1
|
Mourão A, Serrano I, Cunha E, Tavares L, Lourenço A, Oliveira M. In vitro efficacy of lavender oil, otological gel and gentamicin to eradicate biofilm produced by Pseudomonas aeruginosa. Vet Dermatol 2024; 35:726-735. [PMID: 39210732 DOI: 10.1111/vde.13294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/18/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Otitis externa (OE) is one of the most frequently diagnosed dermatological diseases in dogs, having a multifactorial aetiology. Among the bacterial agents associated with canine OE, Pseudomonas aeruginosa is of special concern owing to its frequent multidrug resistance profile and ability to form biofilms related to the infection's chronicity and recurrence. OBJECTIVES The main objective of this study was to evaluate and compare the antibiofilm activity of two innovative antimicrobials-an otological gel containing a synthetic antimicrobial peptide and Lavandula angustifolia essential oil-with gentamicin (a conventional antibiotic) using biofilm-producing P. aeruginosa isolates obtained from dogs with OE. MATERIALS AND METHODS The biofilm eradication capacity of gentamicin, otological gel and lavender oil was determined against a collection of 12 P. aeruginosa biofilm-producers among 35 clinical isolates obtained from the ear canals of dogs with OE. Also, the antimicrobial activity of the otological gel against P. aeruginosa biofilms was assessed in an in vitro model of dog cerumen. RESULTS Lavender oil showed the best effectiveness after 30 min of contact, eradicating 58.3% (seven of 12) of the isolates, and gentamicin showed full eradication (12 of 12) after 24 h. The otological gel acted more slowly than the lavender oil; yet at 24 h, the antibiofilm capacity of both compounds was similar, with no significant difference between them. It also was found that triglycerides from synthetic cerumen earwax had antipseudomonal activity and, when combined with the otological gel, led to the full eradication of P. aeruginosa. CONCLUSIONS AND CLINICAL RELEVANCE The results of this in vitro study indicate that lavender oil and the otological gel may be effective topical treatments for canine OE promoted by P. aeruginosa biofilm-producers, as alternatives to gentamicin.
Collapse
Affiliation(s)
- Ana Mourão
- CIISA-Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Isa Serrano
- CIISA-Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Eva Cunha
- CIISA-Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Luís Tavares
- CIISA-Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Ana Lourenço
- CIISA-Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Manuela Oliveira
- CIISA-Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
- cE3c-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Lisbon, Portugal
| |
Collapse
|
2
|
Mini M, Jayakumar D, Kumar P. In-silico and in-vitro assessment of the antibiofilm potential of azo dye, carmoisine against Pseudomonas aeruginosa. J Biomol Struct Dyn 2024; 42:6700-6710. [PMID: 37485898 DOI: 10.1080/07391102.2023.2237579] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023]
Abstract
Biofilm is a community of microorganisms attached to the substrate and plays a significant role in microbial pathogenesis and medical device-related infection. Pseudomonas aeruginosa (PA) is a highly infectious gram-negative opportunistic biofilm-forming bacterium with high antibiotic resistance. Several reports underscore the antimicrobial activity of natural and synthetic food coloring agents, including carmoisine, turmeric dye, red amaranth dye, and phloxine B. However, their ability to suppress the PA biofilm is not clearly understood. Carmoisine is a red-colored synthetic azo dye containing naphthalene subunits and sulfonic groups and is widely used as a food coloring agent. This study investigated the antibiofilm potential and possible mechanism of biofilm inhibition by carmoisine against PA. Computational studies through molecular docking revealed that carmoisine strongly binds to QS regulator LasR (-12.7) and relatively less strongly but significantly with WspR (-6.9). Further analysis of the docked LasR-carmoisine complex using 100 ns MD simulation (Desmond, Schrödinger) validated the bonding strength and stability. Crystal violet assay, triphenyl tetrazolium chloride salt assay, and confocal microscopic studies were adopted for biofilm quantification, and the results indicated the dose-dependent antibiofilm activity of carmoisine against PA. We hypothesise that the carmoisine-mediated reduction of biofilm in PA is due to its interaction with LasR and interference with the QS system. The computational and biochemical analysis of another compound, 1,2-naphthoquinone-4-sulphonic acid, reiterated the role of the naphthalene ring in biofilm inhibition. Hence, this work will pave the way for the future discovery of antibiofilm drugs based on naphthalene ring-based lead compounds.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Minsa Mini
- Department of Zoology, Government College for Women, Thiruvananthapuram, Kerala, India
| | - Devi Jayakumar
- Department of Zoology, Government College for Women, Thiruvananthapuram, Kerala, India
| | - Praveen Kumar
- Department of Zoology, Government College for Women, Thiruvananthapuram, Kerala, India
| |
Collapse
|
3
|
Lutfi LL, Shaaban MI, Elshaer SL. Vitamin D and vitamin K1 as novel inhibitors of biofilm in Gram-negative bacteria. BMC Microbiol 2024; 24:173. [PMID: 38762474 PMCID: PMC11102130 DOI: 10.1186/s12866-024-03293-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/04/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND The persistent surge in antimicrobial resistance represents a global disaster. The initial attachment and maturation of microbial biofilms are intimately related to antimicrobial resistance, which in turn exacerbates the challenge of eradicating bacterial infections. Consequently, there is a pressing need for novel therapies to be employed either independently or as adjuvants to diminish bacterial virulence and pathogenicity. In this context, we propose a novel approach focusing on vitamin D and vitamin K1 as potential antibiofilm agents that target Gram-negative bacteria which are hazardous to human health. RESULTS Out of 130 Gram-negative bacterial isolates, 117 were confirmed to be A. baumannii (21 isolates, 17.9%), K. pneumoniae (40 isolates, 34.2%) and P. aeruginosa (56 isolates, 47.9%). The majority of the isolates were obtained from blood and wound specimens (27.4% each). Most of the isolates exhibited high resistance rates to β-lactams (60.7-100%), ciprofloxacin (62.5-100%), amikacin (53.6-76.2%) and gentamicin (65-71.4%). Approximately 93.2% of the isolates were biofilm producers, with 6.8% categorized as weak, 42.7% as moderate, and 50.4% as strong biofilm producers. The minimum inhibitory concentrations (MICs) of vitamin D and vitamin K1 were 625-1250 µg mL-1 and 2500-5000 µg mL-1, respectively, against A. baumannii (A5, A20 and A21), K. pneumoniae (K25, K27 and K28), and P. aeruginosa (P8, P16, P24 and P27) clinical isolates and standard strains A. baumannii (ATCC 19606 and ATCC 17978), K. pneumoniae (ATCC 51503) and P. aeruginosa PAO1 and PAO14. Both vitamins significantly decreased bacterial attachment and significantly eradicated mature biofilms developed by the selected standard and clinical Gram-negative isolates. The anti-biofilm effects of both supplements were confirmed by a notable decrease in the relative expression of the biofilm-encoding genes cusD, bssS and pelA in A. baumannii A5, K. pneumoniae K28 and P. aeruginosa P16, respectively. CONCLUSION This study highlights the anti-biofilm activity of vitamins D and K1 against the tested Gram-negative strains, which emphasizes the potential of these vitamins for use as adjuvant therapies to increase the efficacy of treatment for infections caused by multidrug-resistant (MDR) strains and biofilm-forming phenotypes. However, further validation through in vivo studies is needed to confirm these promising results.
