1
|
Bennici G, Almahasheer H, Alghrably M, Valensin D, Kola A, Kokotidou C, Lachowicz J, Jaremko M. Mitigating diabetes associated with reactive oxygen species (ROS) and protein aggregation through pharmacological interventions. RSC Adv 2024; 14:17448-17460. [PMID: 38813124 PMCID: PMC11135279 DOI: 10.1039/d4ra02349h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024] Open
Abstract
Diabetes mellitus, a complex metabolic disorder, presents a growing global health challenge. In 2021, there were 529 million diabetics worldwide. At the super-regional level, Oceania, the Middle East, and North Africa had the highest age-standardized rates. The majority of cases of diabetes in 2021 (>90.0%) were type 2 diabetes, which is largely indicative of the prevalence of diabetes in general, particularly in older adults (K. L. Ong, et al., Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021, Lancet, 2023, 402(10397), 203-234). Nowadays, slowing the progression of diabetic complications is the only effective way to manage diabetes with the available therapeutic options. However, novel biomarkers and treatments are urgently needed to control cytokine secretion, advanced glycation end products (AGEs) production, vascular inflammatory effects, and cellular death. Emerging research has highlighted the intricate interplay between reactive oxygen species (ROS) and protein aggregation in the pathogenesis of diabetes. In this scenario, the main aim of this paper is to provide a comprehensive review of the current understanding of the molecular mechanisms underlying ROS-induced cellular damage and protein aggregation, specifically focusing on their contribution to diabetes development. The role of ROS as key mediators of oxidative stress in diabetes is discussed, emphasizing their impact on cellular components and signaling. Additionally, the involvement of protein aggregation in impairing cellular function and insulin signaling is explored. The synergistic effects of ROS and protein aggregation in promoting β-cell dysfunction and insulin resistance are examined, shedding light on potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Giulia Bennici
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Hanan Almahasheer
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU) Dammam 31441-1982 Saudi Arabia
| | - Mawadda Alghrably
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Daniela Valensin
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena Via Aldo Moro 2 53100 Siena Italy
| | - Arian Kola
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena Via Aldo Moro 2 53100 Siena Italy
| | - Chrysoula Kokotidou
- Department of Materials Science and Technology, University of Crete 70013 Heraklion Crete Greece
- Institute of Electronic Structure and Laser (IESL) FORTH 70013 Heraklion Crete Greece
| | - Joanna Lachowicz
- Department of Population Health, Division of Environmental Health and Occupational Medicine, Wroclaw Medical University Mikulicza-Radeckiego 7 Wroclaw PL 50-368 Poland
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
2
|
Uceda AB, Mariño L, Casasnovas R, Adrover M. An overview on glycation: molecular mechanisms, impact on proteins, pathogenesis, and inhibition. Biophys Rev 2024; 16:189-218. [PMID: 38737201 PMCID: PMC11078917 DOI: 10.1007/s12551-024-01188-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 05/14/2024] Open
Abstract
The formation of a heterogeneous set of advanced glycation end products (AGEs) is the final outcome of a non-enzymatic process that occurs in vivo on long-life biomolecules. This process, known as glycation, starts with the reaction between reducing sugars, or their autoxidation products, with the amino groups of proteins, DNA, or lipids, thus gaining relevance under hyperglycemic conditions. Once AGEs are formed, they might affect the biological function of the biomacromolecule and, therefore, induce the development of pathophysiological events. In fact, the accumulation of AGEs has been pointed as a triggering factor of obesity, diabetes-related diseases, coronary artery disease, neurological disorders, or chronic renal failure, among others. Given the deleterious consequences of glycation, evolution has designed endogenous mechanisms to undo glycation or to prevent it. In addition, many exogenous molecules have also emerged as powerful glycation inhibitors. This review aims to provide an overview on what glycation is. It starts by explaining the similarities and differences between glycation and glycosylation. Then, it describes in detail the molecular mechanism underlying glycation reactions, and the bio-molecular targets with higher propensity to be glycated. Next, it discusses the precise effects of glycation on protein structure, function, and aggregation, and how computational chemistry has provided insights on these aspects. Finally, it reports the most prevalent diseases induced by glycation, and the endogenous mechanisms and the current therapeutic interventions against it.
Collapse
Affiliation(s)
- Ana Belén Uceda
- Departament de Química, Universitat de Les Illes Balears, Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa Km 7.5, 07122 Palma, Spain
| | - Laura Mariño
- Departament de Química, Universitat de Les Illes Balears, Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa Km 7.5, 07122 Palma, Spain
| | - Rodrigo Casasnovas
- Departament de Química, Universitat de Les Illes Balears, Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa Km 7.5, 07122 Palma, Spain
| | - Miquel Adrover
- Departament de Química, Universitat de Les Illes Balears, Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa Km 7.5, 07122 Palma, Spain
| |
Collapse
|
3
|
Rossi GR, Jensen A, Ng S, Yin Z, Li A, Misra A, Von Hoff DD, Gruber L, Gruber M, Han H. Advanced glycation end product (AGE) targeting antibody SIWA318H is efficacious in preclinical models for pancreatic cancer. Sci Rep 2023; 13:16953. [PMID: 37805542 PMCID: PMC10560265 DOI: 10.1038/s41598-023-44211-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/05/2023] [Indexed: 10/09/2023] Open
Abstract
SIWA318H is a novel monoclonal antibody that selectively targets an advanced glycation end product biomarker found in damaged/dysfunctional cells exhibiting (a) aerobic glycolysis, and (b) oxidative stress. Cells with this biomarker are dysfunctional and are associated with stresses and/or damages relating to aging, cancer and other disease processes. In this study, we evaluated the biological effects and antitumor activity of SIWA318H in preclinical models for pancreatic cancer. SIWA318H binds to pancreatic cancer cells and cancer-associated fibroblasts, as well as tumor xenografts derived from pancreatic cancer patients. Furthermore, SIWA318H induced significant antibody-dependent cell-mediated cytotoxicity (ADCC) against pancreatic cancer cells. In a humanized CD34+ NSG mouse xenograft model for pancreatic cancer, tumors in mice treated with SIWA318H grew significantly slower compared to those in control mice (p < 0.001). After 3 weeks of treatment with SIWA318H, the tumor growth was suppressed by 68.8% and 61.5% for the high and low dose regimens, respectively, when compared to the isotype antibody control (ANOVA p < 0.002). Moreover, a significant increase in complete remission (CR) rate was observed in mice receiving the high dose (60%, p < 0.04) or low dose (77.8%, p < 0.02) of SIWA318H treatment compared with control mice (6.7%). Immunohistochemical analyses of the tumor tissues showed a significant decrease in senescent cells in the tumor microenvironment of SIWA318H treated mice compared to that of control treated mice (p < 0.05). These results provide compelling evidence that SIWA318H is a promising novel therapeutic against pancreatic cancer.
Collapse
Affiliation(s)
| | - Ashley Jensen
- Molecular Medicine Division, Translational Genomics Research Institute, Part of City of Hope, 445 N. Fifth St., Phoenix, AZ, 85004, USA
| | - Serina Ng
- Molecular Medicine Division, Translational Genomics Research Institute, Part of City of Hope, 445 N. Fifth St., Phoenix, AZ, 85004, USA
| | - Zhirong Yin
- Molecular Anatomical Pathology Cores & Biobanking Shared Resources, City of Hope, Duarte, CA, 91010, USA
| | - Aimin Li
- Molecular Anatomical Pathology Cores & Biobanking Shared Resources, City of Hope, Duarte, CA, 91010, USA
| | - Anjan Misra
- Molecular Anatomical Pathology Cores & Biobanking Shared Resources, City of Hope, Duarte, CA, 91010, USA
| | - Daniel D Von Hoff
- Molecular Medicine Division, Translational Genomics Research Institute, Part of City of Hope, 445 N. Fifth St., Phoenix, AZ, 85004, USA
| | | | | | - Haiyong Han
- Molecular Medicine Division, Translational Genomics Research Institute, Part of City of Hope, 445 N. Fifth St., Phoenix, AZ, 85004, USA.
| |
Collapse
|
4
|
Nakamura T, Tsujimoto T, Yasuda K, Ueki K, Kajio H. Continuous low serum levels of advanced glycation end products and low risk of cardiovascular disease in patients with poorly controlled type 2 diabetes. Cardiovasc Diabetol 2023; 22:147. [PMID: 37353776 PMCID: PMC10290294 DOI: 10.1186/s12933-023-01882-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/09/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Type 2 diabetes is associated with an increased risk of developing cardiovascular events. Previous studies have reported that advanced glycation end products (AGEs) were related to cardiovascular events in type 2 diabetes. However, data on associations between long-term AGEs and cardiovascular events in type 2 diabetes are lacking. This study aimed to determine whether a long-time shift in the levels of serum AGEs is associated with cardiovascular events in patients with poorly controlled type 2 diabetes. METHODS Two-time serum methyl-glyoxal-hydroimidazoline (MG-H1) levels were measured in 138 patients with type 2 diabetes whose mean glycated hemoglobin level was 10.1%. We categorized patients whose serum MG-H1 levels were < 2.8 µg/mL at both times as the continuous low MG-H1 group. The primary endpoints of this study were combined cardiovascular events, which were defined as heart disease, peripheral arterial disease, stroke, and all-cause death. Hazard ratios (HRs) for combined cardiovascular events with 95% confidence intervals (CIs) were calculated using the Cox proportional hazard models to compare the outcomes between the continuous low MG-H1 group and others. RESULTS The continuous low MG-H1 group was associated with a significantly lower risk than others in combined cardiovascular events after adjusting for possible confounders (HR: 0.50; 95% CI, 0.28-0.87; P = 0.02). Furthermore, the same relationship was observed in patients without a history of cardiovascular events. CONCLUSIONS Continuous low serum MG-H1 levels are associated with a low frequency of diabetes-related complications in patients with poorly controlled type 2 diabetes.
