1
|
Ahmed S, Jiang X, Liu G, Yang H, Sadiq A, Yi D, Farooq U, Yiyu S, Zubair M. The protective role of maternal genetic immunization on maternal-fetal health and welfare. Int J Gynaecol Obstet 2023; 163:763-777. [PMID: 37218379 DOI: 10.1002/ijgo.14853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023]
Abstract
Pregnancy is a critical period associated with alterations in physiologic, biologic, and immunologic processes, which can affect maternal-fetal health through development of several infectious diseases. At birth, neonates have an immature immune system that makes them more susceptible to severe viral infections and diseases. For this reason, different maternal nutritional and immunization interventions have been used to improve the immune and health status of the mother and her neonate through passive immunity. Here, we reviewed the protective role of maternal immunization with different types of vaccines, especially genetic vaccines, during pregnancy in maternal-fetal health, immune response, colostrum quality, immune response, and anti-oxidative status. For this purpose, we have used different scientific databases (PubMed and Google Scholar) and other official web pages. We customized the search period range from the year 2000 to 2023 using the key words "maternal immunization" OR "gestation period/pregnancy" OR "genetic vaccination" OR "maternal-fetal health" OR "micronutrients" OR "neonatal immunity" "oxidative stress" OR "colostrum quality". The evidence demonstrated that inactivated or killed vaccines produced significant immune protection in the mother and fetus. Furthermore, most recent studies have suggested that the use of genetic vaccines (mRNA and DNA) during pregnancy is efficient at triggering the immune response in mother and neonate without the risk of undesired pregnancy outcomes. However, factors such as maternal redox balance, nutritional status, and the timing of immunization play essential roles in regulating immune response inflammatory status, antioxidant capacity, and the welfare of both the pregnant mother and her newborn.
Collapse
Affiliation(s)
- Sohail Ahmed
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xunping Jiang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Smart Farming for Agricultural Animals, Wuhan, China
| | - Guiqiong Liu
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huiguo Yang
- Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Amber Sadiq
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ding Yi
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Umar Farooq
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Sha Yiyu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Zubair
- Department of Veterinary Clinical Sciences, University of Poonch, Rawalakot, Pakistan
| |
Collapse
|
2
|
Qin Y, Wang RQ, Xing RR, Yang L, Chen X, Hu S. Dispersive liquid-liquid microextraction based on a supramolecular solvent followed by high-performance liquid chromatographic analysis of lignans in Forsythiae Fructus. J Sep Sci 2023; 46:e2200719. [PMID: 36597011 DOI: 10.1002/jssc.202200719] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/28/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023]
Abstract
A supramolecular solvent-based dispersive liquid-liquid microextraction was proposed for the extraction and determination of lignans in Forsythiae Fructus combined with high-performance liquid chromatography. The supramolecular solvent, consisting of tetrabutylammonium bromide and n-hexanol, was mixed with the sample solution to extract the analytes by a vortex. After accomplishing the extraction, the extraction phase was separated by centrifugation and collected for high-performance liquid chromatography analysis. In this work, the important extraction variables such as the type and amount of extraction solvent, pH and salt amount in the sample phase, and extraction time were optimized. The synthesis of supramolecular solvent was studied and its microstructure was characterized by transmission electron microscopy. Under the optimal conditions, the analytes' enrichment factors were between 6 and 170 for the proposed procedure. Satisfactory linear ranges (r ≥ 0.99), detection limits (0.025-0.4 ng/ml), precisions (< 9.2%), and accuracies (recoveries: 96.5%-104.8%) were obtained. The method has been successfully applied to the preconcentration of lignans in Forsythiae Fructus with simple and rapid operation, low cost, and environmental friendliness.
Collapse
Affiliation(s)
- Yu Qin
- School of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| | - Run-Qin Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| | - Rong-Rong Xing
- School of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| | - Li Yang
- School of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| | - Xuan Chen
- School of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| | - Shuang Hu
- School of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| |
Collapse
|
3
|
Gao J, Yang Z, Zhao C, Tang X, Jiang Q, Yin Y. A comprehensive review on natural phenolic compounds as alternatives to in-feed antibiotics. SCIENCE CHINA. LIFE SCIENCES 2022:10.1007/s11427-022-2246-4. [PMID: 36586071 DOI: 10.1007/s11427-022-2246-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/17/2022] [Indexed: 01/01/2023]
Abstract
Intensive livestock and poultry farming in China largely relied on the use of in-feed antibiotics until July 2020. The consequences of antibiotic overuse in animal feed include accumulation in animal products and the development of bacterial antibiotic resistance, both of which threaten food safety and human health. China has now completely banned the circulation of commercial feed containing growth-promoting drug additives (except Chinese herbal medicine). Therefore, alternatives to in-feed antibiotics in animal production are greatly needed. Natural phenolic compounds (NPCs) exist widely in plants and are non-toxic, non-polluting, highly reproducible, and leave little residue. Many natural flavonoids, phenolic acids, lignans, and stilbenes have polyphenol chemical structures and exhibit great potential as alternatives to antibiotics. In this review we delineate the characteristics of plant-derived NPCs and summarize their current applications as alternatives to in-feed antibiotics, aiming to provide new strategies for antibiotic-free feeding and promote the development of more sustainable animal husbandry practices.
Collapse
Affiliation(s)
- Jingxia Gao
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.,Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Zhe Yang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Chongqi Zhao
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Xiongzhuo Tang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Qian Jiang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China. .,Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Yulong Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China. .,Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| |
Collapse
|
4
|
Antibacterial mechanism of forsythoside A against Pseudomonas syringae pv. actinidiae. Microb Pathog 2022; 173:105858. [DOI: 10.1016/j.micpath.2022.105858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
|
5
|
Ming X, Yin M, Liyan W. Antibacterial and Anti-Inflammatory Potential of Chinese Medicinal Herbs: Lonicerae flos, Lonicerae japonicae flos, Scutellaria baicalensis Georgi, and Forsythia suspensa. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221136673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chinese herbal medicine (CHM) represents a potent, safe, and efficacious reservoir of treatment options against an array of microbial infections and inflammatory diseases. It has a long history of positive clinical outcomes with minimal or no side effects while enhancing and bolstering the host's protection against infections. With its unique ability to prevent, treat, and manage a wide range of diseased conditions, CHM has been successfully practiced in China for thousands of years. In the modern medical era, where harsh therapeutic drugs and antimicrobial resistance (AMR) present a significant challenge, CHM warrants further exploration. The present review highlights and focuses on 4 major CHM-based herbs, that is, ( Lonicerae flos [ LF] , Lonicerae japonicae flos [ LJF] , Scutellaria baicalensis Georgi [ SBG] , and Forsythia suspensa [ FS]) in terms of their antibacterial and anti-inflammatory efficacies. A detailed literature survey was done by the team using a systematic electronic search from PubMed, Science Direct, Google Scholar, Research Gate, books, etc. This was followed by data collecting, pertinent data extraction, in-depth analysis, and composing the final review. Each herb has been discussed in detail describing its mechanism adopted and the bioactive components involved in alleviating bacterial infections and inflammatory damage. Further, proof of efficacy by detailing the major past studies and major findings has been discussed for each of the 4 herbs. This review will give the scientific community the opportunity to update their knowledge on the subject, which is crucial for heralding the process of bringing CHM-based medicines closer to clinical development given the area of alternative medicine's rapid advancements.
