1
|
Kaur G, Wang X, Li X, Ong H, He X, Cai C. Overexpression of GREM1 Improves the Survival Capacity of Aged Cardiac Mesenchymal Progenitor Cells via Upregulation of the ERK/NRF2-Associated Antioxidant Signal Pathway. Cells 2023; 12:1203. [PMID: 37190112 PMCID: PMC10136744 DOI: 10.3390/cells12081203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Ischemic heart disease is the leading cause of mortality in the United States. Progenitor cell therapy can restore myocardial structure and function. However, its efficacy is severely limited by cell aging and senescence. Gremlin-1 (GREM1), a member of the bone morphogenetic protein antagonist family, has been implicated in cell proliferation and survival. However, GREM1's role in cell aging and senescence has never been investigated in human cardiac mesenchymal progenitor cells (hMPCs). Therefore, this study assessed the hypothesis that overexpression of GREM1 rejuvenates the cardiac regenerative potential of aging hMPCs to a youthful stage and therefore allows better capacity for myocardial repair. We recently reported that a subpopulation of hMPCs with low mitochondrial membrane potential can be sorted from right atrial appendage-derived cells in patients with cardiomyopathy and exhibit cardiac reparative capacity in a mouse model of myocardial infarction. In this study, lentiviral particles were used to overexpress GREM1 in these hMPCs. Protein and mRNA expression were assessed through Western blot and RT-qPCR. FACS analysis for Annexin V/PI staining and lactate dehydrogenase assay were used to assess cell survival. It was observed that cell aging and cell senescence led to a decrease in GREM1 expression. In addition, overexpression of GREM1 led to a decrease in expression of senescence genes. Overexpression of GREM1 led to no significant change in cell proliferation. However, GREM1 appeared to have an anti-apoptotic effect, with an increase in survival and decrease in cytotoxicity evident in GREM1-overexpressing hMPCs. Overexpressing GREM1 also induced cytoprotective properties by decreasing reactive oxidative species and mitochondrial membrane potential. This result was associated with increased expression of antioxidant proteins, such as SOD1 and catalase, and activation of the ERK/NRF2 survival signal pathway. Inhibition of ERK led to a decrease in GREM1-mediated rejuvenation in terms of cell survival, which suggests that an ERK-dependent pathway may be involved. Taken altogether, these results indicate that overexpression of GREM1 can allow aging hMPCs to adopt a more robust phenotype with improved survival capacity, which is associated with an activated ERK/NRF2 antioxidant signal pathway.
Collapse
Affiliation(s)
- Gurleen Kaur
- Department of Molecular and Cellular Physiology, Department of Medicine, Albany Medical College, Albany, NY 12208, USA; (G.K.); (X.W.); (X.L.)
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xiaoliang Wang
- Department of Molecular and Cellular Physiology, Department of Medicine, Albany Medical College, Albany, NY 12208, USA; (G.K.); (X.W.); (X.L.)
- Division of Surgical Sciences, Department of Surgery, University of Virginia, Charlottesville, VA 22903, USA
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (H.O.); (X.H.)
| | - Xiuchun Li
- Department of Molecular and Cellular Physiology, Department of Medicine, Albany Medical College, Albany, NY 12208, USA; (G.K.); (X.W.); (X.L.)
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (H.O.); (X.H.)
| | - Hannah Ong
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (H.O.); (X.H.)
| | - Xiangfei He
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (H.O.); (X.H.)
| | - Chuanxi Cai
- Department of Molecular and Cellular Physiology, Department of Medicine, Albany Medical College, Albany, NY 12208, USA; (G.K.); (X.W.); (X.L.)
