1
|
Retzinger AC, Retzinger GS. The Acari Hypothesis, VI: human sebum and the cutaneous microbiome in allergy and in lipid homeostasis. FRONTIERS IN ALLERGY 2024; 5:1478279. [PMID: 39640432 PMCID: PMC11617560 DOI: 10.3389/falgy.2024.1478279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
The Acari Hypothesis posits that acarians, i.e., mites and ticks, are causative agents of IgE-mediated conditions. This report further develops The Hypothesis, providing rationale for the childhood predilection of allergy. In short, Malassezia, a fungus native to human skin and utterly dependent on sebaceous lipids, prevents allergy by deterring acarians. Because sebum output is limited before puberty, children are more prone to allergy than are adults. Competition for sebaceous lipids by Staphylococcus aureus influences not only Malassezia number-and, consequently, allergic predisposition-but also lipid homeostasis. The latter, in turn, contributes to dyslipidemia and associated conditions, e.g., the metabolic syndrome.
Collapse
Affiliation(s)
- Andrew C. Retzinger
- Department of Emergency Medicine, Camden Clark Medical Center, West Virginia University, Parkersburg, WV, United States
| | - Gregory S. Retzinger
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
2
|
Rau A, Silva GS, Margolis DJ, Chiesa Fuxench ZC. Adult and infantile seborrheic dermatitis: update on current state of evidence and potential research frontiers. Int J Dermatol 2024; 63:1495-1502. [PMID: 38876467 DOI: 10.1111/ijd.17324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/16/2024]
Abstract
Seborrheic dermatitis (SD) is a highly prevalent dermatological condition globally. The condition demonstrates bimodal presentation with what is commonly thought to be two subtypes: adult/adolescent seborrheic dermatitis (ASD) and infantile seborrheic dermatitis (ISD). Despite the common prevalence of ASD and ISD, there remains uncertainty around the underlying pathogenetic mechanisms, risk factors, and appropriate classification of the disease(s). This narrative review summarizes the current understanding of the epidemiology, presentation, and pathogenetic factors like epidermal barrier dysfunction, lipid abnormalities, and cutaneous microbiome for ASD and ISD. Elements such as immune responsiveness, neuroendocrine factors, and genetics in these disease states are also investigated. Throughout our review, we highlight shared features and discrepancies between ASD and ISD that are present in the literature and discuss potential avenues for future research that explore these disease states. We aim to contribute to the medical discourse on ASD and ISD and increase awareness of the need for additional research around these conditions, ultimately informing better targeting of therapeutics moving forward.
Collapse
Affiliation(s)
- Akash Rau
- Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Genevieve S Silva
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David J Margolis
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zelma C Chiesa Fuxench
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Sadati MS, Alesana F, Hekmat M, Parvizi MM. Efficacy of Topical Rosemary Extract Lotion versus Topical 2% Ketoconazole Lotion in the Treatment of Seborrheic Dermatitis: A Double-Blind Randomized Controlled Clinical Trial. Dermatol Pract Concept 2024; 14:dpc.1404a242. [PMID: 39652968 PMCID: PMC11619942 DOI: 10.5826/dpc.1404a242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 12/12/2024] Open
Abstract
INTRODUCTION Seborrheic dermatitis manifests as greasy itchy lesions commonly affecting sebum-rich areas like the scalp and face. Its prevalence is 11.6% in the general population, with various internal and environmental factors contributing to its development. OBJECTIVES This study aimed to compare the efficacy of rosemary extract lotion in the treatment of seborrheic dermatitis in comparison with topical 2% ketoconazole lotion. METHODS This double-blind randomized controlled clinical trial included 42 patients with scalp seborrheic dermatitis, divided into rosemary lotion and ketoconazole lotion groups. Both lotions were applied twice daily for two months. The severity of scalp dandruff was assessed using the Adherent Scalp Flaking Score (ASFS). The itchiness of the scalp and quality of life were assessed using itchy quant and the Dermatology Life Quality Index (DLQI), respectively. Stata software version 14.2 was applied for statistical analysis. RESULTS The reduction in ASFS score was statistically significant in patients in the ketoconazole group in comparison with the patients in the rosemary group (P = 0.011). However, the reduction in itching score was statistically significant more in the rosemary group at the end of the first and second months in comparison with the ketoconazole group (P < 0.001). The statistical analysis demonstrated no significant difference in the reduction of DLQI scores between the rosemary and ketoconazole groups at the end of one and two months after stating the treatment in both crude and adjustment with base-line score analysis. CONCLUSION Both rosemary and ketoconazole lotions were effective in treating scalp seborrheic dermatitis and in decreasing patients' DLQI score.
Collapse
Affiliation(s)
- Maryam Sadat Sadati
- Department of Dermatology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fateme Alesana
- Department of Dermatology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Hekmat
- Department of Dermatology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mahdi Parvizi
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Research Center for Traditional Medicine and History of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Vice Chancellor of Academic Affairs, Smart University of Medical Sciences, Tehran, Iran
- Persian Medicine Network, Universal Scientific Education and Research Network, Tehran, Iran
| |
Collapse
|
4
|
Jackson JM, Alexis A, Zirwas M, Taylor S. Unmet needs for patients with seborrheic dermatitis. J Am Acad Dermatol 2024; 90:597-604. [PMID: 36538948 DOI: 10.1016/j.jaad.2022.12.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Seborrheic dermatitis (SD) is a common skin disease with signs and symptoms that may vary by skin color, associated medical conditions, environmental factors, and vehicle preference. Diagnosis of SD is based on presence of flaky, "greasy" patches, and/or thin plaques accompanied by erythema of the scalp, face, ears, chest, and groin and is associated with pruritus in many patients. The presentation may vary in different skin types and hyper- or hypopigmentation may occur, with or without erythema and minimal or no scaling. While the pathogenesis is not certain, 3 key factors generally agreed upon include lipid secretion by sebaceous glands, Malassezia spp. colonization, and some form of immunologic dysregulation that predisposes the patient to SD. Treatment involves reducing proliferation of, and inflammatory response to, Malassezia spp. Topical therapies, including antifungal agents and low potency corticosteroids, are the mainstay of treatment but may be limited by efficacy and side effects. Few novel treatments for SD are currently being studied; however, clinical trials assessing the use of topical phosphodiesterase-4 inhibitors have been completed. Improving outcomes in SD requires recognizing patient-specific manifestations/locations of the disease, including increased awareness of how it affects people of all skin types.
