1
|
Landoulsi Z, Sreelatha AAK, Schulte C, Bobbili DR, Montanucci L, Leu C, Niestroj LM, Hassanin E, Domenighetti C, Pavelka L, Sugier PE, Radivojkov-Blagojevic M, Lichtner P, Portugal B, Edsall C, Kru ger J, Hernandez DG, Blauwendraat C, Mellick GD, Zimprich A, Pirker W, Tan M, Rogaeva E, Lang AE, Koks S, Taba P, Lesage S, Brice A, Corvol JC, Chartier-Harlin MC, Mutez E, Brockmann K, Deutschländer AB, Hadjigeorgiou GM, Dardiotis E, Stefanis L, Simitsi AM, Valente EM, Petrucci S, Straniero L, Zecchinelli A, Pezzoli G, Brighina L, Ferrarese C, Annesi G, Quattrone A, Gagliardi M, Burbulla LF, Matsuo H, Nakayama A, Hattori N, Nishioka K, Chung SJ, Kim YJ, Kolber P, van de Warrenburg BPC, Bloem BR, Singleton AB, Toft M, Pihlstrom L, Guedes LC, Ferreira JJ, Bardien S, Carr J, Tolosa E, Ezquerra M, Pastor P, Wirdefeldt K, Pedersen NL, Ran C, Belin AC, Puschmann A, Clarke CE, Morrison KE, Krainc D, Farrer MJ, Lal D, Elbaz A, Gasser T, Krüger R, Sharma M, May P. Genome-wide association study of copy number variations in Parkinson's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.21.24311915. [PMID: 39228715 PMCID: PMC11370542 DOI: 10.1101/2024.08.21.24311915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Objective Our study investigates the impact of copy number variations (CNVs) on Parkinson's disease (PD) pathogenesis using genome-wide data, aiming to uncover novel genetic mechanisms and improve the understanding of the role of CNVs in sporadic PD. Methods We applied a sliding window approach to perform CNV-GWAS and conducted genome-wide burden analyses on CNV data from 11,035 PD patients (including 2,731 early-onset PD (EOPD)) and 8,901 controls from the COURAGE-PD consortium. Results We identified 14 genome-wide significant CNV loci associated with PD, including one deletion and 13 duplications. Among these, duplications in 7q22.1, 11q12.3 and 7q33 displayed the highest effect. Two significant duplications overlapped with PD-related genes SNCA and VPS13C, but none overlapped with recent significant SNP-based GWAS findings. Five duplications included genes associated with neurological disease, and four overlapping genes were dosage-sensitive and intolerant to loss-of-function variants. Enriched pathways included neurodegeneration, steroid hormone biosynthesis, and lipid metabolism. In early-onset cases, four loci were significantly associated with EOPD, including three known duplications and one novel deletion in PRKN. CNV burden analysis showed a higher prevalence of CNVs in PD-related genes in patients compared to controls (OR=1.56 [1.18-2.09], p=0.0013), with PRKN showing the highest burden (OR=1.47 [1.10-1.98], p=0.026). Patients with CNVs in PRKN had an earlier disease onset. Burden analysis with controls and EOPD patients showed similar results. Interpretation This is the largest CNV-based GWAS in PD identifying novel CNV regions and confirming the significant CNV burden in EOPD, primarily driven by the PRKN gene, warranting further investigation.
Collapse
Affiliation(s)
- Zied Landoulsi
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg; L-4367, Esch-sur-Alzette, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Ashwin Ashok Kumar Sreelatha
- Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied Biometry, University of Tubingen, Germany
| | - Claudia Schulte
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tubingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tubingen, Germany
| | - Dheeraj Reddy Bobbili
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg; L-4367, Esch-sur-Alzette, Luxembourg
| | - Ludovica Montanucci
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Costin Leu
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Lisa-Marie Niestroj
- Cologne Center for Genomics (CCG), Medical Faculty of the University of Cologne, Cologne, Germany
| | - Emadeldin Hassanin
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg; L-4367, Esch-sur-Alzette, Luxembourg
| | - Cloé Domenighetti
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, 94805, Villejuif, France
| | - Lukas Pavelka
- Transversal Translational Medicine, Luxembourg Institute of Health, Strassen, Luxembourg
| | | | | | - Peter Lichtner
- Institute of Human Genetics, Helmholtz Zentrum Munchen, Neuherberg, Germany
| | - Berta Portugal
- Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Connor Edsall
- Molecular Genetics Section, Laboratory of Neurogenetics, NIA, NIH, Bethesda, MD 20892, USA
| | - Jens Kru ger
- Group of Applied Bioinformatics, University of Tubingen, Tubingen, Germany
| | - Dena G Hernandez
- Molecular Genetics Section, Laboratory of Neurogenetics, NIA, NIH, Bethesda, MD 20892, USA
| | - Cornelis Blauwendraat
- Molecular Genetics Section, Laboratory of Neurogenetics, NIA, NIH, Bethesda, MD 20892, USA
| | - George D Mellick
- Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, Queensland, Australia
| | | | - Walter Pirker
- Department of Neurology, Klinik Ottakring, Vienna Austria
| | - Manuela Tan
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Anthony E. Lang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Edmond J. Safra Program in Parkinson’s Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada
- Krembil Brain Institute, Toronto, Ontario, Canada
| | - Sulev Koks
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| | - Pille Taba
- Department of Neurology and Neurosurgery, University of Tartu, Estonia
- Neurology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Suzanne Lesage
- Sorbonne Université, Paris Brain Institute – ICM, Inserm, CNRS, Paris, France
| | - Alexis Brice
- Sorbonne Université, Paris Brain Institute – ICM, Inserm, CNRS, Paris, France
| | - Jean-Christophe Corvol
- Sorbonne Université, Paris Brain Institute – ICM, Inserm, CNRS, Paris, France
- Assistance Publique Hôpitaux de Paris, Department of Neurology, CIC Neurosciences, Pitié-Salpêtrière Hospital, Paris, France
| | - Marie-Christine Chartier-Harlin
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Lille Neurosciences & Cognition, F-59000 Lille, France
| | - Eugenie Mutez
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Lille Neurosciences & Cognition, F-59000 Lille, France
| | - Kathrin Brockmann
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tubingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tubingen, Germany
| | - Angela B Deutschländer
- Department of Neurology, Ludwig Maximilians University of Munich, Germany
- Department of Neurology, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Neurology and Department of Clinical Genomics, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Georges M Hadjigeorgiou
- Department of Neurology, Medical School, University of Cyprus, Nicosia, Cyprus
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Efthimos Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Leonidas Stefanis
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athina Maria Simitsi
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Enza Maria Valente
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Mondino Foundation, Pavia, Italy
| | - Simona Petrucci
- UOC Medical Genetics and Advanced Cell Diagnostics, S. Andrea University Hospital, Rome, Italy
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Italy UOC Medical Genetics and Advanced Cell Diagnostics, S. Andrea University Hospital, Rome, Italy
| | - Letizia Straniero
- Department of Biomedical Sciences - Humanitas University, Milan, Italy
| | - Anna Zecchinelli
- Parkinson Institute, Azienda Socio Sanitaria Territoriale (ASST) Gaetano Pini/CTO, Milano, Italia
| | - Gianni Pezzoli
- Parkinson Institute, Azienda Socio Sanitaria Territoriale (ASST) Gaetano Pini/CTO, Milano, Italia
- Fondazione Grigioni per il Morbo di Parkinson, Milan, Italy
| | - Laura Brighina
- Department of Neurology, San Gerardo Hospital, Milan, Italy
- Center for Neuroscience, University of Milano Bicocca, Monza, Italy
| | - Carlo Ferrarese
- Department of Neurology, San Gerardo Hospital, Milan, Italy
- Center for Neuroscience, University of Milano Bicocca, Monza, Italy
| | - Grazia Annesi
- Institute for Biomedical Research and Innovation, National Research Council, Cosenza, Italy
| | - Andrea Quattrone
- Institute of Neurology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Monica Gagliardi
- Department of Medical and Surgical Sciences, Neuroscience Research Center, Magna Graecia University, Catanzaro, Italy
| | - Lena F Burbulla
- German Center for Neurodegenerative Diseases (DZNE), Tubingen, Germany
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians University, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Hirotaka Matsuo
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama 359-8513, Japan
| | - Akiyoshi Nakayama
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama 359-8513, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kenya Nishioka
- Department of Neurology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Yun Joong Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Pierre Kolber
- Centre Hospitalier du Luxembourg, Parkinson Research Clinic, Luxembourg, Luxembourg
| | - Bart PC van de Warrenburg
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Nijmegen, The Netherlands
| | - Andrew B. Singleton
- Molecular Genetics Section, Laboratory of Neurogenetics, NIA, NIH, Bethesda, MD 20892, USA
- Center For Alzheimer’s and Related Dementias, NIA, NIH, Bethesda, MD, USA
| | - Mathias Toft
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Lasse Pihlstrom
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Leonor Correia Guedes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Department of Neurosciences and Mental Health, Neurology, Hospital de Santa Maria, Centro Hospitalar Universitario Lisboa Norte (CHULN), Lisbon, Portugal
| | - Joaquim J Ferreira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
- South African Medical Research Council / Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
| | - Jonathan Carr
- Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Eduardo Tolosa
- Parkinson’s disease &Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII) Barcelona, Spain
| | - Mario Ezquerra
- Lab of Parkinson Disease and Other Neurodegenerative Movement Disorders, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, ES-08036 Barcelona, Catalonia
| | - Pau Pastor
- Fundació per la Recerca Biomèdica i Social Mútua Terrassa, Terrassa, Barcelona, Spain
- Movement Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Barcelona, Spain
| | - Karin Wirdefeldt
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Caroline Ran
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Andrea C Belin
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Puschmann
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Neurology, Getingevägen 4, 221 85, Lund, Sweden
| | - Carl E Clarke
- University of Birmingham and Sandwell and West Birmingham Hospitals NHS Trust, United Kingdom
| | - Karen E Morrison
- Faculty of Medicine, Health and Life Sciences, Queens University, Belfast, United Kingdom
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Matt J Farrer
- Department of Neurology, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Dennis Lal
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Stanley Center for Psychiatric Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Alexis Elbaz
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, 94805, Villejuif, France
| | - Thomas Gasser
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tubingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tubingen, Germany
