic target for preventive TES of dysfunctional brain networks in at-risk mental state patients against psychotic disorders.
Collapse
|
13
|
Chambers AM. The role of sleep in cognitive processing: focusing on memory consolidation. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2017; 8. [PMID: 28044430 DOI: 10.1002/wcs.1433] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/07/2016] [Accepted: 11/01/2016] [Indexed: 11/07/2022]
Abstract
Research indicates that sleep promotes various cognitive functions, such as decision-making, language, categorization, and memory. Of these, most work has focused on the influence of sleep on memory, with ample work showing that sleep enhances memory consolidation, a process that stores new memories in the brain over time. Recent psychological and neurophysiological research has vastly increased understanding of this process. Such work not only suggests that consolidation relies on plasticity-related mechanisms that reactivate and stabilize memory representations, but also that this process may be experimentally manipulated by methods that target which memory traces are reactivated during sleep. Furthermore, aside from memory storage capabilities, memory consolidation also appears to reorganize and integrate memories with preexisting knowledge, which may facilitate the discovery of underlying rules and associations that benefit other cognitive functioning, including problem solving and creativity. WIREs Cogn Sci 2017, 8:e1433. doi: 10.1002/wcs.1433 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Alexis M Chambers
- Department of Psychology, North Central College, Naperville, IL, USA
| |
Collapse
|
14
|
Nagy D, Stoiljkovic M, Menniti FS, Hajós M. Differential Effects of an NR2B NAM and Ketamine on Synaptic Potentiation and Gamma Synchrony: Relevance to Rapid-Onset Antidepressant Efficacy. Neuropsychopharmacology 2016; 41:1486-94. [PMID: 26404843 PMCID: PMC4832008 DOI: 10.1038/npp.2015.298] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/26/2015] [Accepted: 09/19/2015] [Indexed: 12/23/2022]
Abstract
Ketamine, a pan-NMDA receptor channel blocker, and CP-101,606, an NR2B-selective negative allosteric modulator, have antidepressant effects in humans that develop rapidly after the drugs are cleared from the body. It has been proposed that the antidepressant effect of ketamine results from delayed synaptic potentiation. To further investigate this hypothesis and potential mechanistic underpinnings we compared the effects of ketamine and CP-101,606 on neurophysiological biomarkers in rats immediately after drug administration and after the drugs had been eliminated. Local field and auditory-evoked potentials (AEPs) were recorded from primary auditory cortex and hippocampus in freely moving rats. Effects of different doses of ketamine or CP-101,606 were evaluated on amplitude of AEPs, auditory gating, and absolute power of delta and gamma oscillations 5-30 min (drug-on) and 5-6 h (drug-off) after systemic administration. Both ketamine and CP-101,606 significantly enhanced AEPs in cortex and hippocampus in the drug-off phase. In contrast, ketamine but not CP-101,606 disrupted auditory gating and increased gamma-band power during the drug-on period. Although both drugs affected delta power, these changes did not correlate with increase in AEPs in the drug-off phase. Our findings show that both ketamine and CP-101,606 augment AEPs after drug elimination, consistent with synaptic potentiation as a mechanism for antidepressant efficacy. However, these drugs had different acute effects on neurophysiological parameters. These results have implications for understanding the underlying mechanisms for the rapid-onset antidepressant effects of NMDA receptor inhibition and for the use of electrophysiological measures as translatable biomarkers.