Collapse
Affiliation(s)
- J Mark Jackson
- University of Louisville, Division of Dermatology, Forefront Dermatology, Louisville, Kentucky.
| | | | - Matthew Zirwas
- Dermatologists of the Central States, Probity Medical Research, and Ohio University, Bexley, Ohio
| | - Susan Taylor
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
5
|
Truglio M, Sivori F, Cavallo I, Abril E, Licursi V, Fabrizio G, Cardinali G, Pignatti M, Toma L, Valensise F, Cristaudo A, Pimpinelli F, Di Domenico EG. Modulating the skin mycobiome-bacteriome and treating seborrheic dermatitis with a probiotic-enriched oily suspension. Sci Rep 2024; 14:2722. [PMID: 38302693 PMCID: PMC10834955 DOI: 10.1038/s41598-024-53016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/25/2024] [Indexed: 02/03/2024] Open
Abstract
Seborrheic dermatitis (SD) affects 2-5% of the global population, with imbalances in the skin microbiome implicated in its development. This study assessed the impact of an oily suspension containing Lactobacillus crispatus P17631 and Lacticaseibacillus paracasei I1688 (termed EUTOPLAC) on SD symptoms and the skin mycobiome-bacteriome modulation. 25 SD patients were treated with EUTOPLAC for a week. Symptom severity and skin mycobiome-bacteriome changes were measured at the start of the treatment (T0), after seven days (T8), and three weeks post-treatment (T28). Results indicated symptom improvement post-EUTOPLAC, with notable reductions in the Malassezia genus. Concurrently, bacterial shifts were observed, including a decrease in Staphylococcus and an increase in Lactobacillus and Lacticaseibacillus. Network analysis highlighted post-EUTOPLAC instability in fungal and bacterial interactions, with increased negative correlations between Malassezia and Lactobacillus and Lacticaseibacillus genera. The study suggests EUTOPLAC's potential as a targeted SD treatment, reducing symptoms and modulating the mycobiome-bacteriome composition.
Collapse
Affiliation(s)
- Mauro Truglio
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, 00144, Rome, Italy
| | - Francesca Sivori
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, 00144, Rome, Italy
| | - Ilaria Cavallo
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, 00144, Rome, Italy
| | - Elva Abril
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, 00144, Rome, Italy
| | - Valerio Licursi
- Institute of Molecular Biology and Pathology, National Research Council of Italy, 00185, Rome, Italy
| | - Giorgia Fabrizio
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, 00144, Rome, Italy
- Department of Biology and Biotechnology C. Darwin, Sapienza University of Rome, 00185, Rome, Italy
| | - Giorgia Cardinali
- Cutaneous Physiopathology, San Gallicano Dermatological Institute, IRCCS, 00144, Rome, Italy
| | | | - Luigi Toma
- Medical Directorate, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Floriana Valensise
- Clinical Dermatology, San Gallicano Dermatological Institute, IRCCS, 00144, Rome, Italy
| | - Antonio Cristaudo
- Clinical Dermatology, San Gallicano Dermatological Institute, IRCCS, 00144, Rome, Italy
| | - Fulvia Pimpinelli
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, 00144, Rome, Italy.
| | - Enea Gino Di Domenico
- Department of Biology and Biotechnology C. Darwin, Sapienza University of Rome, 00185, Rome, Italy.
| |
Collapse
|
6
|
Rousel J, Nădăban A, Saghari M, Pagan L, Zhuparris A, Theelen B, Gambrah T, van der Wall HEC, Vreeken RJ, Feiss GL, Niemeyer-van der Kolk T, Burggraaf J, van Doorn MBA, Bouwstra JA, Rissmann R. Lesional skin of seborrheic dermatitis patients is characterized by skin barrier dysfunction and correlating alterations in the stratum corneum ceramide composition. Exp Dermatol 2024; 33:e14952. [PMID: 37974545 DOI: 10.1111/exd.14952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/21/2023] [Accepted: 10/01/2023] [Indexed: 11/19/2023]
Abstract
Seborrheic dermatitis (SD) is a chronic inflammatory skin disease characterized by erythematous papulosquamous lesions in sebum rich areas such as the face and scalp. Its pathogenesis appears multifactorial with a disbalanced immune system, Malassezia driven microbial involvement and skin barrier perturbations. Microbial involvement has been well described in SD, but skin barrier involvement remains to be properly elucidated. To determine whether barrier impairment is a critical factor of inflammation in SD alongside microbial dysbiosis, a cross-sectional study was performed in 37 patients with mild-to-moderate facial SD. Their lesional and non-lesional skin was comprehensively and non-invasively assessed with standardized 2D-photography, optical coherence tomography (OCT), microbial profiling including Malassezia species identification, functional skin barrier assessments and ceramide profiling. The presence of inflammation was established through significant increases in erythema, epidermal thickness, vascularization and superficial roughness in lesional skin compared to non-lesional skin. Lesional skin showed a perturbed skin barrier with an underlying skewed ceramide subclass composition, impaired chain elongation and increased chain unsaturation. Changes in ceramide composition correlated with barrier impairment indicating interdependency of the functional barrier and ceramide composition. Lesional skin showed significantly increased Staphylococcus and decreased Cutibacterium abundances but similar Malassezia abundances and mycobial composition compared to non-lesional skin. Principal component analysis highlighted barrier properties as main discriminating features. To conclude, SD is associated with skin barrier dysfunction and changes in the ceramide composition. No significant differences in the abundance of Malassezia were observed. Restoring the cutaneous barrier might be a valid therapeutic approach in the treatment of facial SD.
