1
|
Apaydin AS, Sahin C, Cayli S, Bal E, Bal C, Gökcem Yildiz F, Ayberk G. Levetiracetam treatment in an experimental model of sciatic nerve injury: A randomized controlled trial. Neurol Res 2023; 45:86-96. [PMID: 36373802 DOI: 10.1080/01616412.2022.2143617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/29/2022] [Indexed: 11/16/2022]
Abstract
AIM This study examined whether levetiracetam contributes to improvements in the axon-nerve damage in an experimental rat model. MATERIALS AND METHODS Forty-eight Wistar albino adult male rats weighing 250-300 gr were randomized into six groups having or not having sciatic nerve damages and receiving different (none, 300 and 600 mg/kg) levetiracetam doses, and control (non-levetiracetam). Functional gait analysis and tissue sample analysis with the aid of light microscopy and hematoxylin-eosin dye were evaluated between the groups. Additionally, scanning electron microscopy (SEM) was used for the detailed examination of sciatic nerves. S-100 (Schwann cell marker) immunoreactivities in sciatic nerve was detected by immunohistochemistry. RESULTS Sciatic functional index of the injured rats receiving 300 mg/kg levetiracetam was -65.59 ± 29.48 and -47.13 ± 21.36 in the 2nd and 6th weeks, respectively (p < 0.001). Also, IMA and TOS levels were significantly higher in the control group compared to those receiving levetiracetam (p = 0.001 and p < 0.001, respectively). The most significant nerve regeneration was in the group injured and treated with LEV 600 mg/kg (p < 0.05). CONCLUSION There was a significant improvement in the sciatic functional index, histopathological findings, and parameters showing tissue oxidant status in rats with sciatic nerve injury receiving levetiracetam treatment. Further investigations should be performed to evaluate the contribution of levetiracetam as a treatment modality in sciatic nerve injuries.
Collapse
Affiliation(s)
- Aydin Sinan Apaydin
- Faculty of Medicine Ankara City Hospital Department of Neurosurgery, Yıldırım Beyazıt University, Ankara, Turkey
| | - Cansu Sahin
- CÚRAM-SFI Research Centre for Medical Devices, Department of Physiology, University of Galway, Galway, Ireland
| | - Sevil Cayli
- Faculty of Medicine Ankara City Hospital Department of Histology and Embryology, Yıldırım Beyazıt University, Ankara, Turkey
| | - Ercan Bal
- Faculty of Medicine Ankara City Hospital Department of Neurosurgery, Yıldırım Beyazıt University, Ankara, Turkey
| | - Ceylan Bal
- Faculty of Medicine Ankara City Hospital Department of Biochemistry, Yıldırım Beyazıt University, Ankara, Turkey
| | - Fatma Gökcem Yildiz
- Hacettepe University Faculty of Medicine, Department of Neurology, Ankara, Turkey
| | - Giyas Ayberk
- Faculty of Medicine Ankara City Hospital Department of Neurosurgery, Yıldırım Beyazıt University, Ankara, Turkey
| |
Collapse
|
2
|
Rehman Z, Farooq T, Javaid S, Ashraf W, Fawad Rasool M, Samad N, Tariq M, Muhammad Muneeb Anjum S, Sivandzade F, Alotaibi F, Alqahtani F, Imran I. Combination of levetiracetam with sodium selenite prevents pentylenetetrazole-induced kindling and behavioral comorbidities in rats. Saudi Pharm J 2022; 30:494-507. [PMID: 35693436 PMCID: PMC9177457 DOI: 10.1016/j.jsps.2022.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/05/2022] [Indexed: 02/06/2023] Open
Affiliation(s)
- Zohabia Rehman
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Talha Farooq
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Sana Javaid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
- Department of Pharmacy, The Women University, Multan 60000, Pakistan
| | - Waseem Ashraf
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Noreen Samad
- Department of Biochemistry, Faculty of Sciences, Bahauddin Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Maryam Tariq
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | | | - Farzane Sivandzade
- Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| | - Faisal Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Corresponding authors at: Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia. (F. Alqahtani). Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University 60800, Multan, Pakistan. (I. Imran)..