Collapse
Affiliation(s)
- Xu Ming
- Pharmaceutical Department, The First Hospital of Tsinghua University, Beijing, China
| | - Ma Yin
- Pharmaceutical Department, Wang Jing Hospital of CACMS, Beijing, China
| | - Wan Liyan
- Pharmaceutical Department, The First Hospital of Tsinghua University, Beijing, China
| |
Collapse
|
6
|
Liu S, Wang Q, Ma J, Wang J, Wang H, Liu L, Long S, Piao X. Dietary Forsythia suspensa extracts supplementation improves antioxidant status, anti-inflammatory functions, meat fatty acid deposition, and intestinal microbial community in finishing pigs. Front Vet Sci 2022; 9:960242. [PMID: 36311660 PMCID: PMC9614228 DOI: 10.3389/fvets.2022.960242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/20/2022] [Indexed: 11/04/2022] Open
Abstract
This study aimed to determine the effects of Forsythia suspensa extracts (FSE) on performance, antioxidant status, inflammatory cytokines, meat quality, meat fatty acid composition, and gut microbial community in finishing pigs. Sixty-four pigs [Duroc × (Landrace × Yorkshire)] with an average initial body weight of 88.68 kg were randomly allotted to two dietary treatments, with eight replicate pens per treatment (four pens were barrows and four pens were gilts), four pigs per pen. The dietary treatments included a corn-soybean meal basal diet (CON) and an FS diet (basal diet + 100 mg/kg FSE; FS). Compared with CON, pigs fed FSE showed enhanced (P < 0.05) saturated fatty acid (SFA)/polyunsaturated fatty acid (PUFA) ratio, reduced (P < 0.05) lightness, and n-6/n-3 PUFA ratio, as well as tended to increase C20:5n3 content in the longissimus dorsi muscle. Moreover, pigs fed FSE showed decreased (P < 0.05) serum cortisol and tumor nuclear factor-α contents, and increased (P < 0.05) serum high-density lipoprotein cholesterol, superoxide dismutase, and glutathione peroxidase contents compared with CON. These pigs also tended to have increased serum total protein and immunoglobulin G contents, and decreased serum low-density lipoprotein cholesterol and interleukin-1β contents compared with CON. In the colon, pigs fed FSE had a higher (P < 0.05) relative abundance of Bifidobacteriales at the order level, Lactobacillaceae and Bifidobacteriaceae at the family level, as well as Lactobacillus and Bifidobacterium at the genus level compared with CON. In conclusion, dietary Forsythia suspensa extract supplementation effectively improved antioxidant status and anti-inflammatory functions, as well as modulated meat fatty acid composition, and gut microbial community in finishing pigs.
Collapse
Affiliation(s)
- Sujie Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qianqian Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiayu Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jian Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hongliang Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Li Liu
- Tianjin Zhongsheng Feed Co. Ltd., Tianjin, China
| | - Shenfei Long
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China,*Correspondence: Shenfei Long
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China,Xiangshu Piao
| |
Collapse
|
7
|
Chang SY, Song MH, Lee JH, Oh HJ, Kim YJ, An JW, Go YB, Song DC, Cho HA, Cho SY, Kim DJ, Kim MS, Kim HB, Cho JH. Phytogenic feed additives alleviate pathogenic Escherichia coli-induced intestinal damage through improving barrier integrity and inhibiting inflammation in weaned pigs. J Anim Sci Biotechnol 2022; 13:107. [PMID: 36050784 PMCID: PMC9438252 DOI: 10.1186/s40104-022-00750-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/03/2022] [Indexed: 01/23/2023] Open
Abstract
Background This study was conducted to investigate the effects of each phytogenic feed additive (PFA; PFA1, bitter citrus extract; PFA2, a microencapsulated blend of thymol and carvacrol; PFA3, a mixture of bitter citrus extract, thymol, and carvacrol; PFA4, a premixture of grape seed, grape marc extract, green tea, and hops; PFA5, fenugreek seed powder) on the growth performance, nutrient digestibility, intestinal morphology, and immune response in weaned pigs infected with Escherichia coli (E. coli). Results A total of 63 4-week-old weaned pigs were placed in individual metabolic cages and assigned to seven treatment groups. The seven treatments were as follows: 1) NC; basal diet without E. coli challenge, 2) PC; basal diet with E. coli challenge, 3) T1; PC + 0.04% PFA1, 4) T2; PC + 0.01% PFA2, 5) T3; PC + 0.10% PFA3, 6) T4; PC + 0.04% PFA4, 7) T5; PC + 0.10% PFA5. The experiments lasted in 21 d, including 7 d before and 14 d after the first E. coli challenge. In the E. coli challenge treatments, all pigs were orally inoculated by dividing a total of 10 mL of E. coli F18 for 3 consecutive days. The PFA-added groups significantly increased (P < 0.05) average daily gain and feed efficiency and decreased (P < 0.05) the fecal score at d 0 to 14 post-inoculation (PI). Tumor necrosis factor α was significantly lower (P < 0.05) in the PFA-added groups except for T1 in d 14 PI compared to the PC treatment. The T3 had a higher (P < 0.05) immunoglobulin G and immunoglobulin A concentration compared to the PC treatment at d 7 PI. Also, T3 showed significantly higher (P < 0.05) villus height:crypt depth and claudin 1 expression in ileal mucosa, and significantly down-regulated (P < 0.05) the expression of calprotectin compared to the PC treatment. Conclusions Supplementation of PFA in weaned pigs challenged with E. coli alleviated the negative effects of E. coli and improved growth performance. Among them, the mixed additive of bitter citrus extract, thymol, and carvacrol showed the most effective results, improving immune response, intestinal morphology, and expression of tight junctions.
Collapse
Affiliation(s)
- Se Yeon Chang
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea
| | - Min Ho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, 34134, South Korea
| | - Ji Hwan Lee
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea
| | - Han Jin Oh
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea
| | - Yong Ju Kim
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea
| | - Jae Woo An
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea
| | - Young Bin Go
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea
| | - Dong Cheol Song
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea
| | - Hyun Ah Cho
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea
| | | | | | | | - Hyeun Bum Kim
- Department of Animal Resources Science, Dankook University, Cheonan, 31116, South Korea.
| | - Jin Ho Cho
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea.
| |
Collapse
|
8
|
Gao H, Chen J, Zhao Z, Wang G. A combination of ultrasonic debridement and topical cortex phellodendri compound fluid in patients with diabetic foot ulcers. Medicine (Baltimore) 2022; 101:e29604. [PMID: 35960115 PMCID: PMC9371514 DOI: 10.1097/md.0000000000029604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE To evaluate the combination of ultrasonic debridement and cortex phellodendri compound fluid (CPCF) in patients with diabetic foot ulcers (DFU). PATIENTS AND METHODS Patients with DFU received the combination of ultrasonic debridement and CPCF in the experimental group and Kangfuxin liquid in the control group for 4 weeks. Patients total clinical efficiency, adverse events, ulcer areas, healing rate, and positive bacterial culture rate were compared. RESULTS The total clinical efficacy was 98% in the treatment group and 68% in the control group (P < .0001). Patients' adverse events did not show significant difference between 2 groups. Patients who received the combination of ultrasonic debridement and CPCF in the experimental group had smaller ulcer areas (2.88 ± 0.2408 vs 6.912 ± 0.4044), higher healing rate (96.25 ± 0.5263 vs 55 ± 0.8888), and lower positive bacterial culture rate (0 vs 20%) than patients received Kangfuxin liquid in the control group after 4 weeks of treatment. CONCLUSIONS In conclusion, patients with DFU receiving the combination of ultrasonic debridement and CPCF had better clinical efficacy, smaller ulcer areas, higher healing rate, and lower positive bacterial culture rate without increasing the adverse events compared to patients receiving Kangfuxin liquid.
