1
|
Wang R, Wang X, Qi Y, Li Y, Na Q, Yuan H, Rong Y, Ao X, Guo F, Zhang L, Liu Y, Shang F, Zhang Y, Wang Y. Genetic diversity analysis of Inner Mongolia cashmere goats (Erlangshan subtype) based on whole genome re-sequencing. BMC Genomics 2024; 25:698. [PMID: 39014331 PMCID: PMC11253418 DOI: 10.1186/s12864-024-10485-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/30/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Inner Mongolia cashmere goat (IMCG), renowned for its superior cashmere quality, is a Chinese indigenous goat breed that has been developed through natural and artificial selection over a long period. However, recently, the genetic resources of IMCGs have been significantly threatened by the introduction of cosmopolitan goat breeds and the absence of adequate breed protection systems. RESULTS In order to assess the conservation effectiveness of IMCGs and efficiently preserve and utilize the purebred germplasm resources, this study analyzed the genetic diversity, kinship, family structure, and inbreeding of IMCGs utilizing resequencing data from 225 randomly selected individuals analyzed using the Plink (v.1.90), GCTA (v.1.94.1), and R (v.4.2.1) software. A total of 12,700,178 high-quality SNPs were selected through quality control from 34,248,064 SNP sites obtained from 225 individuals. The average minor allele frequency (MAF), polymorphic information content (PIC), and Shannon information index (SHI) were 0.253, 0.284, and 0.530, respectively. The average observed heterozygosity (Ho) and the average expected heterozygosity (He) were 0.355 and 0.351, respectively. The analysis of the identity by state distance matrix and genomic relationship matrix has shown that most individuals' genetic distance and genetic relationship are far away, and the inbreeding coefficient is low. The family structure analysis identified 10 families among the 23 rams. A total of 14,109 runs of homozygosity (ROH) were identified in the 225 individuals, with an average ROH length of 1014.547 kb. The average inbreeding coefficient, calculated from ROH, was 0.026 for the overall population and 0.027 specifically among the 23 rams, indicating a low level of inbreeding within the conserved population. CONCLUSIONS The IMCGs exhibited moderate polymorphism and a low level of kinship with inbreeding occurring among a limited number of individuals. Simultaneously, it is necessary to prevent the loss of bloodline to guarantee the perpetuation of the IMCGs' germplasm resources.
Collapse
Affiliation(s)
- Ruijun Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Xinle Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Yunpeng Qi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Yanbo Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Qin Na
- Inner Mongolia Autonomous Region Agricultural and Animal Husbandry Technology Extension Center, Hohhot, 010010, China
| | - Huiping Yuan
- Bayannur Forestry and Grassland Career Development Center, Bayannur, 015006, China
| | - Youjun Rong
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Xiaofang Ao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Furong Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Lifei Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Yan Liu
- College of Vocational and Technical, Inner Mongolia Agricultural University, Baotou, 014109, China
| | - Fangzheng Shang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, 010018, China.
- Key Laboratory of Goat and Sheep Genetics, Breeding and Reproduction, Inner Mongolia Autonomous Region, Hohhot, 010018, China.
- Northern Agriculture and Livestock Husbandry Technology Innovation Center, Hohhot, 010018, China.
