1
|
Ejaz MR, Badr K, Hassan ZU, Al-Thani R, Jaoua S. Metagenomic approaches and opportunities in arid soil research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176173. [PMID: 39260494 DOI: 10.1016/j.scitotenv.2024.176173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Arid soils present unique challenges and opportunities for studying microbial diversity and bioactive potential due to the extreme environmental conditions they bear. This review article investigates soil metagenomics as an emerging tool to explore complex microbial dynamics and unexplored bioactive potential in harsh environments. Utilizing advanced metagenomic techniques, diverse microbial populations that grow under extreme conditions such as high temperatures, salinity, high pH levels, and exposure to metals and radiation can be studied. The use of extremophiles to discover novel natural products and biocatalysts emphasizes the role of functional metagenomics in identifying enzymes and secondary metabolites for industrial and pharmaceutical purposes. Metagenomic sequencing uncovers a complex network of microbial diversity, offering significant potential for discovering new bioactive compounds. Functional metagenomics, connecting taxonomic diversity to genetic capabilities, provides a pathway to identify microbes' mechanisms to synthesize valuable secondary metabolites and other bioactive substances. Contrary to the common perception of desert soil as barren land, the metagenomic analysis reveals a rich diversity of life forms adept at extreme survival. It provides valuable findings into their resilience and potential applications in biotechnology. Moreover, the challenges associated with metagenomics in arid soils, such as low microbial biomass, high DNA degradation rates, and DNA extraction inhibitors and strategies to overcome these issues, outline the latest advancements in extraction methods, high-throughput sequencing, and bioinformatics. The importance of metagenomics for investigating diverse environments opens the way for future research to develop sustainable solutions in agriculture, industry, and medicine. Extensive studies are necessary to utilize the full potential of these powerful microbial communities. This research will significantly improve our understanding of microbial ecology and biotechnology in arid environments.
Collapse
Affiliation(s)
- Muhammad Riaz Ejaz
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Kareem Badr
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Zahoor Ul Hassan
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Roda Al-Thani
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Samir Jaoua
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
2
|
Tsoungos A, Pemaj V, Slavko A, Kapolos J, Papadelli M, Papadimitriou K. The Rising Role of Omics and Meta-Omics in Table Olive Research. Foods 2023; 12:3783. [PMID: 37893676 PMCID: PMC10606081 DOI: 10.3390/foods12203783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Table olives are often the result of fermentation, a process where microorganisms transform raw materials into the final product. The microbial community can significantly impact the organoleptic characteristics and safety of table olives, and it is influenced by various factors, including the processing methods. Traditional culture-dependent techniques capture only a fraction of table olives' intricate microbiota, prompting a shift toward culture-independent methods to address this knowledge gap. This review explores recent advances in table olive research through omics and meta-omics approaches. Genomic analysis of microorganisms isolated from table olives has revealed multiple genes linked to technological and probiotic attributes. An increasing number of studies concern metagenomics and metabolomics analyses of table olives. The former offers comprehensive insights into microbial diversity and function, while the latter identifies aroma and flavor determinants. Although proteomics and transcriptomics studies remain limited in the field, they have the potential to reveal deeper layers of table olives' microbiome composition and functionality. Despite the challenges associated with implementing multi-omics approaches, such as the reliance on advanced bioinformatics tools and computational resources, they hold the promise of groundbreaking advances in table olive processing technology.
Collapse
Affiliation(s)
- Anastasios Tsoungos
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece; (A.T.); (V.P.); (A.S.); (J.K.); (M.P.)
| | - Violeta Pemaj
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece; (A.T.); (V.P.); (A.S.); (J.K.); (M.P.)
| | - Aleksandra Slavko
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece; (A.T.); (V.P.); (A.S.); (J.K.); (M.P.)
| | - John Kapolos
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece; (A.T.); (V.P.); (A.S.); (J.K.); (M.P.)
| | - Marina Papadelli
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece; (A.T.); (V.P.); (A.S.); (J.K.); (M.P.)
| | - Konstantinos Papadimitriou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
3
|
Arıkan M, Muth T. Integrated multi-omics analyses of microbial communities: a review of the current state and future directions. Mol Omics 2023; 19:607-623. [PMID: 37417894 DOI: 10.1039/d3mo00089c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Integrated multi-omics analyses of microbiomes have become increasingly common in recent years as the emerging omics technologies provide an unprecedented opportunity to better understand the structural and functional properties of microbial communities. Consequently, there is a growing need for and interest in the concepts, approaches, considerations, and available tools for investigating diverse environmental and host-associated microbial communities in an integrative manner. In this review, we first provide a general overview of each omics analysis type, including a brief history, typical workflow, primary applications, strengths, and limitations. Then, we inform on both experimental design and bioinformatics analysis considerations in integrated multi-omics analyses, elaborate on the current approaches and commonly used tools, and highlight the current challenges. Finally, we discuss the expected key advances, emerging trends, potential implications on various fields from human health to biotechnology, and future directions.
Collapse
Affiliation(s)
- Muzaffer Arıkan
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.
- Department of Medical Biology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Thilo Muth
- Section eScience (S.3), Federal Institute for Materials Research and Testing (BAM), Berlin, Germany.
| |
Collapse
|
4
|
Vijayan J, Nathan VK, Ammini P, Ammanamveetil AMH. Bacterial diversity in the aquatic system in India based on metagenome analysis-a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28383-28406. [PMID: 36680718 PMCID: PMC9862233 DOI: 10.1007/s11356-023-25195-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/04/2023] [Indexed: 04/16/2023]
Abstract
Microbial analysis has become one of the most critical areas in aquatic ecology and a crucial component for assessing the contribution of microbes in food web dynamics and biogeochemical processes. Initial research was focused on estimating the abundance and distribution of the microbes using microscopy and culture-based analysis, which are undoubtedly complex tasks. Over the past few decades, microbiologists have endeavored to apply and extend molecular techniques to address pertinent questions related to the function and metabolism of microbes in aquatic ecology. Metagenomics analysis has revolutionized aquatic ecology studies involving the investigation of the genome of a mixed community of organisms in an ecosystem to identify microorganisms, their functionality, and the discovery of novel proteins. This review discusses the metagenomics analysis of bacterial diversity in and around different aquatic systems in India.
Collapse
Affiliation(s)
- Jasna Vijayan
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Cochin, 682 016, Kerala, India.
| | - Vinod Kumar Nathan
- School of Chemical and Biotechnology, Sastra Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamilnadu, India
| | - Parvathi Ammini
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, 682022, Kerala, India
| | - Abdulla Mohamed Hatha Ammanamveetil
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Cochin, 682 016, Kerala, India
| |
Collapse
|
5
|
Román-Camacho JJ, García-García I, Santos-Dueñas IM, Ehrenreich A, Liebl W, García-Martínez T, Mauricio JC. Combining omics tools for the characterization of the microbiota of diverse vinegars obtained by submerged culture: 16S rRNA amplicon sequencing and MALDI-TOF MS. Front Microbiol 2022; 13:1055010. [PMID: 36569054 PMCID: PMC9767973 DOI: 10.3389/fmicb.2022.1055010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Vinegars elaborated in southern Spain are highly valued all over the world because of their exceptional organoleptic properties and high quality. Among the factors which influence the characteristics of the final industrial products, the composition of the microbiota responsible for the process and the raw material used as acetification substrate have a crucial role. The current state of knowledge shows that few microbial groups are usually present throughout acetification, mainly acetic acid bacteria (AAB), although other microorganisms, present in smaller proportions, may also affect the overall activity and behavior of the microbial community. In the present work, the composition of a starter microbiota propagated on and subsequently developing three acetification profiles on different raw materials, an alcohol wine medium and two other natural substrates (a craft beer and fine wine), was characterized and compared. For this purpose, two different "omics" tools were combined for the first time to study submerged vinegar production: 16S rRNA amplicon sequencing, a culture-independent technique, and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS), a culture-dependent method. Analysis of the metagenome revealed numerous taxa from 30 different phyla and highlighted the importance of the AAB genus Komagataeibacter, which was much more frequent than the other taxa, and Acetobacter; interestingly, also archaea from the Nitrososphaeraceae family were detected by 16S rRNA amplicon sequencing. MALDI-TOF MS confirmed the presence of Komagataeibacter by the identification of K. intermedius. These tools allowed for identifying some taxonomic groups such as the bacteria genera Cetobacterium and Rhodobacter, the bacteria species Lysinibacillus fusiformis, and even archaea, never to date found in this medium. Definitely, the effect of the combination of these techniques has allowed first, to confirm the composition of the predominant microbiota obtained in our previous metaproteomics approaches; second, to identify the microbial community and discriminate specific species that can be cultivated under laboratory conditions; and third, to obtain new insights on the characterization of the acetification raw materials used. These first findings may contribute to improving the understanding of the microbial communities' role in the vinegar-making industry.
Collapse
Affiliation(s)
- Juan J. Román-Camacho
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence ceiA3, University of Córdoba, Córdoba, Spain
| | - Isidoro García-García
- Department of Inorganic Chemistry and Chemical Engineering, Agrifood Campus of International Excellence ceiA3, Nano Chemistry Institute (IUNAN), University of Córdoba, Córdoba, Spain,*Correspondence: Isidoro García-García,
| | - Inés M. Santos-Dueñas
- Department of Inorganic Chemistry and Chemical Engineering, Agrifood Campus of International Excellence ceiA3, Nano Chemistry Institute (IUNAN), University of Córdoba, Córdoba, Spain
| | - Armin Ehrenreich
- Department of Microbiology, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Wolfgang Liebl
- Department of Microbiology, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Teresa García-Martínez
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence ceiA3, University of Córdoba, Córdoba, Spain
| | - Juan C. Mauricio
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence ceiA3, University of Córdoba, Córdoba, Spain
| |
Collapse
|
6
|
Gökdemir FŞ, İşeri ÖD, Sharma A, Achar PN, Eyidoğan F. Metagenomics Next Generation Sequencing (mNGS): An Exciting Tool for Early and Accurate Diagnostic of Fungal Pathogens in Plants. J Fungi (Basel) 2022; 8:1195. [PMID: 36422016 PMCID: PMC9699264 DOI: 10.3390/jof8111195] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 09/19/2023] Open
Abstract
Crop output is directly impacted by infections, with fungi as the major plant pathogens, making accurate diagnosis of these threats crucial. Developing technology and multidisciplinary approaches are turning to genomic analyses in addition to traditional culture methods in diagnostics of fungal plant pathogens. The metagenomic next-generation sequencing (mNGS) method is preferred for genotyping identification of organisms, identification at the species level, illumination of metabolic pathways, and determination of microbiota. Moreover, the data obtained so far show that this new approach is promising as an emerging new trend in fungal disease detection. Another approach covered by mNGS technologies, known as metabarcoding, enables use of specific markers specific to a genetic region and allows for genotypic identification by facilitating the sequencing of certain regions. Although the core concept of mNGS remains constant across applications, the specific sequencing methods and bioinformatics tools used to analyze the data differ. In this review, we focus on how mNGS technology, including metabarcoding, is applied for detecting fungal pathogens and its promising developments for the future.