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
- Corresponding authors at: Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia. (F. Alqahtani). Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University 60800, Multan, Pakistan. (I. Imran)..
| |
Collapse
|
3
|
Ribaudo G, Bortoli M, Pavan C, Zagotto G, Orian L. Antioxidant Potential of Psychotropic Drugs: From Clinical Evidence to In Vitro and In Vivo Assessment and toward a New Challenge for in Silico Molecular Design. Antioxidants (Basel) 2020; 9:E714. [PMID: 32781750 PMCID: PMC7465375 DOI: 10.3390/antiox9080714] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
Due to high oxygen consumption, the brain is particularly vulnerable to oxidative stress, which is considered an important element in the etiopathogenesis of several mental disorders, including schizophrenia, depression and dependencies. Despite the fact that it is not established yet whether oxidative stress is a cause or a consequence of clinic manifestations, the intake of antioxidant supplements in combination with the psychotropic therapy constitutes a valuable solution in patients' treatment. Anyway, some drugs possess antioxidant capacity themselves and this aspect is discussed in this review, focusing on antipsychotics and antidepressants. In the context of a collection of clinical observations, in vitro and in vivo results are critically reported, often highlighting controversial aspects. Finally, a new challenge is discussed, i.e., the possibility of assessing in silico the antioxidant potential of these drugs, exploiting computational chemistry methodologies and machine learning. Despite the physiological environment being incredibly complex and the detection of meaningful oxidative stress biomarkers being all but an easy task, a rigorous and systematic analysis of the structural and reactivity properties of antioxidant drugs seems to be a promising route to better interpret therapeutic outcomes and provide elements for the rational design of novel drugs.
Collapse
Affiliation(s)
- Giovanni Ribaudo
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy;
| | - Marco Bortoli
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy;
| | - Chiara Pavan
- Dipartimento di Medicina, Università degli Studi di Padova, Via Giustiniani 2, 35128 Padova, Italy;
| | - Giuseppe Zagotto
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Via Marzolo 5, 35131 Padova, Italy;
| | - Laura Orian
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy;
| |
Collapse
|
4
|
Roy P, Parveen S, Ghosh P, Ghatak K, Dasgupta S. Flavonoid loaded nanoparticles as an effective measure to combat oxidative stress in Ribonuclease A. Biochimie 2019; 162:185-197. [PMID: 31059754 DOI: 10.1016/j.biochi.2019.04.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 04/29/2019] [Indexed: 12/11/2022]
Abstract
Flavonoids like quercetin and myricetin serve as naturally occurring antioxidants but their bioactivity is limited due to low aqueous solubility and oxidation under physiological conditions. In this current study, the antioxidant activity of quercetin and myricetin loaded chitosan nanoparticles during the induced oxidation of Ribonuclease A (RNase A) has been compared with the corresponding free flavonoids. Oxidation of RNase A leads to intermolecular dityrosine (DT) bond formation which shows a characteristic fluorescence emission around 405 nm. Although both quercetin and myricetin loaded nanoparticles initially exhibit lower antioxidant property compared to the free flavonoids, however, with increase in oxidant concentration over time the DT fluorescence showed greater increase for free flavonoids in comparison to the nanoparticles. The polyphenol loaded nanoparticles are also found to be effective in preventing bacterial cell damage in oxidizing medium. The slow release of flavonoids from the nanoparticles is responsible for their prolonged antioxidant effect in the oxidizing medium unlike the free flavonoids which are exhausted almost completely in the initial phase.
Collapse
Affiliation(s)
- Pritam Roy
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Sultana Parveen
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Pooja Ghosh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Kausani Ghatak
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
5
|
Grewal GK, Kukal S, Kanojia N, Saso L, Kukreti S, Kukreti R. Effect of Oxidative Stress on ABC Transporters: Contribution to Epilepsy Pharmacoresistance. Molecules 2017; 22:molecules22030365. [PMID: 28264441 PMCID: PMC6155434 DOI: 10.3390/molecules22030365] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/21/2017] [Accepted: 02/23/2017] [Indexed: 01/16/2023] Open
Abstract
Epilepsy is a neurological disorder affecting around 1%–2% of population worldwide and its treatment includes use of antiepileptic drugs to control seizures. Failure to respond to antiepileptic drug therapy is a major clinical problem and over expression of ATP-binding cassette transporters is considered one of the major reasons for pharmacoresistance. In this review, we have summarized the regulation of ABC transporters in response to oxidative stress due to disease and antiepileptic drugs. Further, ketogenic diet and antioxidants were examined for their role in pharmacoresistance. The understanding of signalling pathways and mechanism involved may help in identifying potential therapeutic targets and improving drug response.
Collapse
Affiliation(s)
- Gurpreet Kaur Grewal
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, Delhi 110007, India.
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi 110007, India.
| | - Samiksha Kukal
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, Delhi 110007, India.
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi 110007, India.
| | - Neha Kanojia
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, Delhi 110007, India.
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi 110007, India.
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy.
| | - Shrikant Kukreti
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi (North Campus), Delhi 110007, India.
| | - Ritushree Kukreti
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, Delhi 110007, India.
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi 110007, India.
| |
Collapse
|