| | - Yu Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| |
Collapse
|
2
|
Liu Y, Wu X, Xu Q, Lan X, Li W. Temporal Transcriptome Dynamics of Longissimus dorsi Reveals the Mechanism of the Differences in Muscle Development and IMF Deposition between Fuqing Goats and Nubian Goats. Animals (Basel) 2024; 14:1770. [PMID: 38929389 PMCID: PMC11200590 DOI: 10.3390/ani14121770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
In this study, we measured the growth performance and intramuscular fat (IMF) content of the Longissimus dorsi (LD) of Fuqing goats (FQs) and Nubian goats (NBYs), which exhibit extreme phenotypic differences in terms of their production and meat quality traits. RNA-Seq analysis was performed, and transcriptome data were obtained from the LD tissue of 3-month fetuses (E3), 0-month lambs (0M), 3-month lambs (3M), and 12-month lambs (12M) to reveal the differences in the molecular mechanisms regulating the muscle development and IMF deposition between FQs and NBYs. The results showed that a higher body weight and average daily gain were observed in the NBYs at three developmental stages after birth, whereas a higher IMF content was registered in the FQs at 12M. Additionally, transcriptome profiles during the embryonic period and after birth were completely different for both FQs and NBYs. Moreover, DEGs (KIF23, CCDC69, CCNA2, MKI67, KIF11, RACGAP1, NUSAP1, SKP2, ZBTB18, NES, LOC102180034, CAPN6, TUBA1A, LOC102178700, and PEG10) significantly enriched in the cell cycle (ko04110) at E3 (FQs vs. NBYs), and DEGs (MRPS7, RPS8, RPL6, RPL4, RPS11, RPS10, RPL5, RPS6, RPL8, RPS13, RPS24, RPS15, RPL23) significantly enriched in ribosomes (ko03010) at 0M (FQs vs. NBYs) related to myogenic differentiation and fusion were identified. Meanwhile, the differences in glucose and lipid metabolism began at the E3 timepoint and continued to strengthen as growth proceeded in FQs vs. NBYs. DEGs (CD36, ADIROQR2, ACACA, ACACB, CPT1A, IGF1R, IRS2, LDH-A, PKM, HK2, PFKP, PCK1, GPI, FASN, FADS1, ELOVL6, HADHB, ACOK1, ACAA2, and ACSL4) at 3M (FQs vs. NBYs) and 12M (FQs vs. NBYs) significantly enriched in the AMPK signaling pathway (ko04152), insulin resistance (ko04931), the insulin signaling pathway (ko04910), fatty acid metabolism (ko01212), and glycolysis/gluconeogenesis (ko00010) related to IMF deposition were identified. Further, the results from this study provide the basis for future studies on the mechanisms regulating muscle development and IMF deposition in different breeds of goats, and the candidate genes identified could be used in the selection process.
Collapse
Affiliation(s)
- Yuan Liu
- Fujian Provincial Key Laboratory of Animal Genetics and Breeding, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (Y.L.); (X.W.); (Q.X.)
| | - Xianfeng Wu
- Fujian Provincial Key Laboratory of Animal Genetics and Breeding, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (Y.L.); (X.W.); (Q.X.)
| | - Qian Xu
- Fujian Provincial Key Laboratory of Animal Genetics and Breeding, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (Y.L.); (X.W.); (Q.X.)
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Wenyang Li
- Fujian Provincial Key Laboratory of Animal Genetics and Breeding, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (Y.L.); (X.W.); (Q.X.)
| |
Collapse
|
3
|
Zhao P, Zhang L, Liu Y, Wang Z, Guo H, Li J, Wu S, Gao Z, Yuan H. Genetic diversity and phylogenetic relationship estimation of Shanxi indigenous goat breeds using microsatellite markers. Anim Biotechnol 2023; 35:2276717. [PMID: 37934003 DOI: 10.1080/10495398.2023.2276717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The objective of this study was to assess the genetic diversity, phylogenetic relationship and population structure of five goat breeds in Shanxi, China. High genetic diversities were found in the five populations, among which, Licheng big green goat (LCBG) has the highest genetic diversity, while Jinlan cashmere goat (JLCG) population has the lowest genetic diversity. Bottleneck analysis showed the absence of recent genetic bottlenecks in the five goat populations. Genetic differentiation analysis shows that the closest genetic relationship between LCBG and LLBG (Lvliang black goat) was found, and the genetic distance between JLCG and the other four populations is the largest. The population structure of JLCG is different from the other four populations with K = 2, while LCBG and LLBG have high similarity population structure as the K value changes. Knowledge about genetic diversity and population structure of indigenous goats is essential for genetic improvement, understanding of environmental adaptation as well as utilization and conservation of goat breeds.