Collapse
Affiliation(s)
- Lekaa L Lutfi
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mona I Shaaban
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Soha Lotfy Elshaer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
4
|
Confessor MVA, Agreles MAA, Campos LADA, Silva Neto AF, Borges JC, Martins RM, Scavuzzi AML, Lopes ACS, Kretzschmar EADM, Cavalcanti IMF. Olive oil nanoemulsion containing curcumin: antimicrobial agent against multidrug-resistant bacteria. Appl Microbiol Biotechnol 2024; 108:241. [PMID: 38413482 PMCID: PMC10899360 DOI: 10.1007/s00253-024-13057-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 01/21/2024] [Accepted: 02/06/2024] [Indexed: 02/29/2024]
Abstract
The present work aimed to develop, characterize, and evaluate the antibacterial and antibiofilm activity of two nanoemulsions (NEs) containing 500 µg/mL of curcumin from Curcuma longa (CUR). These NEs, produced with heating, contain olive oil (5%) and the surfactants tween 80 (5%) and span 80 (2.5%), water q.s. 100 mL, and were stable for 120 days. NE-2-CUR presented Ø of 165.40 ± 2.56 nm, PDI of 0.254, ζ of - 33.20 ± 1.35 mV, pH of 6.49, and Entrapment Drug Efficiency (EE) of 99%. The NE-4-CUR showed a Ø of 105.70 ± 4.13 nm, PDI of 0.459, ζ of - 32.10 ± 1.45 mV, pH of 6.40 and EE of 99.29%. Structural characterization was performed using DRX and FTIR, thermal characterization using DSC and TG, and morphological characterization using SEM, suggesting that there is no significant change in the CUR present in the NEs and that they remain stable. The MIC was performed by the broth microdilution method for nine gram-positive and gram-negative bacteria, as well as Klebsiella pneumoniae clinical isolates resistant to antibiotics and biofilm and efflux pump producers. The NEs mostly showed a bacteriostatic profile. The MIC varied between 125 and 250 µg/mL. The most sensitive bacteria were Staphylococcus aureus and Enterococcus faecalis, for which NE-2-CUR showed a MIC of 125 µg/mL. The NEs and ceftazidime (CAZ) interaction was also evaluated against the K. pneumoniae resistant clinical isolates using the Checkerboard method. NE-2-CUR and NE-4-CUR showed a synergistic or additive profile; there was a reduction in CAZ MICs between 256 times (K26-A2) and 2 times (K29-A2). Furthermore, the NEs inhibited these isolates biofilms formation. The NEs showed a MBIC ranging from 15.625 to 250 µg/mL. Thus, the NEs showed physicochemical characteristics suitable for future clinical trials, enhancing the CAZ antibacterial and antibiofilm activity, thus becoming a promising strategy for the treatment of bacterial infections caused by multidrug-resistant K. pneumoniae. KEY POINTS: • The NEs showed physicochemical characteristics suitable for future clinical trials. • The NEs showed a synergistic/additive profile, when associated with ceftazidime. • The NEs inhibited biofilm formation of clinical isolates.
Collapse
Affiliation(s)
- Maine Virgínia Alves Confessor
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Prof. Moraes Rego Avenue, 1235, Cidade Universitária, CEP, Recife, Pernambuco, 50670-901, Brazil.
- University Center UNIFACISA, Manoel Cardoso Palhano, 124-152, Itararé, CEP, Campina Grande, Paraiba, 58408-326, Brazil.
| | - Maria Anndressa Alves Agreles
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Prof. Moraes Rego Avenue, 1235, Cidade Universitária, CEP, Recife, Pernambuco, 50670-901, Brazil
| | - Luís André de Almeida Campos
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Prof. Moraes Rego Avenue, 1235, Cidade Universitária, CEP, Recife, Pernambuco, 50670-901, Brazil
| | - Azael Francisco Silva Neto
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Prof. Moraes Rego Avenue, 1235, Cidade Universitária, CEP, Recife, Pernambuco, 50670-901, Brazil
| | - Joyce Cordeiro Borges
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Prof. Moraes Rego Avenue, 1235, Cidade Universitária, CEP, Recife, Pernambuco, 50670-901, Brazil
| | - Rodrigo Molina Martins
- University Center UNIFACISA, Manoel Cardoso Palhano, 124-152, Itararé, CEP, Campina Grande, Paraiba, 58408-326, Brazil
| | | | - Ana Catarina Souza Lopes
- Department of Tropical Medicine, Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | | | - Isabella Macário Ferro Cavalcanti
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Prof. Moraes Rego Avenue, 1235, Cidade Universitária, CEP, Recife, Pernambuco, 50670-901, Brazil
- Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão, Pernambuco, Brazil
| |
Collapse
|
5
|
Olaniran OB, Donia A, Adeleke OE, Bokhari H. Prevalence of Type III Secretion System (T3SS) and Biofilm Development in Genetically Heterogeneous Clinical Isolates of Pseudomonas aeruginosa from Nigeria. Curr Microbiol 2023; 80:349. [PMID: 37733140 DOI: 10.1007/s00284-023-03467-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 09/01/2023] [Indexed: 09/22/2023]
Abstract
Pseudomonas aeruginosa infection in seriously ill patients is a major concern due to its ability to form biofilm and secrete effector toxins. There is little information on the prevalence of T3SS effector toxins and biofilm production in clinical isolates of P. aeruginosa from Nigeria. The goal of this study is to evaluate the prevalence of T3SS toxins and biofilm production among isolates from selected tertiary hospitals in Nigeria. This study examined 430 clinical isolates from our previous work, comprising 181 MDR (multidrug-resistant) and 249 non-MDR isolates. Biofilm production and type III secretion toxins were determined using colorimetric microtiter plate assay and polymerase chain reaction, respectively. Carbapenem-resistant isolates were typed using REP-PCR and BOX-PCR. Biofilm production was detected in 386/430 (89.8%) of the isolates. Out of 386 biofilm producers, 167 (43.3%) were multidrug-resistant isolates. PCR identified four T3SS virulence types among 430 isolates, including 78 (18.1%) exoU+/exoS- isolates, 343 (79.8%) exoU-/exoS + isolates, 5 (1.2%) exoU+/exoS + isolates, and 4 (0.9%) exoU-/exoS- isolates. Both REP- and BOX-PCR consist of eight clusters. On the REP-PCR dendrogram, ExoU+/ExoS- isolates majorly occupied cluster IV. Clusters IV, VII, and VIII consist of isolates from wounds on BOX-PCR dendrogram. There was a positive association between strong biofilm production and multidrug resistance in our P. aeruginosa isolates. This study identified multidrug-resistant, biofilm-producing P. aeruginosa strains that secrete cytotoxic effectors which are significant virulence factors in P. aeruginosa. This poses a severe risk to our healthcare system and highlights the importance of continuous surveillance to prevent infectious disease outbreaks.
Collapse
Affiliation(s)
- Oluwatoyin B Olaniran
- Department of Pharmaceutical Microbiology, Olabisi Onabanjo University, Ago-Iwoye, Nigeria
- Department of Biosciences, Faculty of Science, COMSATS University Islamabad, Islamabad, Pakistan
| | - Ahmed Donia
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
- Department of Biosciences, Faculty of Science, COMSATS University Islamabad, Islamabad, Pakistan
| | - Olufemi E Adeleke
- Department of Pharmaceutical Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Habib Bokhari
- Department of Biosciences, Faculty of Science, COMSATS University Islamabad, Islamabad, Pakistan.