Collapse
Affiliation(s)
- Tomoka Nakamura
- Department of Diabetes, Endocrinology, and Metabolism, Center Hospital, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Tetsuro Tsujimoto
- Department of Diabetes, Endocrinology, and Metabolism, Center Hospital, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan.
- Department of Diabetes and Endocrinology, Toranomon Hospital Kajigaya, Kawasaki, Japan.
| | - Kazuki Yasuda
- Department of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, Tokyo, Japan
| | - Kohjiro Ueki
- Department of Diabetes, Endocrinology, and Metabolism, Center Hospital, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
- Department of Molecular Diabetic Medicine, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hiroshi Kajio
- Department of Diabetes, Endocrinology, and Metabolism, Center Hospital, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| |
Collapse
|
5
|
Dozio E, Caldiroli L, Molinari P, Castellano G, Delfrate NW, Romanelli MMC, Vettoretti S. Accelerated AGEing: The Impact of Advanced Glycation End Products on the Prognosis of Chronic Kidney Disease. Antioxidants (Basel) 2023; 12:antiox12030584. [PMID: 36978832 PMCID: PMC10045600 DOI: 10.3390/antiox12030584] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Advanced glycation end products (AGEs) are aging products. In chronic kidney disease (CKD), AGEs accumulate due to the increased production, reduced excretion, and the imbalance between oxidant/antioxidant capacities. CKD is therefore a model of aging. The aim of this review is to summarize the present knowledge of AGEs in CKD onset and progression, also focusing on CKD-related disorders (cardiovascular diseases, sarcopenia, and nutritional imbalance) and CKD mortality. The role of AGEs as etiopathogenetic molecules, as well as potential markers of disease progression and/or therapeutic targets, will be discussed.
Collapse
Affiliation(s)
- Elena Dozio
- Department of Biomedical Science for Health, Università degli Studi di Milano, 20133 Milan, Italy
| | - Lara Caldiroli
- Unit of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy
- Correspondence: ; Tel.: +39-025-5034-552; Fax: +39-025-5034-550
| | - Paolo Molinari
- Unit of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy
| | - Giuseppe Castellano
- Unit of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Nicholas Walter Delfrate
- Unit of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy
| | - Massimiliano Marco Corsi Romanelli
- Department of Biomedical Science for Health, Università degli Studi di Milano, 20133 Milan, Italy
- Service of Laboratory Medicine1-Clinical Pathology, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Simone Vettoretti
- Unit of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy
| |
Collapse
|
6
|
Wang W, Hapach LA, Griggs L, Smart K, Wu Y, Taufalele PV, Rowe MM, Young KM, Bates ME, Johnson AC, Ferrell NJ, Pozzi A, Reinhart-King CA. Diabetic hyperglycemia promotes primary tumor progression through glycation-induced tumor extracellular matrix stiffening. SCIENCE ADVANCES 2022; 8:eabo1673. [PMID: 36399580 PMCID: PMC9674287 DOI: 10.1126/sciadv.abo1673] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 09/29/2022] [Indexed: 05/31/2023]
Abstract
Diabetes mellitus is a complex metabolic disorder that is associated with an increased risk of breast cancer. Despite this correlation, the interplay between tumor progression and diabetes, particularly with regard to stiffening of the extracellular matrix, is still mechanistically unclear. Here, we established a murine model where hyperglycemia was induced before breast tumor development. Using the murine model, in vitro systems, and patient samples, we show that hyperglycemia increases tumor growth, extracellular matrix stiffness, glycation, and epithelial-mesenchymal transition of tumor cells. Upon inhibition of glycation or mechanotransduction in diabetic mice, these same metrics are reduced to levels comparable with nondiabetic tumors. Together, our study describes a novel biomechanical mechanism by which diabetic hyperglycemia promotes breast tumor progression via glycating the extracellular matrix. In addition, our work provides evidence that glycation inhibition is a potential adjuvant therapy for diabetic cancer patients due to the key role of matrix stiffening in both diseases.
Collapse
Affiliation(s)
- Wenjun Wang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Lauren A. Hapach
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Lauren Griggs
- College of Engineering, Pennsylvania State University, State College, PA 16802, USA
| | - Kyra Smart
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Yusheng Wu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Paul V. Taufalele
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Matthew M. Rowe
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Katherine M. Young
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Madison E. Bates
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Andrew C. Johnson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Nicholas J. Ferrell
- Department of Internal Medicine, Division of Nephrology, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Ambra Pozzi
- Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Veterans Affairs Hospitals, Nashville, TN 37684, USA
| | - Cynthia A. Reinhart-King
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
7
|
Mengstie MA, Chekol Abebe E, Behaile Teklemariam A, Tilahun Mulu A, Agidew MM, Teshome Azezew M, Zewde EA, Agegnehu Teshome A. Endogenous advanced glycation end products in the pathogenesis of chronic diabetic complications. Front Mol Biosci 2022; 9:1002710. [PMID: 36188225 PMCID: PMC9521189 DOI: 10.3389/fmolb.2022.1002710] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/01/2022] [Indexed: 12/22/2022] Open
Abstract
Diabetes is a common metabolic illness characterized by hyperglycemia and is linked to long-term vascular problems that can impair the kidney, eyes, nerves, and blood vessels. By increasing protein glycation and gradually accumulating advanced glycation end products in the tissues, hyperglycemia plays a significant role in the pathogenesis of diabetic complications. Advanced glycation end products are heterogeneous molecules generated from non-enzymatic interactions of sugars with proteins, lipids, or nucleic acids via the glycation process. Protein glycation and the buildup of advanced glycation end products are important in the etiology of diabetes sequelae such as retinopathy, nephropathy, neuropathy, and atherosclerosis. Their contribution to diabetes complications occurs via a receptor-mediated signaling cascade or direct extracellular matrix destruction. According to recent research, the interaction of advanced glycation end products with their transmembrane receptor results in intracellular signaling, gene expression, the release of pro-inflammatory molecules, and the production of free radicals, all of which contribute to the pathology of diabetes complications. The primary aim of this paper was to discuss the chemical reactions and formation of advanced glycation end products, the interaction of advanced glycation end products with their receptor and downstream signaling cascade, and molecular mechanisms triggered by advanced glycation end products in the pathogenesis of both micro and macrovascular complications of diabetes mellitus.
Collapse
Affiliation(s)
- Misganaw Asmamaw Mengstie
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
- *Correspondence: Misganaw Asmamaw Mengstie,
| | - Endeshaw Chekol Abebe
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Awgichew Behaile Teklemariam
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Anemut Tilahun Mulu
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Melaku Mekonnen Agidew
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Muluken Teshome Azezew
- Department of Physiology, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Edgeit Abebe Zewde
- Department of Physiology, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Assefa Agegnehu Teshome
- Department of Anatomy, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| |
Collapse
|
8
|
Stratmann B. Dicarbonyl Stress in Diabetic Vascular Disease. Int J Mol Sci 2022; 23:6186. [PMID: 35682865 PMCID: PMC9181283 DOI: 10.3390/ijms23116186] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/07/2023] Open
Abstract
Late vascular complications play a prominent role in the diabetes-induced increase in morbidity and mortality. Diabetes mellitus is recognised as a risk factor driving atherosclerosis and cardiovascular mortality; even after the normalisation of blood glucose concentration, the event risk is amplified-an effect called "glycolytic memory". The hallmark of this glycolytic memory and diabetic pathology are advanced glycation end products (AGEs) and reactive glucose metabolites such as methylglyoxal (MGO), a highly reactive dicarbonyl compound derived mainly from glycolysis. MGO and AGEs have an impact on vascular and organ structure and function, contributing to organ damage. As MGO is not only associated with hyperglycaemia in diabetes but also with other risk factors for diabetic vascular complications such as obesity, dyslipidaemia and hypertension, MGO is identified as a major player in the development of vascular complications in diabetes both on micro- as well as macrovascular level. In diabetes mellitus, the detoxifying system for MGO, the glyoxalase system, is diminished, accounting for the increased MGO concentration and glycotoxic load. This overview will summarise current knowledge on the effect of MGO and AGEs on vascular function.
Collapse
Affiliation(s)
- Bernd Stratmann
- Herz- und Diabeteszentrum NRW, Diabeteszentrum, Ruhr Universität Bochum, 32545 Bad Oeynhausen, Germany
| |
Collapse
|
9
|
Dietary Advanced Glycation End Products in an Elderly Population with Diabetic Nephropathy: An Exploratory Investigation. Nutrients 2022; 14:nu14091818. [PMID: 35565786 PMCID: PMC9102870 DOI: 10.3390/nu14091818] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/16/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
Advanced glycation end products (AGEs) are important in pathophysiology of type 2 diabetes mellitus (T2DM) and diabetic kidney disease (DKD). Dietary AGEs (dAGEs) contribute to the overall AGE pool in the body. Forty elderly T2DM patients with DKD were randomly allocated to a low-AGE (n = 20) or regular diabetic (n = 20) diet group. A three-day meal questionnaire was used to estimate average quantity of dAGEs. AGE accumulation was measured using skin autofluorescence and urine spectroscopy. sRAGE (soluble receptor AGE) was quantified using ELISA. After 8 weeks, the mean consumption of dAGEs was considerably reduced, both in the low-AGE diet (p = 0.004) and the control (p = 0.019) group. The expected urinary emission peak at 490 nm was shifted to 520 nm in some spectra. dAGEs did not correspond with urine AGE output. An AGE-limited diet for two months did not affect AGE content in skin and urine, or sRAGE concentration in the blood. The role of glycemia is likely to be greater than the impact of dAGE consumption. The unique observation of a fluorescence pattern at 520 nm warrants further examination, since it might point to genetic differences in AGE regulation, which could have clinical consequences, as AGE content depends on its formation and elimination.