Collapse
Affiliation(s)
- Dávid Nagy
- Laboratory of Translational Neuropharmacology, Section of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Milan Stoiljkovic
- Laboratory of Translational Neuropharmacology, Section of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | - Mihály Hajós
- Laboratory of Translational Neuropharmacology, Section of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA,Laboratory of Translational Neuropharmacology, Section of Comparative Medicine, Yale School of Medicine, 310 Cedar St MBL 330, New Haven, CT 06520, USA, Tel: +1 203 737 7649, Fax: +1 203 785 7499, E-mail:
| |
Collapse
|
15
|
Miller OH, Moran JT, Hall BJ. Two cellular hypotheses explaining the initiation of ketamine's antidepressant actions: Direct inhibition and disinhibition. Neuropharmacology 2015. [PMID: 26211972 DOI: 10.1016/j.neuropharm.2015.07.028] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A single, low dose of ketamine evokes antidepressant actions in depressed patients and in patients with treatment-resistant depression (TRD). Unlike classic antidepressants, which regulate monoamine neurotransmitter systems, ketamine is an antagonist of the N-methyl-D-aspartate (NMDA) family of glutamate receptors. The effectiveness of NMDAR antagonists in TRD unveils a new set of targets for therapeutic intervention in major depressive disorder (MDD) and TRD. However, a better understanding of the cellular mechanisms underlying these effects is required for guiding future therapeutic strategies, in order to minimize side effects and prolong duration of efficacy. Here we review the evidence for and against two hypotheses that have been proposed to explain how NMDAR antagonism initiates protein synthesis and increases excitatory synaptic drive in corticolimbic brain regions, either through selective antagonism of inhibitory interneurons and cortical disinhibition, or by direct inhibition of cortical pyramidal neurons. This article is part of the Special Issue entitled 'Synaptopathy--from Biology to Therapy'.
Collapse
Affiliation(s)
- Oliver H Miller
- Neuroscience Program, Tulane University, School of Science and Engineering, Tulane University, New Orleans, LA, 70118, USA.
| | - Jacqueline T Moran
- Neuroscience Program, Tulane University, School of Science and Engineering, Tulane University, New Orleans, LA, 70118, USA.
| | - Benjamin J Hall
- Neuroscience Program, Tulane University, School of Science and Engineering, Tulane University, New Orleans, LA, 70118, USA.
| |
Collapse
|
16
|
Kantor S, Szabo L, Varga J, Cuesta M, Morton AJ. Progressive sleep and electroencephalogram changes in mice carrying the Huntington's disease mutation. ACTA ACUST UNITED AC 2013; 136:2147-58. [PMID: 23801737 DOI: 10.1093/brain/awt128] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Sleep disturbances in Huntington's disease may be deleterious to the cognitive performance, affective behaviour, and general well-being of patients, but a comprehensive description of the progression of changes in sleep and electroencephalogram in Huntington's disease has never been conducted. Here we studied sleep and electroencephalogram disturbances in a transgenic mouse model of Huntington's disease (R6/2 mice). We implanted 10 R6/2 mice and five wild-type littermates with electromyography electrodes, frontofrontal and frontoparietal electroencephalogram electrodes and then recorded sleep/wake behaviour at presymptomatic, symptomatic and late stages of the disease. In addition to sleep-wake scoring, we performed a spectral analysis of the sleep electroencephalogram. We found that sleep and electroencephalogram were already significantly disrupted in R6/2 mice at 9 weeks of age (presymptomatic stage). By the time they were symptomatic, R6/2 mice were unable to maintain long periods of wakefulness and had an increased propensity for rapid eye movement sleep. In addition, the peak frequency of theta rhythm was shifted progressively from 7 Hz to 6 Hz during rapid eye movement sleep, whereas slow wave activity decreased gradually during non-rapid eye movement sleep. Finally, as the disease progressed, an abnormal electroencephalogram gamma activity (30-40 Hz) emerged in R6/2 mice irrespective of sleep states. This is reminiscent of the increased gamma power described in schizophrenic patients during sleep and events of psychosis. Gaining a better understanding of sleep and electroencephalogram changes in patients with Huntington's disease should be a priority, since it will enable clinicians to initiate appropriate investigations and to instigate treatments that could dramatically improve patients' quality of life.