- Division of Surgical Sciences, Department of Surgery, University of Virginia, Charlottesville, VA 22903, USA
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (H.O.); (X.H.)
| |
Collapse
|
2
|
Lang CI, Dahmen A, Vasudevan P, Lemcke H, Gäbel R, Öner A, Ince H, David R, Wolfien M. Cardiac cell therapies for the treatment of acute myocardial infarction in mice: systematic review and meta-analysis. Cytotherapy 2023; 25:640-652. [PMID: 36890093 DOI: 10.1016/j.jcyt.2023.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 03/08/2023]
Abstract
Backgound Aims: This meta-analysis aims at summarizing the whole body of research on cell therapies for acute myocardial infarction (MI) in the mouse model to bring forward ongoing research in this field of regenerative medicine. Despite rather modest effects in clinical trials, pre-clinical studies continue to report beneficial effects of cardiac cell therapies for cardiac repair following acute ischemic injury. Results: The authors' meta-analysis of data from 166 mouse studies comprising 257 experimental groups demonstrated a significant improvement in left ventricular ejection fraction of 10.21% after cell therapy compared with control animals. Subgroup analysis indicated that second-generation cell therapies such as cardiac progenitor cells and pluripotent stem cell derivatives had the highest therapeutic potential for minimizing myocardial damage post-MI. Conclusions: Whereas the vision of functional tissue replacement has been replaced by the concept of regional scar modulation in most of the investigated studies, rather basic methods for assessing cardiac function were most frequently used. Hence, future studies will highly benefit from integrating methods for assessment of regional wall properties to evolve a deeper understanding of how to modulate cardiac healing after acute MI.
Collapse
Affiliation(s)
| | - Anika Dahmen
- Department of Cardiac Surgery, Rostock University Medical Center, Rostock, Germany; Department of Life, Light and Matter, University of Rostock, Rostock, Germany
| | - Praveen Vasudevan
- Department of Cardiac Surgery, Rostock University Medical Center, Rostock, Germany; Department of Life, Light and Matter, University of Rostock, Rostock, Germany
| | - Heiko Lemcke
- Department of Cardiac Surgery, Rostock University Medical Center, Rostock, Germany; Department of Life, Light and Matter, University of Rostock, Rostock, Germany
| | - Ralf Gäbel
- Department of Cardiac Surgery, Rostock University Medical Center, Rostock, Germany; Department of Life, Light and Matter, University of Rostock, Rostock, Germany
| | - Alper Öner
- Department of Cardiology, Rostock University Medical Center, Rostock, Germany
| | - Hüseyin Ince
- Department of Cardiology, Rostock University Medical Center, Rostock, Germany
| | - Robert David
- Department of Cardiac Surgery, Rostock University Medical Center, Rostock, Germany; Department of Life, Light and Matter, University of Rostock, Rostock, Germany
| | - Markus Wolfien
- Institute of Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
3
|
Li Y, Zheng G, Salimova E, Broughton BRS, Ricardo SD, de Veer M, Samuel CS. Simultaneous late-gadolinium enhancement and T1 mapping of fibrosis and a novel cell-based combination therapy in hypertensive mice. Biomed Pharmacother 2023; 158:114069. [PMID: 36502754 DOI: 10.1016/j.biopha.2022.114069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Fibrosis is a hallmark of chronic hypertension and disrupts the viability of human bone marrow-derived mesenchymal stromal cells (BM-MSCs) post-transplantation. This study thus, determined whether the anti-fibrotic drug, serelaxin (RLX), could enhance the therapeutic effects of BM-MSCs or BM-MSC-derived exosomes (BM-MSC-EXO) in hypertensive mice. Left ventricular (LV) fibrosis in particular was assessed using conventional histological staining and non-invasive cardiac magnetic resonance imaging (CMRI). CMRI was employed using a novel magnetisation prepared 2 rapid acquisition gradient echo (MP2RAGE) sequence to simultaneously perform late gadolinium enhancement imaging and T1 mapping. Adult male C57BL/6 mice were uninephrectomised, received deoxycorticosterone acetate and saline to drink (1 K/DOCA/salt) for 21 days, whilst control mice were given normal drinking water for the same time-period. On day 14 post-injury, subgroups of 1 K/DOCA/salt-hypertensive mice were treated with RLX alone or in combination with BM-MSCs or BM-MSC-EXO; or the mineralocorticoid receptor antagonist, spironolactone. At day 21 post-injury, LV and kidney histopathology was assessed, whilst LV fibrosis and function were additionally analysed by CMRI and echocardiography. 1 K/DOCA/salt-hypertensive mice developed kidney tubular injury, inflammation, fibrosis, and more moderate LV hypertrophy, fibrosis and diastolic dysfunction. RLX and BM-MSCs combined provided optimal protection against these pathologies and significantly reduced picrosirius red-stained organ fibrosis and MP2RAGE analysis of LV fibrosis. A significant correlation between MP2RAGE analysis and histologically-stained interstitial LV fibrosis was detected. It was concluded that the MP2RAGE sequence enhanced the non-invasive CMRI detection of LV fibrosis. Furthermore, combining RLX and BM-MSCs may represent a promising treatment option for hypertensive cardiorenal syndrome.