Collapse
|
10
|
Sinha S, Haque M. Insulin Resistance Is Cheerfully Hitched with Hypertension. Life (Basel) 2022; 12:564. [PMID: 35455055 PMCID: PMC9028820 DOI: 10.3390/life12040564] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular diseases and type 2 diabetes mellitus (T2DM) have risen steadily worldwide, particularly in low-income and developing countries. In the last hundred years, deaths caused by cardiovascular diseases increased rapidly to 35-40%, becoming the most common cause of mortality worldwide. Cardiovascular disease is the leading cause of morbidity and mortality in type 2 diabetes mellitus (T2DM), which is aggravated by hypertension. Hypertension and diabetes are closely interlinked since they have similar risk factors such as endothelial dysfunction, vascular inflammation, arterial remodeling, atherosclerosis, dyslipidemia, and obesity. Patients with high blood pressure often show insulin resistance and have a higher risk of developing diabetes than normotensive individuals. It has been observed that over the last 30 years, the prevalence of insulin resistance (IR) has increased significantly. Accordingly, hypertension and insulin resistance are strongly related to an increased risk of impaired glucose tolerance, diabetes, cardiovascular diseases (CVD), and endocrine disorders. Common mechanisms, for instance, upregulation of the renin-angiotensin-aldosterone system, oxidative stress, inflammation, and activation of the immune system, possibly have a role in the association between diabetes and hypertension. Altogether these abnormalities significantly increase the risk of developing type 2 diabetes.
Collapse
Affiliation(s)
- Susmita Sinha
- Department of Physiology, Khulna City Medical College and Hospital, 33 KDA Avenue, Hotel Royal Mor, Khulna Sadar, Khulna 9100, Bangladesh;
| | - Mainul Haque
- The Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
11
|
Sukumaran V, Gurusamy N, Yalcin HC, Venkatesh S. Understanding diabetes-induced cardiomyopathy from the perspective of renin angiotensin aldosterone system. Pflugers Arch 2021; 474:63-81. [PMID: 34967935 DOI: 10.1007/s00424-021-02651-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/31/2022]
Abstract
Experimental and clinical evidence suggests that diabetic subjects are predisposed to a distinct cardiovascular dysfunction, known as diabetic cardiomyopathy (DCM), which could be an autonomous disease independent of concomitant micro and macrovascular disorders. DCM is one of the prominent causes of global morbidity and mortality and is on a rising trend with the increase in the prevalence of diabetes mellitus (DM). DCM is characterized by an early left ventricle diastolic dysfunction associated with the slow progression of cardiomyocyte hypertrophy leading to heart failure, which still has no effective therapy. Although the well-known "Renin Angiotensin Aldosterone System (RAAS)" inhibition is considered a gold-standard treatment in heart failure, its role in DCM is still unclear. At the cellular level of DCM, RAAS induces various secondary mechanisms, adding complications to poor prognosis and treatment of DCM. This review highlights the importance of RAAS signaling and its major secondary mechanisms involving inflammation, oxidative stress, mitochondrial dysfunction, and autophagy, their role in establishing DCM. In addition, studies lacking in the specific area of DCM are also highlighted. Therefore, understanding the complex role of RAAS in DCM may lead to the identification of better prognosis and therapeutic strategies in treating DCM.
Collapse
Affiliation(s)
| | - Narasimman Gurusamy
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Huseyin C Yalcin
- Biomedical Research Center, Qatar University, Al-Tarfa, 2371, Doha, Qatar
| | - Sundararajan Venkatesh
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
12
|
Bednarska K, Fecka I. Potential of Vasoprotectives to Inhibit Non-Enzymatic Protein Glycation, and Reactive Carbonyl and Oxygen Species Uptake. Int J Mol Sci 2021; 22:ijms221810026. [PMID: 34576189 PMCID: PMC8465384 DOI: 10.3390/ijms221810026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022] Open
Abstract
Reactive carbonyl species (RCS) such as methylglyoxal (MGO) or glyoxal (GO) are the main precursors of the formation of advanced glycation end products (AGEs). AGEs are a major factor in the development of vascular complications in diabetes. Vasoprotectives (VPs) exhibit a wide range of activities beneficial to cardiovascular health. The present study aimed to investigate selected VPs and their structural analogs for their ability to trap MGO/GO, inhibit AGE formation, and evaluate their antioxidant potential. Ultra-high-performance liquid chromatography coupled with an electrospray ionization mass spectrometer (UHPLC-ESI-MS) and diode-array detector (UHPLC-DAD) was used to investigate direct trapping capacity and kinetics of quenching MGO/GO, respectively. Fluorimetric and colorimetric measurements were used to evaluate antiglycation and antioxidant action. All tested substances showed antiglycative effects, but hesperetin was the most effective in RCS scavenging. We demonstrated that rutin, diosmetin, hesperidin, and hesperetin could trap both MGO and GO by forming adducts, whose structures we proposed. MGO-derived AGE formation was inhibited the most by hesperetin, and GO-derived AGEs by diosmetin. High reducing and antiradical activity was confirmed for quercetin, rutin, hesperetin, and calcium dobesilate. Therefore, in addition to other therapeutic applications, some VPs could be potential candidates as antiglycative agents to prevent AGE-related complications of diabetes.
Collapse
|
13
|
Yoshikata R, Myint KZY, Ohta H, Ishigaki Y. Effects of an equol-containing supplement on advanced glycation end products, visceral fat and climacteric symptoms in postmenopausal women: A randomized controlled trial. PLoS One 2021; 16:e0257332. [PMID: 34506596 PMCID: PMC8432832 DOI: 10.1371/journal.pone.0257332] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/17/2021] [Indexed: 11/28/2022] Open
Abstract
INTRODUCTION Equol, an isoflavone derivative whose chemical structure is similar to estrogen, is considered a potentially effective agent for relieving climacteric symptoms, for the prevention of lifestyle-related diseases, and for aging care in postmenopausal women. We investigated the effect of an equol-containing supplement on metabolism and aging and climacteric symptoms with respect to internally produced equol in postmenopausal women. METHODS A single-center, randomized controlled trial (registration number: UMIN000030975) on 57 postmenopausal Japanese women (mean age: 56±5.37 years) was conducted. Twenty-seven women received the equol supplement, while the remaining received control. Metabolic and aging-related biomarkers were compared before and after the 3-month intervention. Climacteric symptoms were assessed every month using a validated self-administered questionnaire in Japanese postmenopausal women. RESULTS Three months post-intervention, the treatment group showed significant improvement in climacteric symptoms compared to the control group (81% vs. 53%, respectively, p = 0.045). We did not observe any beneficial effect on metabolic and aging-related biomarkers in the intervention group. However, in certain populations, significant improvement in skin autofluorescence, which is a measurement of AGE skin products, and visceral fat area was observed, especially among equol producers. CONCLUSION Women receiving equol supplementation showed improved climacteric symptoms. This study offered a new hypothesis that there may be a synergy between supplemented equol and endogenously produced equol to improve skin aging and visceral fat in certain populations.
Collapse
Affiliation(s)
- Remi Yoshikata
- Hamasite Clinic, Minato-ku, Tokyo, Japan
- Tokyo Midtown Medical Center, Minato-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
14
|
Influence of SGLT2 Inhibitor Treatment on Urine Antioxidant Status in Type 2 Diabetic Patients: A Pilot Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5593589. [PMID: 34336104 PMCID: PMC8294983 DOI: 10.1155/2021/5593589] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/10/2021] [Accepted: 06/10/2021] [Indexed: 01/10/2023]
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have been recognized as potent antioxidant agents. Since SGLT2i are nephroprotective drugs, we aimed to examine the urine antioxidant status in patients with type 2 diabetes mellitus (T2DM). One hundred and one subjects participated in this study, including 37 T2DM patients treated with SGLT2i, 31 T2DM patients not using SGLT2i, and 33 healthy individuals serving as a control group. Total antioxidant capacity (TAC), superoxide dismutase (SOD), manganese superoxide dismutase (MnSOD), free thiol groups (R-SH, sulfhydryl groups), and catalase (CAT) activity, as well as glucose concentration, were assessed in the urine of all participants. Urine SOD and MnSOD activity were significantly higher among T2DM patients treated with SGLT2i than T2DM patients without SGLT2i treatment (p = 0.009 and p = 0.003, respectively) and to the healthy controls (p = 0.002 and p = 0.001, respectively). TAC was significantly lower in patients with T2DM treated with SGLT2i when compared to those not treated and healthy subjects (p = 0.036 and p = 0.019, respectively). It could be hypothesized that the mechanism by which SGLT2i provides nephroprotective effects involves improvement of the SOD antioxidant activity. However, lower TAC might impose higher OS (oxidative stress), and elevation of SOD activity might be a compensatory mechanism.