| | - Rejko Krüger
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg; L-4367, Esch-sur-Alzette, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health, Strassen, Luxembourg
- Centre Hospitalier du Luxembourg, Parkinson Research Clinic, Luxembourg, Luxembourg
| | - Manu Sharma
- Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied Biometry, University of Tubingen, Germany
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg; L-4367, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
2
|
Mohammed OA, Elballal MS, El-Husseiny AA, Khidr EG, El Tabaa MM, Elazazy O, Abd-Elmawla MA, Elesawy AE, Ibrahim HM, Abulsoud AI, El-Dakroury WA, Abdel Mageed SS, Elrebehy MA, Nomier Y, Abdel-Reheim MA, El-Husseiny HM, Mahmoud AMA, Saber S, Doghish AS. Unraveling the role of miRNAs in the diagnosis, progression, and therapeutic intervention of Parkinson's disease. Pathol Res Pract 2024; 253:155023. [PMID: 38081104 DOI: 10.1016/j.prp.2023.155023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024]
Abstract
Parkinson's disease (PD) is a debilitating neurological disorder characterized by the impairment of the motor system, resulting in symptoms such as resting tremor, cogwheel rigidity, bradykinesia, difficulty with gait, and postural instability. The occurrence of striatal dopamine insufficiency can be attributed to a notable decline in dopaminergic neurons inside the substantia nigra pars compacta. Additionally, the development of Lewy bodies serves as a pathological hallmark of PD. While current therapy approaches for PD aim to preserve dopaminergic neurons or replenish dopamine levels in the brain, it is important to acknowledge that achieving complete remission of the condition remains elusive. MicroRNAs (miRNAs, miR) are a class of small, non-coding ribonucleic acids involved in regulating gene expression at the post-transcriptional level. The miRNAs play a crucial part in the underlying pathogenic mechanisms of several neurodegenerative illnesses, including PD. The aim of this review is to explore the role of miRNAs in regulating genes associated with the onset and progression of PD, investigate the potential of miRNAs as a diagnostic tool, assess the effectiveness of targeting specific miRNAs as an alternative therapeutic strategy to impede disease advancement, and discuss the utilization of newly developed nanoparticles for delivering miRNAs as neurodegenerative therapies.
Collapse
Affiliation(s)
- Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829 Cairo, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City, 32897 Menoufia, Egypt
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Henwa M Ibrahim
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Yousra Nomier
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Oman
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Abdulla M A Mahmoud
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
3
|
Hepp DH, van Wageningen TA, Kuiper KL, van Dijk KD, Oosterveld LP, Berendse HW, van de Berg WDJ. Inflammatory Blood Biomarkers Are Associated with Long-Term Clinical Disease Severity in Parkinson's Disease. Int J Mol Sci 2023; 24:14915. [PMID: 37834363 PMCID: PMC10573398 DOI: 10.3390/ijms241914915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
An altered immune response has been identified as a pathophysiological factor in Parkinson's disease (PD). We aimed to identify blood immunity-associated proteins that discriminate PD from controls and that are associated with long-term disease severity in PD patients. Immune response-derived proteins in blood plasma were measured using Proximity Extension Technology by OLINK in a cohort of PD patients (N = 66) and age-matched healthy controls (N = 52). In a selection of 30 PD patients, we evaluated changes in protein levels 7-10 years after the baseline and assessed correlations with motor and cognitive assessments. Data from the Parkinson's Disease Biomarkers Program (PDBP) cohort and the Parkinson's Progression Markers Initiative (PPMI) cohort were used for independent validation. PD patients showed an altered immune response compared to controls based on a panel of four proteins (IL-12B, OPG, CXCL11, and CSF-1). The expression levels of five inflammation-associated proteins (CCL23, CCL25, TNFRSF9, TGF-alpha, and VEGFA) increased over time in PD and were partially associated with more severe motor and cognitive symptoms at follow-up. Increased CCL23 levels were associated with cognitive decline and the APOE4 genotype. Our findings provide further evidence for an altered immune response in PD that is associated with disease severity in PD over a long period of time.
Collapse
Affiliation(s)
- Dagmar H. Hepp
- Department of Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, de Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (D.H.H.)
- Department of Neurology, Amsterdam UMC Location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HZ Amsterdam, The Netherlands;
- Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Thecla A. van Wageningen
- Department of Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, de Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (D.H.H.)
- Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Kirsten L. Kuiper
- Department of Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, de Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (D.H.H.)
- Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Karin D. van Dijk
- Sleep Wake Centre, Stichting Epilepsie Instellingen Nederland (SEIN), 2103 SW Heemstede, The Netherlands
| | - Linda P. Oosterveld
- Department of Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, de Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (D.H.H.)
- Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Henk W. Berendse
- Department of Neurology, Amsterdam UMC Location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HZ Amsterdam, The Netherlands;
- Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Wilma D. J. van de Berg
- Department of Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, de Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (D.H.H.)
- Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
4
|
Rike WA, Stern S. Proteins and Transcriptional Dysregulation of the Brain Extracellular Matrix in Parkinson's Disease: A Systematic Review. Int J Mol Sci 2023; 24:ijms24087435. [PMID: 37108598 PMCID: PMC10138539 DOI: 10.3390/ijms24087435] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The extracellular matrix (ECM) of the brain is a dynamic structure made up of a vast network of bioactive macromolecules that modulate cellular events. Structural, organizational, and functional changes in these macromolecules due to genetic variation or environmental stressors are thought to affect cellular functions and may result in disease. However, most mechanistic studies to date usually focus on the cellular aspects of diseases and pay less attention to the relevance of the processes governing the dynamic nature of the extracellular matrix in disease pathogenesis. Thus, due to the ECM's diversified biological roles, increasing interest in its involvement in disease, and the lack of sufficient compiled evidence regarding its relationship with Parkinson's disease (PD) pathology, we aimed to compile the existing evidence to boost the current knowledge on the area and provide refined guidance for the future research. Here, in this review, we gathered postmortem brain tissue and induced pluripotent stem cell (iPSC)-related studies from PubMed and Google Scholar to identify, summarize and describe common macromolecular alterations in the expression of brain ECM components in Parkinson's disease (PD). A literature search was conducted up until 10 February 2023. The overall hits from the database and manual search for proteomic and transcriptome studies were 1243 and 1041 articles, respectively. Following a full-text review, 10 articles from proteomic and 24 from transcriptomic studies were found to be eligible for inclusion. According to proteomic studies, proteins such as collagens, fibronectin, annexins, and tenascins were recognized to be differentially expressed in Parkinson's disease. Transcriptomic studies displayed dysregulated pathways including ECM-receptor interaction, focal adhesion, and cell adhesion molecules in Parkinson's disease. A limited number of relevant studies were accessed from our search, indicating that much work remains to be carried out to better understand the roles of the ECM in neurodegeneration and Parkinson's disease. However, we believe that our review will elicit focused primary studies and thus support the ongoing efforts of the discovery and development of diagnostic biomarkers as well as therapeutic agents for Parkinson's disease.
Collapse
Affiliation(s)
- Wote Amelo Rike
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
5
|
Fedoseyeva VB, Novosadova EV, Nenasheva VV, Novosadova LV, Grivennikov IA, Tarantul VZ. Activation of Embryonic Gene Transcription in Neural Precursor Cells Derived from the Induced Pluripotent Stem Cells of the Patients with Parkinson's Disease. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:515-525. [PMID: 37080937 DOI: 10.1134/s0006297923040077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases in the world. Despite numerous studies, the causes of this pathology remain completely unknown. This is, among other things, due to the difficulty of obtaining biological material for analysis. Neural cell cultures derived from the induced pluripotent stem cells (IPSCs) provide a great potential for studying molecular events underlying the pathogenesis of PD. This paper presents the results of bioinformatic analysis of the data obtained using RNA-seq technology in the study of neural precursors (NP) derived from IPSCs of the healthy donors and patients with PD carrying various mutations that are commonly associated with familial PD. This analysis showed that the level of transcription of multiple genes actively expressed in the nervous system at the embryonic stage of development was significantly increased in the NP cells obtained from the patients with PD, unlike in the case of healthy donors. Bioinformatic data have been, in general, confirmed using real-time PCR. The obtained data suggest that one of the causes of PD may be the shift of the gene expression pattern in neuronal cells towards embryonic gene expression pattern (termed dematuration).
Collapse
Affiliation(s)
- Viya B Fedoseyeva
- National Research Center "Kurchatov Institute", Moscow, 123182, Russia.
| | | | | | | | | | | |
Collapse
|
6
|
Modelling the Human Blood-Brain Barrier in Huntington Disease. Int J Mol Sci 2022; 23:ijms23147813. [PMID: 35887162 PMCID: PMC9321930 DOI: 10.3390/ijms23147813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 02/05/2023] Open
Abstract
While blood–brain barrier (BBB) dysfunction has been described in neurological disorders, including Huntington’s disease (HD), it is not known if endothelial cells themselves are functionally compromised when promoting BBB dysfunction. Furthermore, the underlying mechanisms of BBB dysfunction remain elusive given the limitations with mouse models and post mortem tissue to identify primary deficits. We established models of BBB and undertook a transcriptome and functional analysis of human induced pluripotent stem cell (iPSC)-derived brain-like microvascular endothelial cells (iBMEC) from HD patients or unaffected controls. We demonstrated that HD-iBMECs have abnormalities in barrier properties, as well as in specific BBB functions such as receptor-mediated transcytosis.