Collapse
Affiliation(s)
- Fatma Şeyma Gökdemir
- Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Başkent University, Ankara 06790, Turkey
| | - Özlem Darcansoy İşeri
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Başkent University, Ankara 06790, Turkey
- Institute of Food, Agriculture and Livestock Development, Başkent University, Ankara 06790, Turkey
| | - Abhishek Sharma
- Amity Food and Agriculture Foundation, Amity University, Noida 201313, Uttar Pradesh, India
| | - Premila N. Achar
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Füsun Eyidoğan
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Başkent University, Ankara 06790, Turkey
- Institute of Food, Agriculture and Livestock Development, Başkent University, Ankara 06790, Turkey
| |
Collapse
|
7
|
Marzano M, Calasso M, Caponio GR, Celano G, Fosso B, De Palma D, Vacca M, Notario E, Pesole G, De Leo F, De Angelis M. Extension of the shelf-life of fresh pasta using modified atmosphere packaging and bioprotective cultures. Front Microbiol 2022; 13:1003437. [PMID: 36406432 PMCID: PMC9666361 DOI: 10.3389/fmicb.2022.1003437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/05/2022] [Indexed: 01/25/2023] Open
Abstract
Microbial stability of fresh pasta depends on heat treatment, storage temperature, proper preservatives, and atmosphere packaging. This study aimed at improving the microbial quality, safety, and shelf life of fresh pasta using modified atmosphere composition and packaging with or without the addition of bioprotective cultures (Lactobacillus acidophilus, Lactobacillus casei, Bifidobacterium spp., and Bacillus coagulans) into semolina. Three fresh pasta variants were made using (i) the traditional protocol (control), MAP (20:80 CO2:N2), and barrier packaging, (ii) the experimental MAP (40:60 CO2:N2) and barrier packaging, and (iii) the experimental MAP, barrier packaging, and bioprotective cultures. Their effects on physicochemical properties (i.e., content on macro elements, water activity, headspace O2, CO2 concentrations, and mycotoxins), microbiological patterns, protein, and volatile organic compounds (VOC) were investigated at the beginning and the end of the actual or extended shelf-life through traditional and multi-omics approaches. We showed that the gas composition and properties of the packaging material tested in the experimental MAP system, with or without bioprotective cultures, positively affect features of fresh pasta avoiding changes in their main chemical properties, allowing for a storage longer than 120 days under refrigerated conditions. These results support that, although bioprotective cultures were not all able to grow in tested conditions, they can control the spoilage and the associated food-borne microbiota in fresh pasta during storage by their antimicrobials and/or fermentation products synergically. The VOC profiling, based on gas-chromatography mass-spectrometry (GC-MS), highlighted significant differences affected by the different manufacturing and packaging of samples. Therefore, the use of the proposed MAP system and the addition of bioprotective cultures can be considered an industrial helpful strategy to reduce the quality loss during refrigerated storage and to increase the shelf life of fresh pasta for additional 30 days by allowing the economic and environmental benefits spurring innovation in existing production models.
Collapse
Affiliation(s)
- Marinella Marzano
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Maria Calasso
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Giusy Rita Caponio
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Giuseppe Celano
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Bruno Fosso
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Bari, Italy,Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | | | - Mirco Vacca
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari “Aldo Moro”, Bari, Italy,Mirco Vacca,
| | - Elisabetta Notario
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Graziano Pesole
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Bari, Italy,Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Francesca De Leo
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Bari, Italy,*Correspondence: Francesca De Leo,
| | - Maria De Angelis
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
8
|
Nimonkar YS, Godambe T, Kulkarni A, Patel T, Paul D, Paul D, Rale V, Prakash O. Oligotrophy vs. copiotrophy in an alkaline and saline habitat of Lonar Lake. Front Microbiol 2022; 13:939984. [PMID: 35992701 PMCID: PMC9386271 DOI: 10.3389/fmicb.2022.939984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
We reported our comparative observations on oligotrophs vs. copiotrophs from a hyper-alkaline and hypersaline habitat, Lonar Lake, situated in the Buldhana district of Maharashtra, India. Cell numbers of oligotrophic and copiotrophic microbes from the sediment were enumerated by the three-tube most probable number (MPN) method using an array of nutrient-rich and oligotrophic (≈10–20 mg carbon L−1) media offering simulated natural conditions of pH and salinity. A total of 50 strains from 15 different genera and 30 different species were isolated from the highest positive dilutions of MPN to identify the taxa of oligotrophs and copiotrophic microorganisms dominating in Lonar Lake. We did not get any true oligotrophs due to their adaptation to higher carbon levels during the isolation procedure. On the contrary, several true copiotrophs, which could not adapt and survive on a low-carbon medium, were isolated. It is also observed that changes in medium composition and nutrient level altered the selection of organisms from the same sample. Our data indicate that copiotrophic microorganisms dominate the eutrophic Lonar Lake, which is also supported by the past metagenomics studies from the same site. We also reported that quick depletion of carbon from oligotrophic medium worked as a limiting factor, inducing cell death after 2–3 generations and preventing the development of visible colonies on plates and sufficient optical density in liquid medium. Therefore, a long-term supply of low levels of carbon, followed by isolation on enriched media, can serve as a good strategy in isolation of novel taxa of microorganism, with industrial or environmental importance.
Collapse
Affiliation(s)
- Yogesh S. Nimonkar
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Tejashree Godambe
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Apurva Kulkarni
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Tarachand Patel
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Dhreej Paul
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Debarati Paul
- Amity Institute of Biotechnology, Amity University Uttar Pradesh (AUUP), Noida, India
| | - Vinay Rale
- Symbiosis School of Biological Sciences (SSBS) Symbiosis International (Deemed University) & Symbiosis Centre for Research & Innovation (SCRI), Symbiosis International (Deemed University), Pune, India
| | - Om Prakash
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
- *Correspondence: Om Prakash ;
| |
Collapse
|
9
|
Amelia TSM, Suaberon FAC, Vad J, Fahmi ADM, Saludes JP, Bhubalan K. Recent Advances of Marine Sponge-Associated Microorganisms as a Source of Commercially Viable Natural Products. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:492-512. [PMID: 35567600 DOI: 10.1007/s10126-022-10130-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Many industrially significant compounds have been derived from natural products in the environment. Research efforts so far have contributed to the discovery of beneficial natural products that have improved the quality of life on Earth. As one of the sources of natural products, marine sponges have been progressively recognised as microbial hotspots with reports of the sponges harbouring diverse microbial assemblages, genetic material, and metabolites with multiple industrial applications. Therefore, this paper aims at reviewing the recent literature (primarily published between 2016 and 2022) on the types and functions of natural products synthesised by sponge-associated microorganisms, thereby helping to bridge the gap between research and industrial applications. The metabolites that have been derived from sponge-associated microorganisms, mostly bacteria, fungi, and algae, have shown application prospects especially in medicine, cosmeceutical, environmental protection, and manufacturing industries. Sponge bacteria-derived natural products with medical properties harboured anticancer, antibacterial, antifungal, and antiviral functions. Efforts in re-identifying the origin of known and future sponge-sourced natural products would further clarify the roles and significance of microbes within marine sponges.
Collapse
Affiliation(s)
- Tan Suet May Amelia
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Ferr Angelus C Suaberon
- Center for Natural Drug Discovery & Development (CND3), University of San Agustin, 5000, Iloilo City, Philippines
| | - Johanne Vad
- Changing Oceans Research Group, School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | - Afiq Durrani Mohd Fahmi
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
- Eco-Innovation Research Interest Group, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Jonel P Saludes
- Center for Natural Drug Discovery & Development (CND3), University of San Agustin, 5000, Iloilo City, Philippines
- Department of Chemistry, University of San Agustin, 5000, Iloilo City, Philippines
- Department of Science and Technology, Balik Scientist Program, Philippine Council for Health Research & Development (PCHRD), Bicutan, 1631, Taguig, Philippines
| | - Kesaven Bhubalan
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
- Eco-Innovation Research Interest Group, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
10
|
Kim H, Cho JH, Song M, Cho JH, Kim S, Kim ES, Keum GB, Kim HB, Lee JH. Evaluating the Prevalence of Foodborne Pathogens in Livestock Using Metagenomics Approach. J Microbiol Biotechnol 2021; 31:1701-1708. [PMID: 34675137 PMCID: PMC9706027 DOI: 10.4014/jmb.2109.09038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 12/15/2022]
Abstract
Food safety is the most important global health issue due to foodborne pathogens after consumption of contaminated food. Foodborne bacteria such as Escherichia coli, Salmonella enterica, Staphylococcus aureus, Campylobacter spp., Bacillus cereus, Vibrio spp., Yersinia enterocolitica and Clostridium perfringens are leading causes of the majority of foodborne illnesses and deaths. These foodborne pathogens often come from the livestock feces, thus, we analyzed fecal microbial communities of three different livestock species to investigate the prevalence of foodborne pathogens in livestock feces using metagenomics analysis. Our data showed that alpha diversities of microbial communities were different according to livestock species. The microbial diversity of cattle feces was higher than that of chicken or pig feces. Moreover, microbial communities were significantly different among these three livestock species (cattle, chicken, and pig). At the genus level, Staphylococcus and Clostridium were found in all livestock feces, with chicken feces having higher relative abundances of Staphylococcus and Clostridium than cattle and pig feces. Genera Bacillus, Campylobacter, and Vibrio were detected in cattle feces. Chicken samples contained Bacillus, Listeria, and Salmonella with low relative abundance. Other genera such as Corynebacterium, Streptococcus, Neisseria, Helicobacter, Enterobacter, Klebsiella, and Pseudomonas known to be opportunistic pathogens were also detected in cattle, chicken, and pig feces. Results of this study might be useful for controlling the spread of foodborne pathogens in farm environments known to provide natural sources of these microorganisms.
Collapse
Affiliation(s)
- Hyeri Kim
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Jin Ho Cho
- Division of Food and Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Minho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jae Hyoung Cho
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Sheena Kim
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Eun Sol Kim
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Gi Beom Keum
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Hyeun Bum Kim
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Republic of Korea,Corresponding authors H.B. Kim Phone: +82-41-550-3653 E-mail:
| | - Ju-Hoon Lee
- Department of Food Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea,
J.H. Lee Phone: +82-2-880-4854 E-mail:
| |
Collapse
|
11
|
de Medeiros Azevedo T, Aburjaile FF, Ferreira-Neto JRC, Pandolfi V, Benko-Iseppon AM. The endophytome (plant-associated microbiome): methodological approaches, biological aspects, and biotech applications. World J Microbiol Biotechnol 2021; 37:206. [PMID: 34708327 DOI: 10.1007/s11274-021-03168-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/05/2021] [Indexed: 11/25/2022]
Abstract
Similar to other organisms, plants establish interactions with a variety of microorganisms in their natural environment. The plant microbiome occupies the host plant's tissues, either internally or on its surfaces, showing interactions that can assist in its growth, development, and adaptation to face environmental stresses. The advance of metagenomics and metatranscriptomics approaches has strongly driven the study and recognition of plant microbiome impacts. Research in this regard provides comprehensive information about the taxonomic and functional aspects of microbial plant communities, contributing to a better understanding of their dynamics. Evidence of the plant microbiome's functional potential has boosted its exploitation to develop more ecological and sustainable agricultural practices that impact human health. Although microbial inoculants' development and use are promising to revolutionize crop production, interdisciplinary studies are needed to identify new candidates and promote effective practical applications. On the other hand, there are challenges in understanding and analyzing complex data generated within a plant microbiome project's scope. This review presents aspects about the complex structuring and assembly of the microbiome in the host plant's tissues, metagenomics, and metatranscriptomics approaches for its understanding, covering descriptions of recent studies concerning metagenomics to characterize the microbiome of non-model plants under different aspects. Studies involving bio-inoculants, isolated from plant microbial communities, capable of assisting in crops' productivity, are also reviewed.