Collapse
|
15
|
Advanced Glycation End Products: New Clinical and Molecular Perspectives. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147236. [PMID: 34299683 PMCID: PMC8306599 DOI: 10.3390/ijerph18147236] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 12/17/2022]
Abstract
Diabetes mellitus (DM) is considered one of the most massive epidemics of the twenty-first century due to its high mortality rates caused mainly due to its complications; therefore, the early identification of such complications becomes a race against time to establish a prompt diagnosis. The research of complications of DM over the years has allowed the development of numerous alternatives for diagnosis. Among these emerge the quantification of advanced glycation end products (AGEs) given their increased levels due to chronic hyperglycemia, while also being related to the induction of different stress-associated cellular responses and proinflammatory mechanisms involved in the progression of chronic complications of DM. Additionally, the investigation for more valuable and safe techniques has led to developing a newer, noninvasive, and effective tool, termed skin fluorescence (SAF). Hence, this study aimed to establish an update about the molecular mechanisms induced by AGEs during the evolution of chronic complications of DM and describe the newer measurement techniques available, highlighting SAF as a possible tool to measure the risk of developing DM chronic complications.
Collapse
|
16
|
Zhuang A, Yap FYT, Borg DJ, McCarthy D, Fotheringham A, Leung S, Penfold SA, Sourris KC, Coughlan MT, Schulz BL, Forbes JM. The AGE receptor, OST48 drives podocyte foot process effacement and basement membrane expansion (alters structural composition). Endocrinol Diabetes Metab 2021; 4:e00278. [PMID: 34277994 PMCID: PMC8279619 DOI: 10.1002/edm2.278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/16/2021] [Accepted: 05/22/2021] [Indexed: 11/17/2022] Open
Abstract
AIMS The accumulation of advanced glycation end products is implicated in the development and progression of diabetic kidney disease. No study has examined whether stimulating advanced glycation clearance via receptor manipulation is reno-protective in diabetes. Podocytes, which are early contributors to diabetic kidney disease and could be a target for reno-protection. MATERIALS AND METHODS To examine the effects of increased podocyte oligosaccharyltransferase-48 on kidney function, glomerular sclerosis, tubulointerstitial fibrosis and proteome (PXD011434), we generated a mouse with increased oligosaccharyltransferase-48kDa subunit abundance in podocytes driven by the podocin promoter. RESULTS Despite increased urinary clearance of advanced glycation end products, we observed a decline in renal function, significant glomerular damage including glomerulosclerosis, collagen IV deposition, glomerular basement membrane thickening and foot process effacement and tubulointerstitial fibrosis. Analysis of isolated glomeruli identified enrichment in proteins associated with collagen deposition, endoplasmic reticulum stress and oxidative stress. Ultra-resolution microscopy of podocytes revealed denudation of foot processes where there was co-localization of oligosaccharyltransferase-48kDa subunit and advanced glycation end-products. CONCLUSIONS These studies indicate that increased podocyte expression of oligosaccharyltransferase-48 kDa subunit results in glomerular endoplasmic reticulum stress and a decline in kidney function.
Collapse
Affiliation(s)
- Aowen Zhuang
- Glycation and Diabetes ComplicationsMater Research Institute – The University of QueenslandTranslational Research InstituteWoolloongabbaQldAustralia
- Faculty of MedicineUniversity of QueenslandSt LuciaQldAustralia
- Baker Heart and Diabetes InstituteMelbourneVicAustralia
| | | | - Danielle J. Borg
- Glycation and Diabetes ComplicationsMater Research Institute – The University of QueenslandTranslational Research InstituteWoolloongabbaQldAustralia
| | - Domenica McCarthy
- Glycation and Diabetes ComplicationsMater Research Institute – The University of QueenslandTranslational Research InstituteWoolloongabbaQldAustralia
| | - Amelia Fotheringham
- Glycation and Diabetes ComplicationsMater Research Institute – The University of QueenslandTranslational Research InstituteWoolloongabbaQldAustralia
| | - Sherman Leung
- Glycation and Diabetes ComplicationsMater Research Institute – The University of QueenslandTranslational Research InstituteWoolloongabbaQldAustralia
| | | | - Karly C. Sourris
- Baker Heart and Diabetes InstituteMelbourneVicAustralia
- Department of DiabetesCentral Clinical SchoolMonash UniversityMelbourneVicAustralia
| | - Melinda T. Coughlan
- Baker Heart and Diabetes InstituteMelbourneVicAustralia
- Department of DiabetesCentral Clinical SchoolMonash UniversityMelbourneVicAustralia
| | - Benjamin L. Schulz
- School of Chemistry and Molecular BiosciencesUniversity of QueenslandSt LuciaQldAustralia
| | - Josephine M. Forbes
- Glycation and Diabetes ComplicationsMater Research Institute – The University of QueenslandTranslational Research InstituteWoolloongabbaQldAustralia
- Faculty of MedicineUniversity of QueenslandSt LuciaQldAustralia
| |
Collapse
|
17
|
Polymers and Nanoparticles for Statin Delivery: Current Use and Future Perspectives in Cardiovascular Disease. Polymers (Basel) 2021; 13:polym13050711. [PMID: 33652927 PMCID: PMC7956757 DOI: 10.3390/polym13050711] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 12/20/2022] Open
Abstract
Atherosclerosis-related coronary artery disease (CAD) is one of the leading sources of mortality and morbidity in the world. Primary and secondary prevention appear crucial to reduce CAD-related complications. In this scenario, statin treatment was shown to be clinically effective in the reduction of adverse events, but systemic administration provides suboptimal results. As an attempt to improve bioavailability and effectiveness, polymers and nanoparticles for statin delivery were recently investigated. Polymers and nanoparticles can help statin delivery and their effects by increasing oral bioavailability or enhancing target-specific interaction, leading to reduced vascular endothelial dysfunction, reduced intimal hyperplasia, reduced ischemia-reperfusion injury, increased cardiac regeneration, positive remodeling in the extracellular matrix, reduced neointimal growth and increased re-endothelization. Moreover, some innovative aspects described in other cardiovascular fields could be translated into the CAD scenario. Recent preclinical studies are underlining the effect of statins in the stimulation and differentiation of endogenous cardiac stem cells, as well as in targeting of local adverse conditions implicated in atherosclerosis, and statin delivery through poly-lactic-co-glycolic acid (PLGA) appears the most promising aspect of current research to enhance drug activity. The present review intends to summarize the current evidence about polymers and nanoparticles for statin delivery in the field of cardiovascular disease, trying to shed light on this topic and identify new avenues for future studies.
Collapse
|
18
|
Anwar S, Khan S, Almatroudi A, Khan AA, Alsahli MA, Almatroodi SA, Rahmani AH. A review on mechanism of inhibition of advanced glycation end products formation by plant derived polyphenolic compounds. Mol Biol Rep 2021; 48:787-805. [PMID: 33389535 DOI: 10.1007/s11033-020-06084-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022]
Abstract
Advanced glycation end products (AGEs) are naturally occurring biomolecules formed by interaction of reducing sugars with biomolecules such as protein and lipids etc., Long term high blood sugar level and glycation accelerate the formation of AGEs. Unchecked continuous formation and accumulation of AGEs are potential risks for pathogenesis of various chronic diseases. Current mode of antidiabetic therapy is based on synthetic drugs that are often linked with severe adverse effects. Polyphenolic compounds derived from plants are supposed to inhibit glycation and formation of AGEs at multiple levels. Some polyphenolic compounds regulate the blood glucose metabolism by amplification of cell insulin resistance and activation of insulin like growth factor binding protein signaling pathway. Their antioxidant nature and metal chelating activity, ability to trap intermediate dicarbonyl compounds could be possible mechanisms against glycation and AGEs formation and hence, against AGEs induced health complications. Although, few species of polyphenolic compounds are being used in in vitro trials and their in vivo study is still in progress, increasing the area of research in this field may produce a fruitful approach in management of overall diabetic complications.
Collapse
Affiliation(s)
- Shehwaz Anwar
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraydah, 52571, Saudi Arabia
| | - Shifa Khan
- Department of Biochemistry, Faculty of Medicine, JNMC, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraydah, 52571, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraydah, 51452, Saudi Arabia
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraydah, 52571, Saudi Arabia
| | - Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraydah, 52571, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraydah, 52571, Saudi Arabia.
| |
Collapse
|
19
|
Aragonès G, Dasuri K, Olukorede O, Francisco SG, Renneburg C, Kumsta C, Hansen M, Kageyama S, Komatsu M, Rowan S, Volkin J, Workman M, Yang W, Daza P, Ruano D, Dominguez‐Martín H, Rodríguez‐Navarro JA, Du X, Brownlee MA, Bejarano E, Taylor A. Autophagic receptor p62 protects against glycation-derived toxicity and enhances viability. Aging Cell 2020; 19:e13257. [PMID: 33146912 PMCID: PMC7681057 DOI: 10.1111/acel.13257] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/24/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
Diabetes and metabolic syndrome are associated with the typical American high glycemia diet and result in accumulation of high levels of advanced glycation end products (AGEs), particularly upon aging. AGEs form when sugars or their metabolites react with proteins. Associated with a myriad of age-related diseases, AGEs accumulate in many tissues and are cytotoxic. To date, efforts to limit glycation pharmacologically have failed in human trials. Thus, it is crucial to identify systems that remove AGEs, but such research is scanty. Here, we determined if and how AGEs might be cleared by autophagy. Our in vivo mouse and C. elegans models, in which we altered proteolysis or glycative burden, as well as experiments in five types of cells, revealed more than six criteria indicating that p62-dependent autophagy is a conserved pathway that plays a critical role in the removal of AGEs. Activation of autophagic removal of AGEs requires p62, and blocking this pathway results in accumulation of AGEs and compromised viability. Deficiency of p62 accelerates accumulation of AGEs in soluble and insoluble fractions. p62 itself is subject to glycative inactivation and accumulates as high mass species. Accumulation of p62 in retinal pigment epithelium is reversed by switching to a lower glycemia diet. Since diminution of glycative damage is associated with reduced risk for age-related diseases, including age-related macular degeneration, cardiovascular disease, diabetes, Alzheimer's, and Parkinson's, discovery of methods to limit AGEs or enhance p62-dependent autophagy offers novel potential therapeutic targets to treat AGEs-related pathologies.