Collapse
Affiliation(s)
- Peng Zhao
- College of Animal Science, Shanxi Agricultural University, Taiyuan, China
| | - Li Zhang
- College of Animal Science, Shanxi Agricultural University, Taiyuan, China
| | - Yin Liu
- College of Animal Science, Shanxi Agricultural University, Taiyuan, China
| | - Zhengkun Wang
- Shanxi Animal Husbandry Technology Popularization Service Center, Taiyuan, China
| | - Hongyu Guo
- College of Animal Science, Shanxi Agricultural University, Taiyuan, China
| | - Jun Li
- College of Animal Science, Shanxi Agricultural University, Taiyuan, China
| | - Shuai Wu
- Agriculture and Rural Bureau of Lvliang City, Lvliang, Shanxi Province, China
| | - Zefeng Gao
- Agriculture and Rural Bureau of Lvliang City, Lvliang, Shanxi Province, China
| | - Hao Yuan
- Animal Husbandry Center of Yangcheng County, Jincheng, Shanxi Province, China
| |
Collapse
|
4
|
Gao C, Du W, Tian K, Wang K, Wang C, Sun G, Kang X, Li W. Analysis of Conservation Priorities and Runs of Homozygosity Patterns for Chinese Indigenous Chicken Breeds. Animals (Basel) 2023; 13:ani13040599. [PMID: 36830386 PMCID: PMC9951684 DOI: 10.3390/ani13040599] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
To achieve sustainable development of the poultry industry, the effective conservation of genetic resources has become increasingly important. In the present study, we systematically elucidated the population structure, conservation priority, and runs of homozygosity (ROH) patterns of Chinese native chicken breeds. We used a high-density genotyping dataset of 157 native chickens from eight breeds. The population structure showed different degrees of population stratification among the breeds. Chahua chicken was the most differentiated breed from the other breeds (Nei = 0.0813), and the Wannan three-yellow chicken (WanTy) showed the lowest degree of differentiation (Nei = 0.0438). On the basis of contribution priority, Xiaoshan chicken had the highest contribution to the total gene diversity (1.41%) and the maximum gene diversity of the synthetic population (31.1%). WanTy chicken showed the highest contribution to the total allelic diversity (1.31%) and the maximum allelic diversity of the syntenic population (17.0%). A total of 5242 ROH fragments and 5 ROH island regions were detected. The longest ROH fragment was 41.51 Mb. A comparison of the overlapping genomic regions between the ROH islands and QTLs in the quantitative trait loci (QTL) database showed that the annotated candidate genes were involved in crucial economic traits such as immunity, carcass weight, drumstick and leg muscle development, egg quality and egg production, abdominal fat precipitation, body weight, and feed intake. In conclusion, our findings revealed that Chahua, Xiaoshan, and WanTy should be the priority conservation breeds, which will help optimize the conservation and breeding programs for Chinese indigenous chicken breeds.
Collapse
Affiliation(s)
- Chaoqun Gao
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Wenping Du
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Kaiyuan Tian
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Kejun Wang
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Chunxiu Wang
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Guirong Sun
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Xiangtao Kang
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
- Correspondence: (X.K.); (W.L.)
| | - Wenting Li
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
- Correspondence: (X.K.); (W.L.)
| |
Collapse
|
5
|
Torres-Hernández G, Maldonado-Jáquez JA, Granados-Rivera LD, Salinas-González H, Castillo-Hernández G. Status quo of genetic improvement in local goats: a review. Arch Anim Breed 2022; 65:207-221. [PMID: 35693297 PMCID: PMC9176210 DOI: 10.5194/aab-65-207-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 04/14/2022] [Indexed: 11/26/2022] Open
Abstract
This review aims to summarize and synthesize the
fragmented information available on the genetic improvement of local goats
(criollo, indigenous, native) on the American and other continents, where
populations with these goats have an important role in food security and the
economy of rural communities, as well as in conservation of biodiversity and
productivity improvement. Topics such as the current state of goat
production globally, conservation programs, resistance to parasites and
diseases, use of phenotypical characteristics and genomic information, and
molecular markers for genetic improvement are addressed. The main
challenges, opportunities, and limitations described in recent literature
concerning local goats in the immediate future are discussed.