Collapse
Affiliation(s)
- Jannik Rousel
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Andreea Nădăban
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Mahdi Saghari
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden University Medical Center, Leiden, The Netherlands
| | - Lisa Pagan
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden University Medical Center, Leiden, The Netherlands
| | - Ahnjili Zhuparris
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden University Medical Center, Leiden, The Netherlands
- Leiden Institute of Advanced Computer Science, Leiden University, Leiden, Netherlands
| | - Bart Theelen
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Tom Gambrah
- Centre for Human Drug Research, Leiden, The Netherlands
| | | | - Rob J Vreeken
- Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands
| | | | | | - Jacobus Burggraaf
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Leiden University Medical Center, Leiden, The Netherlands
| | - Martijn B A van Doorn
- Centre for Human Drug Research, Leiden, The Netherlands
- Department of Dermatology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Joke A Bouwstra
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Robert Rissmann
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
7
|
Kaba M. New factors affecting wound healing and recurrence after pilonidal sinus surgery in adolescents; seborrheic dermatitis and psychiatric co-occurring conditions. Int Wound J 2024; 21:e14404. [PMID: 37722760 PMCID: PMC10788639 DOI: 10.1111/iwj.14404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/20/2023] Open
Abstract
Postoperative wound healing problems and recurrence remain common for pilonidal sinus disease (PSD). Our study aimed to examine the effect of comorbidities in addition to the classic known factors that may affect wound complications and recurrence after PSD surgery. We retrospectively analysed 282 adolescent patients operated on in our clinic between 2014 and 2021. We gathered the postoperative wound healing patterns of the patients under four groups. With a mean age of 15.49 ± 1.45, 59.9% (n = 169) were male, 40.1% (n = 113) were female and 23.8% (n = 67) had recurrence. When examined according to the wound healing groups, 53.5% (n = 151) had an uneventful wound, 22.6% (n = 64) had prolonged wound care, 17.7% (n = 50) of the postoperative wounds did not close and had a recurrence and 6% (n = 17) had recurrence after the wound was healed. The number of sinuses, abscess presentation and the incidence of comorbid disease in group 1 were found to be statistically significantly lower than all other groups. Seborrheic dermatitis, obesity and psychiatric diagnoses showed high statistical association with group 3 and acne with group 4. In patients with seborrheic dermatitis or psychiatric diagnosis, a significant correlation was found between wound healing according to the type of surgery (p < 0.05). The wound healing patterns of these patients after total excision and primary closure surgeries were included in Group 3 with a statistically significant high rate. As two new factors, the significance of the presence of seborrheic dermatitis and psychiatric comorbidities should be evaluated in these patients whose wounds remain open postoperatively and do not respond to primary wound care and eventually relapse. Further histologic and pathologic investigations are needed for seborrheic dermatitis and PSD relation. Awareness of these diseases may change the decision of the type of surgery, and their treatment within the same time may support wound healing and ultimately reduce recurrence.
Collapse
Affiliation(s)
- Meltem Kaba
- Department of pediatric surgery, Sisli Hamidiye Etfal Training and Research HospitalMinistry of HealthİstanbulTurkey
| |
Collapse
|
8
|
Rousel J, Saghari M, Pagan L, Nădăban A, Gambrah T, Theelen B, de Kam ML, Haakman J, van der Wall HEC, Feiss GL, Niemeyer-van der Kolk T, Burggraaf J, Bouwstra JA, Rissmann R, van Doorn MBA. Treatment with the Topical Antimicrobial Peptide Omiganan in Mild-to-Moderate Facial Seborrheic Dermatitis versus Ketoconazole and Placebo: Results of a Randomized Controlled Proof-of-Concept Trial. Int J Mol Sci 2023; 24:14315. [PMID: 37762625 PMCID: PMC10531869 DOI: 10.3390/ijms241814315] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Facial seborrheic dermatitis (SD) is an inflammatory skin disease characterized by erythematous and scaly lesions on the skin with high sebaceous gland activity. The yeast Malassezia is regarded as a key pathogenic driver in this disease, but increased Staphylococcus abundances and barrier dysfunction are implicated as well. Here, we evaluated the antimicrobial peptide omiganan as a treatment for SD since it has shown both antifungal and antibacterial activity. A randomized, patient- and evaluator-blinded trial was performed comparing the four-week, twice daily topical administration of omiganan 1.75%, the comparator ketoconazole 2.00%, and placebo in patients with mild-to-moderate facial SD. Safety was monitored, and efficacy was determined by clinical scoring complemented with imaging. Microbial profiling was performed, and barrier integrity was assessed by trans-epidermal water loss and ceramide lipidomics. Omiganan was safe and well tolerated but did not result in a significant clinical improvement of SD, nor did it affect other biomarkers, compared to the placebo. Ketoconazole significantly reduced the disease severity compared to the placebo, with reduced Malassezia abundances, increased microbial diversity, restored skin barrier function, and decreased short-chain ceramide Cer[NSc34]. No significant decreases in Staphylococcus abundances were observed compared to the placebo. Omiganan is well tolerated but not efficacious in the treatment of facial SD. Previously established antimicrobial and antifungal properties of omiganan could not be demonstrated. Our multimodal characterization of the response to ketoconazole has reaffirmed previous insights into its mechanism of action.
Collapse
Affiliation(s)
- Jannik Rousel
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands
- Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Mahdi Saghari
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands
- Leiden University Medical Center, Leiden University, 2333 ZA Leiden, The Netherlands
| | - Lisa Pagan
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands
- Leiden University Medical Center, Leiden University, 2333 ZA Leiden, The Netherlands
| | - Andreea Nădăban
- Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Tom Gambrah
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands
| | - Bart Theelen
- Westerdijk Fungal Biodiversity Institute, 3508 AD Utrecht, The Netherlands
| | | | - Jorine Haakman
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands
| | | | | | | | - Jacobus Burggraaf
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands
- Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
- Leiden University Medical Center, Leiden University, 2333 ZA Leiden, The Netherlands
| | - Joke A. Bouwstra
- Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Robert Rissmann
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands
- Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
- Leiden University Medical Center, Leiden University, 2333 ZA Leiden, The Netherlands
| | - Martijn B. A. van Doorn
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands
- Department of Dermatology, Erasmus Medical Centre, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
9
|
Ugochukwu ICI, Rhimi W, Chebil W, Rizzo A, Tempesta M, Giusiano G, Tábora RFM, Otranto D, Cafarchia C. Part 2: Understanding the role of Malassezia spp. in skin disorders: pathogenesis of Malassezia associated skin infections. Expert Rev Anti Infect Ther 2023; 21:1245-1257. [PMID: 37883035 DOI: 10.1080/14787210.2023.2274500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023]
Abstract
INTRODUCTION Malassezia is a major component of the skin microbiome, a lipophilic symbiotic organism of the mammalian skin, which can switch to opportunistic pathogens triggering multiple dermatological disorders in humans and animals. This phenomenon is favored by endogenous and exogenous host predisposing factors, which may switch Malassezia from a commensal to a pathogenic phenotype. AREA COVERED This review summarizes and discusses the most recent literature on the pathogenesis of Malassezia yeasts, which ultimately results in skin disorders with different clinical presentation. A literature search of Malassezia pathogenesis was performed via PubMed and Google scholar (up to May 2023), using the following keywords: Pathogenesis and Malassezia;host risk factors and Malassezia, Malassezia and skin disorders; Malassezia and virulence factors: Malassezia and metabolite production; Immunology and Malassezia. EXPERT OPINION Malassezia yeasts can maintain skin homeostasis being part of the cutaneous mycobiota; however, when the environmental or host conditions change, these yeasts are endowed with a remarkable plasticity and adaptation by modifying their metabolism and thus contributing to the appearance or aggravation of human and animal skin disorders.