- Kohsar University Murree, Murree, Pakistan.
| |
Collapse
|
6
|
Ghajari G, Naser RH, Pecho RDC, Alhili F, Piri-Gharaghie T. RETRACTED ARTICLE: Chitosan/Pectin Nanoparticles Encapsulated with Echinacea pallida: a Focus on Antibacterial and Antibiofilm Activity Against Multidrug-Resistant Staphylococcus aureus. Appl Biochem Biotechnol 2023:10.1007/s12010-023-04709-1. [PMID: 37656354 DOI: 10.1007/s12010-023-04709-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/02/2023]
Affiliation(s)
- Ghazal Ghajari
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Rana Hussein Naser
- Department of Science, College of Basic Education-Science, University of Diyala, Baqubah, Diyala, Iraq
| | | | - Farah Alhili
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Tohid Piri-Gharaghie
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| |
Collapse
|
7
|
Karruli A, Catalini C, D’Amore C, Foglia F, Mari F, Harxhi A, Galdiero M, Durante-Mangoni E. Evidence-Based Treatment of Pseudomonas aeruginosa Infections: A Critical Reappraisal. Antibiotics (Basel) 2023; 12:antibiotics12020399. [PMID: 36830309 PMCID: PMC9952410 DOI: 10.3390/antibiotics12020399] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Multidrug-resistant (MDR)/extensively drug-resistant (XDR) Pseudomonas aeruginosa is emerging as a major threat related to adverse patient outcomes. The goal of this review is to describe evidence-based empiric and targeted treatment regimens that can be exploited when dealing with suspected or confirmed infections due to MDR/XDR P. aeruginosa. P. aeruginosa has inherent resistance to many drug classes, the capacity to form biofilms, and most importantly, the ability to quickly acquire resistance to ongoing treatments. Based on the presence of risk factors for MDR/XDR infections and local epidemiology, where large proportions of strains are resistant to classic beta-lactams, the recommended empirical treatment for suspected P. aeruginosa infections is based on ceftolozane-tazobactam or ceftazidime-avibactam. Where local epidemiology indicates low rates of MDR/XDR and there are no risk factors, a third or fourth generation cephalosporin can be used in the context of a "carbapenem-sparing" strategy. Whenever feasible, antibiotic de-escalation is recommended after antimicrobial susceptibility tests suggest that it is appropriate, and de-escalation is based on different resistance mechanisms. Cefiderocol and imipenem-cilastatin-relebactam withstand most resistance mechanisms and may remain active in cases with resistance to other new antibiotics. Confronting the growing threat of MDR/XDR P. aeruginosa, treatment choices should be wise, sparing newer antibiotics when dealing with a suspected/confirmed susceptible P. aeruginosa strain and choosing the right option for MDR/XDR P. aeruginosa based on specific types and resistance mechanisms.
Collapse
Affiliation(s)
- Arta Karruli
- Department of Precision Medicine, University of Campania ‘Luigi Vanvitelli’, 80138 Naples, Italy
- Department of Infectious Diseases, University Hospital “Mother Teresa”, 10001 Tirana, Albania
- Correspondence: ; Tel.: +39-324-6222295
| | - Christian Catalini
- Department of Advanced Medical and Surgical Sciences, University of Campania ‘Luigi Vanvitelli’, 80138 Naples, Italy
| | - Chiara D’Amore
- Infectious Diseases Unit, San Giovanni di Dio e Ruggi D’Aragona Hospital, 84131 Salerno, Italy
| | - Francesco Foglia
- Unit of Microbiology and Virology, Department of Experimental Medicine, University of Campania ‘Luigi Vanvitelli’, 80138 Naples, Italy
| | - Fabio Mari
- Department of Emergency Medicine, University “Federico II”, 80138 Naples, Italy
| | - Arjan Harxhi
- Department of Infectious Diseases, University Hospital “Mother Teresa”, 10001 Tirana, Albania
| | - Massimiliano Galdiero
- Unit of Microbiology and Virology, Department of Experimental Medicine, University of Campania ‘Luigi Vanvitelli’, 80138 Naples, Italy
| | - Emanuele Durante-Mangoni
- Department of Precision Medicine, University of Campania ‘Luigi Vanvitelli’, 80138 Naples, Italy
- Unit of Infectious and Transplant Medicine, AORN Ospedali dei Colli-Monaldi Hospital, 80131 Naples, Italy
| |
Collapse
|
8
|
Saleem M, Syed Khaja AS, Hossain A, Alenazi F, Said KB, Moursi SA, Almalaq HA, Mohamed H, Rakha E, Alharbi MS, Babiker SAA, Usman K. Pathogen Burden Among ICU Patients in a Tertiary Care Hospital in Hail Saudi Arabia with Particular Reference to β-Lactamases Profile. Infect Drug Resist 2023; 16:769-778. [PMID: 36779043 PMCID: PMC9911906 DOI: 10.2147/idr.s394777] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Purpose Ventilator-associated pneumonia (VAP) is associated with a higher mortality risk for critical patients in the intensive care unit (ICU). Several strategies, including using β-lactam antibiotics, have been employed to prevent VAP in the ICU. However, the lack of a gold-standard method for VAP diagnosis and a rise in antibiotic-resistant microorganisms have posed challenges in managing VAP. The present study is designed to identify, characterize, and perform antimicrobial susceptibility of the microorganisms from different clinical types of infections in ICU patients with emphasis on VAP patients to understand the frequency of the latter, among others. Patients and Methods A 1-year prospective study was carried out on patients in the ICU unit at a tertiary care hospital, Hail, Saudi Arabia. Results A total of 591 clinically suspected hospital-acquired infections (HAI) were investigated, and a total of 163 bacterial isolates were obtained from different clinical specimens with a high proportion of bacteria found associated with VAP (70, 43%), followed by CAUTI (39, 24%), CLABSI (25, 15%), and SSI (14, 8.6%). Klebsiella pneumoniae was the most common isolate 39 (24%), followed by Acinetobacter baumannii 35 (21.5%), Pseudomonas aeruginosa 25 (15.3%), and Proteus spp 23 (14%). Among the highly prevalent bacterial isolates, extended-spectrum beta-lactamase was predominant 42 (42.4%). Conclusion Proper use of antibiotics, continuous monitoring of drug sensitivity patterns, and taking all precautionary measures to prevent beta-lactamase-producing organisms in clinical settings are crucial and significant factors in fending off life-threatening infections for a better outcome.
Collapse
Affiliation(s)
- Mohd Saleem
- Department of Pathology, College of Medicine, University of Hail, Hail, Kingdom of Saudi Arabia
| | - Azharuddin Sajid Syed Khaja
- Department of Pathology, College of Medicine, University of Hail, Hail, Kingdom of Saudi Arabia,Correspondence: Azharuddin Sajid Syed Khaja, Department of Pathology, College of Medicine, University of Hail, Hail, Kingdom of Saudi Arabia, Tel +966 59 184 9573, Email
| | - Ashfaque Hossain
- Department of Medical Microbiology and Immunology, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Fahaad Alenazi
- Department of Pharmacology, College of Medicine, University of Hail, Hail, Kingdom of Saudi Arabia
| | - Kamaleldin B Said
- Department of Pathology, College of Medicine, University of Hail, Hail, Kingdom of Saudi Arabia
| | - Soha Abdallah Moursi
- Department of Pathology, College of Medicine, University of Hail, Hail, Kingdom of Saudi Arabia
| | - Homoud Abdulmohsin Almalaq
- Hail Health Cluster, King Khalid Hospital, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Hamza Mohamed
- Anatomy Department, Faculty of Medicine, Northern Border University, Arar, Kingdom of Saudi Arabia
| | - Ehab Rakha
- Laboratory Department, King Khalid Hospital, Hail, Kingdom of Saudi Arabia,Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohammed Salem Alharbi
- Department of Internal Medicine, College of Medicine, University of Hail, Hail, Kingdom of Saudi Arabia
| | - Salma Ahmed Ali Babiker
- Department of Family Medicine, Hail University Medical Clinics, University of Hail, Hail, Kingdom of Saudi Arabia
| | - Kauser Usman
- Department of Internal Medicine, King George’s Medical University, Lucknow, India
| |
Collapse
|
9
|
Tran NBV, Truong QM, Nguyen LQA, Nguyen NMH, Tran QH, Dinh TTP, Hua VS, Nguyen VD, Lambert PA, Nguyen TTH. Prevalence and Virulence of Commensal Pseudomonas Aeruginosa Isolates from Healthy Individuals in Southern Vietnam (2018-2020). Biomedicines 2022; 11:biomedicines11010054. [PMID: 36672562 PMCID: PMC9855430 DOI: 10.3390/biomedicines11010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Understanding the colonization of Pseudomonas aeruginosa (P. aeruginosa) in healthy humans is useful for future prevention and treatment of P. aeruginosa infection. This study aimed to investigate the prevalence and risk factors of of P. aeruginosa colonization in healthy humans. At the same time, the virulence of the isolated P. aeruginosa was also studied. In the study, 609 Vietnamese volunteers (310 females and 299 males, age range of 2 to 73 years), who had no acute infection or disease symptoms participated at the time of sample collection. Samples were taken from the throat, nostrils, and outer ears. P. aeruginosa was found in 19 participants (3.12%, 95% CI: 0.017−0.045), mainly from the throat (11/19, 57.89%). Participants with a history of sinusitis were 11.57 times more likely to be colonized with P. aeruginosa than participants without a history of sinusitis (OR: 11.57, 95% CI: 4.08−32.76, p-value < 0.0001, Fisher’s Exact test). Age and sex were not significantly associated with P. aeruginosa colonization. Among 16 P. aeruginosa isolates used in virulence tests, 100% (16/16) were positive for the synthesis of biofilm, pyocyanin, and siderophores; 93.75% (15/16) isolates were positive for the synthesis of gelatinase and protease; and 50% (8/16) isolates were positive for lipase. There were no differences in the pattern and range of virulence factors of P. aeruginosa isolates taken from participants with and without sinusitis history. P. aeruginosa colonized 3.12% of participants, and its presence was associated with sinusitis history.