Collapse
Affiliation(s)
| | - Jorge Alonso Maldonado-Jáquez
- Colegio de Postgraduados-Campus Montecillo, 56230 Montecillo, Estado
de México, México
- Instituto Nacional de Investigaciones Forestales, Agrícolas y
Pecuarias, Centro de Investigación Regional Norte Centro, Campo
Experimental La Laguna, 27440 Matamoros, Coahuila, México
| | - Lorenzo Danilo Granados-Rivera
- Instituto Nacional de Investigaciones Forestales, Agrícolas y
Pecuarias, Centro de Investigación Regional Noreste, Campo Experimental
General Terán, 67400 General Terán, Nuevo León, México
| | | | - Gabriela Castillo-Hernández
- Colegio de Postgraduados-Campus Montecillo, 56230 Montecillo, Estado
de México, México
- Facultad de Estudios
Superiores Cuautitlán, Universidad Nacional Autónoma de México, 54714 Cuautitlán Izcalli, Estado de
México, México
| |
Collapse
|
6
|
Xia Q, Wang X, Pan Z, Zhang R, Wei C, Chu M, Di R. Genetic diversity and phylogenetic relationship of nine sheep populations based on microsatellite markers. Arch Anim Breed 2021; 64:7-16. [PMID: 34084899 PMCID: PMC8160997 DOI: 10.5194/aab-64-7-2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/02/2020] [Indexed: 11/11/2022] Open
Abstract
The objective of this study was to assess the genetic diversity and
phylogenetic relationship of nine sheep populations, including two famous
high prolific populations and seven popular mutton populations raised in
China. Overall, these sheep populations in this study exhibited a rich
genetic diversity. Both the expected heterozygosity and Nei's unbiased gene
diversity ranged from 0.64 to 0.75, with the lowest value found in Dorset sheep (DST) and
the highest in Hu sheep (HUS) and Ba Han sheep (BAS). The polymorphic information content (PIC) varied between 0.59 in DST and 0.71 in HUS and BAS. Specifically, for
individual breeds, the small-tail Han sheep (STH) and the four introduced populations did not
display the expected diversity; therefore more attention should be paid to
the maintenance of diversity during management of these populations. The
results of un-weighted pair-group method (UPGMA) phylogenetic tree and structure analysis indicated that the
nine investigated populations can be divided into two groups. Suffolk (SUF) and DST
were clustered in one group, and the other group can be further divided into
three clusters: German Mutton Merino (GMM)–BAS–Bamei Mutton sheep (BAM), HUS–STH and Du Han (DOS)–Dorper (DOP). This clustering result is
consistent with sheep breeding history. TreeMix analysis also hinted at the
possible gene flow from GMM to SUF. Together, an in-depth view of genetic
diversity and genetic relationship will have important implications for
breed-specific management.