Collapse
Affiliation(s)
- Hang Gao
- Acupuncture Department, Master of Science, the Affiliated Hospital of Guizhou Medical University, Guizhou Province, China
| | - Jiali Chen
- Acupuncture Department, Master of Science, the Affiliated Hospital of Guizhou Medical University, Guizhou Province, China
| | - Ziying Zhao
- Acupuncture Department, Master of Science, the Affiliated Hospital of Guizhou Medical University, Guizhou Province, China
| | - Guangyi Wang
- Acupuncture Department, Master of Science, the Affiliated Hospital of Guizhou Medical University, Guizhou Province, China
- *Correspondence: Guangyi Wang, Acupuncture Department, The Affiliated Hospital of Guizhou Medical University, Guizhou Province 550004, China (e-mail: )
| |
Collapse
|
9
|
Long S, Wang Q, He T, Ma J, Wang J, Liu S, Wang H, Liu L, Piao X. Maternal Dietary Forsythia suspensa Extract Supplementation Induces Changes in Offspring Antioxidant Status, Inflammatory Responses, Intestinal Development, and Microbial Community of Sows. Front Vet Sci 2022; 9:926822. [PMID: 35909697 PMCID: PMC9334818 DOI: 10.3389/fvets.2022.926822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
This experiment aims to investigate the effect of maternal diet supplemented with Forsythia suspensa extract (FSE) on the performance, antioxidant status, inflammatory responses, intestinal development, and microbial community of sows. A total of 24 gestating sows (Landrace × Yorkshire) were assigned to 2 treatments with 12 sows per treatment. From d 107 of gestation to d 21 of lactation, sows were supplemented with a basal diet as control (CON) or an FSE diet (basal diet + 100 mg/kg FSE). Compared with CON, sows fed FSE showed lower (P < 0.05) wean-to-estrus interval, body weight loss, and higher (P < 0.05) average daily gain of suckling piglet. Sows fed FSE had reduced (P < 0.05) serum malondialdehyde (MDA) content and enhanced (P < 0.05) catalase and glutathione peroxidase (GSH-Px) contents at farrowing and weaning compared with CON. The suckling piglets of FSE-fed sows had increased (P < 0.05) mRNA expressions of nuclear factor erythroid-2 related factor 2, heme oxygenase-1 in the liver, and lower (P < 0.05) serum MDA content on d 0, 7, and 14 of lactation. Sows fed FSE had lower (P < 0.05) serum tumor necrosis factor-α (TNF-α) and interleukin-8 (IL-8) contents at farrowing and reduced (P < 0.05) serum IL-6 and IL-8 contents at weaning compared with CON. Piglets from FSE-fed sows had enhanced (P ≤ 0.05) villus height and villus height to crypt depth ratio in the jejunum, and higher (P < 0.05) protein expression of Occludin in jejunal mucosa compared with CON. Sows fed FSE tended to have higher (P = 0.09) relative abundance of Lactobacillus at genus level in feces at weaning compared with CON. Our results showed maternal diet supplemented with FSE in lactating sows could effectively induce improvement of performance, antioxidant status, anti-inflammatory function, intestinal morphology, barrier function, and microbial community.
Collapse
Affiliation(s)
- Shenfei Long
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Agricultural University, Beijing, China
| | - Qianqian Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Agricultural University, Beijing, China
| | - Tengfei He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Agricultural University, Beijing, China
| | - Jiayu Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Agricultural University, Beijing, China
| | - Jian Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Agricultural University, Beijing, China
| | - Sujie Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Agricultural University, Beijing, China
| | - Hongliang Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Li Liu
- Tianjin Zhongsheng Feed Co., Ltd., Tianjin, China
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Agricultural University, Beijing, China
- *Correspondence: Xiangshu Piao
| |
Collapse
|
10
|
Zhou M, Huo J, Wang C, Wang W. UPLC/Q-TOF MS Screening and Identification of Antibacterial Compounds in Forsythia suspensa (Thunb.) Vahl Leaves. Front Pharmacol 2022; 12:704260. [PMID: 35153732 PMCID: PMC8831367 DOI: 10.3389/fphar.2021.704260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
Forsythia suspensa (Thunb.) Vahl (F. suspensa) is a traditional Chinese medical herb and only its fruit is currently used in clinical therapies. However, the discarded parts like leaves also contain a large number of active components. In this study, we used macroporous adsorption resin to enrich the effective components from F. suspensa leaves. The separated active compounds were then identified and quantified by ultra-performance liquid chromatography coupled with quadrupole time of flight mass spectrometry (UPLC/Q-TOF MS) and high-performance liquid chromatography Active components with antibacterial properties extracted from F. suspensa leaves were confirmed in vitro and the corresponding mechanisms were explored. In sum, a stable and effective method for extracting antibacterial active components from F. suspensa leaves was established in this study, which proved the practicability of F. suspensa leaves as traditional Chinese medicine and is conducive to the more comprehensive utilization of the plant.
Collapse
Affiliation(s)
- Mingyue Zhou
- Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, China
| | - Jinhai Huo
- Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Cairen Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, China
| | - Weiming Wang
- Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
- *Correspondence: Weiming Wang,
| |
Collapse
|
11
|
Li Q, Yang S, Zhang X, Liu X, Wu Z, Qi Y, Guan W, Ren M, Zhang S. Maternal Nutrition During Late Gestation and Lactation: Association With Immunity and the Inflammatory Response in the Offspring. Front Immunol 2022; 12:758525. [PMID: 35126349 PMCID: PMC8814630 DOI: 10.3389/fimmu.2021.758525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/20/2021] [Indexed: 12/26/2022] Open
Abstract
The immature immune system at birth and environmental stress increase the risk of infection in nursing pigs. Severe infection subsequently induces intestinal and respiratory diseases and even cause death of pigs. The nutritional and physiological conditions of sows directly affect the growth, development and disease resistance of the fetus and newborn. Many studies have shown that providing sows with nutrients such as functional oligosaccharides, oils, antioxidants, and trace elements could regulate immunity and the inflammatory response of piglets. Here, we reviewed the positive effects of certain nutrients on milk quality, immunoglobulin inflammatory response, oxidative stress, and intestinal microflora of sows, and further discuss the effects of these nutrients on immunity and the inflammatory response in the offspring.
Collapse
Affiliation(s)
- Qihui Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Siwang Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaoli Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xinghong Liu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhihui Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yingao Qi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Man Ren
- College of Animal Science, Anhui Science and Technology University, Anhui Provincial Key Laboratory of Animal Nutritional Regulation and Health, Fengyang, China
- *Correspondence: Man Ren, ; Shihai Zhang,
| | - Shihai Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- *Correspondence: Man Ren, ; Shihai Zhang,
| |
Collapse
|
12
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Andersson DI, Bampidis V, Bengtsson‐Palme J, Bouchard D, Ferran A, Kouba M, López Puente S, López‐Alonso M, Nielsen SS, Pechová A, Petkova M, Girault S, Broglia A, Guerra B, Innocenti ML, Liébana E, López‐Gálvez G, Manini P, Stella P, Peixe L. Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed. Part 12: Tetracyclines: tetracycline, chlortetracycline, oxytetracycline, and doxycycline. EFSA J 2021; 19:e06864. [PMID: 34729092 PMCID: PMC8546800 DOI: 10.2903/j.efsa.2021.6864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The specific concentrations of tetracycline, chlortetracycline, oxytetracycline and doxycycline in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. The FARSC for these four tetracyclines was estimated. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels in feed that showed to have an effect on growth promotion/increased yield were reported for tetracycline, chlortetracycline, oxytetracycline, whilst for doxycycline no suitable data for the assessment were available. Uncertainties and data gaps associated with the levels reported were addressed. It was recommended to perform further studies to supply more diverse and complete data related to the requirements for calculation of the FARSC for these antimicrobials.
Collapse
|
13
|
Long S, Piao X. Effects of dietary Forsythia suspensa extract supplementation to lactating sows and nursery pigs on post-weaning performance, antioxidant capacity, nutrient digestibility, immunoglobulins, and intestinal health. J Anim Sci 2021; 99:6278991. [PMID: 34014312 DOI: 10.1093/jas/skab142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/18/2021] [Indexed: 12/28/2022] Open
Abstract
The aim of this study was to determine the effect of dietary Forsythia suspensa extract (FSE) supplementation to lactating sows and nursery pigs on post-weaning performance, antioxidant capacity, immunoglobulins, and intestinal health. Based on backfat, body weight (BW), and parity, 24 gestating sows (Landrace × Yorkshire) with average parity of 3.38 ± 0.61 and BW of 234 ± 6.81 kg were allotted into two dietary treatments (control vs. 100 mg/kg FSE) with 12 sows per treatment from day 107 of gestation to day 21 of lactation. After weaning, based on the initial BW and source litter, 192 nursery pigs (Duroc × [Landrace × Yorkshire], average BW of 6.98 ± 0.32 kg, weaned at day 21) were allotted into four dietary treatments with eight replicate pens per treatment, six pigs per pen for a 4-wk study. The treatments included the following: 1) CC (sows and their piglets both fed control diet); 2) CF (sows fed control diet and their piglets fed FSE diet [containing 100 mg/kg FSE]); 3) FC (sows fed FSE diet and their piglets fed control diet); and 4) FF (sows and their piglets both fed FSE diet). The MIXED procedures of SAS for a split-plot arrangement with sow diet as the whole plot and nursery diet as split plot were used to analyze the data. After weaning, piglets from FSE-fed sows had improved (P < 0.05) average daily gain and feed efficiency, and lower (P < 0.05) diarrhea rate in overall (day 1 to 28) compared with those from sows fed control diet. Piglets from FSE-fed sows also had higher (P < 0.05) contents of immunoglobulin G (IgG), growth hormone, superoxide dismutase (SOD), total antioxidant capacity in serum, villus height in ileum, and villus height to crypt depth ratio in jejunum, as well as lower (P < 0.05) content of malondialdehyde (MDA) in serum and crypt depth in ileum compared with those from sows fed control diet. Piglets fed FSE during nursery had increased (P < 0.05) concentrations of IgG, SOD, and catalase, and decreased (P < 0.05) MDA and tumor nuclear factor-α levels in serum compared with those fed control diet during nursery. Piglets from FC group had increased (P < 0.05) protein expression of occludin in jejunal mucosa and relative abundance of Lactobacillus on genus level in colon compared with those from CC group. In conclusion, for the performance and intestinal health, diets supplemented with FSE during lactation phase seemed more efficient to alleviate weaning stress than the nursery phase. In terms of the antioxidant status and immunoglobulins, FSE supplemented in both phases were efficient for nursery pigs.