Collapse
Affiliation(s)
- Nguyen Bao Vy Tran
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Quang Minh Truong
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Lam Que Anh Nguyen
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Ngoc My Huong Nguyen
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Quang Hung Tran
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Thi Tuyet Phuong Dinh
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Vinh Son Hua
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Van Dung Nguyen
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Peter A. Lambert
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Thi Thu Hoai Nguyen
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
- Research Center for Infectious Diseases, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
- Correspondence:
| |
Collapse
|
10
|
Soliman M, Said HS, El-Mowafy M, Barwa R. Novel PCR detection of CRISPR/Cas systems in Pseudomonas aeruginosa and its correlation with antibiotic resistance. Appl Microbiol Biotechnol 2022; 106:7223-7234. [PMID: 36178514 PMCID: PMC9592639 DOI: 10.1007/s00253-022-12144-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/15/2022] [Accepted: 08/24/2022] [Indexed: 12/01/2022]
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated proteins) systems are considered as acquired immune mechanisms in Gram-positive and Gram-negative bacteria and also in archaea. They provide resistance/immunity to attacking bacteriophages or mobile genetic elements as integrative conjugative elements (ICE) as well as plasmid transformation. As an opportunistic pathogen, Pseudomonas aeruginosa has been held responsible for serious infections especially in hospitalized and immunocompromised patients. Three subtypes of type I CRISPR system (I-C, I-E, & I-F1) have been detected in P. aeruginosa genomes. In this work, P. aeruginosa isolates were collected from different clinical sources, and the three CRISPR/Cas subtypes (I-C, I-E, & I-F1) were detected via singleplex and multiplex PCR techniques using novel universal primers that were designed specifically in this study. CRISPR subtypes I-C, I-E, and I-F1 were detected in 10, 9, and 13 isolates, respectively. Furthermore, antimicrobial susceptibility of CRISPR/Cas-positive and negative isolates to different antibiotics and the capacity of biofilm formation were detected using disc diffusion method and tissue culture plate method, respectively. There was a significant correlation between the presence/absence of CRISPR/Cas system and both antimicrobial susceptibility to some antibiotics and biofilm-forming capacity among P. aeruginosa clinical isolates. KEY POINTS: • A novel multiplex-PCR for detection of CRISPR/Cas-positive strains of P. aeruginosa. • Understand the correlation between CRISPR/Cas systems and other characters of P. aeruginosa. • Correlation between antimicrobial susceptibility and CRISPR systems in P. aeruginosa.
Collapse
Affiliation(s)
- Mai Soliman
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Heba Shehta Said
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Mohammed El-Mowafy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Rasha Barwa
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
11
|
Moreno X, Ventura M, Panizo MM, Garcés MF. Assessment of biofilms formation of bacterial and fungal isolates using qualitative Congo red agar and semiquantitative crystal violet microtiter methods. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2022; 43:77-88. [PMID: 37721922 PMCID: PMC10574781 DOI: 10.7705/biomedica.6732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/15/2022] [Indexed: 09/20/2023]
Abstract
Introduction. Sixty-five percent of human infections are caused by bacteria or yeasts able to form biofilms. This feature makes them more resistant to antimicrobials and antifungals. Objective. To determine biofilm formation capacity of bacterial and fungal isolates by quantitative crystal violet microtiter and qualitative Congo red agar methods. Materials and methods. Brain-heart infusion, trypticase soy broth and Müeller‑Hinton culture media were used in bacterial isolates for the quantitative method; brain-heart infusion broth and Sabouraud dextrose were used for yeasts. The same culture media plus 3% Congo red and 10% dextrose were used to apply the qualitative method in agar. The proposal by Stepanovic, et al. was used as a reference method. Results. We evaluated 103 bacterial isolates and 108 yeasts isolates. We did not recommend substitute brain-heart infusion broth for trypticase soy and Müeller-Hinton broths for biofilm formation assessment in bacterial isolates using the quantitative method. Sabouraud dextrose medium, both broth and agar, can replace brain-heart infusion to assess biofilm formation in yeasts, quantitatively and qualitatively. Conclusion. The study of biofilms in the microbiology laboratory, using Congo red agar qualitative method, is a simple, fast, and inexpensive procedure that provides precise information for the diagnosis and treatment of persistent infections caused by bacteria and yeasts.
Collapse
Affiliation(s)
- Xiomara Moreno
- Departamento de Microbiología, Instituto Médico La Floresta, Caracas, Venezuela; Cátedra de Bacteriología, Escuela de Bioanálisis, Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela.
| | - Melanie Ventura
- Escuela de Bioanálisis, Facultad de Medicina, Universidad Central de Venezuela, Caracas.
| | | | - María Fátima Garcés
- Laboratorio de Investigaciones Básicas y Aplicadas, Escuela de Bioanálisis, Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela.
| |
Collapse
|
12
|
Effect of Bacteriocin (ALC102) of Enterococcus faecium GRD AA on Biofilm Forming Listeria monocytogenes MTCC 657. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.1.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antilisterial bacteriocin producing strain were isolated from milk samples and were subjected to 16S rRNA sequencing and found to be of genus Enterococcus faecium. The bacteriocin ALC102 were partially purified by Amberlite XAD-16 adsorption followed by column chromatography. The biofilm formation capacity of Listeria monocytogenes MTCC 657 were evaluated by tube method and CV binding assay. Biofilm formation on different abiotic substrates were also evaluated. Among three substrates stainless steel had a strong biofilm formation followed by glass and aluminum foil. From the results of biofilm eradication studies, the bacteriocin ALC102 showed almost similar activity of commercial bacteriocin nisin on all the substrates at 45°C, 30°C, 4°C and -20°C. Based on CBD® biofilm eradication assay, the eradication potential of ALC102 and nisin were found to be similar on high (45°C) and freezing (-20°C) temperatures. From the study, antilisterial bacteriocin ALC102 found to be able to inhibit the biofilm formed Listeria monocytogenes MTCC 657 at different temperatures and different incubation periods (24h, 48h and 72h). The biofilm eradication potential of antilisterial bacteriocin ALC102 was similar to nisin. Neither incubation temperature nor incubation period doesn’t altered the activity of the bacteriocin. So this bacteriocin can be considered as a potential competitor in food industry and we strongly recommend the use of this bacteriocin from Enterococcus faecium GRD AA in the food preservation industry to a higher temperature (45°C) to freezing temperature (-20°C).