Collapse
|
7
|
Pan H, Sun T, Cui M, Ma N, Yang C, Liu J, Pang G, Liu B, Li L, Zhang X, Zhang W, Chang J, Wang H. Light-Sensitive Lactococcus lactis for Microbe-Gut-Brain Axis Regulating via Upconversion Optogenetic Micro-Nano System. ACS NANO 2022; 16:6049-6063. [PMID: 35362965 DOI: 10.1021/acsnano.1c11536] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The discovery of the gut-brain axis has proven that brain functions can be affected by the gut microbiota's metabolites, so there are significant opportunities to explore new tools to regulate gut microbiota and thus work on the brain functions. Meanwhile, engineered bacteria as oral live biotherapeutic agents to regulate the host's healthy homeostasis have attracted much attention in microbial therapy. However, whether this strategy is able to remotely regulate the host's brain function in vivo has not been investigated. Here, we engineered three blue-light-responsive probiotics as oral live biotherapeutic agents. They are spatiotemporally delivered and controlled by the upconversion optogenetic micro-nano system. This micro-nano system promotes the small intestine targeting and production of the exogenous L. lactis in the intestines, which realizes precise manipulation of brain functions including anxiety behavior, Parkinson's disease, and vagal afferent. The noninvasive and real-time probiotic intervention strategy makes the communiation from the gut to the host more controllable, which will enable the potential for engineered microbes accurately and effectively regulating a host's health.
Collapse
Affiliation(s)
- Huizhuo Pan
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, 300072, China
| | - Tao Sun
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, China
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Meihui Cui
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, 300072, China
| | - Ning Ma
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, 300072, China
| | - Chun Yang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, 300072, China
| | - Jing Liu
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Gaoju Pang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, 300072, China
| | - Baona Liu
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, 300072, China
| | - Lianyue Li
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, 300072, China
| | - Xinyu Zhang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, 300072, China
| | - Weiwen Zhang
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, China
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jin Chang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, 300072, China
| | - Hanjie Wang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, 300072, China
| |
Collapse
|
8
|
Parkinson's Disease Subtyping Using Clinical Features and Biomarkers: Literature Review and Preliminary Study of Subtype Clustering. Diagnostics (Basel) 2022; 12:diagnostics12010112. [PMID: 35054279 PMCID: PMC8774435 DOI: 10.3390/diagnostics12010112] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 12/29/2022] Open
Abstract
The second most common progressive neurodegenerative disorder, Parkinson’s disease (PD), is characterized by a broad spectrum of symptoms that are associated with its progression. Several studies have attempted to classify PD according to its clinical manifestations and establish objective biomarkers for early diagnosis and for predicting the prognosis of the disease. Recent comprehensive research on the classification of PD using clinical phenotypes has included factors such as dominance, severity, and prognosis of motor and non-motor symptoms and biomarkers. Additionally, neuroimaging studies have attempted to reveal the pathological substrate for motor symptoms. Genetic and transcriptomic studies have contributed to our understanding of the underlying molecular pathogenic mechanisms and provided a basis for classifying PD. Moreover, an understanding of the heterogeneity of clinical manifestations in PD is required for a personalized medicine approach. Herein, we discuss the possible subtypes of PD based on clinical features, neuroimaging, and biomarkers for developing personalized medicine for PD. In addition, we conduct a preliminary clustering using gait features for subtyping PD. We believe that subtyping may facilitate the development of therapeutic strategies for PD.
Collapse
|
9
|
Ghafouri-Fard S, Gholipour M, Abak A, Mazdeh M, Taheri M, Sayad A. Expression Analysis of NF-κB-Related lncRNAs in Parkinson's Disease. Front Immunol 2021; 12:755246. [PMID: 34721431 PMCID: PMC8548831 DOI: 10.3389/fimmu.2021.755246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/24/2021] [Indexed: 01/31/2023] Open
Abstract
Parkinson’s disease (PD) has been shown to affect approximately 1% of the persons aged more than 65 years. This multifactorial disorder has been associated with abnormal function of NF-κB signals. In this research, we have evaluated expressions of NF-κB-related long non-coding RNAs in the circulation of PD patients compared with healthy controls. Expression of PACER was lower in total PD patients compared with healthy persons (Ratio of mean expressions (RME)=0.32, P value<0.001). This pattern was also evident among males (RME=0.25, P value<0.001). Expression of DILC was higher in total PD patients (RME=4.07, P value<0.001), and in both sex-based subgroups (RME=3.77, P value=0.01 and RME=4.25, P value<0.001, for females and males, respectively). Similarly, CEBPA was significantly over-expressed in total PD patients (RME=14.76, P value<0.001), and in both sex-based subgroups (RME=12.42, P value<0.001 and RME=15.80, P value<0.001, for females and males, respectively). ATG5 had a similar expression pattern (RME=2.6, P value=1E-08, RME=1.73, P value=0.03 and RME=3.09, P value=1E-07, for total cases, females and males, respectively). H19 was up-regulated in total cases and male cases compared with corresponding controls (RME=2.19, P value<0.001, RME=2.68, P value=0.01, respectively). Finally, HNFA1-AS was down-regulated in all comparisons (RME=0.10, P value=2E-06, RME=0.08, P value<0.001 and RME=0.12, P value<0.001, for total cases, females and males, respectively). Among PD patients, expressions of NKILA and ADINR were robustly correlated with each other (r=0.75, P value=2.40E-10). In addition, expression levels of DICER1-AS were significantly correlated with those of ADINR, PACER and H19 in these patients (r=0.73, P value=1.76E-9; r=0.72, P value=5.15E-09 and r=0.72, P value=3.09E-09, respectively). Correlation analyses among healthy controls revealed robust correlations between CHAST and CEBPA (r=0.84, P value=3.09E-09), NKILA and ADINR (r=0.80, P value=4.24E-12) as well as between DILC and CHAST (r=0.76, P value=1.70E-10). CEBPA had the best parameters among all assessed genes (AUC=0.96, Sensitivity=0.90 and specificity=0.97). DILC and ATG5 were the most appropriate markers after CEBPA with AUC values of 0.82 and 0.80, respectively. Most notably, combination of all genes improved AUC, sensitivity and specificity parameters to 1, 0.97 and 0.99, respectively. Cumulatively, the current study provides evidence for participation of NF-κB-related lncRNAs in the pathoetiology of PD.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholipour
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdokht Mazdeh
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezou Sayad
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Park S, Kim A, Park G, Kwon O, Park S, Yoo H, Jang J. Investigation of Therapeutic Response Markers for Acupuncture in Parkinson's Disease: An Exploratory Pilot Study. Diagnostics (Basel) 2021; 11:diagnostics11091697. [PMID: 34574038 PMCID: PMC8468821 DOI: 10.3390/diagnostics11091697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
In this preliminary pilot study, we investigated the specific genes implicated in the therapeutic response to acupuncture in patients with Parkinson’s disease (PD). Transcriptome alterations following acupuncture in blood samples collected during our previous clinical trial were analyzed along with the clinical data of six patients with PD, of which a representative patient was selected for transcriptomic analysis following acupuncture. We also examined the changes in the expression of PD biomarker genes known to be dysregulated in both the brain and blood of patients with PD. We validated these gene expression changes using quantitative real-time polymerase chain reaction (qPCR) in the blood of the remaining five patients with PD who received acupuncture treatment. Following acupuncture treatment, the transcriptomic alterations in the representative patient were similar to those induced by dopaminergic therapy. Among the PD biomarkers, ankyrin repeat domain 22 (ANKRD22), upregulated following dopaminergic therapy, and synapsin 1 (SYN1), a common gene marker for synaptic dysfunction in PD, were upregulated following acupuncture. These alterations correlated with changes in gait parameters in patients with PD. Our data suggest ANKRD22 and SYN1 as potential biomarkers to predict/monitor therapeutic responses to acupuncture in patients with PD, especially in those with gait disturbance. Further research is needed to confirm these findings in a large sample of patients with PD.