Collapse
Affiliation(s)
- Thamara de Medeiros Azevedo
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | - Flávia Figueira Aburjaile
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | - José Ribamar Costa Ferreira-Neto
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | - Valesca Pandolfi
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | - Ana Maria Benko-Iseppon
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil.
| |
Collapse
|
12
|
Manfredini A, Malusà E, Costa C, Pallottino F, Mocali S, Pinzari F, Canfora L. Current Methods, Common Practices, and Perspectives in Tracking and Monitoring Bioinoculants in Soil. Front Microbiol 2021; 12:698491. [PMID: 34531836 PMCID: PMC8438429 DOI: 10.3389/fmicb.2021.698491] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/28/2021] [Indexed: 12/22/2022] Open
Abstract
Microorganisms promised to lead the bio-based revolution for a more sustainable agriculture. Beneficial microorganisms could be a valid alternative to the use of chemical fertilizers or pesticides. However, the increasing use of microbial inoculants is also raising several questions about their efficacy and their effects on the autochthonous soil microorganisms. There are two major issues on the application of bioinoculants to soil: (i) their detection in soil, and the analysis of their persistence and fate; (ii) the monitoring of the impact of the introduced bioinoculant on native soil microbial communities. This review explores the strategies and methods that can be applied to the detection of microbial inoculants and to soil monitoring. The discussion includes a comprehensive critical assessment of the available tools, based on morpho-phenological, molecular, and microscopic analyses. The prospects for future development of protocols for regulatory or commercial purposes are also discussed, underlining the need for a multi-method (polyphasic) approach to ensure the necessary level of discrimination required to track and monitor bioinoculants in soil.
Collapse
Affiliation(s)
- Andrea Manfredini
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment, Rome, Italy
| | - Eligio Malusà
- National Research Institute of Horticulture, Skierniewice, Poland
- Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, Conegliano, Italy
| | - Corrado Costa
- Council for Agricultural Research and Analysis of the Agricultural Economy, Research Centre for Engineering and Agro-Food Processing, Monterotondo, Italy
| | - Federico Pallottino
- Council for Agricultural Research and Analysis of the Agricultural Economy, Research Centre for Engineering and Agro-Food Processing, Monterotondo, Italy
| | - Stefano Mocali
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment, Rome, Italy
| | - Flavia Pinzari
- Institute for Biological Systems, Council of National Research of Italy (CNR), Rome, Italy
- Life Sciences Department, Natural History Museum, London, United Kingdom
| | - Loredana Canfora
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment, Rome, Italy
| |
Collapse
|
13
|
Kinch LN, Schaeffer RD, Kryshtafovych A, Grishin NV. Target classification in the 14th round of the critical assessment of protein structure prediction (CASP14). Proteins 2021; 89:1618-1632. [PMID: 34350630 DOI: 10.1002/prot.26202] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/21/2021] [Accepted: 07/11/2021] [Indexed: 12/14/2022]
Abstract
An evolutionary-based definition and classification of target evaluation units (EUs) is presented for the 14th round of the critical assessment of structure prediction (CASP14). CASP14 targets included 84 experimental models submitted by various structural groups (designated T1024-T1101). Targets were split into EUs based on the domain organization of available templates and performance of server groups. Several targets required splitting (19 out of 25 multidomain targets) due in part to observed conformation changes. All in all, 96 CASP14 EUs were defined and assigned to tertiary structure assessment categories (Topology-based FM or High Accuracy-based TBM-easy and TBM-hard) considering their evolutionary relationship to existing ECOD fold space: 24 family level, 50 distant homologs (H-group), 12 analogs (X-group), and 10 new folds. Principal component analysis and heatmap visualization of sequence and structure similarity to known templates as well as performance of servers highlighted trends in CASP14 target difficulty. The assigned evolutionary levels (i.e., H-groups) and assessment classes (i.e., FM) displayed overlapping clusters of EUs. Many viral targets diverged considerably from their template homologs and thus were more difficult for prediction than other homology-related targets. On the other hand, some targets did not have sequence-identifiable templates, but were predicted better than expected due to relatively simple arrangements of secondary structural elements. An apparent improvement in overall server performance in CASP14 further complicated traditional classification, which ultimately assigned EUs into high-accuracy modeling (27 TBM-easy and 31 TBM-hard), topology (23 FM), or both (15 FM/TBM).
Collapse
Affiliation(s)
- Lisa N Kinch
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - R Dustin Schaeffer
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Nick V Grishin
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
14
|
Wei ZG, Zhang XD, Cao M, Liu F, Qian Y, Zhang SW. Comparison of Methods for Picking the Operational Taxonomic Units From Amplicon Sequences. Front Microbiol 2021; 12:644012. [PMID: 33841367 PMCID: PMC8024490 DOI: 10.3389/fmicb.2021.644012] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/17/2021] [Indexed: 12/31/2022] Open
Abstract
With the advent of next-generation sequencing technology, it has become convenient and cost efficient to thoroughly characterize the microbial diversity and taxonomic composition in various environmental samples. Millions of sequencing data can be generated, and how to utilize this enormous sequence resource has become a critical concern for microbial ecologists. One particular challenge is the OTUs (operational taxonomic units) picking in 16S rRNA sequence analysis. Lucky, this challenge can be directly addressed by sequence clustering that attempts to group similar sequences. Therefore, numerous clustering methods have been proposed to help to cluster 16S rRNA sequences into OTUs. However, each method has its clustering mechanism, and different methods produce diverse outputs. Even a slight parameter change for the same method can also generate distinct results, and how to choose an appropriate method has become a challenge for inexperienced users. A lot of time and resources can be wasted in selecting clustering tools and analyzing the clustering results. In this study, we introduced the recent advance of clustering methods for OTUs picking, which mainly focus on three aspects: (i) the principles of existing clustering algorithms, (ii) benchmark dataset construction for OTU picking and evaluation metrics, and (iii) the performance of different methods with various distance thresholds on benchmark datasets. This paper aims to assist biological researchers to select the reasonable clustering methods for analyzing their collected sequences and help algorithm developers to design more efficient sequences clustering methods.
Collapse
Affiliation(s)
- Ze-Gang Wei
- Institute of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, China
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi’an, China
| | - Xiao-Dan Zhang
- Institute of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, China
| | - Ming Cao
- Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
- School of Mathematics and Statistics, Shaanxi Xueqian Normal University, Xi’an, China
| | - Fei Liu
- Institute of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, China
| | - Yu Qian
- Institute of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, China
| | - Shao-Wu Zhang
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi’an, China
| |
Collapse
|
15
|
Mallappa RH, Balasubramaniam C, Nataraj BH, Ramesh C, Kadyan S, Pradhan D, Muniyappa SK, Grover S. Microbial diversity and functionality of traditional fermented milk products of India: Current scenario and future perspectives. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2020.104941] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Yu X, Zhou J, Song W, Xu M, He Q, Peng Y, Tian Y, Wang C, Shu L, Wang S, Yan Q, Liu J, Tu Q, He Z. SCycDB: A curated functional gene database for metagenomic profiling of sulphur cycling pathways. Mol Ecol Resour 2020. [DOI: 10.1111/1755-0998.13306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Xiaoli Yu
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Sun Yat‐sen University Guangzhou China
| | - Jiayin Zhou
- Institute of Marine Science and Technology Shandong University Qingdao China
| | - Wen Song
- Institute of Marine Science and Technology Shandong University Qingdao China
| | - Mengzhao Xu
- Institute of Marine Science and Technology Shandong University Qingdao China
| | - Qiang He
- Department of Civil and Environmental Engineering The University of Tennessee Knoxville TN USA
| | - Yisheng Peng
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Sun Yat‐sen University Guangzhou China
| | - Yun Tian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems School of Life Sciences Xiamen University Xiamen China
| | - Cheng Wang
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Sun Yat‐sen University Guangzhou China
| | - Longfei Shu
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Sun Yat‐sen University Guangzhou China
| | - Shanquan Wang
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Sun Yat‐sen University Guangzhou China
| | - Qingyun Yan
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Sun Yat‐sen University Guangzhou China
| | - Jihua Liu
- Institute of Marine Science and Technology Shandong University Qingdao China
| | - Qichao Tu
- Institute of Marine Science and Technology Shandong University Qingdao China
| | - Zhili He
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Sun Yat‐sen University Guangzhou China
- College of Agronomy Hunan Agricultural University Changsha China
| |
Collapse
|
17
|
SeSaMe: Metagenome Sequence Classification of Arbuscular Mycorrhizal Fungi-associated Microorganisms. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:601-612. [PMID: 33346086 PMCID: PMC8377386 DOI: 10.1016/j.gpb.2018.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 06/21/2018] [Accepted: 07/24/2018] [Indexed: 01/22/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are plant root symbionts that play key roles in plant growth and soil fertility. They are obligate biotrophic fungi that form coenocytic multinucleated hyphae and spores. Numerous studies have shown that diverse microorganisms live on the surface of and inside their mycelia, resulting in a metagenome when whole-genome sequencing (WGS) data are obtained from sequencing AMF cultivated in vivo. The metagenome contains not only the AMF sequences, but also those from associated microorganisms. In this study, we introduce a novel bioinformatics program, Spore-associated Symbiotic Microbes (SeSaMe), designed for taxonomic classification of short sequences obtained by next-generation DNA sequencing. A genus-specific usage bias database was created based on amino acid usage and codon usage of a three consecutive codon DNA 9-mer encoding an amino acid trimer in a protein secondary structure. The program distinguishes between coding sequence (CDS) and non-CDS, and classifies a query sequence into a genus group out of 54 genera used as reference. The mean percentages of correct predictions of the CDS and the non-CDS test sets at the genus level were 71% and 50% for bacteria, 68% and 73% for fungi (excluding AMF), and 49% and 72% for AMF (Rhizophagus irregularis), respectively. SeSaMe provides not only a means for estimating taxonomic diversity and abundance but also the gene reservoir of the reference taxonomic groups associated with AMF. Therefore, it enables users to study the symbiotic roles of associated microorganisms. It can also be applicable to other microorganisms as well as soil metagenomes. SeSaMe is freely available at www.fungalsesame.org.
Collapse
|
18
|
Dalal N, Jalandra R, Sharma M, Prakash H, Makharia GK, Solanki PR, Singh R, Kumar A. Omics technologies for improved diagnosis and treatment of colorectal cancer: Technical advancement and major perspectives. Biomed Pharmacother 2020; 131:110648. [PMID: 33152902 DOI: 10.1016/j.biopha.2020.110648] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/09/2020] [Accepted: 08/16/2020] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) ranks third among the most commonly occurring cancers worldwide, and it causes half a million deaths annually. Alongside mechanistic study for CRC detection and treatment by conventional techniques, new technologies have been developed to study CRC. These technologies include genomics, transcriptomics, proteomics, and metabolomics which elucidate DNA markers, RNA transcripts, protein and, metabolites produced inside the colon and rectum part of the gut. All these approaches form the omics arena, which presents a remarkable opportunity for the discovery of novel prognostic, diagnostic and therapeutic biomarkers and also delineate the underlying mechanism of CRC causation, which may further help in devising treatment strategies. This review also mentions the latest developments in metagenomics and culturomics as emerging evidence suggests that metagenomics of gut microbiota has profound implications in the causation, prognosis, and treatment of CRC. A majority of bacteria cannot be studied as they remain unculturable, so culturomics has also been strengthened to develop culture conditions suitable for the growth of unculturable bacteria and identify unknown bacteria. The overall purpose of this review is to succinctly evaluate the application of omics technologies in colorectal cancer research for improving the diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Nishu Dalal
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi 110067, India; Department of Environmental Science, Satyawati College, Delhi University, Delhi 110052, India
| | - Rekha Jalandra
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi 110067, India; Department of Zoology, Maharshi Dayanand University, Rohtak 124001, India
| | - Minakshi Sharma
- Department of Zoology, Maharshi Dayanand University, Rohtak 124001, India
| | - Hridayesh Prakash
- Amity Institute of Virology and Immunology, Amity University, Sector 125, Noida 201313, Uttar Pradesh, India
| | - Govind K Makharia
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Pratima R Solanki
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajeev Singh
- Department of Environmental Science, Satyawati College, Delhi University, Delhi 110052, India.