Collapse
Affiliation(s)
- Sandor Kantor
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
| | | | | | | | | |
Collapse
|
17
|
Hanson JE, Weber M, Meilandt WJ, Wu T, Luu T, Deng L, Shamloo M, Sheng M, Scearce-Levie K, Zhou Q. GluN2B antagonism affects interneurons and leads to immediate and persistent changes in synaptic plasticity, oscillations, and behavior. Neuropsychopharmacology 2013; 38:1221-33. [PMID: 23340518 PMCID: PMC3656364 DOI: 10.1038/npp.2013.19] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Although antagonists to GluN2B-containing N-methyl-D-aspartate receptors (NMDARs) have been widely considered to be neuroprotective under certain pathological conditions, their immediate and lasting impacts on synaptic, circuit, and cognitive functions are poorly understood. In hippocampal slices, we found that the GluN2B-selective antagonist Ro25-6981 (Ro25) reduced synaptic NMDAR responses and consequently neuronal output in a subpopulation of GABAergic interneurons, but not pyramidal neurons. Consistent with these effects, Ro25 reduced GABAergic responses in pyramidal neurons and hence could affect circuit functions by altering the excitation/inhibition balance in the brain. In slices from Ts65Dn mice, a Down syndrome model with excess inhibition and cognitive impairment, acutely applied Ro25-rescued long-term potentiation (LTP) and gamma oscillation deficits, whereas prolonged dosing induced persistent rescue of LTP. In contrast, Ro25 did not impact LTP in wild-type (wt) mice but reduced gamma oscillations both acutely and following prolonged treatment. Although acute Ro25 treatment impaired memory performance in wt mice, memory deficits in Ts65Dn mice were unchanged. Thus, GluN2B-NMDARs contribute to the excitation/inhibition balance via impacts on interneurons, and blocking GluN2B-NMDARs can alter functions that depend on this balance, including synaptic plasticity, gamma oscillations, and memory. That prolonged GluN2B antagonism leads to persistent changes in synaptic and circuit functions, and that the influence of GluN2B antagonism differs between wt and disease model mice, provide critical insight into the therapeutic potential and possible liabilities of GluN2B antagonists.
Collapse
Affiliation(s)
- Jesse E Hanson
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, USA
| | - Martin Weber
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, USA
| | - William J Meilandt
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, USA
| | - Tiffany Wu
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, USA
| | - Tom Luu
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, USA
| | - Lunbin Deng
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, USA
| | - Mehrdad Shamloo
- Stanford Behavioral and Functional Neuroscience Laboratory, Stanford, CA, USA
| | - Morgan Sheng
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, USA
| | | | - Qiang Zhou
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, USA,Department of Neuroscience, Genentech, Inc., 1 DNA Way, MS 230B, South San Francisco, CA 94080, USA, Tel: +1 650 467 7750, Fax: +1 650 225 4000, E-mail:
| |
Collapse
|
18
|
Kocsis B, Brown RE, McCarley RW, Hajos M. Impact of ketamine on neuronal network dynamics: translational modeling of schizophrenia-relevant deficits. CNS Neurosci Ther 2013; 19:437-47. [PMID: 23611295 PMCID: PMC3663928 DOI: 10.1111/cns.12081] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/26/2013] [Accepted: 01/28/2013] [Indexed: 12/25/2022] Open
Abstract
Subanesthetic doses of the psychomimetic, ketamine, have been used for many years to elicit behavioral effects reminiscent of schizophrenia in both healthy humans and in animal models of the disease. More recently, there has been a move toward the use of simple neurophysiological measures (event-related potentials, brain oscillations) to assay the functional integrity of neuronal circuits in schizophrenia as these measures can be assessed in patients, healthy controls, intact animals, and even in brain slices. Furthermore, alterations of these measures are correlated with basic information processing deficits that are now considered central to the disease. Thus, here we review recent studies that determine the effect of ketamine on these measures and discuss to what extent they recapitulate findings in patients with schizophrenia. In particular, we examine methodological differences between human and animal studies and compare in vivo and in vitro effects of ketamine. Ketamine acts on multiple cortical and subcortical sites, as well as on receptors other than the N-methyl-d-aspartate receptor. Acute ketamine models' changes correlated with psychotic states (e.g. increased baseline gamma-band oscillations), whereas chronic ketamine causes cortical circuit changes and neurophysiological deficits (e.g. impaired event-related gamma-band oscillations) correlated with cognitive impairments in schizophrenia.
Collapse
Affiliation(s)
- Bernat Kocsis
- Laboratory of Neurophysiology, Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | | | | | | |
Collapse
|