Collapse
Affiliation(s)
- Sangmin Park
- KM Data Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, Korea;
| | - Aeyung Kim
- KM Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu 41062, Korea;
| | - Gunhyuk Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111 Geonjae-ro, Naju-si 58245, Korea;
| | - Ojin Kwon
- KM Science Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, Korea;
| | - Sangsoo Park
- Clinical Trial Center, Daejeon Korean Medicine Hospital, 75, Daedeok-Daero 176 Beon-gil, Seo-gu, Daejeon 35235, Korea;
| | - Horyong Yoo
- Clinical Trial Center, Daejeon Korean Medicine Hospital, 75, Daedeok-Daero 176 Beon-gil, Seo-gu, Daejeon 35235, Korea;
- Correspondence: (H.Y.); (J.J.)
| | - Junghee Jang
- KM Science Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, Korea;
- Clinical Trial Center, Daejeon Korean Medicine Hospital, 75, Daedeok-Daero 176 Beon-gil, Seo-gu, Daejeon 35235, Korea;
- Correspondence: (H.Y.); (J.J.)
| |
Collapse
|
11
|
Up-regulated microRNA-218-5p ameliorates the damage of dopaminergic neurons in rats with Parkinson's disease via suppression of LASP1. Brain Res Bull 2020; 166:92-101. [PMID: 33144090 DOI: 10.1016/j.brainresbull.2020.10.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Parkinson's disease (PD) is a frequent degenerative disease of the nervous system with undefined pathogenesis. This study explored the protective effect of microRNA (miR)-218-5p on dopaminergic neuron injury in substantia nigra (SN) of rats with PD through the regulation of LIM and SH3 domain protein 1 (LASP1). METHODS The PD rat model was established by fixed point injection of 6-hydroxydopamine into the rats. The PD rats were injected with miR-218-5p overexpressed recombinant adeno-associated virus (rAAV) or LASP1 silenced rAAV to explore their roles in dopaminergic neurons in SN of rats with PD. The changes in pathological structure of SN were observed and the expression of tyrosine hydroxylase (TH) and deacetylvindoline acetyltransferase (DAT), the dopaminergic neuron apoptosis and oxidative stress factor in the SN were detected. The expression of miR-218-5p, LASP1, Bcl-2 and Bax in SN was detected. The targeting relationship between miR-218-5p and LASP1 was confirmed. RESULTS Declined miR-218-5p and overexpressed LASP1 existed in the brain SN of PD rats. Up-regulated miR-218-5p or inhibited LASP1 improved the pathological damage of dopaminergic neurons and increased the number of TH and DAT positive cells in brain SN of PD rats. Furthermore, elevated miR-218-5p or depressed LASP1 inhibited the apoptosis, and oxidative stress of dopaminergic neurons in brain SN of PD rats. In addition, increased miR-218-5p repressed the expression of LASP1 in the brain SN of PD rats. LASP1 was proven to be a direct target of miR-218-5p. CONCLUSION The study highlights that up-regulated miR-218-5p could improve the damage of dopaminergic neurons in PD rats, which was related to the inhibition of LASP1.
Collapse
|
12
|
Acharya S, Salgado-Somoza A, Stefanizzi FM, Lumley AI, Zhang L, Glaab E, May P, Devaux Y. Non-Coding RNAs in the Brain-Heart Axis: The Case of Parkinson's Disease. Int J Mol Sci 2020; 21:E6513. [PMID: 32899928 PMCID: PMC7555192 DOI: 10.3390/ijms21186513] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 02/08/2023] Open
Abstract
Parkinson's disease (PD) is a complex and heterogeneous disorder involving multiple genetic and environmental influences. Although a wide range of PD risk factors and clinical markers for the symptomatic motor stage of the disease have been identified, there are still no reliable biomarkers available for the early pre-motor phase of PD and for predicting disease progression. High-throughput RNA-based biomarker profiling and modeling may provide a means to exploit the joint information content from a multitude of markers to derive diagnostic and prognostic signatures. In the field of PD biomarker research, currently, no clinically validated RNA-based biomarker models are available, but previous studies reported several significantly disease-associated changes in RNA abundances and activities in multiple human tissues and body fluids. Here, we review the current knowledge of the regulation and function of non-coding RNAs in PD, focusing on microRNAs, long non-coding RNAs, and circular RNAs. Since there is growing evidence for functional interactions between the heart and the brain, we discuss the benefits of studying the role of non-coding RNAs in organ interactions when deciphering the complex regulatory networks involved in PD progression. We finally review important concepts of harmonization and curation of high throughput datasets, and we discuss the potential of systems biomedicine to derive and evaluate RNA biomarker signatures from high-throughput expression data.
Collapse
Affiliation(s)
- Shubhra Acharya
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (S.A.); (A.S.-S.); (F.M.S.); (A.I.L.); (L.Z.)
- Faculty of Science, Technology and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
| | - Antonio Salgado-Somoza
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (S.A.); (A.S.-S.); (F.M.S.); (A.I.L.); (L.Z.)
| | - Francesca Maria Stefanizzi
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (S.A.); (A.S.-S.); (F.M.S.); (A.I.L.); (L.Z.)
| | - Andrew I. Lumley
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (S.A.); (A.S.-S.); (F.M.S.); (A.I.L.); (L.Z.)
| | - Lu Zhang
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (S.A.); (A.S.-S.); (F.M.S.); (A.I.L.); (L.Z.)
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg; (E.G.); (P.M.)
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg; (E.G.); (P.M.)
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (S.A.); (A.S.-S.); (F.M.S.); (A.I.L.); (L.Z.)
| |
Collapse
|
13
|
Kumari B, Mandal M, Dholaniya PS. Analysis of multiple transcriptome data to determine age-associated genes for the progression of Parkinson's disease. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
14
|
Nido GS, Dick F, Toker L, Petersen K, Alves G, Tysnes OB, Jonassen I, Haugarvoll K, Tzoulis C. Common gene expression signatures in Parkinson's disease are driven by changes in cell composition. Acta Neuropathol Commun 2020; 8:55. [PMID: 32317022 PMCID: PMC7175586 DOI: 10.1186/s40478-020-00932-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/14/2020] [Indexed: 12/21/2022] Open
Abstract
The etiology of Parkinson’s disease is largely unknown. Genome-wide transcriptomic studies in bulk brain tissue have identified several molecular signatures associated with the disease. While these studies have the potential to shed light into the pathogenesis of Parkinson’s disease, they are also limited by two major confounders: RNA post-mortem degradation and heterogeneous cell type composition of bulk tissue samples. We performed RNA sequencing following ribosomal RNA depletion in the prefrontal cortex of 49 individuals from two independent case-control cohorts. Using cell type specific markers, we estimated the cell type composition for each sample and included this in our analysis models to compensate for the variation in cell type proportions. Ribosomal RNA depletion followed by capture by random primers resulted in substantially more even transcript coverage, compared to poly(A) capture, in post-mortem tissue. Moreover, we show that cell type composition is a major confounder of differential gene expression analysis in the Parkinson’s disease brain. Accounting for cell type proportions attenuated numerous transcriptomic signatures that have been previously associated with Parkinson’s disease, including vesicle trafficking, synaptic transmission, immune and mitochondrial function. Conversely, pathways related to endoplasmic reticulum, lipid oxidation and unfolded protein response were strengthened and surface as the top differential gene expression signatures in the Parkinson’s disease prefrontal cortex. Our results indicate that differential gene expression signatures in Parkinson’s disease bulk brain tissue are significantly confounded by underlying differences in cell type composition. Modeling cell type heterogeneity is crucial in order to unveil transcriptomic signatures that represent regulatory changes in the Parkinson’s disease brain and are, therefore, more likely to be associated with underlying disease mechanisms.
Collapse
|
15
|
Rotunno MS, Lane M, Zhang W, Wolf P, Oliva P, Viel C, Wills AM, Alcalay RN, Scherzer CR, Shihabuddin LS, Zhang K, Sardi SP. Cerebrospinal fluid proteomics implicates the granin family in Parkinson's disease. Sci Rep 2020; 10:2479. [PMID: 32051502 PMCID: PMC7015906 DOI: 10.1038/s41598-020-59414-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/24/2020] [Indexed: 12/25/2022] Open
Abstract
Parkinson's disease, the most common age-related movement disorder, is a progressive neurodegenerative disease with unclear etiology. Better understanding of the underlying disease mechanism(s) is an urgent need for the development of disease-modifying therapeutics. Limited studies have been performed in large patient cohorts to identify protein alterations in cerebrospinal fluid (CSF), a proximal site to pathology. We set out to identify disease-relevant protein changes in CSF to gain insights into the etiology of Parkinson's disease and potentially assist in disease biomarker identification. In this study, we used liquid chromatography-tandem mass spectrometry in data-independent acquisition (DIA) mode to identify Parkinson's-relevant biomarkers in cerebrospinal fluid. We quantified 341 protein groups in two independent cohorts (n = 196) and a longitudinal cohort (n = 105 samples, representing 40 patients) consisting of Parkinson's disease and healthy control samples from three different sources. A first cohort of 53 Parkinson's disease and 72 control samples was analyzed, identifying 53 proteins with significant changes (p < 0.05) in Parkinson's disease relative to healthy control. We established a biomarker signature and multiple protein ratios that differentiate Parkinson's disease from healthy controls and validated these results in an independent cohort. The second cohort included 28 Parkinson's disease and 43 control samples. Independent analysis of these samples identified 41 proteins with significant changes. Evaluation of the overlapping changes between the two cohorts identified 13 proteins with consistent and significant changes (p < 0.05). Importantly, we found the extended granin family proteins as reduced in disease, suggesting a potential common mechanism for the biological reduction in monoamine neurotransmission in Parkinson's patients. Our study identifies several novel protein changes in Parkinson's disease cerebrospinal fluid that may be exploited for understanding etiology of disease and for biomarker development.