Collapse
Affiliation(s)
- Gemma Aragonès
- Laboratory for Nutrition and Vision Research USDA Human Nutrition Research Center on AgingTufts University Boston MA USA
| | - Kalavathi Dasuri
- Laboratory for Nutrition and Vision Research USDA Human Nutrition Research Center on AgingTufts University Boston MA USA
| | - Opeoluwa Olukorede
- Laboratory for Nutrition and Vision Research USDA Human Nutrition Research Center on AgingTufts University Boston MA USA
| | - Sarah G. Francisco
- Laboratory for Nutrition and Vision Research USDA Human Nutrition Research Center on AgingTufts University Boston MA USA
| | - Carol Renneburg
- Laboratory for Nutrition and Vision Research USDA Human Nutrition Research Center on AgingTufts University Boston MA USA
| | - Caroline Kumsta
- Sanford Burnham Prebys Medical Discovery Institute La Jolla CA USA
| | - Malene Hansen
- Sanford Burnham Prebys Medical Discovery Institute La Jolla CA USA
| | - Shun Kageyama
- Department of Physiology Juntendo University School of Medicine Bunkyo Japan
| | - Masaaki Komatsu
- Department of Physiology Juntendo University School of Medicine Bunkyo Japan
| | - Sheldon Rowan
- Laboratory for Nutrition and Vision Research USDA Human Nutrition Research Center on AgingTufts University Boston MA USA
| | - Jonathan Volkin
- Laboratory for Nutrition and Vision Research USDA Human Nutrition Research Center on AgingTufts University Boston MA USA
| | - Michael Workman
- Laboratory for Nutrition and Vision Research USDA Human Nutrition Research Center on AgingTufts University Boston MA USA
| | - Wenxin Yang
- Laboratory for Nutrition and Vision Research USDA Human Nutrition Research Center on AgingTufts University Boston MA USA
| | - Paula Daza
- Departamento Biología Celular. Facultad de Biología Universidad de Sevilla Sevilla Spain
| | - Diego Ruano
- Departamento de Bioquímica y Biología Molecular. Facultad de Farmacia Universidad de Sevilla Sevilla Spain
- Instituto de Biomedicina de Sevilla (IBiSHospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla Sevilla Spain
| | - Helena Dominguez‐Martín
- Departamento de Bioquímica y Biología Molecular. Facultad de Farmacia Universidad de Sevilla Sevilla Spain
- Instituto de Biomedicina de Sevilla (IBiSHospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla Sevilla Spain
| | - José Antonio Rodríguez‐Navarro
- Servicio de Neurobiología Departamento de Investigación Hospital Ramón y CajalInstituto Ramón y Cajal de Investigaciones SanitariasCarretera de Colmenar Madrid Spain
| | - Xue‐Liang Du
- Albert Einstein College of Medicine Bronx NY USA
| | | | - Eloy Bejarano
- Laboratory for Nutrition and Vision Research USDA Human Nutrition Research Center on AgingTufts University Boston MA USA
- School of Health Sciences Universidad CEU Cardenal Herrera Valencia Spain
| | - Allen Taylor
- Laboratory for Nutrition and Vision Research USDA Human Nutrition Research Center on AgingTufts University Boston MA USA
| |
Collapse
|
20
|
Advanced Glycation End Products: Potential Mechanism and Therapeutic Target in Cardiovascular Complications under Diabetes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9570616. [PMID: 31885827 PMCID: PMC6925928 DOI: 10.1155/2019/9570616] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/25/2019] [Indexed: 01/08/2023]
Abstract
The occurrence and development of cardiovascular complications are predominantly responsible for the increased morbidity and mortality observed in patients with diabetes. Oxidative stress under hyperglycemia is currently considered the initial link to diabetic cardiovascular complications and a key node for the prevention and treatment of diabetes-related fatal cardiovascular events. Numerous studies have indicated that the common upstream pathway in the context of oxidative stress in the cardiovascular system under diabetic conditions is the interaction of advanced glycation end products (AGEs) with their receptors (RAGEs). Therefore, a further understanding of the relationship between oxidative stress and AGEs is of great significance for the prevention and treatment of cardiovascular complications in patients with diabetes. In this review, we will briefly summarize the recent research advances in diabetes with an emphasis on oxidative stress and its association with AGEs in diabetic cardiovascular complications.
Collapse
|
21
|
Abstract
Glycation is the process of linking a sugar and free amino groups of proteins. Cross-linking of glycation products to proteins results in the formation of cross-linked proteins that inhibit the normal functioning of the cell. Advanced glycation end products (AGEs) are risk molecules for the cell aging process. These ends products are increasingly synthesized in diabetes and are essentially responsible for diabetic complications. They accumulate in the extracellular matrix and bind to receptors (receptor of AGE [RAGE]) to generate oxidative stress and inflammation. particularly in the cardiovascular system. Treatment methods targeting the AGE system may be of clinical importance in reducing and preventing the complications induced by AGEs in diabetes and old age. The AGE cross-link breaker alagebrium (a thiazolium derivative) is the most studied anti-AGE compound in the clinical field. Phase III clinical studies with alagebrium have been successfully conducted, and this molecule has positive effects on cardiovascular hypertrophy, diabetes, hypertension, vascular sclerotic pathologies, and similar processes. However, the mechanism is still not fully understood. The primary mechanism is that alagebrium removes newly formed AGEs by chemically separating α-dicarbonyl carbon-carbon bonds formed in cross-linked structures. However, it is also reported that alagebrium is a methylglyoxal effective inhibitor. It is not yet clear whether alagebrium inhibits copper-catalyzed ascorbic acid oxidation through metal chelation or destruction of the AGEs. It is not known whether alagebrium has a direct association with RAGEs. The safety profile is favorably in humans, and studies have been terminated due to financial insufficiency and inability to license as a drug.
Collapse
Affiliation(s)
- Cigdem Toprak
- Department of Medical Pharmacology, Eskisehir Osmangazi University, School of Medicine, Eskisehir, Turkey
| | - Semra Yigitaslan
- Department of Medical Pharmacology, Eskisehir Osmangazi University, School of Medicine, Eskisehir, Turkey
| |
Collapse
|
22
|
Kassab S, Begley P, Church SJ, Rotariu SM, Chevalier-Riffard C, Dowsey AW, Phillips AM, Zeef LAH, Grayson B, Neill JC, Cooper GJS, Unwin RD, Gardiner NJ. Cognitive dysfunction in diabetic rats is prevented by pyridoxamine treatment. A multidisciplinary investigation. Mol Metab 2019; 28:107-119. [PMID: 31451429 PMCID: PMC6822151 DOI: 10.1016/j.molmet.2019.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/24/2019] [Accepted: 08/01/2019] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE The impact of diabetes mellitus on the central nervous system is less widely studied than in the peripheral nervous system, but there is increasing evidence that it elevates the risk of developing cognitive deficits. The aim of this study was to characterize the impact of experimental diabetes on the proteome and metabolome of the hippocampus. We tested the hypothesis that the vitamin B6 isoform pyridoxamine is protective against functional and molecular changes in diabetes. METHODS We tested recognition memory using the novel object recognition (NOR) test in streptozotocin (STZ)-induced diabetic, age-matched control, and pyridoxamine- or insulin-treated diabetic male Wistar rats. Comprehensive untargeted metabolomic and proteomic analyses, using gas chromatography-mass spectrometry and iTRAQ-enabled protein quantitation respectively, were utilized to characterize the molecular changes in the hippocampus in diabetes. RESULTS We demonstrated diabetes-specific, long-term (but not short-term) recognition memory impairment and that this deficit was prevented by insulin or pyridoxamine treatment. Metabolomic analysis showed diabetes-associated changes in 13/82 identified metabolites including polyol pathway intermediates glucose (9.2-fold), fructose (4.9-fold) and sorbitol (5.2-fold). We identified and quantified 4807 hippocampal proteins; 806 were significantly altered in diabetes. Pathway analysis revealed significant alterations in cytoskeletal components associated with synaptic plasticity, glutamatergic signaling, oxidative stress, DNA damage and FXR/RXR activation pathways in the diabetic rat hippocampus. CONCLUSIONS Our data indicate a protective effect of pyridoxamine against diabetes-induced cognitive deficits, and our comprehensive 'omics datasets provide insight into the pathogenesis of cognitive dysfunction enabling development of further mechanistic and therapeutic studies.