Collapse
Affiliation(s)
- Qing Xia
- Key Laboratory of Animal Genetics and Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Zhangyuan Pan
- Key Laboratory of Animal Genetics and Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Rensen Zhang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Caihong Wei
- Key Laboratory of Animal Genetics and Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Ran Di
- Key Laboratory of Animal Genetics and Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| |
Collapse
|
7
|
Diversity Analysis and Genetic Relationships among Local Brazilian Goat Breeds Using SSR Markers. Animals (Basel) 2020; 10:ani10101842. [PMID: 33050450 PMCID: PMC7600759 DOI: 10.3390/ani10101842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 01/08/2023] Open
Abstract
Simple Summary This study aimed to evaluate the genetic diversity of six groups of native Brazilian goats using a panel of single sequence repeats (SSRs). Results indicated a definite genetic differentiation among the Brazilian goat herd, which indicates the existence of at least four breeds according to the international concepts (Moxotó and Repartida; the Grauna and Serrana Azul; Canindé and Marota breeds). Abstract The genetic diversity of six Brazilian native goats was reported using molecular markers. Hair samples of 332 animals were collected from different goat breeds (Moxotó, Canindé, Serrana Azul, Marota, Repartida, and Graúna) from five states of Northeast Brazil (Paraíba, Pernambuco, Rio Grande do Norte, Bahia, and Piauí). A panel of 27 microsatellites or single sequence repeats (SSRs) were selected and amplified using a polymerase chain reaction (PCR) technique. All populations showed an average allele number of over six. The mean observed heterozygosity for Brazilian breeds was superior to 0.50. These results demonstrated the high genetic diversity in the studied populations with values ranging from 0.53 (Serrana Azul) to 0.62 (Repartida). The expected average heterozygosity followed the same trend ranging from 0.58 (Serrana Azul) to 0.65 (Repartida), and the values obtained are very similar for all six breeds. The fixation index (Fis) had values under 10% except for the Moxotó breed (13%). The mean expected heterozygosity of all Brazilian populations was over 0.50. Results indicated a within-breed genetic variability in the Brazilian breeds based on the average number of alleles and the average observed heterozygosity. The interbreed genetic diversity values showed proper genetic differentiation among local Brazilian goat breeds.
Collapse
|
8
|
Genome-Wide Runs of Homozygosity, Effective Population Size, and Detection of Positive Selection Signatures in Six Chinese Goat Breeds. Genes (Basel) 2019; 10:genes10110938. [PMID: 31744198 PMCID: PMC6895971 DOI: 10.3390/genes10110938] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 11/16/2022] Open
Abstract
Detection of selection footprints provides insight into the evolution process and the underlying mechanisms controlling the phenotypic diversity of traits that have been exposed to selection. Selection focused on certain characters, mapping certain genomic regions often shows a loss of genetic diversity with an increased level of homozygosity. Therefore, the runs of homozygosity (ROHs), homozygosity by descent (HBD), and effective population size (Ne) are effective tools for exploring the genetic diversity, understanding the demographic history, foretelling the signature of directional selection, and improving the breeding strategies to use and conserve genetic resources. We characterized the ROH, HBD, Ne, and signature of selection of six Chinese goat populations using single nucleotide polymorphism (SNP) 50K Illumina beadchips. Our results show an inverse relationship between the length and frequency of ROH. A long ROH length, higher level of inbreeding, long HBD segment, and smaller Ne in Guangfeng (GF) goats suggested intensive selection pressure and recent inbreeding in this breed. We identified six reproduction-related genes within the genomic regions with a high ROH frequency, of which two genes overlapped with a putative selection signature. The estimated pair-wise genetic differentiation (FST) among the populations is 9.60% and the inter- and intra-population molecular variations are 9.68% and 89.6%, respectively, indicating low to moderate genetic differentiation. Our selection signatures analysis revealed 54 loci harboring 86 putative candidate genes, with a strong signature of selection. Further analysis showed that several candidate genes, including MARF1, SYCP2, TMEM200C, SF1, ADCY1, and BMP5, are involved in goat fecundity. We identified 11 candidate genes by using cross-population extended haplotype homozygosity (XP-EHH) estimates, of which MARF1 and SF1 are under strong positive selection, as they are differentiated in high and low reproduction groups according to the three approaches used. Gene ontology enrichment analysis revealed that different biological pathways could be involved in the variation of fecundity in female goats. This study provides a new insight into the ROHs patterns for maintenance of within breed diversity and suggests a role of positive selection for genetic variation influencing fecundity in Chinese goat.
Collapse
|