Collapse
Affiliation(s)
- Melissa S Rotunno
- Rare and Neurologic Diseases Therapeutic Area, Sanofi, Inc., Framingham, MA, 01701, USA.,Biomarkers and Bioanalytics, Translational Sciences, Sanofi, Inc., Framingham, MA, 01701, USA
| | - Monica Lane
- Biomarkers and Bioanalytics, Translational Sciences, Sanofi, Inc., Framingham, MA, 01701, USA
| | - Wenfei Zhang
- Translational Medicine, Sanofi, Inc., Framingham, MA, 01701, USA
| | - Pavlina Wolf
- Biomarkers and Bioanalytics, Translational Sciences, Sanofi, Inc., Framingham, MA, 01701, USA.,Editas Medicine, Cambridge, MA, 02141, USA
| | - Petra Oliva
- Biomarkers and Bioanalytics, Translational Sciences, Sanofi, Inc., Framingham, MA, 01701, USA.,ARCHIMED Life Sciences GmbH, Leberstraße 20/2, 1110, Vienna, Austria
| | - Catherine Viel
- Rare and Neurologic Diseases Therapeutic Area, Sanofi, Inc., Framingham, MA, 01701, USA
| | - Anne-Marie Wills
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Roy N Alcalay
- Department of Neurology, Columbia University, New York, NY, 10032-3784, USA
| | - Clemens R Scherzer
- Precision Neurology Program, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, 02115, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA.,APDA Center for Advance Parkinson Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, 02115, USA
| | - Lamya S Shihabuddin
- Rare and Neurologic Diseases Therapeutic Area, Sanofi, Inc., Framingham, MA, 01701, USA
| | - Kate Zhang
- Biomarkers and Bioanalytics, Translational Sciences, Sanofi, Inc., Framingham, MA, 01701, USA.,Editas Medicine, Cambridge, MA, 02141, USA
| | - S Pablo Sardi
- Rare and Neurologic Diseases Therapeutic Area, Sanofi, Inc., Framingham, MA, 01701, USA.
| |
Collapse
|
16
|
Lee DG, Kim M, Shin H. Inference on chains of disease progression based on disease networks. PLoS One 2019; 14:e0218871. [PMID: 31251766 PMCID: PMC6599221 DOI: 10.1371/journal.pone.0218871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 06/11/2019] [Indexed: 01/16/2023] Open
Abstract
MOTIVATION Disease progression originates from the concept that an individual disease may go through different changes as it evolves, and such changes can cause new diseases. It is important to find a progression between diseases since knowing the prior-posterior relationship beforehand can prevent further complications or evolutions to other diseases. Furthermore, the series of progressions can be represented in the form of a chain, which enables us to readily infer successive influences from one disease to another after many passages through other diseases. METHODS In this paper, we propose a systematic approach for finding a disease progression chain from a source disease to a target one via exploring a disease network. The network is constructed based on various sets of biomedical data. To find the most influential progression chains, the k-shortest path search algorithm is employed. The most representative algorithms such as A*, Dijkstra, and Yen's are incorporated into the proposed method. RESULTS A disease network consisting of 3,302 diseases was constructed based on four sources of biomedical data: disease-protein relations, biological pathways, clinical history, and biomedical literature information. The last three sets of data contain prior-posterior information, and they endow directionality on the edges of the network. The results were interesting and informative: for example, when colitis and respiratory insufficiency were set as a source disease and a target one, respectively, five progression chains were found within several seconds (when k = 5). Each chain was provided with a progression score, which indicates the strength of plausibility relative to others. Similarly, the proposed method can be expanded to any pair of source-target diseases in the network. This can be utilized as a preliminary tool for inferring complications or progressions between diseases.
Collapse
Affiliation(s)
- Dong-gi Lee
- Department of Industrial Engineering, Ajou University, Yeongtong-gu, Suwon, South Korea
| | - Myungjun Kim
- Department of Industrial Engineering, Ajou University, Yeongtong-gu, Suwon, South Korea
| | - Hyunjung Shin
- Department of Industrial Engineering, Ajou University, Yeongtong-gu, Suwon, South Korea
| |
Collapse
|
17
|
Brennan S, Keon M, Liu B, Su Z, Saksena NK. Panoramic Visualization of Circulating MicroRNAs Across Neurodegenerative Diseases in Humans. Mol Neurobiol 2019; 56:7380-7407. [PMID: 31037649 PMCID: PMC6815273 DOI: 10.1007/s12035-019-1615-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 04/15/2019] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases (NDs) such as Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and dementia pose one of the greatest health challenges this century. Although these NDs have been looked at as single entities, the underlying molecular mechanisms have never been collectively visualized to date. With the advent of high-throughput genomic and proteomic technologies, we now have the opportunity to visualize these diseases in a whole new perspective, which will provide a clear understanding of the primary and secondary events vital in achieving the final resolution of these diseases guiding us to new treatment strategies to possibly treat these diseases together. We created a knowledge base of all microRNAs known to be differentially expressed in various body fluids of ND patients. We then used several bioinformatic methods to understand the functional intersections and differences between AD, PD, ALS, and MS. These results provide a unique panoramic view of possible functional intersections between AD, PD, MS, and ALS at the level of microRNA and their cognate genes and pathways, along with the entities that unify and separate them. While the microRNA signatures were apparent for each ND, the unique observation in our study was that hsa-miR-30b-5p overlapped between all four NDS, and has significant functional roles described across NDs. Furthermore, our results also show the evidence of functional convergence of miRNAs which was associated with the regulation of their cognate genes represented in pathways that included fatty acid synthesis and metabolism, ECM receptor interactions, prion diseases, and several signaling pathways critical to neuron differentiation and survival, underpinning their relevance in NDs. Envisioning this group of NDs together has allowed us to propose new ways of utilizing circulating miRNAs as biomarkers and in visualizing diverse NDs more holistically . The critical molecular insights gained through the discovery of ND-associated miRNAs, overlapping miRNAs, and the functional convergence of microRNAs on vital pathways strongly implicated in neurodegenerative processes can prove immensely valuable in the identifying new generation of biomarkers, along with the development of miRNAs into therapeutics.
Collapse
Affiliation(s)
- Samuel Brennan
- Neurodegenerative Disease section, Iggy Get Out, 19a Boundary Street, Darlinghurst NSW 2010, Sydney, Australia
| | - Matthew Keon
- Neurodegenerative Disease section, Iggy Get Out, 19a Boundary Street, Darlinghurst NSW 2010, Sydney, Australia
| | - Bing Liu
- Neurodegenerative Disease section, Iggy Get Out, 19a Boundary Street, Darlinghurst NSW 2010, Sydney, Australia
| | - Zheng Su
- Neurodegenerative Disease section, Iggy Get Out, 19a Boundary Street, Darlinghurst NSW 2010, Sydney, Australia
| | - Nitin K. Saksena
- Neurodegenerative Disease section, Iggy Get Out, 19a Boundary Street, Darlinghurst NSW 2010, Sydney, Australia
| |
Collapse
|
18
|
Ning B, Zhang Q, Deng M, Wang N, Fang Y. Endoplasmic reticulum stress induced autophagy in 6-OHDA-induced Parkinsonian rats. Brain Res Bull 2019; 146:224-227. [PMID: 30625371 DOI: 10.1016/j.brainresbull.2019.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/17/2018] [Accepted: 01/02/2019] [Indexed: 01/31/2023]
Abstract
Both endoplasmic reticulum (ER) stress and autophagy involve in the pathological process of Parkinson's disease (PD). But the relationship between them is not clear in PD. A 6-OHDA-induced parkinsonian rat is recognized as a standard model for many years, and it can be used in experimental study. The glucose regulated protein 78 (GRP78) is a master regulator of ER stress, and the C/EBP homologous binding protein (CHOP) is an indicator of the UPR signaling. Besides, the Beclin-1 is also well known as a regulator of autophagy, and P62 is a specific marker to monitor autophagy. Therefore, we investigated the expressions of GRP78, CHOP, Beclin-1 and P62 in 6-OHDA-induced parkinsonian rat. Unilateral 6-OHDA injection into medial forebrain bundle was used except sham-operated rats. The rats were randomly divided into 6 groups: a sham-operated group; a model group; a 3-methyladenine (3-MA) group, administered 3-MA---autophagy inhibitor; a rapamycin group, administered rapamycin---autophagy inducer; a 4-phenylbutyric acids (4-PBA) group, administered 4-PBA---ER stress inhibitor; a tunicamycin (TM) group, administered TM---ER stress inducer. The results showed that the expressions of GRP78, CHOP and Beclin-1 increased, P62 decreased in model group; the expressions of GRP78 and CHOP were unchanged in 3-MA group and rapamycin group; but the expression of Beclin-1 decreased and P62 increased in 4-PBA group, while the expression of Beclin-1 increased and P62 decreased in TM group. These data suggest that ER stress and autophagy occurred in 6-OHDA-induced parkinsonian rat, and ER stress might induce autophagy. The result is important for the pathological mechanism of PD.
Collapse
Affiliation(s)
- Baile Ning
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, the Second Clinical College of Guangzhou University of Chinese Medicine, and the Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qinxin Zhang
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, the Second Clinical College of Guangzhou University of Chinese Medicine, and the Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Minzhen Deng
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, the Second Clinical College of Guangzhou University of Chinese Medicine, and the Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Nanbu Wang
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yongqi Fang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
19
|
Patel H, Dobson RJ, Newhouse SJ. A Meta-Analysis of Alzheimer's Disease Brain Transcriptomic Data. J Alzheimers Dis 2019; 68:1635-1656. [PMID: 30909231 PMCID: PMC6484273 DOI: 10.3233/jad-181085] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Microarray technologies have identified imbalances in the expression of specific genes and biological pathways in Alzheimer's disease (AD) brains. However, there is a lack of reproducibility across individual AD studies, and many related neurodegenerative and mental health disorders exhibit similar perturbations. OBJECTIVE Meta-analyze publicly available transcriptomic data from multiple brain-related disorders to identify robust transcriptomic changes specific to AD brains. METHODS Twenty-two AD, eight schizophrenia, five bipolar disorder, four Huntington's disease, two major depressive disorder, and one Parkinson's disease dataset totaling 2,667 samples and mapping to four different brain regions (temporal lobe, frontal lobe, parietal lobe, and cerebellum) were analyzed. Differential expression analysis was performed independently in each dataset, followed by meta-analysis using a combining p-value method known as Adaptively Weighted with One-sided Correction. RESULTS Meta-analysis identified 323, 435, 1,023, and 828 differentially expressed genes specific to the AD temporal lobe, frontal lobe, parietal lobe, and cerebellum brain regions, respectively. Seven of these genes were consistently perturbed across all AD brain regions with SPCS1 gene expression pattern replicating in RNA-Seq data. A further nineteen genes were perturbed specifically in AD brain regions affected by both plaques and tangles, suggesting possible involvement in AD neuropathology. In addition, biological pathways involved in the "metabolism of proteins" and viral components were significantly enriched across AD brains. CONCLUSION This study identified transcriptomic changes specific to AD brains, which could make a significant contribution toward the understanding of AD disease mechanisms and may also provide new therapeutic targets.