Collapse
Affiliation(s)
- Iniobong Chukwuebuka Ikenna Ugochukwu
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Italy
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Wafa Rhimi
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Italy
| | - Wissal Chebil
- Laboratory of Medical and Molecular Parasitology-Mycology, Department of Clinical Biology, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Antonio Rizzo
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Italy
| | - Maria Tempesta
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Italy
| | - Gustavo Giusiano
- Departamento de Micología, Instituto de Medicina Regional, Facultad de Medicina, Universidad Nacional del Nordeste, Resistencia, Argentina
| | | | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Italy
- Faculty of Veterinary Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Claudia Cafarchia
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Italy
| |
Collapse
|
10
|
Safta DA, Ielciu I, Șuștic R, Hanganu D, Niculae M, Cenariu M, Pall E, Moldovan ML, Achim M, Bogdan C, Tomuță I. Chemical Profile and Biological Effects of an Herbal Mixture for the Development of an Oil-in-Water Cream. PLANTS (BASEL, SWITZERLAND) 2023; 12:248. [PMID: 36678961 PMCID: PMC9861053 DOI: 10.3390/plants12020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/15/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Three individual hydroalcoholic extracts derived from Hamamelis virginiana leaves, Krameria lappacea root, Salix alba bark, and the resulting herbal mixture (HM) were assessed for the phytochemical profile as well as for antibacterial and cytotoxic potential. The chemical composition of the individual extracts and of their mixture was analyzed by chromatographical (LC-MS) and spectrophotometrical methods. The antimicrobial properties were evaluated by using the agar-well diffusion and the broth microdilution assays, whereas the potential cytotoxicity was investigated on human keratinocyte cell line by MTT method and apoptosis test. The HM composition revealed important amounts of valuable polyphenolic compounds provided from the individual extracts, having synergistic biological effects. All tested extracts displayed in vitro antimicrobial properties, with a significantly higher efficacy noticed for the HM when tested against Staphylococcus aureus. Moreover, none of the tested extracts was responsible for in vitro cytotoxicity against the human keratinocytes in the selected concentration range. Furthermore, the HM was included in an oil-in-water cream for the nonpharmacological treatment of seborrheic dermatitis, developed and optimized by using a QbD approach. A D-optimal experimental plan with four factors that varied on two levels was used to investigate the effect of the quantitative variation of the formulation factors (emulsifier, co-emulsifier, thickening agent, oily phase ratio) on the characteristics of the cream in terms of firmness, consistency, adhesiveness, stringiness, spreadability, and viscosity. Based on the experimental results, an optimal formulation containing 2.5% emulsifier and 20% oily phase was prepared and analyzed. The obtained results showed appropriate quality characteristics of this novel cream, which may be used in the future to manage the associated symptoms of seborrheic dermatitis.
Collapse
Affiliation(s)
- Diana Antonia Safta
- Department of Dermopharmacy and Cosmetics, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, 400010 Cluj-Napoca, Romania
| | - Irina Ielciu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, 400010 Cluj-Napoca, Romania
| | - Raffaela Șuștic
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, 400010 Cluj-Napoca, Romania
| | - Daniela Hanganu
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, 400010 Cluj-Napoca, Romania
| | - Mihaela Niculae
- Department of Clinical Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400374 Cluj-Napoca, Romania
| | - Mihai Cenariu
- Department of Clinical Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400374 Cluj-Napoca, Romania
| | - Emoke Pall
- Department of Clinical Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400374 Cluj-Napoca, Romania
| | - Mirela Liliana Moldovan
- Department of Dermopharmacy and Cosmetics, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, 400010 Cluj-Napoca, Romania
| | - Marcela Achim
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, 400010 Cluj-Napoca, Romania
| | - Cătălina Bogdan
- Department of Dermopharmacy and Cosmetics, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, 400010 Cluj-Napoca, Romania
| | - Ioan Tomuță
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, 400010 Cluj-Napoca, Romania
| |
Collapse
|
11
|
Barger BT, Pakvasa M, Lem M, Ramamurthi A, Lalezari S, Tang C. Non-typhoidal Salmonella soft-tissue infection after gender affirming subcutaneous mastectomy case report. Case Reports Plast Surg Hand Surg 2023; 10:2185621. [PMID: 36926352 PMCID: PMC10013424 DOI: 10.1080/23320885.2023.2185621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
We present a case of a 32-year-old transgender male who underwent chest masculinization, complicated by purulent soft tissue infection of bilateral chest incisions. Cultures tested positive for non-typhoidal Salmonella, methicillin-resistant Staphylococcus aureus, and Pseudomonas aeruginosa. Herein, we discuss multiple factors contributing to the complexity of treating this patient's clinical course.
Collapse
Affiliation(s)
- Branden T Barger
- School of Medicine, University of California, Riverside, CA, USA
| | - Mikhail Pakvasa
- Department of Plastic and Reconstructive Surgery, University of California, Orange, CA, USA
| | - Melinda Lem
- School of Medicine, University of California, Irvine, CA, USA
| | - Aishu Ramamurthi
- Medical College of Wisconsin, Affiliated Hospitals, Inc., Graduate Medical Education, Milwaukee, WI, USA
| | - Shadi Lalezari
- Department of Plastic and Reconstructive Surgery, University of California, Orange, CA, USA
| | - Cathy Tang
- Department of Plastic and Reconstructive Surgery, University of California, Orange, CA, USA
| |
Collapse
|
12
|
Dityen K, Soonthornchai W, Kueanjinda P, Kullapanich C, Tunsakul N, Somboonna N, Wongpiyabovorn J. Analysis of cutaneous bacterial microbiota of Thai patients with seborrheic dermatitis. Exp Dermatol 2022; 31:1949-1955. [PMID: 36076320 DOI: 10.1111/exd.14674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 12/14/2022]
Abstract
Seborrheic dermatitis (SD) is a chronic inflammatory skin condition that occurs in body areas that contain profuse sebaceous glands. Skin microbiota are diverse across ethnic groups and its dysbiosis has been implicated in the pathogenesis of SD. Here, we reported the contribution of cutaneous bacterial microbiota to SD in the Thai population. Healthy individuals and patients with scalp SD were recruited into the study. Normal skin, scalp skin lesion (SL) and non-lesion sites (SNL) samples were collected using a tape stripping method and next-generation sequencing of 16S rRNA for microbiome analysis. Although bacterial diversity in all sample groups was not statistically different, a population of bacteria commonly found on skin of scalp showed signs of dysbiosis. Apart from the reduction of Corynebacterium spp., SD-specific microbiota was dominated by Firmicutes at taxa level and Pseudomonas spp., Staphylococcus spp. and Micrococcus spp. at genus level. The dysbiosis of the skin microbiota in SD was specifically described as an alteration of bacteria populations commonly found on scalp skin, implying that managing and controlling the cutaneous bacterial microbiome can alleviate and prevent SD and pave the way for the development of new SD treatments.