Collapse
Affiliation(s)
- Shenfei Long
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
14
|
Liang C, Hui N, Liu Y, Qiao G, Li J, Tian L, Ju X, Jia M, Liu H, Cao W, Yu P, Li H, Ren X. Insights into forsythia honeysuckle (Lianhuaqingwen) capsules: A Chinese herbal medicine repurposed for COVID-19 pandemic. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 1:100027. [PMID: 35399819 PMCID: PMC7833308 DOI: 10.1016/j.phyplu.2021.100027] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 04/17/2023]
Abstract
Background In December 2019, a novel coronavirus, SARS-CoV-2 caused a series of acute atypical respiratory diseases worldwide. However, there is still a lack of drugs with clear curative effects, and the clinical trial research of vaccines has not been completely finished. Purpose LH capsules are approved TCM patent medicine that are widely used for the treatment of respiratory tract infectious diseases caused by colds and flu. On April 12, 2020, LH capsules and granules were officially repurposed by the China Food and Drug Administration (CFDA) for patients with mild COVID-19 based on their safety and efficacy demonstrated through multicentre, randomized, controlled clinical trials. We hope to conduct a comprehensive review of it through modern pharmacy methods, and try to explain its possible mechanism. Methods Using the full names of LH capsules Lianhuaqingwen, Lianhua Qingwen andSARS-COV-2, COVID-19 as the keywords of the search terms, systemically search for existing related papers in various databases such as Web of Science and PubMed. And completed the collection of clinical data in ClinicalTrials.gov and Chinese Clinical Trial Registry. Last but not least, we have sorted out the anti-inflammatory and antiviral mechanisms of LH capsules through literature and Selleck. Results This review systematically sorted out the active ingredients in LH capsules. Furthermore, the related pharmacological and clinical trials of LH capsule on SARS-CoV-2, IAV and IBV were discussed in detail. Moreover, the present review provides the first summary of the potential molecular mechanism of specific substances in LH capsules involved in resistance to SARS-COV-2 infection and the inhibition of cytokine storm syndrome (CSS) caused by IL-6. Conclusion This review summarizes the available reports and evidence that support the use of LH capsules as potential drug candidates for the prevention and treatment of COVID-19. However, TCM exerts its effects through multiple targets and multiple pathways, and LH capsules are not an exception. Therefore, the relevant mechanisms need to be further improved and experimentally verified.
Collapse
Key Words
- 3C-like protease (3CLpro)
- 3CLpro, 3C-like protease
- ACE2, Angiotensin-converting enzyme 2
- AECOPD, Acute exacerbation of chronic obstructive pulmonary disease
- AIDS, Acquired immune deficiency syndrome
- AQP3, Aquaporins 3
- ARDS, Acute respiratory distress syndrome
- CAT, COPD assessment test
- CC50, 50% Cytotoxic concentration
- CCL-2/MCP-1, C—C motif ligand 2/monocyte chemoattractant protein-1
- CFDA, China Food and Drug Administration
- COPD, Chronic obstructive pulmonary disease
- COVID-19
- COVID-19, Coronavirus disease 2019
- CPE, Cytopathic effect
- CSS, Cytokine storm syndrome
- CT, Computed tomography
- CXCL-10/IP-10, C-X-C Motif Chemokine Ligand 10/ Interferon Gamma-induced Protein 10
- Cytokine storm syndrome (CSS)
- DMSO, Dimethyl sulfoxide
- E protein, Envelope protein
- ERK, Extracellular signal-regulated kinase
- FBS, Fatal bovine serum
- Forsythia honeysuckle (Lianhuaqingwen,LH) capsules
- Grb2, Growth factor receptor-bound protein 2
- HIV, Human immunodeficiency virus
- HPLC, High-performance liquid chromatography
- HSV-1, Herpes simplex virus type 1
- HVJ, Hemagglutinating virus of Japan
- Hep-2, Human epithelial type 2
- Huh-7, Human Hepatocellular Carcinoma-7
- IAV, Influenza A virus
- IBV, Influenza B virus
- IC50, 50% Inhibition concentration
- IFN-λ1, Interferon-λ1
- IL-6, Interleukin-6
- IL-6R, IL-6 Receptor
- IL-8, Interleukin-8
- IP-10, Interferon-inducible protein-10
- JAK/STAT, Janus kinase/signal transducers and activators of transcription
- JAK1/2, Janus kinase1/2
- LD50, 50% Lethal dose
- LH capsules, Forsythia honeysuckle (Lianhuaqingwen) capsules
- M protein, Membrane protein
- MAPK, Mitogen-activated protein kinase
- MCP-1, Monocyte chemotactic protein 1
- MDCK, Madin-darby canine kidney
- MEK, Mitogen-activated protein kinase kinase
- MERS, Middle east respiratory syndrome
- MIP-1β, Macrophage Inflammatory Protein-1β
- MLD50, 50% Minimum lethal dose
- MOF, Multifunctional organ damage
- MOI, Multiplicity of infection
- MTT, Methyl Thiazolyl Tetrazolium
- NF-kB, Nuclear transcription factor kappa-B
- NHC, National Health Commission
- ORFs, Open reading frames
- PBS, Phosphate buffered saline
- PHN, Phillyrin
- PI3K, Phosphoinositide 3-kinases
- PKA/p-CREB, Protein kinase A /phosphorylated cAMP response element-binding protein
- PKB, Akt, Protein kinase B
- PLpro, Papain-like proteases
- PRC, People's Republic of China
- QC, Quality control
- RANTES, Regulated on activation normal T cell expressed and secreted
- RSV, Respiratory syncytial virus
- RT-PCR, Reverse transcription PCR
- Ras, Ras GTPase
- SARS-CoV-2
- TCID50, 50% Tissue culture infective dose
- TD0, Non-toxic Dose
- TD50, Half-toxic dose
- Vero E6, African Green Monkey Kidney Epithelial-6
- gp-130, Glycoprotein 130
- mIL-6R, Membrane-bound form IL-6 Receptor
- mTOR, Mammalian target of rapamycin
- nsps, Non-structural proteins
- qPCR, Quantitative PCR
Collapse
Affiliation(s)
- Chengyuan Liang
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Nan Hui
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Yuzhi Liu
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Guaiping Qiao
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Juan Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Lei Tian
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Xingke Ju
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Minyi Jia
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Hong Liu
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Hengqin New Area, Zhuhai 519030, PR China
| | - Wenqiang Cao
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Hengqin New Area, Zhuhai 519030, PR China
| | - Pengcheng Yu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Han Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang 550025, PR China
| |
Collapse
|
15
|
Zhang X, Shao S, Feng Z, Jiang J, Yang Y, Zhang P. Three New Compounds from the Fruits of Forsythia suspensa. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202012003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Long S, Wu D, He T, Piao X. Dietary supplementation with Forsythia suspensa extract during late gestation improves reproductive performance, colostrum composition, antioxidant status, immunoglobulin, and inflammatory cytokines in sows and newborn piglets. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2020.114700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Long SF, He TF, Wu D, Yang M, Piao XS. Forsythia suspensa extract enhances performance via the improvement of nutrient digestibility, antioxidant status, anti-inflammatory function, and gut morphology in broilers. Poult Sci 2020; 99:4217-4226. [PMID: 32867965 PMCID: PMC7598019 DOI: 10.1016/j.psj.2020.05.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/11/2020] [Accepted: 05/22/2020] [Indexed: 12/24/2022] Open
Abstract