Collapse
Affiliation(s)
- Sarah Kassab
- Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Paul Begley
- Faculty of Biology, Medicine and Health, University of Manchester, UK
| | | | | | | | - Andrew W Dowsey
- Department of Population Health Sciences and Bristol Veterinary School, Faculty of Health Sciences, University of Bristol, Bristol, BS8 2BN, UK
| | - Alexander M Phillips
- Department of Electrical Engineering and Electronics, University of Liverpool, UK
| | - Leo A H Zeef
- Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Ben Grayson
- Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Joanna C Neill
- Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Garth J S Cooper
- Faculty of Biology, Medicine and Health, University of Manchester, UK; School of Biological Sciences, University of Auckland, New Zealand
| | - Richard D Unwin
- Faculty of Biology, Medicine and Health, University of Manchester, UK
| | | |
Collapse
|
23
|
Nakamura T, Tsujimoto T, Yasuda K, Chujo D, Ohsugi M, Tanabe A, Ueki K, Kajio H. Poorly controlled type 2 diabetes with no progression of diabetes-related complications and low levels of advanced glycation end products: A Case report. Medicine (Baltimore) 2019; 98:e16573. [PMID: 31348288 PMCID: PMC6709306 DOI: 10.1097/md.0000000000016573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
RATIONALE Previous studies have suggested that increased levels of advanced glycation end products (AGEs) and soluble receptor for AGE (sRAGE) are associated with diabetes-related complications. However, there is little evidence on the association between long-term levels of AGEs and sRAGE and progression of diabetes-related complications. PATIENT CONCERNS A 64-year-old man had poorly controlled type 2 diabetes, obesity, smoking, hypertension, and dyslipidemia. He had many risk factors for diabetes-related complications. DIAGNOSIS Despite poor glycemic control over 15 years, the patient did not exhibit diabetes-related complications. INTERVENTIONS We examined serum AGEs (CEL and MG-H1) and sRAGE levels in this patient over the past 10 years. OUTCOMES The patient maintained low serum AGEs and sRAGE levels. LESSONS AGEs and sRAGE levels may be associated with long-term development of diabetes-related complications.
Collapse
Affiliation(s)
- Tomoka Nakamura
- Department of Diabetes, Endocrinology, and Metabolism, Center Hospital
| | - Tetsuro Tsujimoto
- Department of Diabetes, Endocrinology, and Metabolism, Center Hospital
| | - Kazuki Yasuda
- Department of Metabolic Disorders, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine
- Department of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, Tokyo
| | - Daisuke Chujo
- Department of Diabetes, Endocrinology, and Metabolism, Center Hospital
- Center for Clinical Research, Toyama University Hospital, Toyama
| | - Mitsuru Ohsugi
- Department of Diabetes, Endocrinology, and Metabolism, Center Hospital
- Diabetes and Metabolism Information Center
| | - Akiyo Tanabe
- Department of Diabetes, Endocrinology, and Metabolism, Center Hospital
| | - Kohjiro Ueki
- Department of Diabetes, Endocrinology, and Metabolism, Center Hospital
- Department of Molecular Diabetic Medicine, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hiroshi Kajio
- Department of Diabetes, Endocrinology, and Metabolism, Center Hospital
| |
Collapse
|
24
|
Affiliation(s)
- Ann Marie Schmidt
- From the Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine.
| |
Collapse
|
25
|
Fishman SL, Sonmez H, Basman C, Singh V, Poretsky L. The role of advanced glycation end-products in the development of coronary artery disease in patients with and without diabetes mellitus: a review. Mol Med 2018; 24:59. [PMID: 30470170 PMCID: PMC6251169 DOI: 10.1186/s10020-018-0060-3] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/04/2018] [Indexed: 12/18/2022] Open
Abstract
Background Traditional risk factors are insufficient to explain all cases of coronary artery disease (CAD) in patients with diabetes mellitus (DM). Advanced glycation end-products (AGEs) and their receptors may play important roles in the development and progression of CAD. Body Hyperglycemia is the hallmark feature of DM. An increase in the incidence of both micro-and macrovascular complications of diabetes has been observed with increased duration of hyperglycemia. This association persists even after glycemic control has been achieved, suggesting an innate mechanism of “metabolic memory.” AGEs are glycated proteins that may serve as mediators of metabolic memory due to their increased production in the setting of hyperglycemia and generally slow turnover. Elevated AGE levels can lead to abnormal cross linking of extracellular and intracellular proteins disrupting their normal structure and function. Furthermore, activation of AGE receptors can induce complex signaling pathways leading to increased inflammation, oxidative stress, enhanced calcium deposition, and increased vascular smooth muscle apoptosis, contributing to the development of atherosclerosis. Through these mechanisms, AGEs may be important mediators of the development of CAD. However, clinical studies regarding the role of AGEs and their receptors in advancing CAD are limited, with contradictory results. Conclusion AGEs and their receptors may be useful biomarkers for the presence and severity of CAD. Further studies are needed to evaluate the utility of circulating and tissue AGE levels in identifying asymptomatic patients at risk for CAD or to identify patients who may benefit from invasive intervention.
Collapse
Affiliation(s)
- Sarah Louise Fishman
- Division of Endocrinology, Department of Medicine, Lenox Hill Hospital, Northwell Health, 110 East 59th St #8B, New York, NY, 10022, USA
| | - Halis Sonmez
- Center for Diabetes and Endocrinology, 111 Salem Tpke, Norwich, CT, 06360, USA
| | - Craig Basman
- Department of Cardiology, Lenox Hill Hospital, Northwell Health, 100 East 77th St, New York, NY, 10065, USA
| | - Varinder Singh
- Department of Cardiology, Lenox Hill Hospital, Northwell Health, 100 East 77th St, New York, NY, 10065, USA
| | - Leonid Poretsky
- Division of Endocrinology, Department of Medicine, Lenox Hill Hospital, Northwell Health, 110 East 59th St #8B, New York, NY, 10022, USA.
| |
Collapse
|
26
|
Simsek B, Yanar K, Kansu AD, Belce A, Aydin S, Çakatay U. Caloric restriction improves the redox homeostasis in the aging male rat heart even when started in middle-adulthood and when the body weight is stable. Biogerontology 2018; 20:127-140. [PMID: 30374677 DOI: 10.1007/s10522-018-9781-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 10/26/2018] [Indexed: 02/07/2023]
Abstract
Evidence indicates that maintenance of redox homeostasis is fundamental for cellular longevity. Caloric-restriction (CR) is said to decrease the formation of oxidatively modified cellular macromolecules and improve health. On the other hand, some studies indicate that many CR studies are flawed, because ad libitum fed rats are not well-controlled. Thus, it is claimed that purported beneficial effects of CR could be not due to real CR effect, but due to control animals going obese. Also, it remains to be elucidated whether effects of CR could be observed even when CR is started in mid-adulthood. Male Sprague-Dawley rats were grouped as: non-CR 6-month-old rats (n = 7), 24-month-old rats subjected to 40% CR for 6 months between 18th and 24th months (n = 8), and non-CR 24-month-old animals (n = 8). We investigated 16 previously validated biomarkers of macromolecular redox homeostasis, ranging from protein and lipid oxidation to glycation and antioxidative capacity. In the present study, the protein, lipid and antioxidant capacity redox homeostasis biomarkers overwhelmingly indicate that, CR, even though not started very early in adulthood, could still offer potential therapeutic effects and it could significantly improve various redox homeostasis biomarkers associated with disease reliably in the heart tissue of aging male Sprague-Dawley rats. Therefore, the effects of CR likely operate through similar mechanisms throughout adulthood and CR seems to have real ameliorative effects on organisms that are not due to confounding factors that come from ad libitum fed rats.
Collapse
Affiliation(s)
- B Simsek
- Cerrahpasa Faculty of Medicine, Medical Program, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - K Yanar
- Cerrahpasa Faculty of Medicine, Department of Medical Biochemistry, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - A D Kansu
- Cerrahpasa Faculty of Medicine, Medical Program, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - A Belce
- Faculty of Health Sciences, Bezmialem Vakif University, Istanbul, Turkey
| | - S Aydin
- Cerrahpasa Faculty of Medicine, Department of Medical Biochemistry, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - U Çakatay
- Cerrahpasa Faculty of Medicine, Department of Medical Biochemistry, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| |
Collapse
|
27
|
Advanced glycation end products (AGEs) estimated by skin autofluorescence are related with cardiovascular risk in renal transplant. PLoS One 2018; 13:e0201118. [PMID: 30067789 PMCID: PMC6070236 DOI: 10.1371/journal.pone.0201118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 07/09/2018] [Indexed: 12/04/2022] Open
Abstract
Background Advanced glycation end products (AGEs) accumulation, a measure of cumulative metabolic stress, constitute a novel pathogenic mechanism involved in aging, diabetes, cardiovascular (CVD) and chronic kidney disease (CKD). Despite removal of uremic toxins and AGEs after a successful renal transplant (RT), CVD remains the leading cause of mortality. We hypothesized that AGEs measurement by Skin Autofluorescence (SAF) might be useful even after a successful RT and thus reflect the high cardiovascular risk burden of these patients. Methods 189 stable RT (61% men, aged 56±13.0 years), CKD stages 1–4 and >12 months since RT were enrolled. Variables collected comprised comorbid history, medication use, smoking habit, routine biochemistry, subclinical atheromatosis by ankle-brachial-index (ABI) and allograft resistivity index (RI), 24-h ABPM, anthropometry and handgrip strength. AGEs were measured by SAF and expressed in arbitrary units (AU). Vascular age was estimated by Koetsier´s formula (SAF-0.83/0.024) and expected 10-years cardiovascular death risk was calculated with the REGICOR score. Results Mean SAF was 3.00±0.83 AU and estimated vascular age 90±34.7 years (30 years above biological age). SAF was higher among men (3.10±0.91 vs 2.81±0.66), diabetic nephropathy (3.49±0.75 vs 2.96±0.83) and steroid users (3.14±0.86 vs 2.71±0.69). We observed a positive correlation of SAF with night-systolic blood pressure (r = 0.25, p = 0.001), parathormone (r = 0.20, p<0.01), phosphate (r = 0.28, p<0.001) and negative with hemoglobin (r = -0.29, p<0.001), CKD-EPI (r = -0.32, p<0.001), albumin (r = -0.17, p<0.05), and dynamometry (r = -0.20, p<0.01). Subclinical vascular atheromatosis (ABI and RI) as well as the REGICOR scale (r = 0.35 p<0.001) were also correlated with SAF. In multivariable analysis age, gender, steroid use, serum phosphate and handgrip strength remained independently associated with SAF. Conclusions SAF levels are elevated in RT patients and correlate with CVD risk. Besides age and male sex, our results suggest that phosphate overload, steroid use and nutritional status are important factors linking to AGEs accumulation.