Collapse
|
13
|
Dolatshah L, Tabatabaei M. A phenotypic and molecular investigation of biofilm formation in clinical samples of Pseudomonas aeruginosa. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2021; 10:157-163. [PMID: 35097137 PMCID: PMC8798273 DOI: 10.22099/mbrc.2021.41708.1673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Pseudomonas aeruginosa is identified as a versatile opportunistic microorganism with metabolic diversity contributing to a wide range of health burdens, especially in immunocompromised patients. This bacterium is the cause of 10 to 20% of nosocomial infections. In this study, we evaluated the phenotypic characterizations of biofilm formation in P. aeruginosa clinical isolates using micro-titer plate assay. Indeed, we estimated the prevalence of QS (rhlI, rhlR, rhlAB, lasB, lasI, lasR, aprA) and virulence genes (pslA and cupA) by PCR. The results showed that among 69% of the isolates forming biofilm, 9% were strong biofilm producers, whereas 13% and 47% of isolates produced moderate and low amounts of biofilm, respectively. All isolates possessed cupA and seven QS genes (rhlI, rhlR, rhlAB, lasB, lasI, lasR, aprA), while 92% of the isolates possessed the pslA gene. Identification of these genes and their association with biofilm formation can be advantageous in adopting therapeutic methods.
Collapse
Affiliation(s)
| | - Mohammad Tabatabaei
- Corresponding Author: Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran Tel: +98 71 36138696; Fax: +98 71 32286940, E. mail: AND
| |
Collapse
|
14
|
Chadha J, Harjai K, Chhibber S. Revisiting the virulence hallmarks of Pseudomonas aeruginosa: a chronicle through the perspective of quorum sensing. Environ Microbiol 2021; 24:2630-2656. [PMID: 34559444 DOI: 10.1111/1462-2920.15784] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen and the leading cause of mortality among immunocompromised patients in clinical setups. The hallmarks of virulence in P. aeruginosa encompass six biologically competent attributes that cumulatively drive disease progression in a multistep manner. These multifaceted hallmarks lay the principal foundation for rationalizing the complexities of pseudomonal infections. They include factors for host colonization and bacterial motility, biofilm formation, production of destructive enzymes, toxic secondary metabolites, iron-chelating siderophores and toxins. This arsenal of virulence hallmarks is fostered and stringently regulated by the bacterial signalling system called quorum sensing (QS). The central regulatory functions of QS in controlling the timely expression of these virulence hallmarks for adaptation and survival drive the disease outcome. This review describes the intricate mechanisms of QS in P. aeruginosa and its role in shaping bacterial responses, boosting bacterial fitness. We summarize the virulence hallmarks of P. aeruginosa, relating them with the QS circuitry in clinical infections. We also examine the role of QS in the development of drug resistance and propose a novel antivirulence therapy to combat P. aeruginosa infections. This can prove to be a next-generation therapy that may eventually become refractory to the use of conventional antimicrobial treatments.
Collapse
Affiliation(s)
- Jatin Chadha
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Sanjay Chhibber
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
15
|
dos Santos EMP, Martins CCB, de Oliveira Santos JV, da Silva WRC, Silva SBC, Pelagio-Flores MA, Galembeck A, Cavalcanti IMF. Silver nanoparticles-chitosan composites activity against resistant bacteria: tolerance and biofilm inhibition. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2021; 23:196. [PMID: 34456615 PMCID: PMC8383018 DOI: 10.1007/s11051-021-05314-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/16/2021] [Indexed: 05/27/2023]
Abstract
UNLABELLED This study aimed to evaluate the effectiveness of silver nanoparticles-chitosan composites (AgNPs) with different morphologies and particle size distributions against resistant bacteria and biofilm formation. Four different samples were prepared by a two-step procedure using sodium borohydride and ascorbic acid as reducing agents and characterized by UV-Vis absorption spectra, scanning transmission electron microscopy. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the AgNPs were determined according to the Clinical and Laboratory Standards Institute (CLSI) against clinical isolates multidrug-resistant and strains of the American Type Culture Collection (ATCC). An assay was performed to determine the MICs during 20 successive bacteria exposures to AgNPs to investigate whether AgNPs induce tolerance in bacteria. The antibiofilm activities of AgNPs were also evaluated by determining the minimum biofilm inhibitory concentration (MBIC). The spherical AgNPs present diameters ranging from 9.3 to 62.4 nm, and some samples also have rod-, oval-, and triangle-shaped nanoparticles. The MIC and MBC values ranged from 0.8 to 25 μg/mL and 3.1 to 50 μg/mL, respectively. Smaller and spherical AgNPs exhibited the highest activity, but all the AgNPs developed in this study exhibit bactericidal activity. There was no significant MIC increase after 20 passages to the AgNPs. Regarding the antibiofilm activity, MBICs ranged from 12.5 to 50 μg/mL. Again, smaller and spherical nanoparticles presented the best results with phenotypic inhibition of production of slime or exopolysaccharide (EPS) matrix. Thus, it was concluded that AgNPs have a promising potential against resistant bacteria and bacteria that grow on biofilms without inducing tolerance. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11051-021-05314-1.
Collapse
Affiliation(s)
- Eduarda Melquiades Pirette dos Santos
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, Pernambuco CEP: 50670-901 Brazil
| | - Carla Castelo Branco Martins
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, Pernambuco CEP: 50670-901 Brazil
| | - João Victor de Oliveira Santos
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, Pernambuco CEP: 50670-901 Brazil
| | - Wagner Roberto Cirilo da Silva
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, Pernambuco CEP: 50670-901 Brazil
| | - Sidicleia Bezerra Costa Silva
- Department of Fundamental Chemistry, Federal University of Pernambuco (UFPE), Av. Jorn. Aníbal Fernandes, s/n, Cidade Universitária, Recife, Pernambuco CEP: 50740-560 Brazil
| | - Miguel Angel Pelagio-Flores
- Department of Fundamental Chemistry, Federal University of Pernambuco (UFPE), Av. Jorn. Aníbal Fernandes, s/n, Cidade Universitária, Recife, Pernambuco CEP: 50740-560 Brazil
| | - André Galembeck
- Department of Fundamental Chemistry, Federal University of Pernambuco (UFPE), Av. Jorn. Aníbal Fernandes, s/n, Cidade Universitária, Recife, Pernambuco CEP: 50740-560 Brazil
| | - Isabella Macário Ferro Cavalcanti
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, Pernambuco CEP: 50670-901 Brazil
| |
Collapse
|
16
|
de Moura DF, Rocha TA, de Melo Barros D, da Silva MM, Dos Santos Santana M, Neta BM, Cavalcanti IMF, Martins RD, da Silva MV. Evaluation of the antioxidant, antibacterial, and antibiofilm activity of the sesquiterpene nerolidol. Arch Microbiol 2021; 203:4303-4311. [PMID: 34110480 DOI: 10.1007/s00203-021-02377-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/22/2021] [Accepted: 05/10/2021] [Indexed: 12/22/2022]
Abstract
The aim of this study was to evaluate the antioxidant, antibacterial, and antibiofilm activities of nerolidol. The antioxidant activity of nerolidol was determined using the total antioxidant activity method. Antibacterial activity was performed using the microdilution method to determine the minimum inhibitory concentration (MIC) against seven standard strains of the ATCC and four bacterial clinical isolates with a resistance profile, following the Clinical and Laboratory Standards Institute (CLSI). The antibiofilm activity of nerolidol was performed using the crystal violet method. The results of the antioxidant test revealed a total antioxidant activity of 93.94%. Nerolidol inhibited the growth of Staphylococcus aureus (MIC = 1 mg/mL), Streptococcus mutans (MIC = 4 mg/mL), Pseudomonas aeruginosa (MIC = 0.5 mg/mL), and Klebsiella pneumoniae (MIC = 0.5 mg/mL). For clinical isolates, nerolidol showed an inhibitory potential against multidrug-resistant P. aeruginosa, K. pneumoniae carbapenemase (MIC = 0.5 mg/mL), methicillin-susceptible S. aureus (MIC = 2 mg/mL), and methicillin-resistant S. aureus (MIC = 2 mg/mL). Nerolidol showed similar antibacterial activity against ATCC strains and hospital clinical isolates with resistance profile, suggesting that even though these strains are resistant to antibiotics, they are still sensitive to nerolidol. Nerolidol exerted a dose-dependent effect on the inhibition of biofilm formation, even at subinhibitory concentrations. Nerolidol inhibited bacterial biofilms of ATCC strains at a rate ranging from 51 to 98%, at concentrations ranging from 0.5 to 4 mg/mL. For clinical bacterial isolates, biofilm inhibition ranged from 6 to 60%. Therefore, the present study showed the antioxidant, antibacterial, and antibiofilm properties of nerolidol.