This experiment aims to determine the effects of Forsythia suspense extract (FSE) as an antibiotic substitute on performance, antioxidant status, anti-inflammatory function, intestinal morphology, and meat fatty acid deposition in broilers. 192 male Arbor Acre broilers (1-day-old, weighing 45.6 ± 1.3 g) were randomly allocated to 3 treatments, 8 replicate pens per treatment, 8 broilers per pen. The treatments contain a control diet (corn-soybean meal basal diet, CTL), an antibiotic diet (basal diet + 75 mg/kg chlortetracycline, CTC), and an FSE diet (basal diet + 100 mg/kg FSE; FSE). The experiment includes phase 1 (day 1 to 21) and 2 (day 22 to 42). Compared with CTL and CTC, broilers supplemented with FSE showed higher (P < 0.05) ADG and ADFI in phase 2 and overall (day 1 to 42). On day 21, serum catalase and total antioxidant capacity contents were enhanced (P < 0.05) in broilers fed FSE compared with CTL. On day 42, broilers fed FSE showed increased (P < 0.05) serum superoxide dismutase and glutathione peroxidase contents, and enhanced (P < 0.05) apparent total tract digestibility of dry matter, organic matter, gross energy, total carbohydrates, and phosphorus, as well as reduced (P < 0.05) nitrogen and phosphorus excretion in feces compared with CTL. These broilers also showed decreased (P < 0.05) n-6/n-3 polyunsaturated fatty acid ratio in thigh meat, and tumor necrotic factor-alpha, interleukin-1β and interleukin-6 contents in the liver on day 42 compared with CTL. The villus height was increased (P < 0.05) in the duodenum, jejunum, and ileum of broilers fed FSE compared with CTL. In conclusion, dietary F.suspense extract supplementation as a chlortetracycline substitute under non-challenge conditions enhanced performance via the improvement of nutrient digestibility, antioxidant status, anti-inflammatory function, and intestinal morphology in broilers. Moreover, F.suspense extract may also benefit environment by reducing nitrogen and phosphorus excretion and benefit human health via modulating meat fatty acid profiles in broilers.
Collapse
Affiliation(s)
- S F Long
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - T F He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - D Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - M Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - X S Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
18
|
Zhang FX, Li ZT, Li C, Li M, Yao ZH, Yao XS, Dai Y. Characterization of lignans in Forsythiae Fructus and their metabolites in rats by ultra-performance liquid chromatography coupled time-of-flight mass spectrometry. J Pharm Pharmacol 2020; 72:1879-1892. [DOI: 10.1111/jphp.13346] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/04/2020] [Indexed: 11/28/2022]
Abstract
Abstract
Objectives
This study was designed to profile the chemical information of Forsythiae Fructus (FF) and investigate the in-vivo FF-related xenobiotics, especially for lignans.
Methods
Rats were oral administrated of FF and pinoresinol-4-O-glucoside, respectively. Blood and urine samples were collected after ingestion, and xenobiotics was profiled by an UPLC/Qtof MS method.
Key findings
A total of 19 lignans were identified or tentatively characterized in FF, and 63 lignan-related xenobiotics were found in rat plasma and urine after ingestion of FF. It was found that lignans could be transformed into metabolites by furan ring opening, hydrogenation, demethylation, dehydration and phase II reactions (sulfation and glucuronidation). The whole metabolic behaviour of bisepoxylignan was revealed by evaluating the metabolism of pinoresinol-4-O-glucoside in vivo. It was found that the configuration of C-8/C-8ʹ was retained after furan ring opening and metabolic reactions always occurred at position of C-3/C-4/C-5 or C-3ʹ/C-4ʹ/C-5ʹ. Additionally, other types components in FF and in vivo were also characterized.
Conclusions
This work revealed the in-vivo metabolism of FF, and reported the characteristic metabolic reactions of lignans for the first time. It was also provided the foundation for the further investigation on pharmacodynamic components of FF or TCMs containing FF.
Collapse
Affiliation(s)
- Feng-xiang Zhang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou, China
| | - Zi-ting Li
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou, China
| | - Chang Li
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Min Li
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou, China
| | - Zhi-hong Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou, China
| | - Xin-sheng Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou, China
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yi Dai
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou, China
| |
Collapse
|
19
|
Xiang KL, Liu RX, Zhao L, Xie ZP, Zhang SM, Dai SJ. Labdane diterpenoids from Forsythia suspensa with anti-inflammatory and anti-viral activities. PHYTOCHEMISTRY 2020; 173:112298. [PMID: 32070801 DOI: 10.1016/j.phytochem.2020.112298] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 06/10/2023]
Abstract
Five previously undescribed labdane diterpenoids, named Forsypensins A-E, were isolated from the fruits of Forsythia suspensa. The structures and relative configurations of the compounds were elucidated via extensive spectroscopic methods, and their absolute configurations were fully confirmed by single crystal X-ray diffraction analyses using Cu Kα radiation and electronic circular dichroism data. The five labdane diterpenoids showed in vitro anti-inflammatory activity in rat polymorphonuclear leukocytes, inhibiting the rates of β-glucuronidase release by 43.6%-49.2% at concentrations of 10 μM. The compounds also had anti-viral activity against influenza A (H1N1) virus and respiratory syncytial virus (RSV), with IC50 values in the range 21.8-27.4 μM, and EC50 values in the range 10.5-15.4 μM, respectively.
Collapse
Affiliation(s)
- Kang-Lin Xiang
- School of Pharmaceutical Science, Yantai University, Yantai, 264005, People's Republic of China
| | - Rong-Xia Liu
- School of Pharmaceutical Science, Yantai University, Yantai, 264005, People's Republic of China
| | - Lin Zhao
- School of Pharmaceutical Science, Yantai University, Yantai, 264005, People's Republic of China
| | - Ze-Ping Xie
- School of Pharmaceutical Science, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Shu-Min Zhang
- School of Pharmaceutical Science, Binzhou Medical University, Yantai, 264003, People's Republic of China.
| | - Sheng-Jun Dai
- School of Pharmaceutical Science, Yantai University, Yantai, 264005, People's Republic of China.
| |
Collapse
|
20
|
Cao J, Shao SY, Zhang X, Yuan X, Feng ZM, Jiang JS, Yang YN, Zhang PC. Two new lignans from the fruits of Forsythia suspensa. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2020; 22:418-424. [PMID: 31538492 DOI: 10.1080/10286020.2019.1666828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/08/2019] [Indexed: 06/10/2023]
Abstract
Two new lignans, wikstronoside B (1) and forsysesquinorlignan (2), were isolated from the fruits of Forsythia suspensa, along with two known sesquineolignans, hedyotol A and hedyotol C (3 and 4). The structures of new compounds were established via extensive spectroscopy techniques, including UV, IR, HRESIMS, NMR, and ECD. Compounds 3 and 4 were isolated from this plant for the first time. Their anti-inflammatory effects were evaluated via a detection model with LPS-induced murine macrophage RAW264.7 cells, and compound 3 showed a moderate activity.