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi 110067, India.
| |
Collapse
|
19
|
Rozadilla G, Clemente JM, McCarthy CB. HoSeIn: A Workflow for Integrating Various Homology Search Results from Metagenomic and Metatranscriptomic Sequence Datasets. Bio Protoc 2020; 10:e3679. [PMID: 33659350 PMCID: PMC7842381 DOI: 10.21769/bioprotoc.3679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 11/02/2022] Open
Abstract
Data generated by metagenomic and metatranscriptomic experiments is both enormous and inherently noisy. When using taxonomy-dependent alignment-based methods to classify and label reads, the first step consists in performing homology searches against sequence databases. To obtain the most information from the samples, nucleotide sequences are usually compared to various databases (nucleotide and protein) using local sequence aligners such as BLASTN and BLASTX. Nevertheless, the analysis and integration of these results can be problematic because the outputs from these searches usually show inconsistencies, which can be notorious when working with RNA-seq. Moreover, and to the best of our knowledge, existing tools do not criss-cross and integrate information from the different homology searches, but provide the results of each analysis separately. We developed the HoSeIn workflow to intersect the information from these homology searches, and then determine the taxonomic and functional profile of the sample using this integrated information. The workflow is based on the assumption that the sequences that correspond to a certain taxon are composed of: sequences that were assigned to the same taxon by both homology searches; sequences that were assigned to that taxon by one of the homology searches but returned no hits in the other one.
Collapse
Affiliation(s)
- Gaston Rozadilla
- Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Jorgelina Moreiras Clemente
- Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Christina B. McCarthy
- Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
- Departamento de Informática y Tecnología, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino, Buenos Aires, Argentina
| |
Collapse
|
20
|
Goller CC, Ott LE. Evolution of an 8-week upper-division metagenomics course: Diagramming a learning path from observational to quantitative microbiome analysis. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 48:391-403. [PMID: 32294307 DOI: 10.1002/bmb.21349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
Metagenomics is a tool that enables researchers to study genetic material recovered directly from microbial communities or microbiomes. Fueled by advances in sequencing technologies, bioinformatics tools, and sample processing, metagenomics studies promise to expand our understanding of human health and the use of microorganisms for agriculture and industry. Therefore, teaching students about metagenomics is crucial to prepare them for modern careers in the life sciences. However, the increasing number of different approaches makes teaching metagenomics to students a challenge. This 8-week metagenomics laboratory course has the objective of introducing upper-level undergraduate and graduate students to strategies for designing, executing, and analyzing microbiome investigations. The laboratory component begins with sample processing, library preparation, and submission for high-throughput sequencing before transitioning to computer-based activities, which include an introduction to several fundamental computational metagenomics tools. Students analyze their sequencing results and deposit findings in sequence databases. The laboratory component is complemented by a weekly lecture, where active learning sessions promote retrieval practice and allow students to reflect on and diagram processes performed in the laboratory. Attainment of student learning outcomes was assessed through the completion of various course assignments: laboratory reports, presentations, and a cumulative final exam. Further, students' perceptions of their gains relevant to the learning outcomes were evaluated using pre- and postcourse surveys. Collectively, these data demonstrate that this course results in the attainment of the learning outcomes and that this approach provides an adaptable way to expose students to the cutting-edge field of metagenomics.
Collapse
Affiliation(s)
- Carlos C Goller
- Biotechnology Program (BIT), North Carolina State University, Raleigh, North Carolina, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Laura E Ott
- College of Natural and Mathematical Sciences, University of Maryland, Baltimore County, Baltimore, Maryland, USA
| |
Collapse
|
21
|
Dekaboruah E, Suryavanshi MV, Chettri D, Verma AK. Human microbiome: an academic update on human body site specific surveillance and its possible role. Arch Microbiol 2020; 202:2147-2167. [PMID: 32524177 PMCID: PMC7284171 DOI: 10.1007/s00203-020-01931-x] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/21/2022]
Abstract
Human body is inhabited by vast number of microorganisms which form a complex ecological community and influence the human physiology, in the aspect of both health and diseases. These microbes show a relationship with the human immune system based on coevolution and, therefore, have a tremendous potential to contribute to the metabolic function, protection against the pathogen and in providing nutrients and energy. However, of these microbes, many carry out some functions that play a crucial role in the host physiology and may even cause diseases. The introduction of new molecular technologies such as transcriptomics, metagenomics and metabolomics has contributed to the upliftment on the findings of the microbiome linked to the humans in the recent past. These rapidly developing technologies are boosting our capacity to understand about the human body-associated microbiome and its association with the human health. The highlights of this review are inclusion of how to derive microbiome data and the interaction between human and associated microbiome to provide an insight on the role played by the microbiome in biological processes of the human body as well as the development of major human diseases.
Collapse
Affiliation(s)
- Elakshi Dekaboruah
- Department of Microbiology, Sikkim University, Gangtok, Sikkim, 737102, India
| | | | - Dixita Chettri
- Department of Microbiology, Sikkim University, Gangtok, Sikkim, 737102, India
| | - Anil Kumar Verma
- Department of Microbiology, Sikkim University, Gangtok, Sikkim, 737102, India.
| |
Collapse
|
22
|
Leaf-associated microbiota on perilla (Perilla frutescens var. frutescens) cultivated in South Korea to detect the potential risk of food poisoning. Food Res Int 2019; 126:108664. [DOI: 10.1016/j.foodres.2019.108664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 08/28/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022]
|
23
|
Mullis MM, Rambo IM, Baker BJ, Reese BK. Diversity, Ecology, and Prevalence of Antimicrobials in Nature. Front Microbiol 2019; 10:2518. [PMID: 31803148 PMCID: PMC6869823 DOI: 10.3389/fmicb.2019.02518] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/18/2019] [Indexed: 12/15/2022] Open
Abstract
Microorganisms possess a variety of survival mechanisms, including the production of antimicrobials that function to kill and/or inhibit the growth of competing microorganisms. Studies of antimicrobial production have largely been driven by the medical community in response to the rise in antibiotic-resistant microorganisms and have involved isolated pure cultures under artificial laboratory conditions neglecting the important ecological roles of these compounds. The search for new natural products has extended to biofilms, soil, oceans, coral reefs, and shallow coastal sediments; however, the marine deep subsurface biosphere may be an untapped repository for novel antimicrobial discovery. Uniquely, prokaryotic survival in energy-limited extreme environments force microbial populations to either adapt their metabolism to outcompete or produce novel antimicrobials that inhibit competition. For example, subsurface sediments could yield novel antimicrobial genes, while at the same time answering important ecological questions about the microbial community.
Collapse
Affiliation(s)
- Megan M. Mullis
- Department of Life Sciences, Texas A&M University Corpus Christi, Corpus Christi, TX, United States
| | - Ian M. Rambo
- Department of Marine Science, University of Texas Marine Science Institute, Port Aransas, TX, United States
| | - Brett J. Baker
- Department of Marine Science, University of Texas Marine Science Institute, Port Aransas, TX, United States
| | - Brandi Kiel Reese
- Department of Life Sciences, Texas A&M University Corpus Christi, Corpus Christi, TX, United States
| |
Collapse
|
24
|
Cyanobacterial biodiversity of semiarid public drinking water supply reservoirs assessed via next-generation DNA sequencing technology. J Microbiol 2019; 57:450-460. [DOI: 10.1007/s12275-019-8349-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/13/2018] [Accepted: 12/13/2018] [Indexed: 02/06/2023]
|
25
|
The effect of 16S rRNA region choice on bacterial community metabarcoding results. Sci Data 2019; 6:190007. [PMID: 30720800 PMCID: PMC6362892 DOI: 10.1038/sdata.2019.7] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/13/2018] [Indexed: 12/01/2022] Open
Abstract
In this work, we compare the resolution of V2-V3 and V3-V4 16S rRNA regions for the purposes of estimating microbial community diversity using paired-end Illumina MiSeq reads, and show that the fragment, including V2 and V3 regions, has higher resolution for lower-rank taxa (genera and species). It allows for a more precise distance-based clustering of reads into species-level OTUs. Statistically convergent estimates of the diversity of major species (defined as those that together are covered by 95% of reads) can be achieved at the sample sizes of 10000 to 15000 reads. The relative error of the Shannon index estimate for this condition is lower than 4%.
Collapse
|
26
|
Rizo J, Guillén D, Farrés A, Díaz-Ruiz G, Sánchez S, Wacher C, Rodríguez-Sanoja R. Omics in traditional vegetable fermented foods and beverages. Crit Rev Food Sci Nutr 2018; 60:791-809. [PMID: 30582346 DOI: 10.1080/10408398.2018.1551189] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
For a long time, food microbiota has been studied using traditional microbiological techniques. With the arrival of molecular or culture-independent techniques, a strong understanding of microbiota dynamics has been achieved. However, analyzing the functional role of microbial communities is not an easy task. The application of omics sciences to the study of fermented foods would provide the metabolic and functional understanding of the microbial communities and their impact on the fermented product, including the molecules that define its aroma and flavor, as well as its nutritional properties. Until now, most omics studies have focused on commercial fermented products, such as cheese, wine, bread and beer, but traditional fermented foods have been neglected. Therefore, the information that allows to relate the present microbiota in the food and its properties remains limited. In this review, reports on the applications of omics in the study of traditional fermented foods and beverages are reviewed to propose new ways to analyze the fermentation phenomena.
Collapse
Affiliation(s)
- Jocelin Rizo
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Daniel Guillén
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Amelia Farrés
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Gloria Díaz-Ruiz
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Sergio Sánchez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Carmen Wacher
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Romina Rodríguez-Sanoja
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| |
Collapse
|
27
|
Genetic and functional diversity of double-stranded DNA viruses in a tropical monsoonal estuary, India. Sci Rep 2018; 8:16036. [PMID: 30375431 PMCID: PMC6207776 DOI: 10.1038/s41598-018-34332-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/04/2018] [Indexed: 11/08/2022] Open
Abstract
The present study illustrates the genetic diversity of four uncultured viral communities from the surface waters of Cochin Estuary (CE), India. Viral diversity inferred using Illumina HiSeq paired-end sequencing using a linker-amplified shotgun library (LASL) revealed different double-stranded DNA (dsDNA) viral communities. The water samples were collected from four stations PR1, PR2, PR3, and PR4, during the pre-monsoon (PRM) season. Analysis of virus families indicated that the Myoviridae was the most common viral community in the CE followed by Siphoviridae and Podoviridae. There were significant (p < 0.05) spatial variations in the relative abundance of dominant families in response to the salinity regimes. The relative abundance of Myoviridae and Podoviridae were high in the euryhaline region and Siphoviridae in the mesohaline region of the estuary. The predominant phage type in CE was phages that infected Synechococcus. The viral proteins were found to be involved in major functional activities such as ATP binding, DNA binding, and DNA replication. The study highlights the genetic diversity of dsDNA viral communities and their functional protein predictions from a highly productive estuarine system. Further, the metavirome data generated in this study will enhance the repertoire of publicly available dataset and advance our understanding of estuarine viral ecology.