Collapse
|
28
|
Petrie JR, Guzik TJ, Touyz RM. Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms. Can J Cardiol 2018; 34:575-584. [PMID: 29459239 PMCID: PMC5953551 DOI: 10.1016/j.cjca.2017.12.005] [Citation(s) in RCA: 846] [Impact Index Per Article: 141.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 12/11/2022] Open
Abstract
Hypertension and type 2 diabetes are common comorbidities. Hypertension is twice as frequent in patients with diabetes compared with those who do not have diabetes. Moreover, patients with hypertension often exhibit insulin resistance and are at greater risk of diabetes developing than are normotensive individuals. The major cause of morbidity and mortality in diabetes is cardiovascular disease, which is exacerbated by hypertension. Accordingly, diabetes and hypertension are closely interlinked because of similar risk factors, such as endothelial dysfunction, vascular inflammation, arterial remodelling, atherosclerosis, dyslipidemia, and obesity. There is also substantial overlap in the cardiovascular complications of diabetes and hypertension related primarily to microvascular and macrovascular disease. Common mechanisms, such as upregulation of the renin-angiotensin-aldosterone system, oxidative stress, inflammation, and activation of the immune system likely contribute to the close relationship between diabetes and hypertension. In this article we discuss diabetes and hypertension as comorbidities and discuss the pathophysiological features of vascular complications associated with these conditions. We also highlight some vascular mechanisms that predispose to both conditions, focusing on advanced glycation end products, oxidative stress, inflammation, the immune system, and microRNAs. Finally, we provide some insights into current therapies targeting diabetes and cardiovascular complications and introduce some new agents that may have vasoprotective therapeutic potential in diabetes.
Collapse
Affiliation(s)
- John R Petrie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom.
| |
Collapse
|
29
|
Zhang P, Li Y, Guo R, Zang W. Salidroside Protects Against Advanced Glycation End Products-Induced Vascular Endothelial Dysfunction. Med Sci Monit 2018; 24:2420-2428. [PMID: 29679467 PMCID: PMC5930974 DOI: 10.12659/msm.906064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background Salidroside, the major active compound in Rhodiola, has been reported to provide beneficial effects on cardiovascular diseases, but its effects on diabetes-induced vascular endothelial dysfunction are less known. Here, we examined the protective effects of salidroside on endothelial function in diabetes and explored the potential underlying mechanism. Material/Methods First, we assessed the endothelium-dependent relaxation response to acetylcholine, with or without salidroside treatment, in aortas isolated from Sprague-Dawley rats. Then, cell viability, oxidative biomarkers, and protein expression were tested to determine the effect of salidroside treatment on human umbilical vein endothelial cells (HUVECs) in vitro. Results Advanced glycation end product (AGE)-induced endothelial dysfunction was significantly improved by salidroside treatment (P<0.05), as shown by a reduced relaxation response to the vasodilator acetylcholine. Further, incubation with salidroside restored NO levels and reduced reactive oxygen species formation in AGE-stimulated HUVECs in a concentration-dependent manner (P<0.05). We also showed that nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/heme oxygenase 1 (HO-1) and nuclear factor kappa B (NF-κB) signaling was critical for the salidroside-mediated beneficial regulation. Conclusions Our results demonstrate that salidroside protects against AGE-induced endothelial dysfunction, and its effects may be in part attributed to the induction of HO-1 and attenuation of phosphorylated NF-κB p65.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Cardio-Thoracic Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China (mainland)
| | - Yuanmin Li
- Department of Cardio-Thoracic Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China (mainland)
| | - Rong Guo
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China (mainland)
| | - Wangfu Zang
- Department of Cardio-Thoracic Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China (mainland)
| |
Collapse
|
30
|
Laurino A, Raimondi L. Commentary: 3-Iodothyronamine Reduces Insulin Secretion In Vitro via a Mitochondrial Mechanism. Front Endocrinol (Lausanne) 2018. [PMID: 29541060 PMCID: PMC5835504 DOI: 10.3389/fendo.2018.00057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Affiliation(s)
- Annunziatina Laurino
- Section of Pharmacology and Toxicology, Department of Psychology, Neurology, Drug Sciences, Health of the Child, Pharmacology, University of Florence, Florence, Italy
| | - Laura Raimondi
- Section of Pharmacology and Toxicology, Department of Psychology, Neurology, Drug Sciences, Health of the Child, Pharmacology, University of Florence, Florence, Italy
| |
Collapse
|
31
|
König A, Vicente Miranda H, Outeiro TF. Alpha-Synuclein Glycation and the Action of Anti-Diabetic Agents in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2018; 8:33-43. [PMID: 29480231 PMCID: PMC5842785 DOI: 10.3233/jpd-171285] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/17/2018] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder with complex etiology and variable pathology. While a subset of cases is associated with single-gene mutations, the majority originates from a combination of factors we do not fully understand. Thus, understanding the underlying causes of PD is indispensable for the development of novel therapeutics. Glycation, the non-enzymatic reaction between reactive dicarbonyls and amino groups, gives rise to a variety of different reaction products known as advanced glycation end products (AGEs). AGEs accumulate over a proteins life-time, and increased levels of glycation reaction products play a role in diabetic complications. It is now also becoming evident that PD patients also display perturbed sugar metabolism and protein glycation, including that of alpha-synuclein, a key player in PD. Here, we hypothesize that anti-diabetic drugs targeting the levels of glycation precursors, or promoting the clearance of glycated proteins may also prove beneficial for PD patients.
Collapse
Affiliation(s)
- Annekatrin König
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
| | - Hugo Vicente Miranda
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal
- Max Planck Institute for Experimental Medicine, Göttingen, Germany
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| |
Collapse
|
32
|
Amino Carbonylation of Epidermal Basement Membrane Inhibits Epidermal Cell Function and Is Suppressed by Methylparaben. COSMETICS 2017. [DOI: 10.3390/cosmetics4040038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
33
|
Kidney, heart and brain: three organs targeted by ageing and glycation. Clin Sci (Lond) 2017; 131:1069-1092. [PMID: 28515343 DOI: 10.1042/cs20160823] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/01/2017] [Accepted: 02/06/2017] [Indexed: 12/20/2022]
Abstract
Advanced glycation end-product (AGE) is the generic term for a heterogeneous group of derivatives arising from a non-enzymatic reaction between reducing sugars and proteins. In recent years, evidence has accumulated that incriminates AGEs in pathogenic processes associated with both chronic hyperglycaemia and age-related diseases. Regardless of their exogenous or endogenous origin, the accumulation of AGEs and their derivatives could promote accelerated ageing by leading to protein modifications and activating several inflammatory signalling pathways via AGE-specific receptors. However, it remains to be demonstrated whether preventing the accumulation of AGEs and their effects is an important therapeutic option for successful ageing. The present review gives an overview of the current knowledge on the pathogenic role of AGEs by focusing on three AGE target organs: kidney, heart and brain. For each of these organs we concentrate on an age-related disease, each of which is a major public health issue: chronic kidney disease, heart dysfunction and neurodegenerative diseases. Even though strong connections have been highlighted between glycation and age-related pathogenesis, causal links still need to be validated. In each case, we report evidence and uncertainties suggested by animal or epidemiological studies on the possible link between pathogenesis and glycation in a chronic hyperglycaemic state, in the absence of diabetes, and with exogenous AGEs alone. Finally, we present some promising anti-AGE strategies that are currently being studied.
Collapse
|
34
|
Emel’yanov VV. Glycation, antiglycation, and deglycation: Their role in aging mechanisms and geroprotective effects (literature review). ADVANCES IN GERONTOLOGY 2017. [DOI: 10.1134/s2079057017010064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
The Association between Diffuse Myocardial Fibrosis on Cardiac Magnetic Resonance T1 Mapping and Myocardial Dysfunction in Diabetic Rabbits. Sci Rep 2017; 7:44937. [PMID: 28338005 PMCID: PMC5364486 DOI: 10.1038/srep44937] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/15/2017] [Indexed: 11/12/2022] Open
Abstract
The objective of this study was to assess the relationship between imaging surrogates for diffuse fibrosis and myocardial dysfunction. Thirty-six New Zealand white rabbits were classified into two groups: a control group (n = 18) and an alloxan-induced diabetes mellitus (DM) group (n = 18). For all rabbits, conventional ultrasonography, two-dimensional speckle tracking, and cardiac magnetic resonance (CMR) T1 mapping were performed; all of the rabbits were then sacrificed for Masson’s staining. The extracellular volume (ECV) was calculated from pre- and post-contrast T1 values and compared with myocardial function measured by echocardiography using Pearson’s correlation. In the DM group, ECV increased as the duration of diabetes increased, consistent with the changes in myocardial fibrosis verified by pathology. Moreover, ECV was strongly correlated with the early diastolic strain rate (r = −0.782, p < 0.001) and moderately correlated with the radial systolic peak strain (r = 0.478, p = 0.045). Thus, ECV is an effective surrogate for myocardial diffuse fibrosis on CMR imaging, and higher ECV values are associated with an increased impairment of myocardial diastolic function.