Collapse
Affiliation(s)
- Jun Cao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Si-Yuan Shao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xu Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiang Yuan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zi-Ming Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jian-Shuang Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ya-Nan Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Pei-Cheng Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
21
|
Zhao L, Xiang KL, Liu RX, Xie ZP, Zhang SM, Dai SJ. Anti-inflammatory and anti-viral labdane diterpenoids from the fruits of Forsythia suspensa. Bioorg Chem 2020; 96:103651. [DOI: 10.1016/j.bioorg.2020.103651] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/19/2020] [Accepted: 02/03/2020] [Indexed: 11/25/2022]
|
22
|
Qi M, Zhao S, Zhou B, Zhang M, Zhang H, Wang Y, Hu P. Probing the degradation mechanism of forsythiaside A and simultaneous determination of three forsythiasides in Forsythia preparations by a single marker. J Sep Sci 2019; 42:3503-3511. [PMID: 31556197 DOI: 10.1002/jssc.201900521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/15/2019] [Accepted: 09/20/2019] [Indexed: 01/23/2023]
Abstract
Forsythiaside A is the major component of Forsythia suspensa. This study investigated the degradation mechanism of forsythiaside A. Eight degraded components including forsythiaside I, forsythiaside H, forsythiaside E, caffeic acid, suspensaside A, β-hydroxy forsythiaside I, β-hydroxy forsythiaside H, and β-hydroxy forsythiaside A were identified by using ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry. Then, the quantitative analysis of multi-components by a single-marker was performed with ultra-high performance liquid chromatography to simultaneously determine forsythiaside A, forsythiaside H, and forsythiaside I in Forsythia suspensa preparations. The result showed good linear relationships within 2.871-287.1, 0.231-23.1, and 0.983-98.3 μg/mL (r > 0.9998), with average recoveries of 97.7, 95.7, and 95.8% and relative standard deviations of 1.4, 2.4, and 1.8%, respectively. Using forsythiaside A as an internal reference, the relative retention values of forsythiaside H and forsythiaside I to forsythiaside A were calculated to be 0.89 and 0.61, respectively, and the relative correction factors were 0.816 and 0.799, respectively. The method for quantitative analysis of multi-components by a single-marker was applied to evaluate the overall quality of forsythia preparations. There was no significant difference in the measurement results of the method developed and the method of external standard.
Collapse
Affiliation(s)
- Minghui Qi
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Shiyi Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Bin Zhou
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Min Zhang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China
| | - Hongyang Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Yuerong Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Ping Hu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P. R. China
| |
Collapse
|
23
|
Effects of Forsythia Suspense Extract as an Antibiotics Substitute on Growth Performance, Nutrient Digestibility, Serum Antioxidant Capacity, Fecal Escherichia coli Concentration and Intestinal Morphology of Weaned Piglets. Animals (Basel) 2019; 9:ani9100729. [PMID: 31561574 PMCID: PMC6826561 DOI: 10.3390/ani9100729] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Weaning stress may reduce feed intake, weight gain and health status of piglets. Antibiotics are used to overcome post-weaning disorders. However, the abuse of antibiotics in pig feed has become a worldwide problem. Previous studies show Chinese herbs have been used as a potential non-antibiotic way to enhance anti-inflammatory and anti-microbial functions of piglets. This study aims to evaluate the effect of Forsythia suspense extract (FSE) as an antibiotics substitute on performance, nutrient digestibility, serum antioxidant capacity, fecal Escherichia coli concentration and intestinal morphology of weaned piglets. The results show that dietary FSE supplementation can substitute antibiotics in improving antioxidant capacity, nutrients digestibility and reducing fecal E. coli content, so as to reduce nitrogen output and diarrhea rate, and eventually enhance growth performance in weaned piglets. Abstract The aim of this study is to determine the efficiency of Forsythia suspense extract (FSE) as an antibiotics substitute on performance, nutrient digestibility, serum antioxidant capacity, fecal Escherichia coli concentration and intestinal morphology of weaned piglets. A total of 108 Duroc × (Landrace × Yorkshire) weaned piglets (28 days (d) weaned, average body weight of 8.68 ± 1.36 kg) were randomly assigned into three dietary treatments, six pens per treatment, three barrows and three gilts per pen. The treatments contained a corn-soybean meal basal diet (CTR), an antibiotic diet (basal diet + 75 mg/kg chlortetracycline; CTC), and an FSE diet (basal diet + 200 mg/kg FSE; FSE). The experiment included phase 1 (d 1 to 14), phase 2 (d 15 to 28) and phase 3 (d 29 to 35). Compared with CTR, piglets fed FSE show improved (p < 0.05) average daily gain (ADG) and average daily feed intake in phase 2, as well as enhanced (p < 0.05) ADG from day 15 to 35 and day 1 to 28. Piglets supplemented with CTC and FSE showed a reduced (p < 0.05) diarrhea rate in phase 1, while piglets fed FSE showed enhanced (p < 0.05) apparent total tract digestibility (ATTD) of dry matter, organic matter, crude protein and gross energy, as well as lower (p < 0.05) nitrogen output in phase 2 compared with CTR and CTC. The content in the form of Colony-Forming Units (CFUs) of fecal E. coli on day 14 and 28 was lower (p < 0.05) in piglets fed FSE in comparison with CTR. The contents of total antioxidant capacity, superoxide dismutase and catalase in serum are enhanced (p < 0.05) compared with CTR and CTC, whereas the concentration of malondialdehyde in serum was decreased (p < 0.05) for piglets fed FSE on day 28 compared with CTC. The villus height to crypt depth ratio in ileum was numerically higher (p < 0.05) in piglets fed FSE in comparison with CTR. In conclusion, dietary FSE supplementation could substitute CTC in improving antioxidant capacity, nutrients digestibility and reducing fecal E. coli content, so as to reduce nitrogen output and diarrhea rate, and eventually improve performance in weaned piglets.
Collapse
|
24
|
Pan L, Zhao PF, Ma XK, Shang QH, Long SF, Wu Y, Wang W, Piao XS. Forsythia suspensa extract protects broilers against breast muscle oxidative injury induced by corticosterone mimicked pre-slaughter acute stress. Poult Sci 2018. [PMID: 29514276 DOI: 10.3382/ps/pey046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Broilers were used to determine the protective effects of Forsythia suspensa extract (FSE) against breast muscle oxidative injury induced by corticosterone (CS) mimicking pre-slaughter acute stress. A total of 144 male Arbor Acre broilers was randomly allotted to one of 4 treatments in a 2 × 2 factorial arrangement that included FSE supplementation (0 or 100 mg/kg) and subcutaneous injection of CS (0 or 4 mg/kg) at 3 h before slaughter. Corticosterone increased live BW loss, and the adverse effect was attenuated by FSE in broilers subjected to CS (P < 0.05). Serum levels of CS, uric acid, and glucose were increased, and postmortem breast muscle pH values at 45 min and 24 h were decreased for CS-challenged broilers (P < 0.05). Corticosterone increased lightness and yellowness values and decreased redness of breast muscle (P < 0.05), and FSE decreased yellowness and increased redness of breast muscle (P < 0.05). Drip loss was increased by CS for birds supplemented without FSE (P < 0.05) and decreased by FSE for birds under CS challenge (P < 0.05). Corticosterone increased monounsaturated fatty acid (FA) and decreased polyunsaturated FA in breast muscle (P < 0.05), and saturated FA was decreased and polyunsaturated FA was increased by FSE (P < 0.05). Malondialdehyde and carbonyl contents in breast muscle were increased by CS and decreased by FSE (P < 0.05). Inhibition of 1,1-diphenyl-2-picryl-hydrazyl was decreased by CS and increased by FSE (P < 0.05). The activities of total-antioxidant capacity, glutathione peroxidase, and superoxide dismutase in breast muscle were lower in birds subjected to CS (P < 0.05) and were greater in birds supplemented with FSE (P < 0.05). Collectively, live BW loss and breast muscle oxidative injury were increased by CS in broilers, and these stress-related adverse effects could be attenuated by FSE supplementation via enhanced scavenging ability of free radicals and antioxidant capacity. Therefore, FSE could protect broilers against breast muscle oxidative injury when acute stress happens.