Collapse
Affiliation(s)
- Kanthaporn Dityen
- Division of Immunology, Department of Microbiology, Center of Excellence in Immunology and Immune-Mediated Diseases, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Wipasiri Soonthornchai
- Division of Immunology, Department of Microbiology, Center of Excellence in Immunology and Immune-Mediated Diseases, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,School of Science, University of Phayao, Phayao, Thailand
| | - Patipark Kueanjinda
- Division of Immunology, Department of Microbiology, Center of Excellence in Immunology and Immune-Mediated Diseases, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chitrasak Kullapanich
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn University, Bangkok, Thailand
| | - Naruemon Tunsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn University, Bangkok, Thailand
| | - Naraporn Somboonna
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn University, Bangkok, Thailand
| | - Jongkonnee Wongpiyabovorn
- Division of Immunology, Department of Microbiology, Center of Excellence in Immunology and Immune-Mediated Diseases, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
13
|
Kayıran MA, Sahin E, Koçoğlu E, Sezerman OU, Gürel MS, Karadağ AS. Is cutaneous microbiota a player in disease pathogenesis? Comparison of cutaneous microbiota in psoriasis and seborrheic dermatitis with scalp involvement. Indian J Dermatol Venereol Leprol 2022; 88:738-748. [PMID: 35389020 DOI: 10.25259/ijdvl_323_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 10/01/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUND Knowledge about cutaneous microbiota in psoriasis vulgaris and seborrheic dermatitis is limited, and a comparison of microbiota in the two diseases was not yet previously undertaken. AIMS/OBJECTIVES This study aimed to compare the scalp lesional and non-lesional microbiota in psoriasis vulgaris and seborrheic dermatitis with that in a healthy control group. METHODS Fifty samples were taken with sterile swabs from patients' and controls' scalps, and 16S rRNA gene sequencing analyses were performed. RESULTS Alpha and beta diversity analyses showed that bacterial load and diversity were significantly increased in psoriasis vulgaris and seborrheic dermatitis lesions compared to the controls. As phyla, Actinobacteria decreased and Firmicutes increased, while as genera, Propionibacterium decreased; Staphylococcus, Streptococcus, Aquabacterium, Neisseria and Azospirillum increased in lesions of both diseases. Specifically, Mycobacterium, Finegoldia, Haemophilus and Ezakiella increased in psoriasis vulgaris and Enhydrobacter, Micromonospora and Leptotrichia increased in seborrheic dermatitis lesions. Mycobacterium, Ezakiella and Peptoniphilus density were higher in psoriasis vulgaris compared to seborrheic dermatitis lesions. The bacterial diversity and load values of non-lesional scalp in psoriasis vulgaris and seborrheic dermatitis lay between those of lesional areas and controls. LIMITATIONS The small sample size is the main limitation of this study. CONCLUSION Higher bacterial diversity was detected in lesions of both psoriasis and seborrheic dermatitis compared to the controls, but similar alterations were observed when the two diseases were compared. Although these differences could be a result rather than a cause of the two diseases, there is a need to analyze all members of the microbiota and microbiota-host interactions.
Collapse
Affiliation(s)
- Melek Aslan Kayıran
- Department of Dermatology, Faculty of Medicine, Istanbul Medeniyet University, Göztepe Prof. Dr. Süleyman Yalçın City Hospital, Istanbul, Turkey
| | - Eray Sahin
- Department of Biostatistics and Bioinformatics, Acibadem Mehmet Ali Aydinlar University, Institute of Health Sciences, Istanbul, Turkey
| | - Esra Koçoğlu
- Department of Clinical Microbiology, Faculty of Medicine, Istanbul Medeniyet University, Göztepe Prof. Dr. Süleyman Yalçın City Hospital, Istanbul, Turkey
| | - Osman Uğur Sezerman
- Department of Biostatistics and Bioinformatics, Acibadem Mehmet Ali Aydinlar University, Institute of Health Sciences, Istanbul, Turkey
| | - Mehmet Salih Gürel
- Department of Dermatology, Faculty of Medicine, Istanbul Medeniyet University, Göztepe Prof. Dr. Süleyman Yalçın City Hospital, Istanbul, Turkey
| | - Ayşe Serap Karadağ
- Department of Dermatology, Arel University Medical School, Memorial Health Group, Atasehir and Sisli Hospital, Dermatology Clinic, Istanbul, Turkey
| |
Collapse
|
14
|
Carmona-Cruz S, Orozco-Covarrubias L, Sáez-de-Ocariz M. The Human Skin Microbiome in Selected Cutaneous Diseases. Front Cell Infect Microbiol 2022; 12:834135. [PMID: 35321316 PMCID: PMC8936186 DOI: 10.3389/fcimb.2022.834135] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 12/28/2022] Open
Abstract
The human skin harbors a wide variety of microbes that, together with their genetic information and host interactions, form the human skin microbiome. The role of the human microbiome in the development of various diseases has lately gained interest. According to several studies, changes in the cutaneous microbiota are involved in the pathophysiology of several dermatoses. A better delineation of the human microbiome and its interactions with the innate and adaptive immune systems could lead to a better understanding of these diseases, as well as the opportunity to achieve new therapeutic modalities. The present review centers on the most recent knowledge on skin microbiome and its participation in the pathogenesis of several skin disorders: atopic and seborrheic dermatitis, alopecia areata, psoriasis and acne.
Collapse
|
15
|
In Vitro and In Vivo Regulation of SRD5A mRNA Expression of Supercritical Carbon Dioxide Extract from Asparagus racemosus Willd. Root as Anti-Sebum and Pore-Minimizing Active Ingredients. Molecules 2022; 27:molecules27051535. [PMID: 35268636 PMCID: PMC8911958 DOI: 10.3390/molecules27051535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023] Open
Abstract
Oily skin from overactive sebaceous glands affects self-confidence and personality. There is report of an association between steroid 5-alpha reductase gene (SRD5A) expression and facial sebum production. There is no study of the effect of Asparagus racemosus Willd. root extract on the regulation of SRD5A mRNA expression and anti-sebum efficacy. This study extracted A. racemosus using the supercritical carbon dioxide fluid technique with ethanol and investigated its biological compounds and activities. The A. racemosus root extract had a high content of polyphenolic compounds, including quercetin, naringenin, and p-coumaric acid, and DPPH scavenging activity comparable to that of the standard L-ascorbic acid. A. racemosus root extract showed not only a significant reduction in SRD5A1 and SRD5A2 mRNA expression by about 45.45% and 90.86%, respectively, but also a reduction in the in vivo anti-sebum efficacy in male volunteers, with significantly superior percentage changes in facial sebum production and a reduction in the percentages of pore area after 15 and 30 days of treatment. It can be concluded that A. racemosus root extract with a high content of polyphenol compounds, great antioxidant effects, promising downregulation of SRD5A1 and SRD5A2, and predominant facial sebum reduction and pore-minimizing efficacy could be a candidate for an anti-sebum and pore-minimizing active ingredient to serve in functional cosmetic applications.