Collapse
|
28
|
Jang JE, Kim HP, Han SW, Jang H, Lee SH, Song SH, Bang D, Kim TY. NFATC3-PLA2G15 Fusion Transcript Identified by RNA Sequencing Promotes Tumor Invasion and Proliferation in Colorectal Cancer Cell Lines. Cancer Res Treat 2018; 51:391-401. [PMID: 29909608 PMCID: PMC6333966 DOI: 10.4143/crt.2018.103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/28/2018] [Indexed: 12/16/2022] Open
Abstract
Purpose This study was designed to identify novel fusion transcripts (FTs) and their functional significance in colorectal cancer (CRC) lines. Materials and Methods We performed paired-end RNA sequencing of 28 CRC cell lines. FT candidates were identified using TopHat-fusion, ChimeraScan, and FusionMap tools and further experimental validation was conducted through reverse transcription-polymerase chain reaction and Sanger sequencing. FT was depleted in human CRC line and the effects on cell proliferation, cell migration, and cell invasion were analyzed. Results One thousand three hundred eighty FT candidates were detected through bioinformatics filtering. We selected six candidate FTs, including four inter-chromosomal and two intrachromosomal FTs and each FT was found in at least one of the 28 cell lines. Moreover, when we tested 19 pairs of CRC tumor and adjacent normal tissue samples, NFATC3–PLA2G15 FT was found in two. Knockdown of NFATC3–PLA2G15 using siRNA reduced mRNA expression of epithelial–mesenchymal transition (EMT) markers such as vimentin, twist, and fibronectin and increased mesenchymal–epithelial transition markers of E-cadherin, claudin-1, and FOXC2 in colo-320 cell line harboring NFATC3–PLA2G15 FT. The NFATC3–PLA2G15 knockdown also inhibited invasion, colony formation capacity, and cell proliferation. Conclusion These results suggest that that NFATC3–PLA2G15 FTs may contribute to tumor progression by enhancing invasion by EMT and proliferation.
Collapse
Affiliation(s)
- Jee-Eun Jang
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hwang-Phill Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University College of Medicine, Seoul, Korea
| | - Sae-Won Han
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Hoon Jang
- Department of Chemistry, College of Science, Yonsei University, Seoul, Korea
| | - Si-Hyun Lee
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Sang-Hyun Song
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Duhee Bang
- Department of Chemistry, College of Science, Yonsei University, Seoul, Korea
| | - Tae-You Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
29
|
Lücking R, Hawksworth DL. Formal description of sequence-based voucherless Fungi: promises and pitfalls, and how to resolve them. IMA Fungus 2018; 9:143-166. [PMID: 30018876 PMCID: PMC6048566 DOI: 10.5598/imafungus.2018.09.01.09] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 05/15/2018] [Indexed: 11/25/2022] Open
Abstract
There is urgent need for a formal nomenclature of sequence-based, voucherless Fungi, given that environmental sequencing has accumulated more than one billion fungal ITS reads in the Sequence Read Archive, about 1,000 times as many as fungal ITS sequences in GenBank. These unnamed Fungi could help to bridge the gap between 115,000 to 140,000 currently accepted and 2.2 to 3.8 million predicted species, a gap that cannot realistically be filled using specimen or culture-based inventories. The Code never aimed at placing restrictions on the nature of characters chosen for taxonomy, and the requirement for physical types is now becoming a constraint on the advancement of science. We elaborate on the promises and pitfalls of sequence-based nomenclature and provide potential solutions to major concerns of the mycological community. Types of sequence-based taxa, which by default lack a physical specimen or culture, could be designated in four alternative ways: (1) the underlying sample ('bag' type), (2) the DNA extract, (3) fluorescent in situ hybridization (FISH), or (4) the type sequence itself. Only (4) would require changes to the Code and the latter would be the most straightforward approach, complying with three of the five principal functions of types better than physical specimens. A fifth way, representation of the sequence in an illustration, has been ruled as unacceptable in the Code. Potential flaws in sequence data are analogous to flaws in physical types, and artifacts are manageable if a stringent analytical approach is applied. Conceptual errors such as homoplasy, intragenomic variation, gene duplication, hybridization, and horizontal gene transfer, apply to all molecular approaches and cannot be used as a specific argument against sequence-based nomenclature. The potential impact of these phenomena is manageable, as phylogenetic species delimitation has worked satisfactorily in Fungi. The most serious shortcoming of sequence-based nomenclature is the likelihood of parallel classifications, either by describing taxa that already have names based on physical types, or by using different markers to delimit species within the same lineage. The probability of inadvertently establishing sequence-based species that have names available is between 20.4 % and 1.5 % depending on the number of globally predicted fungal species. This compares favourably to a historical error rate of about 30 % based on physical types, and this rate could be reduced to practically zero by adding specific provisions to this approach in the Code. To avoid parallel classifications based on different markers, sequence-based nomenclature should be limited to a single marker, preferably the fungal ITS barcoding marker; this is possible since sequence-based nomenclature does not aim at accurate species delimitation but at naming lineages to generate a reference database, independent of whether these lineages represent species, closely related species complexes, or infraspecies. We argue that clustering methods are inappropriate for sequence-based nomenclature; this approach must instead use phylogenetic methods based on multiple alignments, combined with quantitative species recognition methods. We outline strategies to obtain higher-level phylogenies for ITS-based, voucherless species, including phylogenetic binning, 'hijacking' species delimitation methods, and temporal banding. We conclude that voucherless, sequence-based nomenclature is not a threat to specimen and culture-based fungal taxonomy, but a complementary approach capable of substantially closing the gap between known and predicted fungal diversity, an approach that requires careful work and high skill levels.
Collapse
Affiliation(s)
- Robert Lücking
- Botanischer Garten und Botanisches Museum, Freie Universität Berlin, Königin-Luise-Strasse 6–8, 14195 Berlin, Germany
| | - David L. Hawksworth
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; and Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Surrey TW9 3DS, UK; Jilin Agricultural University, Changchun, Jilin Province,130118 China
| |
Collapse
|
30
|
Lücking R, Kirk PM, Hawksworth DL. Sequence-based nomenclature: a reply to Thines et al. and Zamora et al. and provisions for an amended proposal "from the floor" to allow DNA sequences as types of names. IMA Fungus 2018; 9:185-198. [PMID: 30018879 PMCID: PMC6048568 DOI: 10.5598/imafungus.2018.09.01.12] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/08/2018] [Indexed: 02/07/2023] Open
Abstract
We reply to two recently published, multi-authored opinion papers by opponents of sequence-based nomenclature, namely Zamora et al. (IMA Fungus9: 167-175,2018) and Thines et al. (IMA Fungus9: 177-183, 2018). While we agree with some of the principal arguments brought forward by these authors, we address misconceptions and demonstrate that some of the presumed evidence presented in these papers has been wrongly interpreted. We disagree that allowing sequences as types would fundamentally alter the nature of types, since a similar nature of abstracted features as type is already allowed in the Code (Art. 40.5), namely an illustration. We also disagree that there is a high risk of introducing artifactual taxa, as this risk can be quantified at well below 5 %, considering the various types of high-throughput sequencing errors. Contrary to apparently widespread misconceptions, sequence-based nomenclature cannot be based on similarity-derived OTUs and their consensus sequences, but must be derived from rigorous, multiple alignment-based phylogenetic methods and quantitative, single-marker species recognition algorithms, using original sequence reads; it is therefore identical in its approach to single-marker studies based on physical types, an approach allowed by the Code. We recognize the limitations of the ITS as a single fungal barcoding marker, but point out that these result in a conservative approach, with "false negatives" surpassing "false positives"; a desirable feature of sequence-based nomenclature. Sequence-based nomenclature does not aim at accurately resolving species, but at naming sequences that represent unknown fungal lineages so that these can serve as a means of communication, so ending the untenable situation of an exponentially growing number of unlabeled fungal sequences that fill online repositories. The risks are outweighed by the gains obtained by a reference library of named sequences spanning the full array of fungal diversity. Finally, we elaborate provisions in addition to our original proposal to amend the Code that would take care of the issues brought forward by opponents to this approach. In particular, taking up the idea of the Candidatus status of invalid, provisional names in prokaryote nomenclature, we propose a compromise that would allow valid publication of voucherless, sequence-based names in a consistent manner, but with the obligate designation as "nom. seq." (nomen sequentiae). Such names would not have priority over specimen- or culture-based names unless either epitypified with a physical type or adopted for protection on the recommendation of a committee of the International Commission on the Taxonomy of Fungi following evaluation based on strict quality control of the underlying studies based on established rules or recommendations.
Collapse
Affiliation(s)
- Robert Lücking
- Botanischer Garten und Botanisches Museum, Freie Universität Berlin, Königin-Luise-Straße 6-8, D-14195 Berlin, Germany
| | - Paul M. Kirk
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Biodiversity Informatics & Spatial Analysis, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK
| | - David L. Hawksworth
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; Jilin Agricultural University, Chanchung, Jilin province, 130118 China
| |
Collapse
|
31
|
|
32
|
Pourteymour S, Hjorth M, Lee S, Holen T, Langleite TM, Jensen J, Birkeland KI, Drevon CA, Eckardt K. Dual specificity phosphatase 5 and 6 are oppositely regulated in human skeletal muscle by acute exercise. Physiol Rep 2018; 5:5/19/e13459. [PMID: 28989118 PMCID: PMC5641939 DOI: 10.14814/phy2.13459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/25/2017] [Accepted: 08/29/2017] [Indexed: 12/24/2022] Open
Abstract
Physical activity promotes specific adaptations in most tissues including skeletal muscle. Acute exercise activates numerous signaling cascades including pathways involving mitogen‐activated protein kinases (MAPKs) such as extracellular signal‐regulated kinase (ERK)1/2, which returns to pre‐exercise level after exercise. The expression of MAPK phosphatases (MKPs) in human skeletal muscle and their regulation by exercise have not been investigated before. In this study, we used mRNA sequencing to monitor regulation of MKPs in human skeletal muscle after acute cycling. In addition, primary human myotubes were used to gain more insights into the regulation of MKPs. The two ERK1/2‐specific MKPs, dual specificity phosphatase 5 (DUSP5) and DUSP6, were the most regulated MKPs in skeletal muscle after acute exercise. DUSP5 expression was ninefold higher immediately after exercise and returned to pre‐exercise level within 2 h, whereas DUSP6 expression was reduced by 43% just after exercise and remained below pre‐exercise level after 2 h recovery. Cultured myotubes express both MKPs, and incubation with dexamethasone (Dex) mimicked the in vivo expression pattern of DUSP5 and DUSP6 caused by exercise. Using a MAPK kinase inhibitor, we showed that stimulation of ERK1/2 activity by Dex was required for induction of DUSP5. However, maintaining basal ERK1/2 activity was required for basal DUSP6 expression suggesting that the effect of Dex on DUSP6 might involve an ERK1/2‐independent mechanism. We conclude that the altered expression of DUSP5 and DUSP6 in skeletal muscle after acute endurance exercise might affect ERK1/2 signaling of importance for adaptations in skeletal muscle during exercise.