Collapse
Affiliation(s)
- L Pan
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, China
| | - P F Zhao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, China
| | - X K Ma
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, China
| | - Q H Shang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, China
| | - S F Long
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, China
| | - Y Wu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, China
| | - W Wang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, China
| | - X S Piao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, China
| |
Collapse
|
25
|
Comparative transcriptome analyses of three medicinal Forsythia species and prediction of candidate genes involved in secondary metabolisms. J Nat Med 2018; 72:867-881. [DOI: 10.1007/s11418-018-1218-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/18/2018] [Indexed: 11/28/2022]
|
26
|
Pan L, Ma X, Zhao P, Shang Q, Long S, Wu Y, Piao X. Forsythia suspensa extract attenuates breast muscle oxidative injury induced by transport stress in broilers. Poult Sci 2018. [DOI: 10.3382/ps/pey012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
27
|
Xie JJ, Chen X, Guo TY, Xie SW, Fang HH, Liu ZL, Zhang YM, Tian LX, Liu YJ, Niu J. Dietary values of Forsythia suspensa extract in Penaeus monodon under normal rearing and Vibrio parahaemolyticus 3HP (VP 3HP) challenge conditions: Effect on growth, intestinal barrier function, immune response and immune related gene expression. FISH & SHELLFISH IMMUNOLOGY 2018; 75:316-326. [PMID: 29454898 DOI: 10.1016/j.fsi.2018.02.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/09/2018] [Accepted: 02/14/2018] [Indexed: 06/08/2023]
Abstract
Two trials were conducted to determine the effects of dietary Forsythia suspensa extract (FSE) on shrimp, Penaeus monodon, first on growth performance, second on the immune response and immune related gene expression of shrimp. In trial 1, shrimp (mean initial wet weight about 3.02 g) were fed with five diets containing 0% (basal diet), 0.01%, 0.02%, 0.04% and 0.06% FSE in triplicate for 60 days. Growth performance (final body wet weight, FBW; weight gain, WG; biomass gain, BG) of shrimp fed FSE diets were higher (P < 0.05) than that of shrimp fed the basal diet. The survival among all the diets treatments were above 90% and no significant difference was revealed among them (P > 0.05). The antioxidant capacity (total antioxidant status, TAS; glutathione peroxidase, GSH-Px) appears in the trend of firstly increasing then decreasing with the increasing of dietary FSE levels. The highest value of TAS and GSH-Px were found in shrimp fed 0.02% FSE diet and were significantly higher than that of shrimp fed the basal and 0.06% FSE diets (P < 0.05). Hepatopancreas malondialdehyde (MDA) of shrimp fed FSE diets were lower (P < 0.05) than that of shrimp fed the basal diet. Total haemocyte count of shrimp fed the basal diet was lower (P < 0.05) than that of shrimp fed FSE diets. Haemolymph clotting time of shrimp had the opposite trend with the total haemocyte count of shrimp. No significant differences were found in haemolymph biomarkers of intestinal permeability (endotoxin and diamine oxidase) and in molecular gene expression profiles of heat shock protein 70 (Hsp 70) mRNA and hypoxia inducible factor-1α (HIF-1α) mRNA in haemolymph of shrimp among all diet treatments (P > 0.05). In trial 2, a pathogenic strain of Vibrio parahaemolyticus 3HP (VP3HP) injection challenge test was conducted for 6-day after the rearing trial and shrimp survival were also compared among treatments. Survival of shrimp fed diets supplemented with 0.01%-0.02% FSE were higher than that of shrimp fed the basal and 0.06% FSE diets (P < 0.05). Dietary FSE supplementation produced stronger hepatopancreas antioxidant capacity (TAS, GSH-Px) (P < 0.05) and higher glutathione (GSH) level (P < 0.05), lower superoxide dismutase activity (SOD) (P < 0.05), higher total haemocyte count (P < 0.05), lower haemolymph clotting time (P < 0.05), lower MDA and carbonyl protein concentration (P < 0.05), lower haemolymph biomarkers of intestinal permeability (endotoxin and diamine oxidase) (P < 0.05), generated lower molecular gene expression profiles of HSP 70 mRNA and higher HIF-1α mRNA (P < 0.05) than the basal diet. The immune response were characterized by lower TAS and higher antioxidant enzyme activities (SOD, GSH-Px) and higher oxidative stress level (MDA and carbonyl protein) and higher haemolymph biomarkers of intestinal permeability (endotoxin and diamine oxidase) compared to levels found in trail 1. However, the total haemocyte counts and haemolymph clotting times were not changed in 0.01%-0.02% FSE diets treatments between trial 1 and trial 2 (P > 0.05). The molecular gene expression profile of Hsp 70 mRNA was increased while HIF-1α mRNA was decreased when compared to trial 1. In conclusion, results suggested that dietary intake containing FSE could enhance the growth performance and antioxidant capacity of P. monodon and furthermore reduce oxidative stress and immune depression challenged by a pathogenic strain of Vibrio parahaemolyticus stress. Considering the effect of FSE on both growth performance and immune response of P. monodon, the level of FSE supplemented in the diet should be between 0.01% and 0.02%.
Collapse
Affiliation(s)
- Jia-Jun Xie
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Xu Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, PR China
| | - Tian-Yu Guo
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Shi-Wei Xie
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Hao-Hang Fang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Zhen-Lu Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yan-Mei Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Li-Xia Tian
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yong-Jian Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jin Niu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
28
|
Wang Z, Xia Q, Liu X, Liu W, Huang W, Mei X, Luo J, Shan M, Lin R, Zou D, Ma Z. Phytochemistry, pharmacology, quality control and future research of Forsythia suspensa (Thunb.) Vahl: A review. JOURNAL OF ETHNOPHARMACOLOGY 2018; 210:318-339. [PMID: 28887216 DOI: 10.1016/j.jep.2017.08.040] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 05/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Forsythiae Fructus (called Lianqiao in Chinese), the fruit of Forsythia suspensa (Thunb.) Vahl, is utilized as a common traditional medicine in China, Japan and Korea. It is traditionally used to treat pyrexia, inflammation, gonorrhea, carbuncle and erysipelas. Depending on the different harvest time, Forsythiae Fructus can be classified into two forms, namely Qingqiao and Laoqiao. The greenish fruits that start to ripen are collected as Qingqiao, while the yellow fruits that are fully ripe are collected as Laoqiao. Both are applied to medical use. This review aims to provide a systematic summary of F. suspensa (Forsythia suspensa (Thunb.) Vahl) and to reveal the correlation between the traditional uses and pharmacological activities so as to offer inspiration for future research. MATERIALS AND METHODS All corresponding information about F. suspensa was searched by Scifinder and obtained from scientific databases including Springer, Science Direct, Wiley, Pubmed and China Knowledge Resource Integrated (CNKI). Local dissertations and books were searched as well. RESULTS According to classical Chinese herbal texts and Chinese Pharmacopoeia, Forsythiae Fructus dominantly displays heat-clearing and detoxifying effects in TCM prescriptions. In modern research, more than 230 compounds were separated and identified from F. suspensa. 211 Of them were isolated from fruits. Lignans and phenylethanoid glycosides are considered as the characteristic and active constituents of this herb, such as forsythiaside, phillyrin, rutin and phillygenin. They exhibited anti-inflammatory, antioxidant, antibacterial, anti-virus, anti-cancer and anti-allergy effects, etc. Currently, there is no report on the toxicity of Forsythiae Fructus, despite slight toxicity of forsythiaside reported in local publications. Compared to Laoqiao, Qingqiao contains higher levels of forsythiaside, forsythoside C, cornoside, rutin, phillyrin, gallic acid and chlorogenic acid and lower levels of rengyol, β-glucose and S-suspensaside methyl ether. CONCLUSION Heat-clearing actions of Forsythiae Fructus are based on the anti-inflammatory and antioxidant properties of lignans and phenylethanoid glycosides. Detoxifying effects attribute to the antibacterial, antiviral and anti-cancer activities of Forsythiae Fructus. And traditional Chinese medicine (TCM) characteristics of Forsythiae Fructus (bitter flavor, slightly cold nature and lung meridian) supported its strong anti-inflammatory effects. In addition, the remarkable anti-inflammatory and antioxidant capacities of Forsythiae Fructus contribute to its anti-cancer and neuroprotective activities. The higher proportion of lignans and phenylethanoid glycosides in Qingqiao than Laoqiao might explain the better antioxidant ability of Qingqiao and more frequent uses of Qingqiao in TCM prescriptions. For future research, more in vivo experiments and clinical studies are encouraged to further clarify the relation between traditional uses and modern applications. Regarding to Qingqiao and Laoqiao, they remain to be differentiated by all-round quality control methods, and the chemical compositions and clinical effects between them should be compared.