Collapse
|
16
|
Tao R, Li R, Wang R. Skin microbiome alterations in seborrheic dermatitis and dandruff: A systematic review. Exp Dermatol 2021; 30:1546-1553. [PMID: 34415635 DOI: 10.1111/exd.14450] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/26/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023]
Abstract
Seborrheic dermatitis (SD) and dandruff (DF) are common chronic inflammatory skin diseases characterized by recurrent greasy scales, sometimes with erythema and itchiness. Although the exact pathophysiology of the disease is still unclear, current theories highlight the role of microbes on the skin surface in the pathogenesis of SD. Here, we conducted a systematic review to investigate the skin microbiome alterations in patients with SD/DF. We searched Medline/PubMed, Embase and Web of Science for research studies published in English between 1 January 2000 and 31 December 2020. A total of 12 studies with 706 SD/DF samples and 379 healthy samples were included in this study. The scalp and face were predominated by the fungi of Ascomycota and Basidiomycota and the bacteria of Actinobacteria and Firmicutes. In general, the included studies demonstrated an increased Malassezia restricta/Malassezia globosa ratio and a reduction in the Cutibaterium/Staphylococcus ratio in the setting of SD/DF. Staphylococcus was associated with epidermal barrier damage, including elevated levels of trans-epidermal water loss and pH, while Cutibacterium had a positive correlation with water content. Malassezia was also found to be related to an increased itching score and disease severity. Further studies focusing on the interactions between various microbes and the host and microbes can help us to better understand the pathogenesis of SD/DF.
Collapse
Affiliation(s)
- Rong Tao
- Department of Dermatology, Peking University First Hospital, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China
| | - Ruoyu Li
- Department of Dermatology, Peking University First Hospital, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China
| | - Ruojun Wang
- Department of Dermatology, Peking University First Hospital, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China
| |
Collapse
|
17
|
Massiot P, Clavaud C, Thomas M, Ott A, Guéniche A, Panhard S, Muller B, Michelin C, Kerob D, Bouloc A, Reygagne P. Continuous clinical improvement of mild-to-moderate seborrheic dermatitis and rebalancing of the scalp microbiome using a selenium disulfide-based shampoo after an initial treatment with ketoconazole. J Cosmet Dermatol 2021; 21:2215-2225. [PMID: 34416081 DOI: 10.1111/jocd.14362] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/24/2021] [Accepted: 07/22/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Scalp seborrheic dermatitis (SD) is a chronic, relapsing, and inflammatory scalp disease. Studies indicate a global bacterial and fungal microbiota shift of scalp SD, as compared to healthy scalp. Ketoconazole and selenium disulfide (SeS2 ) improve clinical signs and symptoms in both scalp dandruff and SD. AIM The main objective of this study was to investigate the changes in the scalp microbiota diversity and counts in subjects with scalp SD during a two-phase treatment period. MATERIAL AND METHODS The scalp microbiota and clinical efficacy were investigated in 68 subjects with mild-to-moderate scalp SD after an initial one-month treatment with 2% ketoconazole, and after a 2-month maintenance phase, either with a 1% SeS2 -based shampoo or its vehicle. RESULTS Thirty one subjects in the active and 37 subjects in the vehicle group participated. Ketoconazole provided an improvement of clinical symptoms (adherent (-1.75 p < 0.05), non-adherent (-1.5, p < 0.05)) flakes and erythema (scores 1.67-0.93, p < 0.001), in an increased fungal diversity and in a significant (p < 0.005) decrease of Malassezia spp. SeS2 provided an additional clinical improvement (-0.8; p = 0.0002 and -0.7; p = 0.0081 for adherent and non-adherent flakes, respectively, at Day 84) compared to the vehicle associated with a low Malassezia spp. count and an additional significant (p < 0.001) decrease of the Staphylococcus spp. level. CONCLUSION Selenium disulfide provides an additional benefit on the scalp microbiota and in clinical symptoms of SD and dandruff after treatment with ketoconazole. The results confirm the role of Staphylococcus spp. in scalp SD and open possible perspectives for preventing relapses.
Collapse
Affiliation(s)
| | | | - Marie Thomas
- L'Oréal Research & Innovation, Aulnay-sous-Bois, France
| | - Alban Ott
- L'Oréal Research & Innovation, Aulnay-sous-Bois, France
| | | | | | | | | | | | - Anne Bouloc
- Vichy Laboratoires, Levallois-Perret, France
| | | |
Collapse
|
18
|
Effect of commonly used cosmetic preservatives on skin resident microflora dynamics. Sci Rep 2021; 11:8695. [PMID: 33888782 PMCID: PMC8062602 DOI: 10.1038/s41598-021-88072-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/08/2021] [Indexed: 01/15/2023] Open
Abstract
Human skin is populated by various microorganisms, the so-called microbiota, such as bacteria, viruses, yeasts, fungi, and archaea. The skin microbiota is in constant contact with the surrounding environment which can alter its eubiotic state. Recently it has been also observed that the application of cosmetic products can alter the balance of the skin microbiota. This effect may be attributed to many factors including the residual activity of the preservatives on the skin. In the present work, we studied the effect of eleven preservatives commonly found in cosmetic products on Propionibacterium acnes, Staphylococcus epidermidis, and Staphylococcus aureus in vitro using 3D skin models and culture-dependent methods. Also, the effect on Histone deacetylase 3 (HDAC3) has been investigated. Among tested combinations, three resulted as the best suitable for restoring a pre-existing dysbiosis since they act moderately inhibiting C. acnes and strongly S. aureus without simultaneously inhibiting the growth of S. epidermidis. The other four combinations resulted as the best suitable for use in topical products for skin and scalp in which it is necessary to preserve the eubiosis of the microbiota. Some of the tested were also able to increase HDAC3 expression. Taking together these data highlight the role of preservatives of skin resident microflora dynamics and could provide a reference for correctly choice preservatives and dosage in cosmetic formulations to preserve or restore homeostasis of skin microbiota.