Collapse
Affiliation(s)
- Yifang Li
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute (BDI) and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Gang Zheng
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Ekaterina Salimova
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Brad R S Broughton
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute (BDI) and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Sharon D Ricardo
- Stem Cells and Development Program, Monash Biomedicine Discovery Institute (BDI) and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Michael de Veer
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute (BDI) and Department of Pharmacology, Monash University, Clayton, Victoria, Australia; Stem Cells and Development Program, Monash Biomedicine Discovery Institute (BDI) and Department of Pharmacology, Monash University, Clayton, Victoria, Australia; Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
4
|
Banovic M, Poglajen G, Vrtovec B, Ristic A. Contemporary Challenges of Regenerative Therapy in Patients with Ischemic and Non-Ischemic Heart Failure. J Cardiovasc Dev Dis 2022; 9:jcdd9120429. [PMID: 36547426 PMCID: PMC9783726 DOI: 10.3390/jcdd9120429] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/11/2022] [Accepted: 10/26/2022] [Indexed: 12/02/2022] Open
Abstract
It has now been almost 20 years since first clinical trials of stem cell therapy for heart repair were initiated. While initial preclinical data were promising and suggested that stem cells may be able to directly restore a diseased myocardium, this was never unequivocally confirmed in the clinical setting. Clinical trials of cell therapy did show the process to be feasible and safe. However, the clinical benefits of this treatment modality in patients with ischemic and non-ischemic heart failure have not been consistently confirmed. What is more, in the rapidly developing field of stem cell therapy in patients with heart failure, relevant questions regarding clinical trials' protocol streamlining, optimal patient selection, stem cell type and dose, and the mode of cell delivery remain largely unanswered. Recently, novel approaches to myocardial regeneration, including the use of pluripotent and allogeneic stem cells and cell-free therapeutic approaches, have been proposed. Thus, in this review, we aim to outline current knowledge and highlight contemporary challenges and dilemmas in clinical aspects of stem cell and regenerative therapy in patients with chronic ischemic and non-ischemic heart failure.
Collapse
Affiliation(s)
- Marko Banovic
- Cardiology Department, University Clinical Center of Serbia, 11000 Beograd, Serbia
- Belgrade Medical School, 11000 Belgrade, Serbia
- Correspondence: (M.B.); (G.P.)
| | - Gregor Poglajen
- Advanced Heart Failure and Transplantation Center, Department of Cardiology, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia
- Department of Internal Medicine, Medical Faculty Ljubljana, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence: (M.B.); (G.P.)