Collapse
Affiliation(s)
- Hamel Patel
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM) and Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, UK
| | - Richard J.B. Dobson
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM) and Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, UK
- Health Data Research UK London, University College London, London, UK
- Institute of Health Informatics, University College London, London, UK
- The National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London, London, UK
| | - Stephen J. Newhouse
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM) and Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, UK
- Health Data Research UK London, University College London, London, UK
- Institute of Health Informatics, University College London, London, UK
- The National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London, London, UK
| |
Collapse
|
20
|
Glaab E. Computational systems biology approaches for Parkinson's disease. Cell Tissue Res 2018; 373:91-109. [PMID: 29185073 PMCID: PMC6015628 DOI: 10.1007/s00441-017-2734-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/06/2017] [Indexed: 12/26/2022]
Abstract
Parkinson's disease (PD) is a prime example of a complex and heterogeneous disorder, characterized by multifaceted and varied motor- and non-motor symptoms and different possible interplays of genetic and environmental risk factors. While investigations of individual PD-causing mutations and risk factors in isolation are providing important insights to improve our understanding of the molecular mechanisms behind PD, there is a growing consensus that a more complete understanding of these mechanisms will require an integrative modeling of multifactorial disease-associated perturbations in molecular networks. Identifying and interpreting the combinatorial effects of multiple PD-associated molecular changes may pave the way towards an earlier and reliable diagnosis and more effective therapeutic interventions. This review provides an overview of computational systems biology approaches developed in recent years to study multifactorial molecular alterations in complex disorders, with a focus on PD research applications. Strengths and weaknesses of different cellular pathway and network analyses, and multivariate machine learning techniques for investigating PD-related omics data are discussed, and strategies proposed to exploit the synergies of multiple biological knowledge and data sources. A final outlook provides an overview of specific challenges and possible next steps for translating systems biology findings in PD to new omics-based diagnostic tools and targeted, drug-based therapeutic approaches.
Collapse
Affiliation(s)
- Enrico Glaab
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
21
|
A workflow for the integrative transcriptomic description of molecular pathology and the suggestion of normalizing compounds, exemplified by Parkinson's disease. Sci Rep 2018; 8:7937. [PMID: 29784986 PMCID: PMC5962550 DOI: 10.1038/s41598-018-25754-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/06/2018] [Indexed: 12/13/2022] Open
Abstract
The volume of molecular observations on human diseases in public databases is continuously increasing at accelerating rates. A bottleneck is their computational integration into a coherent description, from which researchers may derive new well-founded hypotheses. Also, the need to integrate data from different technologies (genetics, coding and regulatory RNA, proteomics) emerged in order to identify biomarkers for early diagnosis and prognosis of complex diseases and therefore facilitating the development of novel treatment approaches. We propose here a workflow for the integrative transcriptomic description of the molecular pathology in Parkinsons’s Disease (PD), including suggestions of compounds normalizing disease-induced transcriptional changes as a paradigmatic example. We integrated gene expression profiles, miRNA signatures, and publicly available regulatory databases to specify a partial model of the molecular pathophysiology of PD. Six genetic driver elements (2 genes and 4 miRNAs) and several functional network modules that are associated with PD were identified. Functional modules were assessed for their statistical significance, cellular functional homogeneity, literature evidence, and normalizing small molecules. In summary, our workflow for the joint regulatory analysis of coding and non-coding RNA, has the potential to yield clinically as well as biologically relevant information, as demonstrated here on PD data.
Collapse
|
22
|
Dammalli M, Dey G, Kumar M, Madugundu AK, Gopalakrishnan L, Gowrishankar BS, Mahadevan A, Shankar SK, Prasad TSK. Proteomics of the Human Olfactory Tract. ACTA ACUST UNITED AC 2018; 22:77-87. [DOI: 10.1089/omi.2017.0155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Manjunath Dammalli
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Department of Biotechnology, Siddaganga Institute of Technology, Tumakuru, India
| | - Gourav Dey
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya University, Mangalore, India
- School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Manish Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Anil K. Madugundu
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Lathika Gopalakrishnan
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya University, Mangalore, India
- School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | | | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India
- Human Brain Tissue Repository, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Susarla Krishna Shankar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India
- Human Brain Tissue Repository, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Thottethodi Subrahmanya Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya University, Mangalore, India
- NIMHANS-IOB Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| |
Collapse
|
23
|
Borrageiro G, Haylett W, Seedat S, Kuivaniemi H, Bardien S. A review of genome-wide transcriptomics studies in Parkinson's disease. Eur J Neurosci 2017; 47:1-16. [DOI: 10.1111/ejn.13760] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/26/2017] [Accepted: 10/19/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Genevie Borrageiro
- Division of Molecular Biology and Human Genetics; Department of Biomedical Sciences; Faculty of Medicine and Health Sciences; Stellenbosch University; PO Box 241 Cape Town South Africa
| | - William Haylett
- Division of Molecular Biology and Human Genetics; Department of Biomedical Sciences; Faculty of Medicine and Health Sciences; Stellenbosch University; PO Box 241 Cape Town South Africa
| | - Soraya Seedat
- Department of Psychiatry; Faculty of Medicine and Health Sciences; Stellenbosch University; Cape Town South Africa
| | - Helena Kuivaniemi
- Division of Molecular Biology and Human Genetics; Department of Biomedical Sciences; Faculty of Medicine and Health Sciences; Stellenbosch University; PO Box 241 Cape Town South Africa
- Department of Psychiatry; Faculty of Medicine and Health Sciences; Stellenbosch University; Cape Town South Africa
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics; Department of Biomedical Sciences; Faculty of Medicine and Health Sciences; Stellenbosch University; PO Box 241 Cape Town South Africa
| |
Collapse
|
24
|
Lin D, Liang Y, Jing X, Chen Y, Lei M, Zeng Z, Zhou T, Wu X, Peng S, Zheng D, Huang K, Yang L, Xiao S, Liu J, Tao E. Microarray analysis of an synthetic α-synuclein induced cellular model reveals the expression profile of long non-coding RNA in Parkinson's disease. Brain Res 2017; 1678:384-396. [PMID: 29137975 DOI: 10.1016/j.brainres.2017.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 01/10/2023]
Abstract
Long non-coding RNAs (lncRNAs) are a new research focus that are reported to influence the pathogenetic process of neurodegenerative disorders. To uncover new disease-associated genes and their relevant mechanisms, we carried out a gene microarray analysis based on a Parkinson's disease (PD) in vitro model induced by α-synuclein oligomers. This cellular model induced by 25 μmol/L α-synuclein oligomers has been confirmed to show the stable, transmissible neurotoxicity of α-synuclein, a typical PD pathological marker. And several differentially expressed lncRNAs and mRNAs were identified in this model, such as G046036, G030771, AC009365.4, RPS14P3, CTB-11I22.1, and G007549. Subsequent ceRNA analysis determined the potential relationships between these lncRNAs and their associated mRNAs and microRNAs. The results of the present study widen our horizon of PD susceptibility genes and provide new pathways towards efficient diagnostic biomarkers and therapeutic targets for PD.
Collapse
Affiliation(s)
- D Lin
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Y Liang
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - X Jing
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Y Chen
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - M Lei
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Z Zeng
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - T Zhou
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - X Wu
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - S Peng
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - D Zheng
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - K Huang
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - L Yang
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - S Xiao
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - J Liu
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - E Tao
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China.
| |
Collapse
|
25
|
Zunke F, Rose-John S. The shedding protease ADAM17: Physiology and pathophysiology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2059-2070. [DOI: 10.1016/j.bbamcr.2017.07.001] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/08/2017] [Accepted: 07/09/2017] [Indexed: 02/07/2023]
|
26
|
Pereira ASP, Bester MJ, Apostolides Z. Exploring the anti-proliferative activity of Pelargonium sidoides DC with in silico target identification and network pharmacology. Mol Divers 2017; 21:809-820. [PMID: 28924942 DOI: 10.1007/s11030-017-9769-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/19/2017] [Indexed: 01/10/2023]
Abstract
Pelargonium sidoides DC (Geraniaceae) is a medicinal plant indigenous to Southern Africa that has been widely evaluated for its use in the treatment of upper respiratory tract infections. In recent studies, the anti-proliferative potential of P. sidoides was shown, and several phenolic compounds were identified as the bioactive compounds. Little, however, is known regarding their anti-proliferative protein targets. In this study, the anti-proliferative mechanisms of P. sidoides through in silico target identification and network pharmacology methodologies were evaluated. The protein targets of the 12 phenolic compounds were identified using the target identification server PharmMapper and the server for predicting Drug Repositioning and Adverse Reactions via the Chemical-Protein Interactome (DRAR-CPI). Protein-protein and protein-pathway interaction networks were subsequently constructed with Cytoscape 3.4.0 to evaluate potential mechanisms of action. A total of 142 potential human target proteins were identified with the in silico target identification servers, and 90 of these were found to be related to cancer. The protein interaction network was constructed from 86 proteins involved in 209 interactions with each other, and two protein clusters were observed. A pathway enrichment analysis identified over 80 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched with the protein targets and included several pathways specifically related to cancer as well as various signaling pathways that have been found to be dysregulated in cancer. These results indicate that the anti-proliferative activity of P. sidoides may be multifactorial and arises from the collective regulation of several interconnected cell signaling pathways.