Collapse
|
19
|
The Effects of Dietary Supplementation of Lactococcus lactis Strain Plasma on Skin Microbiome and Skin Conditions in Healthy Subjects-A Randomized, Double-Blind, Placebo-Controlled Trial. Microorganisms 2021; 9:microorganisms9030563. [PMID: 33803200 PMCID: PMC8000884 DOI: 10.3390/microorganisms9030563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 01/26/2023] Open
Abstract
(1) Background: Lactococcus lactis strain Plasma (LC-Plasma) is a unique strain which directly activates plasmacytoid dendritic cells, resulting in the prevention against broad spectrum of viral infection. Additionally, we found that LC-Plasma intake stimulated skin immunity and prevents Staphylococcus aureus epicutaneous infection. The aim of this study was to investigate the effect of LC-Plasma dietary supplementation on skin microbiome, gene expression in the skin, and skin conditions in healthy subjects. (2) Method: A randomized, double-blind, placebo-controlled, parallel-group trial was conducted. Seventy healthy volunteers were enrolled and assigned into two groups receiving either placebo or LC-Plasma capsules (approximately 1 × 1011 cells/day) for 8 weeks. The skin microbiome was analyzed by NGS and qPCR. Gene expression was analyzed by qPCR and skin conditions were diagnosed by dermatologists before and after intervention. (3) Result: LC-Plasma supplementation prevented the decrease of Staphylococcus epidermidis and Staphylococcus pasteuri and overgrowth of Propionibacterium acnes. In addition, LC-Plasma supplementation suggested to increase the expression of antimicrobial peptide genes but not tight junction genes. Furthermore, the clinical scores of skin conditions were ameliorated by LC-Plasma supplementation. (4) Conclusions: Our findings provided the insights that the dietary supplementation of LC-Plasma might have stabilizing effects on seasonal change of skin microbiome and skin conditions in healthy subjects.
Collapse
|
20
|
Lee K, Zhang I, Kyman S, Kask O, Cope EK. Co-infection of Malassezia sympodialis With Bacterial Pathobionts Pseudomonas aeruginosa or Staphylococcus aureus Leads to Distinct Sinonasal Inflammatory Responses in a Murine Acute Sinusitis Model. Front Cell Infect Microbiol 2020; 10:472. [PMID: 33014894 PMCID: PMC7498577 DOI: 10.3389/fcimb.2020.00472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/31/2020] [Indexed: 12/21/2022] Open
Abstract
Host-associated bacteria and fungi, comprising the microbiota, are critical to host health. In the airways, the composition and diversity of the mucosal microbiota of patients are associated with airway health status. However, the relationship between airway microbiota and respiratory inflammation is not well-understood. Chronic rhinosinusitis (CRS) is a complex disease that affects up to 14% of the US population. Previous studies have shown decreased microbial diversity in CRS patients and enrichment of either Staphylococcus aureus or Pseudomonas aeruginosa. Although bacterial community composition is variable across CRS patients, Malassezia is a dominant fungal genus in the upper airways of the majority of healthy and CRS subjects. We hypothesize that distinct bacterial-fungal interactions differentially influence host mucosal immune response. Thus, we investigated in vitro and in vivo interactions between Malassezia sympodialis, P. aeruginosa, and S. aureus. The in vitro interactions were evaluated using the modified Kirby-Bauer Assay, Crystal Violet assay for biofilm, and FISH. A pilot murine model of acute sinusitis was used to investigate relationships with the host immune response. S. aureus and P. aeruginosa were intranasally instilled in the presence or absence of M. sympodialis (n = 66 total mice; 3–5/group). Changes in the microbiota were determined using 16S rRNA gene sequencing and host immune response was measured using quantitative real-time PCR (qRT-PCR). In vitro, only late stage planktonic P. aeruginosa and its biofilms inhibited M. sympodialis. Co-infection of mice with M. sympodialis and P. aeruginosa or S. aureus differently influenced the immune response. In co-infected mice, we demonstrate different expression of fungal sensing (Dectin-1), allergic responses (IL-5, and IL-13) and inflammation (IL-10, and IL-17) in murine sinus depending on the bacterial species that co-infected with M. sympodialis (p < 0.05). The pilot results suggest that species-specific interactions in airway-associated microbiota may be implicated driving immune responses. The understanding of the role of bacterial-fungal interactions in CRS will contribute to development of novel therapies toward manipulation of the airway microbiota.
Collapse
Affiliation(s)
- Keehoon Lee
- Center for Applied Microbiome Sciences, The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Irene Zhang
- Center for Applied Microbiome Sciences, The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Shari Kyman
- Center for Applied Microbiome Sciences, The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Oliver Kask
- Center for Applied Microbiome Sciences, The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Emily Kathryn Cope
- Center for Applied Microbiome Sciences, The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| |
Collapse
|
21
|
Lee K, Zhang I, Kyman S, Kask O, Cope EK. Co-infection of Malassezia sympodialis With Bacterial Pathobionts Pseudomonas aeruginosa or Staphylococcus aureus Leads to Distinct Sinonasal Inflammatory Responses in a Murine Acute Sinusitis Model. Front Cell Infect Microbiol 2020. [DOI: 10.10.3389/fcimb.2020.00472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
22
|
Adalsteinsson JA, Kaushik S, Muzumdar S, Guttman-Yassky E, Ungar J. An update on the microbiology, immunology and genetics of seborrheic dermatitis. Exp Dermatol 2020; 29:481-489. [PMID: 32125725 DOI: 10.1111/exd.14091] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 02/07/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022]
Abstract
The underlying mechanism of seborrheic dermatitis (SD) is poorly understood but major scientific progress has been made in recent years related to microbiology, immunology and genetics. In light of this, the major goal of this article was to summarize the most recent articles on SD, specifically related to underlying pathophysiology. SD results from Malassezia hydrolysation of free fatty acids with activation of the immune system by the way of pattern recognition receptors, inflammasome, IL-1β and NF-kB. M. restricta and M. globosa are likely the most virulent subspecies, producing large quantities of irritating oleic acids, leading to IL-8 and IL-17 activation. IL-17 and IL-4 might play a big role in pathogenesis, but this needs to be further studied using novel biologics. No clear genetic predisposition has been established; however, recent studies implicated certain increased-risk human leucocyte antigen (HLA) alleles, such as A*32, DQB1*05 and DRB1*01 as well as possible associations with psoriasis and atopic dermatitis (AD) through the LCE3 gene cluster while SD, and SD-like syndromes, shares genetic mutations that appear to impair the ability of the immune system to restrict Malassezia growth, partially due to complement system dysfunction. A paucity of studies exists looking at the relationship between SD and systemic disease. In HIV, SD is thought to be secondary to a combination of immune dysregulation and disruption in skin microbiota with unhindered Malassezia proliferation. In Parkinson's disease, SD is most likely secondary to parasympathetic hyperactivity with increased sebum production as well as facial immobility which leads to sebum accumulation.