| | - Bojan Vrtovec
- Advanced Heart Failure and Transplantation Center, Department of Cardiology, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia
- Department of Internal Medicine, Medical Faculty Ljubljana, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Arsen Ristic
- Cardiology Department, University Clinical Center of Serbia, 11000 Beograd, Serbia
- Belgrade Medical School, 11000 Belgrade, Serbia
| |
Collapse
|
5
|
Shazly T, Smith A, Uline MJ, Spinale FG. Therapeutic payload delivery to the myocardium: Evolving strategies and obstacles. JTCVS OPEN 2022; 10:185-194. [PMID: 36004211 PMCID: PMC9390211 DOI: 10.1016/j.xjon.2022.04.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Key Words
- BMC, bone marrow cell
- HF, heart failure
- ID, intracoronary delivery
- IMD, intramyocardial delivery
- IPD, intrapericardial delivery
- LV, left ventricle
- MI, myocardial infarct
- MSC, mesenchymal stem cell
- TED, transendocardial delivery
- bFGF, basic fibroblast growth factor
- biomaterial
- cardiac
- injection
- local delivery
- myocardium
- payload
Collapse
Affiliation(s)
- Tarek Shazly
- College of Engineering and Computing, School of Medicine, University of South Carolina, Columbia, SC
| | - Arianna Smith
- College of Arts and Sciences, Florida Gulf Coast University, Fort Myers, Fla
| | - Mark J. Uline
- College of Engineering and Computing, School of Medicine, University of South Carolina, Columbia, SC
| | - Francis G. Spinale
- College of Engineering and Computing, School of Medicine, University of South Carolina, Columbia, SC
- Cardiovascular Translational Research Center, School of Medicine, University of South Carolina, Columbia, SC
- Columbia VA Health Care System, Columbia, SC
| |
Collapse
|
6
|
Tang XL, Wysoczynski M, Gumpert AM, Li Y, Wu WJ, Li H, Stowers H, Bolli R. Effect of intravenous cell therapy in rats with old myocardial infarction. Mol Cell Biochem 2022; 477:431-444. [PMID: 34783963 PMCID: PMC8896398 DOI: 10.1007/s11010-021-04283-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
Mounting evidence shows that cell therapy provides therapeutic benefits in experimental and clinical settings of chronic heart failure. However, direct cardiac delivery of cells via transendocardial injection is logistically complex, expensive, entails risks, and is not amenable to multiple dosing. Intravenous administration would be a more convenient and clinically applicable route for cell therapy. Thus, we determined whether intravenous infusion of three widely used cell types improves left ventricular (LV) function and structure and compared their efficacy. Rats with a 30-day-old myocardial infarction (MI) received intravenous infusion of vehicle (PBS) or 1 of 3 types of cells: bone marrow mesenchymal stromal cells (MSCs), cardiac mesenchymal cells (CMCs), and c-kit-positive cardiac cells (CPCs), at a dose of 12 × 106 cells. Rats were followed for 35 days after treatment to determine LV functional status by serial echocardiography and hemodynamic studies. Blood samples were collected for Hemavet analysis to determine inflammatory cell profile. LV ejection fraction (EF) dropped ≥ 20 points in all hearts at 30 days after MI and deteriorated further at 35-day follow-up in the vehicle-treated group. In contrast, deterioration of EF was halted in rats that received MSCs and attenuated in those that received CMCs or CPCs. None of the 3 types of cells significantly altered scar size, myocardial content of collagen or CD45-positive cells, or Hemavet profile. This study demonstrates that a single intravenous administration of 3 types of cells in rats with chronic ischemic cardiomyopathy is effective in attenuating the progressive deterioration in LV function. The extent of LV functional improvement was greatest with CPCs, intermediate with CMCs, and least with MSCs.
Collapse
Affiliation(s)
- Xian-Liang Tang
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Marcin Wysoczynski
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Anna M Gumpert
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Yan Li
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Wen-Jian Wu
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Hong Li
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Heather Stowers
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA.