Collapse
Affiliation(s)
- A S P Pereira
- Department of Biochemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Hillcrest, Pretoria, 0083, South Africa
| | - M J Bester
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Hillcrest, Pretoria, 0083, South Africa
| | - Z Apostolides
- Department of Biochemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Hillcrest, Pretoria, 0083, South Africa.
| |
Collapse
|
27
|
Tatura R, Kraus T, Giese A, Arzberger T, Buchholz M, Höglinger G, Müller U. Parkinson's disease: SNCA-, PARK2-, and LRRK2- targeting microRNAs elevated in cingulate gyrus. Parkinsonism Relat Disord 2016; 33:115-121. [PMID: 27717584 DOI: 10.1016/j.parkreldis.2016.09.028] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 12/01/2022]
Abstract
INTRODUCTION In order to better understand the role of epigenetic influences in the etiology of Parkinson's disease (PD), we studied the expression of microRNAs in gyri cinguli of patients and controls. METHODS Expression profiling of 744 well-characterized microRNAs in gyri cinguli from patients and controls using TaqMan array microRNA cards. Verification of significantly dysregulated microRNAs by SYBR Green qRT-PCR. RESULTS First screen by TaqMan array identified 43 microRNAs that were upregulated in gyri cinguli from patients. Of those microRNAs, 13 are predicted to regulate at least one of six genes mutated in monogenic forms of PD (DJ-1, PARK2, PINK1, LRRK2, SNCA, and HTRA2). Five of these 13 microRNAs (-144, -199b, -221, -488, -544) were also found upregulated by SYBR Green qRT-PCR and are predicted to regulate either SNCA, PARK2, LRRK2 or combinations thereof. Consistently, expression of SNCA, PARK2, and LRRK2 was reduced in patients. An additional 5 out of ten potential target genes tested were downregulated. These are DRAM (DNA damage regulated autophagy modulator 1), predicted to be regulated by miR-144, EVC (Ellis Van Creveld Protein) by miR-221, ZNF440 (Zinc Finger Protein 440) by miR-199b, MTFMT (Mitochondrial Methionyl-tRNA Formyltransferase) by miR-488 and XIRP2 (Xin Actin Binding Repeat Containing) possibly controlled by miR-544a. CONCLUSION The study identified five microRNAs that play a role in the etiology of Parkinson's disease likely by modifying expression of SNCA, PARK2, LRRK2 and additional genes required for normal cellular function.
Collapse
Affiliation(s)
- Roman Tatura
- Institute of Human Genetics, Justus-Liebig-University, Schlangenzahl 14, Gießen, Germany
| | - Theo Kraus
- Center for Neuropathology and Prion Research (ZNP), Ludwig Maximilians-University Munich, Feodor-Lynen-Str. 23, München, Germany
| | - Armin Giese
- Center for Neuropathology and Prion Research (ZNP), Ludwig Maximilians-University Munich, Feodor-Lynen-Str. 23, München, Germany
| | - Thomas Arzberger
- Center for Neuropathology and Prion Research (ZNP), Ludwig Maximilians-University Munich, Feodor-Lynen-Str. 23, München, Germany; Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Nussbaumstraße 7, Munich, Germany
| | - Malte Buchholz
- Clinic for Gastroenterology, Endocrinology and Metabolism, Philipps-University, Baldingerstrasse, Marburg, Germany
| | - Günter Höglinger
- Department of Neurology, Technical University of Munich and German Center for Neurodegenerative Diseases e.V. (DZNE) Munich, Feodor-Lynen Str. 17, Munich, Germany
| | - Ulrich Müller
- Institute of Human Genetics, Justus-Liebig-University, Schlangenzahl 14, Gießen, Germany.
| |
Collapse
|
28
|
|
29
|
Thompson AG, Gray E, Heman-Ackah SM, Mäger I, Talbot K, Andaloussi SE, Wood MJ, Turner MR. Extracellular vesicles in neurodegenerative disease - pathogenesis to biomarkers. Nat Rev Neurol 2016; 12:346-57. [PMID: 27174238 DOI: 10.1038/nrneurol.2016.68] [Citation(s) in RCA: 270] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To develop effective disease-modifying therapies for neurodegenerative diseases, reliable markers of diagnosis, disease activity and progression are a research priority. The fact that neurodegenerative pathology is primarily associated with distinct subsets of cells in discrete areas of the CNS makes the identification of relevant biomarker molecules a challenge. The trafficking of macromolecules from the CNS to the cerebrospinal fluid and blood, mediated by extracellular vesicles (EVs), presents a promising source of CNS-specific biomarkers. EVs are released by almost all cell types and carry a cargo of protein and nucleic acid that varies according to the cell of origin. EV output changes with cell status and reflects intracellular events, so surface marker expression can be used to identify the cell type from which EVs originate. EVs could, therefore, provide an enriched pool of information about core neuropathogenic, cell-specific processes. This Review examines the current knowledge of the biology and function of EVs, discusses the evidence for their involvement in the pathogenesis of neurodegenerative diseases, and considers their potential as biomarkers of disease.
Collapse
Affiliation(s)
- Alexander G Thompson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Elizabeth Gray
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Sabrina M Heman-Ackah
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford OX1 3QX, UK
| | - Imre Mäger
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford OX1 3QX, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Samir El Andaloussi
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford OX1 3QX, UK.,Department of Laboratory Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Matthew J Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford OX1 3QX, UK
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
30
|
Zanella R, Morés N, Morés MAZ, Peixoto JO, Zanella EL, Ciacci-Zanella JR, Ibelli AMG, Gava D, Cantão ME, Ledur MC. Genome-wide association study of periweaning failure-to-thrive syndrome (PFTS) in pigs. Vet Rec 2016; 178:653. [PMID: 27162284 DOI: 10.1136/vr.103546] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2016] [Indexed: 01/01/2023]
Abstract
Porcine periweaning-failure-to-thrive syndrome (PFTS) is a condition that affects newly weaned piglets. It is characterised by a progressive debilitation leading to death, in the absence of infectious, nutritional, management or environmental factors. In this study, we present the first report of PFTS in South America and the results of a genome-wide association study to identify the genetic markers associated with the appearance of this condition in a crossbred swine population. Four chromosomal regions were associated with PFTS predisposition, one located on SSCX, one on SSC8, and the two other regions on SSC14. Regions on SSC8 and SSC14 harbour important functional candidate genes involved in human depression and might have an important role in PFTS. Our findings contribute to the increasing knowledge about this syndrome, which has been investigated since 2007, and to the identification of the aetiology of this disease.
Collapse
Affiliation(s)
- R Zanella
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| | - N Morés
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| | - M A Z Morés
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| | - J O Peixoto
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| | - E L Zanella
- R. Zanella's present address is College of Veterinary Medicine, University of Passo Fundo, Passo Fundo, RS, Brazil
| | - J R Ciacci-Zanella
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| | - A M G Ibelli
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| | - D Gava
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| | - M E Cantão
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| | - M C Ledur
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| |
Collapse
|
31
|
|
32
|
Efficient and biologically relevant consensus strategy for Parkinson's disease gene prioritization. BMC Med Genomics 2016; 9:12. [PMID: 26961748 PMCID: PMC4784386 DOI: 10.1186/s12920-016-0173-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 03/01/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The systemic information enclosed in microarray data encodes relevant clues to overcome the poorly understood combination of genetic and environmental factors in Parkinson's disease (PD), which represents the major obstacle to understand its pathogenesis and to develop disease-modifying therapeutics. While several gene prioritization approaches have been proposed, none dominate over the rest. Instead, hybrid approaches seem to outperform individual approaches. METHODS A consensus strategy is proposed for PD related gene prioritization from mRNA microarray data based on the combination of three independent prioritization approaches: Limma, machine learning, and weighted gene co-expression networks. RESULTS The consensus strategy outperformed the individual approaches in terms of statistical significance, overall enrichment and early recognition ability. In addition to a significant biological relevance, the set of 50 genes prioritized exhibited an excellent early recognition ability (6 of the top 10 genes are directly associated with PD). 40 % of the prioritized genes were previously associated with PD including well-known PD related genes such as SLC18A2, TH or DRD2. Eight genes (CCNH, DLK1, PCDH8, SLIT1, DLD, PBX1, INSM1, and BMI1) were found to be significantly associated to biological process affected in PD, representing potentially novel PD biomarkers or therapeutic targets. Additionally, several metrics of standard use in chemoinformatics are proposed to evaluate the early recognition ability of gene prioritization tools. CONCLUSIONS The proposed consensus strategy represents an efficient and biologically relevant approach for gene prioritization tasks providing a valuable decision-making tool for the study of PD pathogenesis and the development of disease-modifying PD therapeutics.