Collapse
Affiliation(s)
- Danielle Feijó de Moura
- Laboratório de Parasitologia, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco (CAV/UFPE), Vitória de Santo Antão, PE, Brazil.,Laboratório de Biologia Molecular, Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil
| | - Tamiris Alves Rocha
- Laboratório de Biologia Molecular, Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil
| | - Dayane de Melo Barros
- Laboratório de Microbiologia de Alimentos, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco (CAV/UFPE), Vitória de Santo Antão, PE, Brazil
| | - Marllyn Marques da Silva
- Laboratório de Nanotecnologia, Biotecnologia e Cultura de células, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco (CAV/UFPE), Vitória de Santo Antão, PE, Brazil
| | - Marcielle Dos Santos Santana
- Laboratório do Microbiologia e Imunologia, Centro Acadêmico de Vitória da Universidade Federal de Pernambuco (CAV/UFPE), Rua do Alto do Reservatório S/N, Bela Vista, Vitória de Santo Antão, PE, 55608-680, Brazil
| | - Beatriz Mendes Neta
- Laboratório do Microbiologia e Imunologia, Centro Acadêmico de Vitória da Universidade Federal de Pernambuco (CAV/UFPE), Rua do Alto do Reservatório S/N, Bela Vista, Vitória de Santo Antão, PE, 55608-680, Brazil
| | - Isabella Macário Ferro Cavalcanti
- Laboratório do Microbiologia e Imunologia, Centro Acadêmico de Vitória da Universidade Federal de Pernambuco (CAV/UFPE), Rua do Alto do Reservatório S/N, Bela Vista, Vitória de Santo Antão, PE, 55608-680, Brazil. .,Setor de Microbiologia Clínica do Laboratório de Imunopatologia Keizo Asami da Universidade Federal de Pernambuco (LIKA/UFPE), Recife, PE, Brazil.
| | - René Duarte Martins
- Espaço Farmácia Viva, Centro Acadêmico de Vitoria, Universidade Federal de Pernambuco (CAV/UFPE), Vitória de Santo Antão, PE, Brazil
| | - Márcia Vanusa da Silva
- Laboratório de Biologia Molecular, Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil.,Núcleo de Bioprospecção da Caatinga, Instituto Nacional do Semiárido, Paraíba, Brazil
| |
Collapse
|
17
|
Purification, Characterization, and Biocatalytic and Antibiofilm Activity of a Novel Dextranase from Talaromyces sp. Int J Microbiol 2020. [DOI: 10.1155/2020/9198048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Dextranase is a useful enzyme that catalyzes the degradation of dextran to low-molecular-weight fractions, which have many critical commercial and clinical applications. Endophytic fungi represent a source of both high heat-stable and pH-stable enzymes. In this study, from Delonix regia bark by plate assay, out of 12 isolated fungal strains, hyaline zones were detected in only one strain. By using the standard ITS rDNA sequencing analysis, the isolated strain was identified as Talaromyces sp. In the case of carbon source, in a medium containing 1% dextran T2000 as the sole carbon source, the maximum dextranase activity reached approximately 120 U/ml after incubation of 2 days where the optimum pH was 7.4. Peptone addition to the production medium as a sole nitrogen source was accompanied by a significant increase in the dextranase production. Similarly, some metal ions, such as Fe2+ and Zn2+, increased significantly enzyme production. However, there was no significant difference resulting from the addition of Cu2+. The crude dextranase was purified by ammonium sulfate fractionation, followed by Sephadex G100 chromatography with 28-fold purification. The produced dextranase was 45 kDa with an optimum activity at 37°C and a pH of 7. Moreover, the presence of MgSO4, FeSO4, and NH4SO4 increased the purified dextranase activity; however, SDS and EDTA decreased it. Interestingly, the produced dextranase expressed remarkable pH stability, temperature stability, and biofilm inhibition activity, reducing old-established biofilm by 86% and biofilm formation by 6%.
Collapse
|
18
|
Rodrigues RL, Lima JLDC, de Sena KXDFR, Maciel MAV. Phenotypic and genotypic analysis of biofilm production by Pseudomonas aeruginosa isolates from infection and colonization samples. Rev Soc Bras Med Trop 2020; 53:e20200399. [PMID: 33111915 PMCID: PMC7580276 DOI: 10.1590/0037-8682-0399-2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/11/2020] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Pseudomonas aeruginosa is an opportunistic pathogen associated with healthcare-related infections, affecting mainly patients with underlying diseases and immunosuppression. This microorganism has several virulence mechanisms that favour its pathogenesis, including the production of biofilm. This study aimed to analyze the phenotypic production of biofilms, the occurrence of quorum sensing (QS) genes, and the clonal profile of clinical isolates of P. aeruginosa from colonized/infected patients in a tertiary hospital in Recife-PE. METHODS We obtained 21 isolates that were classified as infection isolates (II), and 10 colonization isolates (CI). The phenotypic analysis for biofilm production was performed quantitatively. The QS genes were detected by specific PCRs, and the clonal profile was assessed using ERIC-PCR. RESULTS Of the 31 isolates, 58.1 % (18/31) were biofilm producers, of which 70 % (7/10) were CI and classified as weakly adherent; 52.4 % (11/21) of the II produced biofilms, and were classified as weak (38.1 %, (8/21)), moderate (9.5 %, (2/21)), and strongly adherent (4.8 %, (1/21)). All isolates harbored the QS genes analyzed. In the clonal analysis, 26 distinct genetic profiles were identified, highlighting the presence of a clone in four samples, i.e., one infection isolate, and 3 colonization isolates. CONCLUSIONS The detection of biofilm formation is important in P. aeruginosa in addition to the identification of colonization and infection isolates, especially from complex environments such as ICUs. Further, we define a strategy for monitoring and analyzing P. aeruginosa strains that can potentially cause infections in hospitalized patients.
Collapse
Affiliation(s)
- Rodrigo Lira Rodrigues
- Universidade Federal de Pernambuco, Centro de Ciências Médicas,
Coordenação de Área Medicina Tropical, Recife, PE, Brasil
| | - Jailton Lobo da Costa Lima
- Universidade Federal de Pernambuco, Centro de Ciências Médicas,
Coordenação de Área Medicina Tropical, Recife, PE, Brasil
| | | | - Maria Amélia Vieira Maciel
- Universidade Federal de Pernambuco, Centro de Ciências Médicas,
Coordenação de Área Medicina Tropical, Recife, PE, Brasil
| |
Collapse
|
19
|
Rivera Aguayo P, Bruna Larenas T, Alarcón Godoy C, Cayupe Rivas B, González-Casanova J, Rojas-Gómez D, Caro Fuentes N. Antimicrobial and Antibiofilm Capacity of Chitosan Nanoparticles against Wild Type Strain of Pseudomonas sp. Isolated from Milk of Cows Diagnosed with Bovine Mastitis. Antibiotics (Basel) 2020; 9:antibiotics9090551. [PMID: 32872146 PMCID: PMC7558502 DOI: 10.3390/antibiotics9090551] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/22/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022] Open
Abstract
Bovine mastitis (BM) is the most prevalent bacterial infection in the livestock sector, affecting the dairy industry greatly. The prevention and treatment of this disease is mainly made via antibiotics, but the increasing antimicrobial resistance of pathogens has affected the efficiency of conventional drugs. Pseudomonas sp. is one of the pathogens involved in this infection. The therapeutic rate of cure for this environmental mastitis-causing pathogen is practically zero, regardless of treatment. Biofilm formation has been one of the main virulence mechanisms of Pseudomonas hence presenting resistance to antibiotic therapy. We have manufactured chitosan nanoparticles (NQo) with tripolyphosphate (TPP) using ionotropic gelation. These NQo were confronted against a Pseudomonas sp. strain isolated from milk samples of cows diagnosed with BM, to evaluate their antimicrobial and antibiofilm capacity. The NQo showed great antibacterial effect in the minimum inhibitory concentrations (MIC), minimum bactericidal concentration (MBC) and disk diffusion assays. Using sub lethal concentrations, NQo were tested for inhibition of biofilm formation. The results show that the nanoparticles exhibited biofilm inhibition and were capable of eradicate pre-existing mature biofilm. These findings indicate that the NQo could act as a potential alternative to antibiotic treatment of BM.