Collapse
Affiliation(s)
| | - Shivani Kaushik
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sonal Muzumdar
- Department of Dermatology, University of Connecticut, Farmington, Connecticut
| | - Emma Guttman-Yassky
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jonathan Ungar
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
23
|
Lin Q, Panchamukhi A, Li P, Shan W, Zhou H, Hou L, Chen W. Malassezia and Staphylococcus dominate scalp microbiome for seborrheic dermatitis. Bioprocess Biosyst Eng 2020; 44:965-975. [PMID: 32219537 DOI: 10.1007/s00449-020-02333-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/12/2020] [Indexed: 11/24/2022]
Abstract
Seborrheic dermatitis (SD) is a common disease of the human scalp that causes physical damage and psychological problems for patients. Studies have indicated that dysbiosis of the scalp microbiome results in SD. However, the specific fungal and bacterial microbiome changes related to SD remain elusive. To further investigate the fungal and bacterial microbiome changes associated with SD, we recruited 57 SD patients and 53 healthy individuals and explored their scalp microbiomes using next generation sequencing and the QIIME and LEfSe bioinformatics tools. Skin pH, sebum secretion, hydration, and trans-epidermal water loss (TWEL) were also measured at the scalp. We found no statistically significant differences between the normal and lesion sites in SD patients with different subtypes of dandruff and erythema. However, the fungal and bacterial microbiome could differentiate SD patients from healthy controls. The presence of Malassezia and Aspergillus was both found to be potential fungal biomarkers for SD, while Staphylococcus and Pseudomonas were found to be potential bacterial biomarkers. The fungal and bacterial microbiome were divided into three clusters through co-abundance analysis and their correlations with host factors indicated the interactions and potential cooperation and resistance between microbe communities and host. Our research showed the skin microbe dysbiosis of SD and highlighted specific microorganisms that may serve as potential biomarkers of SD. The etiology of SD is multi-pathogenetic-dependent on the linkage of several microbes with host. Scalp microbiome homeostasis could be a promising new target in the risk assessment, prevention, and treatment of SD disease.
Collapse
Affiliation(s)
- Qingbin Lin
- Beijing Institute of Biotechnology, Beijing, 10071, China
| | - Ananth Panchamukhi
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Pan Li
- Division of Laboratory Medicine, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Wang Shan
- Division of Laboratory Medicine, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Hongwei Zhou
- Division of Laboratory Medicine, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Lihua Hou
- Beijing Institute of Biotechnology, Beijing, 10071, China
| | - Wei Chen
- Beijing Institute of Biotechnology, Beijing, 10071, China.
| |
Collapse
|
24
|
Wikramanayake TC, Borda LJ, Miteva M, Paus R. Seborrheic dermatitis—Looking beyondMalassezia. Exp Dermatol 2019; 28:991-1001. [DOI: 10.1111/exd.14006] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/30/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Tongyu C. Wikramanayake
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
| | - Luis J. Borda
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
| | - Mariya Miteva
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
- Centre for Dermatology Research University of Manchester Manchester UK
- NIHR Biomedical Research Centre Manchester UK
| |
Collapse
|
25
|
Lazarte C, Paladino L, Mollo L, Katra R, Isabel BM, Puia SA. Cervicofacial Infections Caused by Staphylococcus aureus. Ann Maxillofac Surg 2019; 9:459-464. [PMID: 31909036 PMCID: PMC6933971 DOI: 10.4103/ams.ams_226_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is an opportunistic pathogen that causes a wide range of diseases. Dissemination of perioral infections is a common problem in the field of oral and maxillofacial surgery. The aim of the study was to evaluate S. aureus carriage in the oral cavity and its dissemination to different cervicofacial regions. Clinical case 1 is a patient with a systemic history of type I diabetes which led to foot amputation one year previou sly, who presented alteration of ocular motility and the culture showed Grampositive cocci compatible with S. aureus. The patient was discharged after eight days of antibiotic therapy and drainage. Clinical case 2 was a young female without any comorbidities who had never been hospitalized before or even exposed to the hospital environment. The presence of lesions compatible with necrotizing fasciitis (NF) in the lower lip mucosal region, rapid evolution of the infection to deep planes, and evolution of the clinical picture alerted health-care providers to the need for prompt care. Clinical case 3 was an immunosuppressed patient with cellulitis which is a bacterial infection of the skin and soft tissues that occurs when the physical barrier of the skin and soft tissues, the immune system, and/or the circulatory system are affected. S. aureus is an opportunistic pathogen which causes a wide range of diseases. It inhabits the oral cavity, from where it can spread to distant cervicofacial regions. This is why it is important for health-care professionals to be aware of this niche in case of dissemination in order to provide prompt diagnosis and appropriate treatment.
Collapse
Affiliation(s)
- Carlos Lazarte
- Chair of Surgery and Traumatology Bucomaxilofacial I, Faculty of Dentistry, University of Buenos Aires, Andress: Marcelo Torcuato de Alvear 2142. Buenos Aires, Argentina
| | - Leonel Paladino
- Chair of Surgery and Traumatology Bucomaxilofacial I, Faculty of Dentistry, University of Buenos Aires, Andress: Marcelo Torcuato de Alvear 2142. Buenos Aires, Argentina
| | - Luciana Mollo
- Chair of Surgery and Traumatology Bucomaxilofacial I, Faculty of Dentistry, University of Buenos Aires, Andress: Marcelo Torcuato de Alvear 2142. Buenos Aires, Argentina
| | - Romina Katra
- Chair of Surgery and Traumatology Bucomaxilofacial I, Faculty of Dentistry, University of Buenos Aires, Andress: Marcelo Torcuato de Alvear 2142. Buenos Aires, Argentina
| | - Brusca María Isabel
- Chair of Surgery and Traumatology Bucomaxilofacial I, Faculty of Dentistry, University of Buenos Aires, Andress: Marcelo Torcuato de Alvear 2142. Buenos Aires, Argentina
| | - Sebastian Ariel Puia
- Chair of Surgery and Traumatology Bucomaxilofacial I, Faculty of Dentistry, University of Buenos Aires, Andress: Marcelo Torcuato de Alvear 2142. Buenos Aires, Argentina
| |
Collapse
|