Collapse
|
33
|
Choi I, Woo JH, Jou I, Joe EH. PINK1 Deficiency Decreases Expression Levels of mir-326, mir-330, and mir-3099 during Brain Development and Neural Stem Cell Differentiation. Exp Neurobiol 2016; 25:14-23. [PMID: 26924929 PMCID: PMC4766110 DOI: 10.5607/en.2016.25.1.14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/27/2016] [Accepted: 01/27/2016] [Indexed: 12/17/2022] Open
Abstract
PTEN-induced putative kinase 1 (PINK1) is a Parkinson's disease (PD) gene. We examined miRNAs regulated by PINK1 during brain development and neural stem cell (NSC) differentiation, and found that lvels of miRNAs related to tumors and inflammation were different between 1-day-old-wild type (WT) and PINK1-knockout (KO) mouse brains. Notably, levels of miR-326, miR-330 and miR-3099, which are related to astroglioma, increased during brain development and NSC differentiation, and were significantly reduced in the absence of PINK1. Interestingly, in the presence of ciliary neurotrophic factor (CNTF), which pushes differentiation of NSCs into astrocytes, miR-326, miR-330, and miR-3099 levels in KO NSCs were also lower than those in WT NSCs. Furthermore, mimics of all three miRNAs increased expression of the astrocytic marker glial fibrillary acidic protein (GFAP) during differentiation of KO NSCs, but inhibitors of these miRNAs decreased GFAP expression in WT NSCs. Moreover, these miRNAs increased the translational efficacy of GFAP through the 3'-UTR of GFAP mRNA. Taken together, these results suggest that PINK1 deficiency reduce expression levels of miR-326, miR-330 and miR-3099, which may regulate GFAP expression during NSC differentiation and brain development.
Collapse
Affiliation(s)
- Insup Choi
- Neuroscience Graduate Program Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Korea.; Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 16499, Korea
| | - Joo Hong Woo
- Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 16499, Korea
| | - Ilo Jou
- Neuroscience Graduate Program Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Korea.; Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 16499, Korea.; Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Eun-Hye Joe
- Neuroscience Graduate Program Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Korea.; Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 16499, Korea.; Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea.; Department of Brain Science, Ajou University School of Medicine, Suwon 16499, Korea.; Brain Disease Research Center, Ajou University School of Medicine, Suwon 16499, Korea
| |
Collapse
|
34
|
Chandrasekaran S, Bonchev D. Network analysis of human post-mortem microarrays reveals novel genes, microRNAs, and mechanistic scenarios of potential importance in fighting huntington's disease. Comput Struct Biotechnol J 2016; 14:117-130. [PMID: 27924190 PMCID: PMC5128196 DOI: 10.1016/j.csbj.2016.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 01/28/2016] [Accepted: 02/02/2016] [Indexed: 01/18/2023] Open
Abstract
Huntington's disease is a progressive neurodegenerative disorder characterized by motor disturbances, cognitive decline, and neuropsychiatric symptoms. In this study, we utilized network-based analysis in an attempt to explore and understand the underlying molecular mechanism and to identify critical molecular players of this disease condition. Using human post-mortem microarrays from three brain regions (cerebellum, frontal cortex and caudate nucleus) we selected in a four-step procedure a seed set of highly modulated genes. Several protein-protein interaction networks, as well as microRNA-mRNA networks were constructed for these gene sets with the Elsevier Pathway Studio software and its associated ResNet database. We applied a gene prioritizing procedure based on vital network topological measures, such as high node connectivity and centrality. Adding to these criteria the guilt-by-association rule and exploring their innate biomolecular functions, we propose 19 novel genes from the analyzed microarrays, from which CEBPA, CDK1, CX3CL1, EGR1, E2F1, ERBB2, LRP1, HSP90AA1 and ZNF148 might be of particular interest for experimental validation. A possibility is discussed for dual-level gene regulation by both transcription factors and microRNAs in Huntington's disease mechanism. We propose several possible scenarios for experimental studies initiated via the extra-cellular ligands TGFB1, FGF2 and TNF aiming at restoring the cellular homeostasis in Huntington's disease.
Collapse
Affiliation(s)
- Sreedevi Chandrasekaran
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA
| | | |
Collapse
|
35
|
Network Topology Analysis of Post-Mortem Brain Microarrays Identifies More Alzheimer's Related Genes and MicroRNAs and Points to Novel Routes for Fighting with the Disease. PLoS One 2016; 11:e0144052. [PMID: 26784894 PMCID: PMC4718516 DOI: 10.1371/journal.pone.0144052] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 11/12/2015] [Indexed: 12/17/2022] Open
Abstract
Network-based approaches are powerful and beneficial tools to study complex systems in their entirety, elucidating the essential factors that turn the multitude of individual elements into a functional system. In this study we used critical network topology descriptors and guilt-by-association rule to explore and understand the significant molecular players, drug targets and underlying biological mechanisms of Alzheimer’s disease. Analyzing two post-mortem brain gene microarrays (GSE4757 and GSE28146) with Pathway Studio software package we constructed and analyzed a set of protein-protein interaction, as well as miRNA-target networks. In a 4-step procedure the expression datasets were normalized using Robust Multi-array Average approach, while the modulation of gene expression by the disease was statistically evaluated by the empirical Bayes method from the limma Bioconductor package. Representative set of 214 seed-genes (p<0.01) common for the three brain sections of the two microarrays was thus created. The Pathway Studio analysis of the networks built identified 15 new potential AD-related genes and 17 novel AD-involved microRNAs. Using KEGG pathways relevant in Alzheimer’s disease we built an integrated mechanistic network from the interactions between the overlapping genes in these pathways. Routes of possible disease initiation process were thus revealed through the CD4, DCN, and IL8 extracellular ligands. DAVID and IPA enrichment analysis uncovered a number of deregulated biological processes and pathways including neuron projection/differentiation, aging, oxidative stress, chemokine/ neurotrophin signaling, long-term potentiation and others. The findings in this study offer information of interest for subsequent experimental studies.
Collapse
|
36
|
Abstract
The difficulty to understand, diagnose, and treat neurological disorders stems from the great complexity of the central nervous system on different levels of physiological granularity. The individual components, their interactions, and dynamics involved in brain development and function can be represented as molecular, cellular, or functional networks, where diseases are perturbations of networks. These networks can become a useful research tool in investigating neurological disorders if they are properly tailored to reflect corresponding mechanisms. Here, we review approaches to construct networks specific for neurological disorders describing disease-related pathology on different scales: the molecular, cellular, and brain level. We also briefly discuss cross-scale network analysis as a necessary integrator of these scales.
Collapse
|
37
|
Ghanbari M, Darweesh SK, de Looper HW, van Luijn MM, Hofman A, Ikram MA, Franco OH, Erkeland SJ, Dehghan A. Genetic Variants in MicroRNAs and Their Binding Sites Are Associated with the Risk of Parkinson Disease. Hum Mutat 2015; 37:292-300. [DOI: 10.1002/humu.22943] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/04/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Mohsen Ghanbari
- Department of Epidemiology; Erasmus University Medical Center; Rotterdam 3000 CA The Netherlands
- Department of Genetics, School of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| | - Sirwan K.L. Darweesh
- Department of Epidemiology; Erasmus University Medical Center; Rotterdam 3000 CA The Netherlands
| | - Hans W.J. de Looper
- Department of Hematology, Erasmus University Medical Center; Cancer Institute; Rotterdam 3000 CA The Netherlands
| | - Marvin M. van Luijn
- Department of Immunology, MS Center ErasMS; Erasmus University Medical Center; Rotterdam 3000 CA The Netherlands
| | - Albert Hofman
- Department of Epidemiology; Erasmus University Medical Center; Rotterdam 3000 CA The Netherlands
- Department of Epidemiology; Harvard T.H. Chan School of Public Health; Boston Mass USA
| | - M. Arfan Ikram
- Department of Epidemiology; Erasmus University Medical Center; Rotterdam 3000 CA The Netherlands
| | - Oscar H. Franco
- Department of Epidemiology; Erasmus University Medical Center; Rotterdam 3000 CA The Netherlands
| | - Stefan J. Erkeland
- Department of Immunology; Erasmus University Medical Center; Rotterdam 3000 CA The Netherlands
| | - Abbas Dehghan
- Department of Epidemiology; Erasmus University Medical Center; Rotterdam 3000 CA The Netherlands
| |
Collapse
|
38
|
Saghazadeh A, Rezaei N. MicroRNA machinery in Parkinson's disease: a platform for neurodegenerative diseases. Expert Rev Neurother 2015; 22:427-453. [PMID: 26574782 DOI: 10.1586/14737175.2015.1114886] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
MicroRNAs (miRNAs) are noncoding RNAs that recognize their protein-coding target genes and whereby subjugate them after transcription. Despite the infancy of this field of science, the role of miRNAs in neurodegeneration is well-acknowledged. This review was conducted to indicate that Parkinson's disease (PD) is not excluded from this rule. To this end, we evaluated the existing literature and arranged PD-associated miRNAs according to their mechanism of action, particularly apoptosis, autophagy, inflammation, mitochondrial dysfunction and oxidative stress. According to this arrangement, a majority of PD-associated miRNAs were indicated to influence autophagic/apoptotic pathways. We also categorized PD-associated miRNAs according to that they could exert detrimental or beneficial or both into three sets, activator, inhibitor, and double-edged, correspondingly. Considering this criterion, a majority of PD-associated miRNAs were included in the activator category. In addition, evidences from genetic association studies investigating genetic variants of or related to miRNAs in PD patients are presented. Finally, possible applications of the miRNA machinery in PD, including mechanistic networks, diagnostic, prognostic and therapeutic potentials, are discussed. But there may be additional miRNAs involved in the pathogenesis of PD which have hitherto remained unknown and thus further studies are needed to explore the issue and to extend this platform.
Collapse
Affiliation(s)
- Amene Saghazadeh
- a Molecular Immunology Research Center and Department of Immunology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Nima Rezaei
- a Molecular Immunology Research Center and Department of Immunology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran.,b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,c Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| |
Collapse
|