Collapse
Affiliation(s)
- Paula Rivera Aguayo
- Centro de Investigación Austral Biotech, Facultad de Ciencias, Universidad Santo Tomas, Avenida Ejército 146, Santiago 8370003, Chile; (P.R.A.); (T.B.L.); (C.A.G.); (B.C.R.)
| | - Tamara Bruna Larenas
- Centro de Investigación Austral Biotech, Facultad de Ciencias, Universidad Santo Tomas, Avenida Ejército 146, Santiago 8370003, Chile; (P.R.A.); (T.B.L.); (C.A.G.); (B.C.R.)
| | - Carlos Alarcón Godoy
- Centro de Investigación Austral Biotech, Facultad de Ciencias, Universidad Santo Tomas, Avenida Ejército 146, Santiago 8370003, Chile; (P.R.A.); (T.B.L.); (C.A.G.); (B.C.R.)
| | - Bernardita Cayupe Rivas
- Centro de Investigación Austral Biotech, Facultad de Ciencias, Universidad Santo Tomas, Avenida Ejército 146, Santiago 8370003, Chile; (P.R.A.); (T.B.L.); (C.A.G.); (B.C.R.)
| | - Jorge González-Casanova
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile;
| | - Diana Rojas-Gómez
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Santiago 7591538, Chile;
| | - Nelson Caro Fuentes
- Centro de Investigación Austral Biotech, Facultad de Ciencias, Universidad Santo Tomas, Avenida Ejército 146, Santiago 8370003, Chile; (P.R.A.); (T.B.L.); (C.A.G.); (B.C.R.)
- Correspondence: ; Tel.: +56-22-3624720
| |
Collapse
|
20
|
Novel Aminoglycoside-Tolerant Phoenix Colony Variants of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2020; 64:AAC.00623-20. [PMID: 32540981 DOI: 10.1128/aac.00623-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/09/2020] [Indexed: 01/13/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen and is known to produce biofilms. We previously showed the emergence of colony variants in the presence of tobramycin-loaded calcium sulfate beads. In this study, we characterized the variant colonies, which survived the antibiotic treatment, and identified three distinct phenotypes-classically resistant colonies, viable but nonculturable colonies (VBNC), and phoenix colonies. Phoenix colonies, described here for the first time, grow out of the zone of clearance of antibiotic-loaded beads from lawn biofilms while there are still very high concentrations of antibiotic present, suggesting an antibiotic-resistant phenotype. However, upon subculturing of these isolates, phoenix colonies return to wild-type levels of antibiotic susceptibility. Compared with the wild type, phoenix colonies are morphologically similar aside from a deficiency in green pigmentation. Phoenix colonies do not recapitulate the phenotype of any previously described mechanisms of resistance, tolerance, or persistence and, thus, form a novel group with their own phenotype. Growth under anaerobic conditions suggests that an alternative metabolism could lead to the formation of phoenix colonies. These findings suggest that phoenix colonies could emerge in response to antibiotic therapies and lead to recurrent or persistent infections, particularly within biofilms where microaerobic or anaerobic environments are present.
Collapse
|
21
|
Abdulhaq N, Nawaz Z, Zahoor MA, Siddique AB. Association of biofilm formation with multi drug resistance in clinical isolates of Pseudomonas aeruginosa. EXCLI JOURNAL 2020; 19:201-208. [PMID: 32256266 PMCID: PMC7105944 DOI: 10.17179/excli2019-2049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/14/2020] [Indexed: 01/01/2023]
Abstract
Pseudomonas aeruginosa is considered as foremost cause of hospital acquired infections due to its innate and plasmid mediated resistance to multiple antibiotics making it a multi drug resistant (MDR) pathogen. Biofilm formation is a pathogenic mechanism harbored by this pathogen which further elevates its resistance to antibiotics and host defense system. The aim of the present study was to evaluate the biofilm forming potential and distribution of pslA gene in multi drug resistant Pseudomonas aeruginosa isolates obtained from different clinical samples. A total of 200 different clinical samples were collected after obtaining written consent from the patients. The samples were subjected to isolation and identification of P. aeruginosa by standard microbiological procedures. Confirmation of isolates was done by polymerase chain reaction targeting oprL gene. Kirby Bauer method was performed for detection of MDR isolates. Congo red agar (CRA) test and Microtiter plate assay (MPA) for observing the biofilm forming ability and amplification of pslA gene was also performed on MDR isolates. The results showed that from 200 samples 52 (26 %) were P. aeruginosa and among them 20 (38.46 %) were MDR isolates. The CRA showed 23 (44.23 %) while MPA detected 49 (94.23 %) isolates as biofilm producers while all the MDR isolates showed biofilm formation by MPA method. The pslA gene was detected in all biofilm forming isolates while 90 % in MDR P. aeruginosa. It was concluded that biofilm forming P. aeruginosa are more resistant to tested antibiotics and biofilm formation is strongly associated with presence of pslA gene.
Collapse
Affiliation(s)
- Nazia Abdulhaq
- Department of Microbiology, Government College University Faisalabad
| | - Zeeshan Nawaz
- Department of Microbiology, Government College University Faisalabad
| | | | | |
Collapse
|
22
|
Effects of Lysozyme, Proteinase K, and Cephalosporins on Biofilm Formation by Clinical Isolates of Pseudomonas aeruginosa. Interdiscip Perspect Infect Dis 2020; 2020:6156720. [PMID: 32089678 PMCID: PMC7031717 DOI: 10.1155/2020/6156720] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/01/2020] [Accepted: 01/10/2020] [Indexed: 02/07/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that can form biofilms, which confer resistance to immune clearance and antibacterial treatment. Therefore, effective strategies to prevent biofilm formation are warranted. Here, 103 P. aeruginosa clinical isolates were quantitatively screened for biofilm formation ability via the tissue culture plate method. The effects of lysozyme (hydrolytic enzyme) and proteinase K (protease) on biofilm formation were evaluated at different concentrations. Lysozyme (30 μg/mL), but not proteinase K, significantly inhibited biofilm formation (19% inhibition). Treatment of 24-hour-old biofilms of P. aeruginosa isolates with 50 times the minimum inhibitory concentrations (MICs) of ceftazidime and cefepime significantly decreased the biofilm mass by 32.8% and 44%, respectively. Moreover, the exposure of 24-hour-old biofilms of P. aeruginosa isolates to lysozyme (30 μg/mL) and 50 times MICs of ceftazidime or cefepime resulted in a significant reduction in biofilm mass as compared with the exposure to lysozyme or either antibacterial agent alone. The best antibiofilm effect (49.3%) was observed with the combination of lysozyme (30 μg/mL) and 50 times MIC of cefepime. The promising antibiofilm activity observed after treatment with 50 times MIC of ceftazidime or cefepime alone or in combination with lysozyme (30 μg/mL) is indicative of a novel strategy to eradicate pseudomonal biofilms in intravascular devices and contact lenses.