Collapse
Affiliation(s)
- Shirin Pourteymour
- Department of Nutrition, Institute for Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marit Hjorth
- Department of Nutrition, Institute for Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.,Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Sindre Lee
- Department of Nutrition, Institute for Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Torgeir Holen
- Department of Nutrition, Institute for Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Torgrim M Langleite
- Department of Nutrition, Institute for Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Kåre I Birkeland
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Christian A Drevon
- Department of Nutrition, Institute for Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kristin Eckardt
- Department of Nutrition, Institute for Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
33
|
Sharma N, Verma R, Bhalla TC. Classifying nitrilases as aliphatic and aromatic using machine learning technique. 3 Biotech 2018; 8:68. [PMID: 29354379 DOI: 10.1007/s13205-018-1102-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 01/06/2018] [Indexed: 11/30/2022] Open
Abstract
ProCos (Protein Composition Server, script version), one of the machine learning techniques, was used to classify nitrilases as aliphatic and aromatic nitrilases. Some important feature vectors were used to train the algorithm, which included pseudo-amino acid composition (PAAC) and five-factor solution score (5FSS). This clearly differentiated into two groups of nitrilases, i.e., aliphatic and aromatic, achieving maximum sensitivity of 100.00%, specificity of 90.00%, accuracy of 95.00% and Mathew Correlation Coefficient (MCC) of about 0.90 for the pseudo-amino acid composition. On the other hand, five-factor solution score achieved a sensitivity of 96.00%, specificity of 84.00%, accuracy of 90.00% and Mathew Correlation Coefficient (MCC) of about 0.81. The total count of aliphatic amino acids, Ala (A), Gly (G), Leu (L), Ile (I), Val (V), Met (M) and Pro (P), was found to be higher, i.e., 42.7 in case of aliphatic nitrilases, whereas it was 40.1 in aromatic nitrilases. On the other hand, aromatic amino acids, Tyr (Y), Trp (W), His (H) and Phe (F) number, were found to be higher, i.e., 12.7 in aromatic nitrilases as compared to aliphatic nitrilases which was 10.7. This approach will help in predicting a nitrilase as aromatic or aliphatic nitrilase based on its amino acid sequence. Access to the scripts can be done logging onto GitHub using keyword 'Nitrilase' or 'https://github.com/rover2380/Nitrilase.git'.
Collapse
Affiliation(s)
- Nikhil Sharma
- 1Bioinformatics Centre, Himachal Pradesh University, Summer Hill, Shimla, 171005 India
| | - Ruchi Verma
- 1Bioinformatics Centre, Himachal Pradesh University, Summer Hill, Shimla, 171005 India
- 2Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, Himachal Pradesh 171005 India
| | - Tek Chand Bhalla
- 2Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, Himachal Pradesh 171005 India
| |
Collapse
|
34
|
Byrne SJ, Butler CA, Reynolds EC, Dashper SG. Taxonomy of Oral Bacteria. METHODS IN MICROBIOLOGY 2018. [DOI: 10.1016/bs.mim.2018.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Do CH, Bailey S, Macardle C, Thurgood LA, Lower KM, Kuss BJ. Development of locus specific sub-clone separation by fluorescence in situ hybridization in suspension in chronic lymphocytic leukemia. Cytometry A 2017; 91:1088-1095. [PMID: 29024486 DOI: 10.1002/cyto.a.23264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 07/18/2017] [Accepted: 09/18/2017] [Indexed: 01/02/2023]
Abstract
Intra-tumor genetic heterogeneity is a hallmark of cancer. The ability to monitor and analyze these sub-clonal cell populations can be considered key to successful treatment, particularly in the modern era of targeted therapies. Although advances in sequencing technologies have significantly improved our ability to analyze the mutational landscape of tumors, this utility is reduced when considering small, but clinically significant sub-clones, that is, those representing <10% of the tumor burden. We have developed a high-throughput method that utilizes a 17-probe labeled bacterial artificial chromosome contig to quantify sub-clonal populations of cells based on deletion of a single locus. Chronic lymphocytic leukemia (CLL) cells harboring deletion of the short arm of chromosome 17 (del17p), an important prognostic marker for CLL were used to demonstrate the technique. Sub-clones of del17p cells were quantified and isolated from heterogeneous CLL populations using fluorescence in situ hybridization in suspension (FISH-IS) and the locus specific probe set. Using the combination of FISH-IS with the locus-specific probe set enables automated analysis of tens of thousands of cells, accurately quantifying and isolating cells carrying a del17p. Based on the fluorescence intensity of 17p probes, 17p (TP53) deleted cells were identified and sorted using flow cytometric techniques, and enrichment was demonstrated using single nucleotide polymorphism analysis. The ability to separate sub-clones of cells based on genetic heterogeneity, independent of the clone size, highlights the potential application of this method not only in the diagnostic and prognostic setting, but also as an unbiased approach to enable further detailed genetic analysis of the sub-clone with deep sequencing approaches. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Cuc H Do
- Discipline Molecular Medicine and Pathology College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Sheree Bailey
- Department of Immunology Allergy and Arthritis, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Cindy Macardle
- Department of Immunology Allergy and Arthritis, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Lauren A Thurgood
- Discipline Molecular Medicine and Pathology College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Karen M Lower
- Discipline Molecular Medicine and Pathology College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Bryone J Kuss
- Discipline Molecular Medicine and Pathology College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.,Hematology, Molecular Medicine and Pathology, Flinders Medical Centre, Adelaide, South Australia, Australia
| |
Collapse
|
36
|
Jünemann S, Kleinbölting N, Jaenicke S, Henke C, Hassa J, Nelkner J, Stolze Y, Albaum SP, Schlüter A, Goesmann A, Sczyrba A, Stoye J. Bioinformatics for NGS-based metagenomics and the application to biogas research. J Biotechnol 2017; 261:10-23. [PMID: 28823476 DOI: 10.1016/j.jbiotec.2017.08.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 12/19/2022]
Abstract
Metagenomics has proven to be one of the most important research fields for microbial ecology during the last decade. Starting from 16S rRNA marker gene analysis for the characterization of community compositions to whole metagenome shotgun sequencing which additionally allows for functional analysis, metagenomics has been applied in a wide spectrum of research areas. The cost reduction paired with the increase in the amount of data due to the advent of next-generation sequencing led to a rapidly growing demand for bioinformatic software in metagenomics. By now, a large number of tools that can be used to analyze metagenomic datasets has been developed. The Bielefeld-Gießen center for microbial bioinformatics as part of the German Network for Bioinformatics Infrastructure bundles and imparts expert knowledge in the analysis of metagenomic datasets, especially in research on microbial communities involved in anaerobic digestion residing in biogas reactors. In this review, we give an overview of the field of metagenomics, introduce into important bioinformatic tools and possible workflows, accompanied by application examples of biogas surveys successfully conducted at the Center for Biotechnology of Bielefeld University.
Collapse
Affiliation(s)
- Sebastian Jünemann
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany; Faculty of Technology, Bielefeld University, Bielefeld, Germany.
| | - Nils Kleinbölting
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Sebastian Jaenicke
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany; Bioinformatics and Systems Biology, Justus-Liebig-Universität, Gießen, Germany
| | - Christian Henke
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Julia Hassa
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Johanna Nelkner
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Yvonne Stolze
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Stefan P Albaum
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Andreas Schlüter
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus-Liebig-Universität, Gießen, Germany
| | - Alexander Sczyrba
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany; Faculty of Technology, Bielefeld University, Bielefeld, Germany
| | - Jens Stoye
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany; Faculty of Technology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
37
|
Martínez-Porchas M, Vargas-Albores F. An efficient strategy using k-mers to analyse 16S rRNA sequences. Heliyon 2017; 3:e00370. [PMID: 28795166 PMCID: PMC5537200 DOI: 10.1016/j.heliyon.2017.e00370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/11/2017] [Accepted: 07/21/2017] [Indexed: 11/28/2022] Open
Abstract
The use of k-mers has been a successful strategy for improving metagenomics studies, including taxonomic classifications, or de novo assemblies, and can be used to obtain sequences of interest from the available databases. The aim of this manuscript was to propose a simple but efficient strategy to generate k-mers and to use them to obtain and analyse in silico 16S rRNA sequence fragments. A total of 513,309 bacterial sequences contained in the SILVA database were considered for the study, and homemade PHP scripts were used to search for specific nucleotide chains, recover fragments of bacterial sequences, make calculations and organize information. Consensus sequences matching conserved regions were constructed by aligning most of the primers used in the literature. Sequences of k nucleotides (9- to 15-mers) were extracted from the generated primer contigs. Frequency analysis revealed that k-mer size was inversely proportional to the occurrence of k-mers in the different conserved regions, suggesting a stringency relationship; high numbers of duplicate reactions were observed with short k-mers, and a lower proportion of sequences were obtained with large ones, with the best results obtained using 12-mers. Using 12-mers with the proposed method to obtain and study sequences was found to be a reliable approach for the analysis of 16S rRNA sequences and this strategy may probably be extended to other biomarkers. Furthermore, additional applications such as evaluating the degree of conservation and designing primers and other calculations are proposed as examples.
Collapse
Affiliation(s)
| | - Francisco Vargas-Albores
- Centro de Investigación en Alimentación y Desarrollo, A. C. Km 0.6 Carretera a La Victoria. Hermosillo, Sonora, México
| |
Collapse
|
38
|
Carro L, Nouioui I. Taxonomy and systematics of plant probiotic bacteria in the genomic era. AIMS Microbiol 2017; 3:383-412. [PMID: 31294168 PMCID: PMC6604993 DOI: 10.3934/microbiol.2017.3.383] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/22/2017] [Indexed: 12/20/2022] Open
Abstract
Recent decades have predicted significant changes within our concept of plant endophytes, from only a small number specific microorganisms being able to colonize plant tissues, to whole communities that live and interact with their hosts and each other. Many of these microorganisms are responsible for health status of the plant, and have become known in recent years as plant probiotics. Contrary to human probiotics, they belong to many different phyla and have usually had each genus analysed independently, which has resulted in lack of a complete taxonomic analysis as a group. This review scrutinizes the plant probiotic concept, and the taxonomic status of plant probiotic bacteria, based on both traditional and more recent approaches. Phylogenomic studies and genes with implications in plant-beneficial effects are discussed. This report covers some representative probiotic bacteria of the phylum Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes, but also includes minor representatives and less studied groups within these phyla which have been identified as plant probiotics.
Collapse
Affiliation(s)
- Lorena Carro
- School of Biology, Newcastle University, Newcastle upon Tyne, UK
| | - Imen Nouioui
- School of Biology, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
39
|
Siegwald L, Touzet H, Lemoine Y, Hot D, Audebert C, Caboche S. Assessment of Common and Emerging Bioinformatics Pipelines for Targeted Metagenomics. PLoS One 2017; 12:e0169563. [PMID: 28052134 PMCID: PMC5215245 DOI: 10.1371/journal.pone.0169563] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 12/19/2016] [Indexed: 11/19/2022] Open
Abstract
Targeted metagenomics, also known as metagenetics, is a high-throughput sequencing application focusing on a nucleotide target in a microbiome to describe its taxonomic content. A wide range of bioinformatics pipelines are available to analyze sequencing outputs, and the choice of an appropriate tool is crucial and not trivial. No standard evaluation method exists for estimating the accuracy of a pipeline for targeted metagenomics analyses. This article proposes an evaluation protocol containing real and simulated targeted metagenomics datasets, and adequate metrics allowing us to study the impact of different variables on the biological interpretation of results. This protocol was used to compare six different bioinformatics pipelines in the basic user context: Three common ones (mothur, QIIME and BMP) based on a clustering-first approach and three emerging ones (Kraken, CLARK and One Codex) using an assignment-first approach. This study surprisingly reveals that the effect of sequencing errors has a bigger impact on the results that choosing different amplified regions. Moreover, increasing sequencing throughput increases richness overestimation, even more so for microbiota of high complexity. Finally, the choice of the reference database has a bigger impact on richness estimation for clustering-first pipelines, and on correct taxa identification for assignment-first pipelines. Using emerging assignment-first pipelines is a valid approach for targeted metagenomics analyses, with a quality of results comparable to popular clustering-first pipelines, even with an error-prone sequencing technology like Ion Torrent. However, those pipelines are highly sensitive to the quality of databases and their annotations, which makes clustering-first pipelines still the only reliable approach for studying microbiomes that are not well described.