Collapse
|
36
|
Tiny molecule, big power: Multi-target approach for curcumin in diabetic cardiomyopathy. Nutrition 2017; 34:47-54. [DOI: 10.1016/j.nut.2016.09.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/28/2016] [Accepted: 09/20/2016] [Indexed: 02/07/2023]
|
37
|
Computational approaches in the rational design of improved carbonyl quenchers: focus on histidine containing dipeptides. Future Med Chem 2016; 8:1721-37. [PMID: 27584013 DOI: 10.4155/fmc-2016-0088] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIM The inhibition of protein carbonylation can play therapeutic roles in several oxidative-based diseases and direct carbonyl quenching appears the most effective inhibition strategies. l-carnosine derivatives are effective and selective quenchers toward 4-hydroxy-2-nonenal even though their activity was never investigated in a fully comparable way. RESULTS The reported results revealed that anserine, homocarnosine and carnosinamide retain a remarkable quenching activity combined with a satisfactory selectivity. In silico analyses confirmed the key role of flexibility, lipophilicity and nucleophilicity parameters in rationalizing the measured reactivity. CONCLUSION This study confirms that in silico approaches can be successfully used in the rational design of improved carbonyl quenchers. Physicochemical and stereoelectronic descriptors appear really informative especially when explored by their corresponding property spaces.
Collapse
|
38
|
Neviere R, Yu Y, Wang L, Tessier F, Boulanger E. Implication of advanced glycation end products (Ages) and their receptor (Rage) on myocardial contractile and mitochondrial functions. Glycoconj J 2016; 33:607-17. [DOI: 10.1007/s10719-016-9679-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/26/2016] [Accepted: 05/17/2016] [Indexed: 01/01/2023]
|
39
|
López-Díez R, Shekhtman A, Ramasamy R, Schmidt AM. Cellular mechanisms and consequences of glycation in atherosclerosis and obesity. Biochim Biophys Acta Mol Basis Dis 2016; 1862:2244-2252. [PMID: 27166197 DOI: 10.1016/j.bbadis.2016.05.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 04/28/2016] [Accepted: 05/05/2016] [Indexed: 02/07/2023]
Abstract
Post-translational modification of proteins imparts diversity to protein functions. The process of glycation represents a complex set of pathways that mediates advanced glycation endproduct (AGE) formation, detoxification, intracellular disposition, extracellular release, and induction of signal transduction. These processes modulate the response to hyperglycemia, obesity, aging, inflammation, and renal failure, in which AGE formation and accumulation is facilitated. It has been shown that endogenous anti-AGE protective mechanisms are thwarted in chronic disease, thereby amplifying accumulation and detrimental cellular actions of these species. Atop these considerations, receptor for advanced glycation endproducts (RAGE)-mediated pathways downregulate expression and activity of the key anti-AGE detoxification enzyme, glyoxalase-1 (GLO1), thereby setting in motion an interminable feed-forward loop in which AGE-mediated cellular perturbation is not readily extinguished. In this review, we consider recent work in the field highlighting roles for glycation in obesity and atherosclerosis and discuss emerging strategies to block the adverse consequences of AGEs. This article is part of a Special Issue entitled: The role of post-translational protein modifications on heart and vascular metabolism edited by Jason R.B. Dyck & Jan F.C. Glatz.
Collapse
Affiliation(s)
- Raquel López-Díez
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, NYU Langone Medical Center, New York, NY 10016, United States
| | - Alexander Shekhtman
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, NYU Langone Medical Center, New York, NY 10016, United States
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, NYU Langone Medical Center, New York, NY 10016, United States.
| |
Collapse
|
40
|
Abstract
With a global prevalence of 9%, diabetes is the direct cause of millions of deaths each year and is quickly becoming a health crisis. Major long-term complications of diabetes arise from persistent oxidative stress and dysfunction in multiple metabolic pathways. The most serious complications involve vascular damage and include cardiovascular disease as well as microvascular disorders such as nephropathy, neuropathy, and retinopathy. Current clinical analyses like glycated hemoglobin and plasma glucose measurements hold some value as prognostic indicators of the severity of complications, but investigations into the underlying pathophysiology are still lacking. Advancements in biotechnology hold the key to uncovering new pathways and establishing therapeutic targets. Metabolomics, the study of small endogenous molecules, is a powerful toolset for studying pathophysiological processes and has been used to elucidate metabolic signatures of diabetes in various biological systems. Current challenges in the field involve correlating these biomarkers to specific complications to provide a better prediction of future risk and disease progression. This review will highlight the progress that has been made in the field of metabolomics including technological advancements, the identification of potential biomarkers, and metabolic pathways relevant to macro- and microvascular diabetic complications.
Collapse
Affiliation(s)
- Laura A Filla
- Saint Louis University Department of Chemistry, 3501 Laclede Ave. St. Louis, MO 63103, USA.
| | | |
Collapse
|
41
|
Nenna A, Nappi F, Chello M, Spadaccio C. Targeting Advanced Glycation End Products in Cardiac Surgery: The Unexplored Alternative. Res Cardiovasc Med 2016; 5:e31707. [PMID: 26949696 PMCID: PMC4756255 DOI: 10.5812/cardiovascmed.31707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 08/18/2015] [Indexed: 11/24/2022] Open
Affiliation(s)
- Antonio Nenna
- Department of Cardiovascular Surgery, Universita Campus Bio-Medico di Roma, Rome, Italy
| | - Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord de Saint-Denis, Paris, France
| | - Massimo Chello
- Department of Cardiovascular Surgery, Universita Campus Bio-Medico di Roma, Rome, Italy
| | - Cristiano Spadaccio
- Department of Cardiothoracic Surgery, Golden Jubilee National Hospital, Clydebank, Glasgow, UK
- Corresponding author: Cristiano Spadaccio, Department of Cardiothoracic Surgery, Golden Jubilee National Hospital, Clydebank, Glasgow, UK. Tel: +44-1419515000, Fax: +44-1419515006, E-mail:
| |
Collapse
|
42
|
Meenatchi P, Purushothaman A, Maneemegalai S. Antioxidant, antiglycation and insulinotrophic properties of Coccinia grandis (L.) in vitro: Possible role in prevention of diabetic complications. J Tradit Complement Med 2016; 7:54-64. [PMID: 28053889 PMCID: PMC5198829 DOI: 10.1016/j.jtcme.2016.01.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/01/2016] [Accepted: 01/06/2016] [Indexed: 01/04/2023] Open
Abstract
In an attempt to develop Complementary and Alternative Medicine (CAM) for the treatment of diabetes and related complications, the antidiabetic potential of the mature unripe fruits of Coccinia grandis (CGF) was evaluated. Oxidative stress and glycation plays an important role in manifesting of diabetes and vascular complications. Agents with antioxidant and antiglycation properties may retard these pathological alterations. In this study, the edible plant Coccinia grandis was assessed for in vitro estimation of antioxidant and antiglycation potential and its insulinotrophic properties in RINm5F cells. Antioxidant activity was evaluated as DPPH (1,1-diphenyl-2-picrylhydrazyl), hydrogen peroxide and superoxide anion scavenging activities, whereas the protein glycation inhibitory potential was evaluated using in vitro albumin-fructose glycation model. Glycation inhibition was estimated by different biochemical parameters viz. fructosamine, protein carbonyl group and protein aggregation using thioflavin T fluorescence. C. grandis extract exerted a dose dependent radical scavenging activity and exhibited a significant antiglycation potential. The extract also showed a significant insulinotrophic property with 1.28 and 1.71-fold increase in insulin release when compared to control at 0.25 and 0.50 mg/mL, respectively. These data suggest the possible antidiabetic role of CGF extract, presumably by its antioxidant, antiglycation and insulin secretory effects. Present findings provide experimental evidence that the fruits of C. grandis have potential antidiabetic activity which might be used as a functional food and safe remedy for the treatment of diabetes and associated complications. This study also revealed that the plant can be a promising source for development of natural antiglycating agents and novel insulin secretagogues.
Collapse
Affiliation(s)
- Packirisamy Meenatchi
- Department of Biochemistry, Bharathidasan University Constituent College for Women, Orathanadu 614 625, Thanjavur-District, Tamil Nadu, India
| | - Ayyakkanuu Purushothaman
- PG & Research Department of Biochemistry, Mohamed Sathak College of Arts and Science, Chennai 600 119, Tamil Nadu, India
| | - Sivaprakasam Maneemegalai
- Department of Biochemistry, Bharathidasan University Constituent College for Women, Orathanadu 614 625, Thanjavur-District, Tamil Nadu, India
| |
Collapse
|
43
|
Cells and extracellular matrix interplay in cardiac valve disease: because age matters. Basic Res Cardiol 2016; 111:16. [PMID: 26830603 DOI: 10.1007/s00395-016-0534-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/27/2015] [Accepted: 01/19/2016] [Indexed: 12/18/2022]
Abstract
Cardiovascular aging is a physiological process affecting all components of the heart. Despite the interest and experimental effort lavished on aging of cardiac cells, increasing evidence is pointing at the pivotal role of extracellular matrix (ECM) in cardiac aging. Structural and molecular changes in ECM composition during aging are at the root of significant functional modifications at the level of cardiac valve apparatus. Indeed, calcification or myxomatous degeneration of cardiac valves and their functional impairment can all be explained in light of age-related ECM alterations and the reciprocal interplay between altered ECM and cellular elements populating the leaflet, namely valvular interstitial cells and valvular endothelial cells, is additionally affecting valve function with striking reflexes on the clinical scenario. The initial experimental findings on this argument are underlining the need for a more comprehensive understanding on the biological mechanisms underlying ECM aging and remodeling as potentially constituting a pharmacological therapeutic target or a basis to improve existing prosthetic devices and treatment options. Given the lack of systematic knowledge on this topic, this review will focus on the ECM changes that occur during aging and on their clinical translational relevance and implications in the bedside scenario.
Collapse
|