Collapse
|
23
|
Kim SK, Li XH, Hwang HJ, Lee JH. Antibiofilm effect of biofilm-dispersing agents on clinical isolates of Pseudomonas aeruginosa with various biofilm structures. J Microbiol 2018; 56:902-909. [PMID: 30361978 DOI: 10.1007/s12275-018-8336-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/16/2018] [Accepted: 08/21/2018] [Indexed: 12/25/2022]
Abstract
Pseudomonas aeruginosa, an opportunistic human pathogen, causes many biofilm-mediated chronic infections. In this study, biofilm structures of various clinical strains of P. aeruginosa isolated from hospitalized patients were examined and their influence on the biofilm-dispersing effects of chemicals was investigated. The clinical isolates formed structurally distinct biofilms that could be classified into three different groups: 1) mushroom-like, 2) thin flat, and 3) thick flat structures. A dispersion of these differently structured biofilms was induced using two biofilm-dispersing agents, anthranilate and sodium nitroprusside (SNP). Although both SNP and anthranilate could disperse all types of biofilms, the thick flat biofilms were dispersed less efficiently than the biofilms of other structures. This suggests that biofilm-dispersing agents have higher potency on the biofilms of porous structures than on densely packed biofilms.
Collapse
Affiliation(s)
- Soo-Kyoung Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Xi-Hui Li
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyeon-Ji Hwang
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Joon-Hee Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
24
|
Rzhepishevska O, Limanska N, Galkin M, Lacoma A, Lundquist M, Sokol D, Hakobyan S, Sjöstedt A, Prat C, Ramstedt M. Characterization of clinically relevant model bacterial strains of Pseudomonas aeruginosa for anti-biofilm testing of materials. Acta Biomater 2018; 76:99-107. [PMID: 29902594 DOI: 10.1016/j.actbio.2018.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/25/2018] [Accepted: 06/08/2018] [Indexed: 11/15/2022]
Abstract
There is a great interest in developing novel anti-biofilm materials in order to decrease medical device-associated bacterial infections causing morbidity and high healthcare costs. However, the testing of novel materials is often done using bacterial lab strains that may not exhibit the same phenotype as clinically relevant strains infecting medical devices. Furthermore, no consensus of strain selection exists in the field, making results very difficult to compare between studies. In this work, 19 clinical isolates of Pseudomonas aeruginosa originating from intubated patients in an intensive care unit have been characterized and compared to the lab reference strain PAO1 and a rmlC lipopolysaccharide mutant of PAO1. The adhesion and biofilm formation was monitored, as well as cell properties such as hydrophobicity, zeta potential and motility. Two groups of isolates were observed: one with high adhesion to polymer surfaces and one with low adhesion (the latter including PAO1). Furthermore, detailed biofilm assays in a flow system were performed using five characteristic isolates from the two groups. Confocal microscopy showed that the adhesion and biofilm formation of four of these five strains could be reduced dramatically on zwitterionic surface coatings. However, one isolate with pronounced swarming colonized and formed biofilm also on the antifouling surface. We demonstrate that the biofilm properties of clinical isolates can differ greatly from that of a standard lab strain and propose two clinical model strains for testing of materials designed for prevention of biofilm formation in the respiratory tract. The methodology used could beneficially be applied for screening of other collections of pathogens to identify suitable model strains for in vitro biofilm testing. STATEMENT OF SIGNIFICANCE Medical-device associated infections present a great challenge in health care. Therefore, much research is undertaken to prevent bacterial colonization of new types of biomaterials. The work described here characterizes, tests and presents a number of clinically relevant bacterial model strains for assessing biofilm formation by Pseudomonas aeruginosa. Such model strains are of importance as they may provide better predictability of lab testing protocols with respect to how well materials would perform in an infection situation in a patient. Furthermore, this study uses the strains to test the performance of polymer surfaces designed to repel bacterial adhesion and it is shown that the biofilm formation for four out of the five tested bacterial strains was reduced.
Collapse
Affiliation(s)
| | - Nataliia Limanska
- Department of Microbiology, Virology and Biotechnology, Odessa National University, Shampanskiy Lane 2, Odessa 65058, Ukraine.
| | - Mykola Galkin
- Department of Microbiology, Virology and Biotechnology, Odessa National University, Shampanskiy Lane 2, Odessa 65058, Ukraine.
| | - Alicia Lacoma
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut de Recerca Germans Trias i Pujol, Universitat Autònoma de Barcelona, CIBER Enfermedades Respiratorias, Spain.
| | | | - Dmytro Sokol
- Department of Microbiology, Virology and Biotechnology, Odessa National University, Shampanskiy Lane 2, Odessa 65058, Ukraine
| | - Shoghik Hakobyan
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden; Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| | - Anders Sjöstedt
- Department of Clinical Microbiology, Umeå University, SE-90 185 Umeå, Sweden.
| | - Cristina Prat
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut de Recerca Germans Trias i Pujol, Universitat Autònoma de Barcelona, CIBER Enfermedades Respiratorias, Spain.
| | | |
Collapse
|
25
|
Lima JLDC, Alves LR, Jacomé PRLDA, Bezerra Neto JP, Maciel MAV, Morais MMCD. Biofilm production by clinical isolates of Pseudomonas aeruginosa and structural changes in LasR protein of isolates non biofilm-producing. Braz J Infect Dis 2018; 22:129-136. [PMID: 29601791 PMCID: PMC9428190 DOI: 10.1016/j.bjid.2018.03.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/07/2018] [Accepted: 03/13/2018] [Indexed: 12/16/2022] Open
Abstract
Introduction Biofilm production is an important mechanism for the survival of Pseudomonas aeruginosa and its relationship with antimicrobial resistance represents a challenge for patient therapeutics. P. aeruginosa is an opportunistic pathogen frequently associated to nosocomial infections, especially in imunocompromised hosts. Objectives Analyze the phenotypic biofilm production in P. aeruginosa isolates, describe clonal profiles, and analyze quorum sensing (QS) genes and the occurrence of mutations in the LasR protein of non-biofilm producing isolates. Methods Isolates were tested for biofilm production by measuring cells adherence to the microtiter plates. Clonal profile analysis was carried out through ERIC-PCR, QS genes were by specific PCR. Results The results showed that 77.5% of the isolates were considered biofilm producers. The results of genotyping showed 38 distinct genetic profiles. As for the occurrence of the genes, 100% of the isolates presented the lasR, rhlI and rhlR genes, and 97.5%, presented the lasI gene. In this study nine isolates were not biofilm producers. However, all presented the QS genes. Amplicons related to genes were sequenced in three of the nine non-biofilm-producing isolates (all presenting different genetic similarity profile) and aligned to the sequences of those genes in P. aeruginosa strain PAO1 (standard biofilm-producing strain). Alignment analysis showed an insertion of three nucleotides (T, C and G) causing the addition of an amino acid valine in the sequence of the LasR protein, in position 53. Conclusion The modeling of the resulting LasR protein showed a conformational change in its structure, suggesting that this might be the reason why these isolates are unable to produce biofilm.
Collapse
Affiliation(s)
- Jailton Lobo da Costa Lima
- Universidade de Pernambuco (UPE), Instituto de Ciências Biológicas, Programa de Pós-graduação em Biologia Celular e Molecular Aplicada, Recife, PE, Brazil; Universidade Federal de Pernambuco, Departamento de Medicina Tropical, Programa de Pós-Graduação em Medicina Tropical, Recife, PE, Brazil.
| | - Lilian Rodrigues Alves
- Universidade Federal de Pernambuco, Departamento de Medicina Tropical, Programa de Pós-Graduação em Medicina Tropical, Recife, PE, Brazil
| | - Paula Regina Luna de Araújo Jacomé
- Universidade Federal de Pernambuco, Departamento de Medicina Tropical, Programa de Pós-Graduação em Medicina Tropical, Recife, PE, Brazil
| | | | - Maria Amélia Vieira Maciel
- Universidade Federal de Pernambuco, Departamento de Medicina Tropical, Programa de Pós-Graduação em Medicina Tropical, Recife, PE, Brazil
| | - Marcia Maria Camargo de Morais
- Universidade de Pernambuco (UPE), Instituto de Ciências Biológicas, Programa de Pós-graduação em Biologia Celular e Molecular Aplicada, Recife, PE, Brazil
| |
Collapse
|