Collapse
Affiliation(s)
- Léa Siegwald
- Gènes Diffusion, Douai, France
- CRIStAL (UMR CNRS 9189 University of Lille, Centre de Recherche en Informatique, Signal et Automatique de Lille) and Inria, Villeneuve d'Ascq, France
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- PEGASE-Biosciences, Institut Pasteur de Lille, Lille, France
| | - Hélène Touzet
- CRIStAL (UMR CNRS 9189 University of Lille, Centre de Recherche en Informatique, Signal et Automatique de Lille) and Inria, Villeneuve d'Ascq, France
| | - Yves Lemoine
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- PEGASE-Biosciences, Institut Pasteur de Lille, Lille, France
| | - David Hot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- PEGASE-Biosciences, Institut Pasteur de Lille, Lille, France
| | - Christophe Audebert
- Gènes Diffusion, Douai, France
- PEGASE-Biosciences, Institut Pasteur de Lille, Lille, France
| | - Ségolène Caboche
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- PEGASE-Biosciences, Institut Pasteur de Lille, Lille, France
- * E-mail:
| |
Collapse
|
40
|
Metavisitor, a Suite of Galaxy Tools for Simple and Rapid Detection and Discovery of Viruses in Deep Sequence Data. PLoS One 2017; 12:e0168397. [PMID: 28045932 PMCID: PMC5207757 DOI: 10.1371/journal.pone.0168397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 11/29/2016] [Indexed: 11/19/2022] Open
Abstract
Metavisitor is a software package that allows biologists and clinicians without specialized bioinformatics expertise to detect and assemble viral genomes from deep sequence datasets. The package is composed of a set of modular bioinformatic tools and workflows that are implemented in the Galaxy framework. Using the graphical Galaxy workflow editor, users with minimal computational skills can use existing Metavisitor workflows or adapt them to suit specific needs by adding or modifying analysis modules. Metavisitor works with DNA, RNA or small RNA sequencing data over a range of read lengths and can use a combination of de novo and guided approaches to assemble genomes from sequencing reads. We show that the software has the potential for quick diagnosis as well as discovery of viruses from a vast array of organisms. Importantly, we provide here executable Metavisitor use cases, which increase the accessibility and transparency of the software, ultimately enabling biologists or clinicians to focus on biological or medical questions.
Collapse
|
41
|
González C, Lazcano M, Valdés J, Holmes DS. Bioinformatic Analyses of Unique (Orphan) Core Genes of the Genus Acidithiobacillus: Functional Inferences and Use As Molecular Probes for Genomic and Metagenomic/Transcriptomic Interrogation. Front Microbiol 2016; 7:2035. [PMID: 28082953 PMCID: PMC5186765 DOI: 10.3389/fmicb.2016.02035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/02/2016] [Indexed: 01/06/2023] Open
Abstract
Using phylogenomic and gene compositional analyses, five highly conserved gene families have been detected in the core genome of the phylogenetically coherent genus Acidithiobacillus of the class Acidithiobacillia. These core gene families are absent in the closest extant genus Thermithiobacillus tepidarius that subtends the Acidithiobacillus genus and roots the deepest in this class. The predicted proteins encoded by these core gene families are not detected by a BLAST search in the NCBI non-redundant database of more than 90 million proteins using a relaxed cut-off of 1.0e−5. None of the five families has a clear functional prediction. However, bioinformatic scrutiny, using pI prediction, motif/domain searches, cellular location predictions, genomic context analyses, and chromosome topology studies together with previously published transcriptomic and proteomic data, suggests that some may have functions associated with membrane remodeling during cell division perhaps in response to pH stress. Despite the high level of amino acid sequence conservation within each family, there is sufficient nucleotide variation of the respective genes to permit the use of the DNA sequences to distinguish different species of Acidithiobacillus, making them useful additions to the armamentarium of tools for phylogenetic analysis. Since the protein families are unique to the Acidithiobacillus genus, they can also be leveraged as probes to detect the genus in environmental metagenomes and metatranscriptomes, including industrial biomining operations, and acid mine drainage (AMD).
Collapse
Affiliation(s)
- Carolina González
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & VidaSantiago, Chile; Facultad de Ciencias Biologicas, Universidad Andres BelloSantiago, Chile
| | - Marcelo Lazcano
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & VidaSantiago, Chile; Facultad de Ciencias Biologicas, Universidad Andres BelloSantiago, Chile
| | - Jorge Valdés
- Center for Genomics and Bioinformatics, Faculty of Sciences, Universidad Mayor Santiago, Chile
| | - David S Holmes
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & VidaSantiago, Chile; Facultad de Ciencias Biologicas, Universidad Andres BelloSantiago, Chile
| |
Collapse
|
42
|
Munang'andu HM. Environmental Viral Metagenomics Analyses in Aquaculture: Applications in Epidemiology and Disease Control. Front Microbiol 2016; 7:1986. [PMID: 28018317 PMCID: PMC5155513 DOI: 10.3389/fmicb.2016.01986] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/28/2016] [Indexed: 11/17/2022] Open
Abstract
Studies on the epidemiology of viral diseases in aquaculture have for a long time depended on isolation of viruses from infected aquatic organisms. The role of aquatic environments in the epidemiology of viral diseases in aquaculture has not been extensively expounded mainly because of the lack of appropriate tools for environmental studies on aquatic viruses. However, the upcoming of metagenomics analyses opens great avenues in which environmental samples can be used to study the epidemiology of viral diseases outside their host species. Hence, in this review I have shown that epidemiological factors that influence the composition of viruses in different aquatic environments include ecological factors, anthropogenic activities and stocking densities of cultured organisms based on environmental metagenomics studies carried out this far. Ballast water transportation and global trade of aquatic organisms are the most common virus dispersal process identified this far. In terms of disease control for outdoor aquaculture systems, baseline data on viruses found in different environments intended for aquaculture use can be obtained to enable the design of effective disease control strategies. And as such, high-risk areas having a high specter of pathogenic viruses can be identified as an early warning system. As for the control of viral diseases for indoor recirculation aquaculture systems (RAS), the most effective disinfection methods able to eliminate pathogenic viruses from water used in RAS can be identified. Overall, the synopsis I have put forth in this review shows that environmental samples can be used to study the epidemiology of viral diseases in aquaculture using viral metagenomics analysis as an overture for the design of rational disease control strategies.
Collapse
Affiliation(s)
- Hetron M Munang'andu
- Section of Aquatic Medicine and Nutrition, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences Oslo, Norway
| |
Collapse
|
43
|
Kishi LT, Fernandes CC, Omori WP, Campanharo JC, Lemos EGDM. Reclassification of the taxonomic status of SEMIA3007 isolated in Mexico B-11A Mex as Rhizobium leguminosarum bv. viceae by bioinformatic tools. BMC Microbiol 2016; 16:260. [PMID: 27814683 PMCID: PMC5097390 DOI: 10.1186/s12866-016-0882-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/28/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Evidence based on genomic sequences is extremely important to confirm the phylogenetic relationships within the Rhizobium group. SEMIA3007 was analyzed within the Mesorhizobium groups to define the underlying causes of taxonomic identification. We previously used biochemical tests and phenotypic taxonomic methods to identify bacteria, which can lead to erroneous classification. An improved understanding of bacterial strains such as the Mesorhizobium genus would increase our knowledge of classification and evolution of these species. RESULTS In this study, we sequenced the complete genome of SEMIA3007 and compared it with five other Mesorhizobium and two Rhizobium genomes. The genomes of isolated SEMIA3007 showed several orthologs with M. huakuii, M. erdmanii and M. loti. We identified SEMIA3007 as a Mesorhizobium by comparing the 16S rRNA gene and the complete genome. CONCLUSION Our ortholog, 16S rRNA gene and average nucleotide identity values (ANI) analysis all demonstrate SEMIA3007 is not Rhizobium leguminosarum bv. viceae. The results of the phylogenetic analysis clearly show SEMIA3007 is part of the Mesorhizobium group and suggest a reclassification is warranted.
Collapse
Affiliation(s)
- Luciano Takeshi Kishi
- Departamento de Tecnologia, Laboratório de Bioquímica de Microrganismos e Planta – LBMP, UNESP - Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Via de Acesso Prof. Paulo Donato Castellane s/n, 14884-900 Jaboticabal, SP Brazil
| | - Camila Cesário Fernandes
- Departamento de Tecnologia, Laboratório de Bioquímica de Microrganismos e Planta – LBMP, UNESP - Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Via de Acesso Prof. Paulo Donato Castellane s/n, 14884-900 Jaboticabal, SP Brazil
| | - Wellington Pine Omori
- Departamento de Tecnologia, Laboratório de Bioquímica de Microrganismos e Planta – LBMP, UNESP - Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Via de Acesso Prof. Paulo Donato Castellane s/n, 14884-900 Jaboticabal, SP Brazil
| | - João Carlos Campanharo
- Departamento de Tecnologia, Laboratório de Bioquímica de Microrganismos e Planta – LBMP, UNESP - Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Via de Acesso Prof. Paulo Donato Castellane s/n, 14884-900 Jaboticabal, SP Brazil
| | - Eliana Gertrudes de Macedo Lemos
- Departamento de Tecnologia, Laboratório de Bioquímica de Microrganismos e Planta – LBMP, UNESP - Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Via de Acesso Prof. Paulo Donato Castellane s/n, 14884-900 Jaboticabal, SP Brazil
| |
Collapse
|
44
|
Aguiar-Pulido V, Huang W, Suarez-Ulloa V, Cickovski T, Mathee K, Narasimhan G. Metagenomics, Metatranscriptomics, and Metabolomics Approaches for Microbiome Analysis. Evol Bioinform Online 2016; 12:5-16. [PMID: 27199545 PMCID: PMC4869604 DOI: 10.4137/ebo.s36436] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/26/2016] [Accepted: 01/31/2016] [Indexed: 01/21/2023] Open
Abstract
Microbiomes are ubiquitous and are found in the ocean, the soil, and in/on other living organisms. Changes in the microbiome can impact the health of the environmental niche in which they reside. In order to learn more about these communities, different approaches based on data from multiple omics have been pursued. Metagenomics produces a taxonomical profile of the sample, metatranscriptomics helps us to obtain a functional profile, and metabolomics completes the picture by determining which byproducts are being released into the environment. Although each approach provides valuable information separately, we show that, when combined, they paint a more comprehensive picture. We conclude with a review of network-based approaches as applied to integrative studies, which we believe holds the key to in-depth understanding of microbiomes.