Collapse
Affiliation(s)
- Zhaoyi Wang
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Qing Xia
- Biology Institute of Shandong Academy of Sciences, Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Key Laboratory for Biosensor of Shandong Province, Jinan 250014, China
| | - Xin Liu
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Wenxue Liu
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Wanzhen Huang
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Xue Mei
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Jun Luo
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Mingxu Shan
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Ruichao Lin
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Dixin Zou
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010110, China.
| | - Zhiqiang Ma
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| |
Collapse
|
29
|
Long S, Xu Y, Pan L, Wang Q, Wang C, Wu J, Wu Y, Han Y, Yun C, Piao X. Mixed organic acids as antibiotic substitutes improve performance, serum immunity, intestinal morphology and microbiota for weaned piglets. Anim Feed Sci Technol 2018. [DOI: 10.1016/j.anifeedsci.2017.08.018] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Forsythiae Fructus: A Review on its Phytochemistry, Quality Control, Pharmacology and Pharmacokinetics. Molecules 2017; 22:molecules22091466. [PMID: 28869577 PMCID: PMC6151565 DOI: 10.3390/molecules22091466] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 12/18/2022] Open
Abstract
Forsythiae Fructus, as a traditional Chinese medicine, has been widely used both as a single herb and in compound prescriptions in Asia, mainly due to its heat-clearing and detoxifying effects. Modern pharmacology has proved Forsythiae Fructus possesses various therapeutic effects, both in vitro and in vivo, such as anti-inflammatory, antibacterial and antiviral activities. Up to now, three hundred and twenty-one compounds have been identified and sensitive analytical methods have been established for its quality control. Recently, the pharmacokinetics of Forsythiae Fructus and its bioactive compounds have been reported, providing valuable information for its clinical application. Therefore, this systematic review focused on the newest scientific reports on Forsythiae Fructus and extensively summarizes its phytochemistry, pharmacology, pharmacokinetics and standardization procedures, especially the difference between the two applied types—unripe Forsythiae Fructus and ripe Forsythiae Fructus—in the hope of providing a helpful reference and guide for its clinical applications and further studies.
Collapse
|
31
|
Zhao P, Piao X, Zeng Z, Li P, Xu X, Wang H. Effect of Forsythia suspensa extract and chito-oligosaccharide alone or in combination on performance, intestinal barrier function, antioxidant capacity and immune characteristics of weaned piglets. Anim Sci J 2016; 88:854-862. [PMID: 27758020 DOI: 10.1111/asj.12656] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/11/2016] [Accepted: 04/07/2016] [Indexed: 11/28/2022]
Abstract
We investigated the effects of Forsythia suspensa extract (FSE) and chito-oligosaccharide (COS), alone or together, on performance and health status of weaned piglets. The treatments included a basal diet and three diets with 160 mg/kg COS, 100 mg/kg FSE, or 100 mg/kg FSE and 160 mg/kg COS. Supplementation with COS or FSE alone improved (P < 0.01) average daily gain and feed conversion ratio compared with the basal diet in the first 2 weeks. On day 14, COS or FSE supplementation separately produced stronger (P < 0.01) serum total antioxidant capacity and glutathione peroxidase activities and lower serum endotoxin (P < 0.05) and malondialdehyde (P < 0.01) concentrations, generated higher (P < 0.01) serum complement 4 concentration, peripheral blood lymphocyte proliferation and serum-specific ovalbumin antibody level than the basal diet. No differences in oxidative injury and immunity indices were detected on day 28. The combined FSE and COS produced similar results compared with FSE or COS when given alone. These data indicate FSE or COS can increase performance by modulating intestinal permeability, antioxidant status and immune function in younger pigs. There appears to be similar advantage in feeding the additives in combination over those obtained from feeding them separately.
Collapse
Affiliation(s)
- Panfeng Zhao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, China
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, China
| | - Zhikai Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, China
| | - Ping Li
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, China
| | - Xiao Xu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, China
| | - Hongliang Wang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, China
| |
Collapse
|
32
|
Zhao P, Piao X, Pan L, Zeng Z, Li Q, Xu X, Wang H. Forsythia suspensa extract attenuates lipopolysaccharide-induced inflammatory liver injury in rats via promoting antioxidant defense mechanisms. Anim Sci J 2016; 88:873-881. [PMID: 27753186 DOI: 10.1111/asj.12717] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/15/2016] [Accepted: 08/16/2016] [Indexed: 12/26/2022]
Abstract
Reactive oxygen species (ROS) have been shown to have a role in inflammation. We investigated whether Forsythia suspensa extract (FSE) could exert its antioxidant potential against lipopolysaccharide (LPS)-induced inflammatory liver injury in rats. Rats were orally fed FSE once daily for 7 consecutive days prior to LPS (Escherichia coli, serotype O55:B5) injection. LPS treatment caused liver dysfunction as evidenced by massive histopathological changes and increased serum alanine aminotransferase and aspartate aminotransferase activities which were ameliorated by FSE pretreatment. FSE attenuated LPS-induced depletion of cytosolic nuclear factor-erythroid 2-related factor 2 (Nrf2) and suppression of Nrf2 nuclear translocation in liver, and the generation of ROS and malondialdehyde in serum and liver. FSE increased the Nrf2-mediated induction of heme oxygenase-1 in liver, as well as superoxide dismutase and glutathione peroxidase activities in serum and liver. Importantly, FSE attenuated LPS-induced nuclear factor-кB (NF-кB) nuclear translocation in liver, and subsequently decreased tumor necrosis factor-α, interleukin (IL)-1β and IL-6 levels in serum and liver, which were associated with FSE-induced activation of Nrf2 in liver. These results indicate that the protective mechanisms of FSE may be involved in the attenuation of oxidative stress and the inhibition of the NF-кB-mediated inflammatory response by modulating the Nrf2-mediated antioxidant response against LPS-induced inflammatory liver injury.
Collapse
Affiliation(s)
- Panfeng Zhao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, China
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, China
| | - Long Pan
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, China
| | - Zhikai Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, China
| | - Qingyun Li
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, China
| | - Xiao Xu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, China
| | - Hongliang Wang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, China
| |
Collapse
|
33
|
Zeng Z, Xu X, Zhang Q, Li P, Zhao P, Li Q, Liu J, Piao X. Effects of essential oil supplementation of a low-energy diet on performance, intestinal morphology and microflora, immune properties and antioxidant activities in weaned pigs. Anim Sci J 2014; 86:279-85. [PMID: 25302651 DOI: 10.1111/asj.12277] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 06/06/2014] [Indexed: 11/26/2022]
Abstract
A total of 144 weaned piglets were used to evaluate the effects of essential oil (EO) supplementation of a low-energy diet on performance, apparent nutrient digestibility, small intestinal morphology, intestinal microflora, immune properties and antioxidant activities in weaned pigs. Pigs received a low-energy diet (negative control, NC, digestible energy = 3250 kcal/kg), NC plus 0.025% EO or a positive control diet (PC, digestible energy = 3400 kcal/kg) for 28 days. Growth performance was similar between the EO group and PC group. However, EO supplementation increased (P < 0.05) average daily gain and the apparent digestibility of dry matter, crude protein and energy compared with pigs fed the NC diet. Greater (P < 0.05) villus height and lower (P < 0.05) counts of Escherichia coli and total anaerobes in the rectum in the EO group were observed compared with NC or PC groups. Pigs fed EO diet had higher (P < 0.05) concentrations of albumin, immunoglobulin A (IgA), IgG and total antioxidant capacity and lower fecal score than pigs fed the PC and NC diets. Above all, this study indicates that supplementation of EO to a low-energy pig diet has beneficial results and obtains similar performance compared with normal energy (PC) diet.
Collapse
Affiliation(s)
- Zhikai Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Zeng Z, Li Q, Piao X, Liu J, Zhao P, Xu X, Zhang S, Niu S. Forsythia suspensa extract attenuates corticosterone-induced growth inhibition, oxidative injury, and immune depression in broilers. Poult Sci 2014; 93:1774-81. [DOI: 10.3382/ps.2013-03772] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
35
|
Zhang H, Piao X, Zhang Q, Li P, Yi J, Liu J, Li Q, Wang G. The effects of Forsythia suspensa extract and berberine on growth performance, immunity, antioxidant activities, and intestinal microbiota in broilers under high stocking density. Poult Sci 2013; 92:1981-8. [DOI: 10.3382/ps.2013-03081] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|