Collapse
Affiliation(s)
- Vanessa Aguiar-Pulido
- Bioinformatics Research Group (BioRG), School of Computing and Information Sciences, Florida International University, Miami, FL, USA
| | - Wenrui Huang
- Bioinformatics Research Group (BioRG), School of Computing and Information Sciences, Florida International University, Miami, FL, USA
| | - Victoria Suarez-Ulloa
- Chromatin Structure and Evolution Group (Chromevol), Department of Biological Sciences, Florida International University, Miami, FL, USA
| | - Trevor Cickovski
- Bioinformatics Research Group (BioRG), School of Computing and Information Sciences, Florida International University, Miami, FL, USA.; Department of Computer Science, Eckerd College, St. Petersburg, FL, USA
| | - Kalai Mathee
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.; Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.; Global Health Consortium, Florida International University, Miami, FL, USA
| | - Giri Narasimhan
- Bioinformatics Research Group (BioRG), School of Computing and Information Sciences, Florida International University, Miami, FL, USA.; Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| |
Collapse
|
45
|
Rigoni R, Fontana E, Guglielmetti S, Fosso B, D'Erchia AM, Maina V, Taverniti V, Castiello MC, Mantero S, Pacchiana G, Musio S, Pedotti R, Selmi C, Mora JR, Pesole G, Vezzoni P, Poliani PL, Grassi F, Villa A, Cassani B. Intestinal microbiota sustains inflammation and autoimmunity induced by hypomorphic RAG defects. J Exp Med 2016; 213:355-75. [PMID: 26926994 PMCID: PMC4813669 DOI: 10.1084/jem.20151116] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 01/25/2016] [Indexed: 12/21/2022] Open
Abstract
Rigoni et al. report that hypomorphic Rag2R229Q mutation is associated with altered microbiota composition and defects in the gut–blood barrier and suggest that intestinal microbes may play a critical role in the distinctive immune dysregulation of Omenn syndrome. Omenn syndrome (OS) is caused by hypomorphic Rag mutations and characterized by a profound immunodeficiency associated with autoimmune-like manifestations. Both in humans and mice, OS is mediated by oligoclonal activated T and B cells. The role of microbial signals in disease pathogenesis is debated. Here, we show that Rag2R229Q knock-in mice developed an inflammatory bowel disease affecting both the small bowel and colon. Lymphocytes were sufficient for disease induction, as intestinal CD4 T cells with a Th1/Th17 phenotype reproduced the pathological picture when transplanted into immunocompromised hosts. Moreover, oral tolerance was impaired in Rag2R229Q mice, and transfer of wild-type (WT) regulatory T cells ameliorated bowel inflammation. Mucosal immunoglobulin A (IgA) deficiency in the gut resulted in enhanced absorption of microbial products and altered composition of commensal communities. The Rag2R229Q microbiota further contributed to the immunopathology because its transplant into WT recipients promoted Th1/Th17 immune response. Consistently, long-term dosing of broad-spectrum antibiotics (ABXs) in Rag2R229Q mice ameliorated intestinal and systemic autoimmunity by diminishing the frequency of mucosal and circulating gut-tropic CCR9+ Th1 and Th17 T cells. Remarkably, serum hyper-IgE, a hallmark of the disease, was also normalized by ABX treatment. These results indicate that intestinal microbes may play a critical role in the distinctive immune dysregulation of OS.
Collapse
Affiliation(s)
- Rosita Rigoni
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy Humanitas Clinical and Research Center, Rozzano, 20089 Milan, Italy
| | - Elena Fontana
- Department of Molecular and Translational Medicine, Pathology Unit, University of Brescia School of Medicine, 25123 Brescia, Italy
| | - Simone Guglielmetti
- Department of Food, Environmental, and Nutritional Sciences (DeFENS), University of Milan, 20122 Milan, Italy
| | - Bruno Fosso
- Institute of Biomembranes and Bioenergetics, National Research Council, 70126 Bari, Italy
| | - Anna Maria D'Erchia
- Department of Biosciences, Biotechnology, and Pharmacological Sciences, University of Bari, 70121 Bari, Italy Institute of Biomembranes and Bioenergetics, National Research Council, 70126 Bari, Italy
| | - Virginia Maina
- Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cells and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Valentina Taverniti
- Department of Food, Environmental, and Nutritional Sciences (DeFENS), University of Milan, 20122 Milan, Italy
| | - Maria Carmina Castiello
- Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cells and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Stefano Mantero
- Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cells and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giovanni Pacchiana
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy Humanitas Clinical and Research Center, Rozzano, 20089 Milan, Italy
| | - Silvia Musio
- Foundation IRCCS Neurological Institute, C. Besta, Neuroimmunology and Neuromuscular Disorders Unit, 20132 Milan, Italy
| | - Rosetta Pedotti
- Foundation IRCCS Neurological Institute, C. Besta, Neuroimmunology and Neuromuscular Disorders Unit, 20132 Milan, Italy
| | - Carlo Selmi
- Humanitas Clinical and Research Center, Rozzano, 20089 Milan, Italy BIOMETRA Department, University of Milan, 20122 Milan, Italy
| | - J Rodrigo Mora
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115
| | - Graziano Pesole
- Department of Biosciences, Biotechnology, and Pharmacological Sciences, University of Bari, 70121 Bari, Italy Institute of Biomembranes and Bioenergetics, National Research Council, 70126 Bari, Italy
| | - Paolo Vezzoni
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy Humanitas Clinical and Research Center, Rozzano, 20089 Milan, Italy
| | - Pietro Luigi Poliani
- Department of Molecular and Translational Medicine, Pathology Unit, University of Brescia School of Medicine, 25123 Brescia, Italy
| | - Fabio Grassi
- Istituto Nazionale Genetica Molecolare, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20122 Milan, Italy Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland
| | - Anna Villa
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cells and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Barbara Cassani
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy Humanitas Clinical and Research Center, Rozzano, 20089 Milan, Italy
| |
Collapse
|
46
|
Singh RP, Reddy CRK. Unraveling the Functions of the Macroalgal Microbiome. Front Microbiol 2016; 6:1488. [PMID: 26779144 PMCID: PMC4700259 DOI: 10.3389/fmicb.2015.01488] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/10/2015] [Indexed: 01/11/2023] Open
Abstract
Macroalgae are a diverse group of photosynthetic eukaryotic lower organisms and offer indispensable ecosystem services toward sustainable productivity of rocky coastal areas. The earlier studies have mainly focused on elucidation of the roles of the epiphytic bacterial communities in the ecophysiology of the host macroalga. However, mutualistic interactions have become topic of current interest. It is evident from recent studies that a fraction of epiphytic bacterial communities can be categorized as “core microbial species”, suggesting an obligate association. Epiphytic bacterial communities have also been reported to protect macroalgal surfaces from biofouling microorganisms through production of biologically active metabolites. Because of their intrinsic roles in the host life cycle, the host in turn may provide necessary organic nutrients in order to woo pelagic microbial communities to settle on the host surfaces. However, the precise composition of microbiomes and their functional partnership with hosts are hardly understood. In contrast, the microbial studies associated with human skin and gut and plants have significantly advanced our knowledge on microbiome and their functional interactions with the host. This has led to manipulation of the microbial flora of the human gut and of agricultural plants for improving health and performance. Therefore, it is highly imperative to investigate the functional microbiome that is closely involved in the life cycles of the host macroalgae using high-throughput techniques (metagenomics and metatranscriptomics). The findings from such investigations would help in promoting health and productivity in macroalgal species through regulation of functionally active microbiome.
Collapse
Affiliation(s)
- Ravindra Pal Singh
- Laboratory of Microbial Technology, Department of Bioscience and Biotechnology, Graduate School, Faculty of Agriculture, Kyushu UniversityFukuoka, Japan; Seaweed Biology and Cultivation, Division of Marine Biotechnology and Ecology, Council of Scientific and Industrial Research-Central Salt and Marine Chemicals Research InstituteBhavnagar, India
| | - C R K Reddy
- Seaweed Biology and Cultivation, Division of Marine Biotechnology and Ecology, Council of Scientific and Industrial Research-Central Salt and Marine Chemicals Research InstituteBhavnagar, India; Academy of Scientific and Innovative ResearchNew Delhi, India
| |
Collapse
|
47
|
Addis MF, Tanca A, Uzzau S, Oikonomou G, Bicalho RC, Moroni P. The bovine milk microbiota: insights and perspectives from -omics studies. MOLECULAR BIOSYSTEMS 2016; 12:2359-72. [DOI: 10.1039/c6mb00217j] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent findings and future perspectives of -omics studies on the bovine milk microbiota, focusing on its impact on animal health.
Collapse
Affiliation(s)
- M. F. Addis
- Porto Conte Ricerche
- SP 55 Porto Conte/Capo Caccia
- 07041 Alghero
- Italy
| | - A. Tanca
- Porto Conte Ricerche
- SP 55 Porto Conte/Capo Caccia
- 07041 Alghero
- Italy
| | - S. Uzzau
- Porto Conte Ricerche
- SP 55 Porto Conte/Capo Caccia
- 07041 Alghero
- Italy
- Università degli Studi di Sassari
| | - G. Oikonomou
- Epidemiology and Population Health
- Institute of Infection and Global Health
- University of Liverpool
- Liverpool
- UK
| | - R. C. Bicalho
- Cornell University
- Department of Population Medicine and Diagnostic Sciences
- College of Veterinary Medicine
- Ithaca
- USA
| | - P. Moroni
- Cornell University
- Department of Population Medicine and Diagnostic Sciences
- College of Veterinary Medicine
- Ithaca
- USA
| |
Collapse
|
48
|
Westhoff MA, Marschall N, Debatin KM. Novel Approaches to Apoptosis-Inducing Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 930:173-204. [PMID: 27558822 DOI: 10.1007/978-3-319-39406-0_8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Induction of apoptotic programmed cell death is one of the underlying principles of most current cancer therapies. In this review, we discuss the limitations and drawbacks of this approach and identify three distinct, but overlapping strategies to avoid these difficulties and further enhance the efficacy of apoptosis-inducing therapies. We postulate that the application of multi-targeted small molecule inhibitor cocktails will reduce the risk of the cancer cell populations developing resistance towards therapy. Following from these considerations regarding population genetics and ecology, we advocate the reconsideration of therapeutic end points to maximise the benefits, in terms of quantity and quality of life, for the patients. Finally, combining both previous points, we also suggest an altered focus on the cellular and molecular targets of therapy, i.e. targeting the (cancer cells') interaction with the tumour microenvironment.
Collapse
Affiliation(s)
- Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Eythstrasse 24, 89075, Ulm, Germany
| | - Nicolas Marschall
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Eythstrasse 24, 89075, Ulm, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Eythstrasse 24, 89075, Ulm, Germany.
| |
Collapse
|
49
|
Darzi Y, Falony G, Vieira-Silva S, Raes J. Towards biome-specific analysis of meta-omics data. ISME JOURNAL 2015; 10:1025-8. [PMID: 26623543 PMCID: PMC5029225 DOI: 10.1038/ismej.2015.188] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Youssef Darzi
- Microbiology Unit, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.,VIB, Center for the Biology of Disease, Leuven, Belgium.,Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Gwen Falony
- VIB, Center for the Biology of Disease, Leuven, Belgium.,Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Sara Vieira-Silva
- VIB, Center for the Biology of Disease, Leuven, Belgium.,Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Jeroen Raes
- Microbiology Unit, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.,VIB, Center for the Biology of Disease, Leuven, Belgium.,Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
50
|
Zhu XS, McGee M. Metagenomic Classification Using an Abstraction Augmented Markov Model. J Comput Biol 2015; 23:111-122. [PMID: 26618474 DOI: 10.1089/cmb.2015.0141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The abstraction augmented Markov model (AAMM) is an extension of a Markov model that can be used for the analysis of genetic sequences. It is developed using the frequencies of all possible consecutive words with same length (p-mers). This article will review the theory behind AAMM and apply the theory behind AAMM in metagenomic classification.
Collapse
Affiliation(s)
| | - Monnie McGee
- 2 Department of Statistical Science, Southern Methodist University , Dallas, Texas
| |
Collapse
|