| |
Collapse
|
7
|
Sasaki N, Itakura Y, Mohsin S, Ishigami T, Kubo H, Chiba Y. Cell Surface and Functional Features of Cortical Bone Stem Cells. Int J Mol Sci 2021; 22:ijms222111849. [PMID: 34769279 PMCID: PMC8584423 DOI: 10.3390/ijms222111849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
The newly established mouse cortical-bone-derived stem cells (mCBSCs) are unique stem cells compared to mouse mesenchymal stem cells (mMSCs). The mCBSC-treated hearts after myocardial infarction have been reported to have greater improvement in myocardial structure and functions. In this study, we examined the stemness features, cell surface glycan profiles, and paracrine functions of mCBSCs compared with mMSCs. The stemness analysis revealed that the self-renewing capacity of mCBSCs was greater than mMSCs; however, the differentiation capacity of mCBSCs was limited to the chondrogenic lineage among three types of cells (adipocyte, osteoblast, chondrocyte). The cell surface glycan profiles by lectin array analysis revealed that α2-6sialic acid is expressed at very low levels on the cell surface of mCBSCs compared with that on mMSCs. In contrast, the lactosamine (Galβ1-4GlcNAc) structure, poly lactosamine- or poly N-acetylglucosamine structure, and α2-3sialic acid on both N- and O-glycans were more highly expressed in mCBSCs. Moreover, we found that mCBSCs secrete a greater amount of TGF-β1 compared to mMSCs, and that the TGF-β1 contributed to the self-migration of mCBSCs and activation of fibroblasts. Together, these results suggest that unique characteristics in mCBSCs compared to mMSCs may lead to advanced utility of mCBSCs for cardiac and noncardiac repair.
Collapse
Affiliation(s)
- Norihiko Sasaki
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan; (N.S.); (Y.I.)
| | - Yoko Itakura
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan; (N.S.); (Y.I.)
| | - Sadia Mohsin
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Medical Education and Research Building, 3500N. Broad St., Philadelphia, PA 19140, USA; (S.M.); (H.K.)
| | - Tomoaki Ishigami
- School of Medicine, Medical Course, Medical Sciences and Cardiorenal Medicine, Yokohama City University, Yokohama 236-0004, Japan;
| | - Hajime Kubo
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Medical Education and Research Building, 3500N. Broad St., Philadelphia, PA 19140, USA; (S.M.); (H.K.)
| | - Yumi Chiba
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan; (N.S.); (Y.I.)
- Cancer/Advanced Adult Nursing, Department of Nursing, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
- Correspondence: ; Tel.: +8145-787-2564
| |
Collapse
|
8
|
Neves AF, Camargo C, Premer C, Hare JM, Baumel BS, Pinto M. Intravenous administration of mesenchymal stem cells reduces Tau phosphorylation and inflammation in the 3xTg-AD mouse model of Alzheimer's disease. Exp Neurol 2021; 341:113706. [PMID: 33757765 DOI: 10.1016/j.expneurol.2021.113706] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem cell (MSC) administration is a novel and promising therapeutic approach for Alzheimer's disease (AD). Focusing on an intervention easily translatable into clinical practice, we administered allogeneic bone marrow-derived MSCs intravenously in a mouse model of AD (3xTg-AD). We systematically evaluated the effects of a single-dose and multiple-doses of MSCs in young and old mice (5 or 10 months old), comparing the short-term and long-term effects after 1, 2, or 7 months of treatment. A single dose of MSCs in young mice attenuated neuroinflammation 1 and 7 months after injection, whereas multiple-doses did not show any effect. Multiple-doses of MSCs (administered at 5 to 12 mo, or 10 to 12 mo) reduced the β-secretase cleavage of the amyloid precursor protein, although levels of Aβ-42 did not change. Most interestingly, multiple doses of MSCs affected tau hyperphosphorylation. MSCs administered in young mice for 7 months decreased the pathological tau phosphorylation at T205, S214, and T231. MSCs administered in old mice for 2 months decreased tau phosphorylation at S396. Our findings show how different timing and frequency of MSC injections can affect and modulate several aspects of the AD-like neuropathology in the 3xTg-AD mouse model, strengthening the concept of fine-tuning MSC therapy for Alzheimer's disease.
Collapse
Affiliation(s)
- Amanda Ferreira Neves
- University of Miami Miller School of Medicine, Department of Neurology, 1420 NW 9th Avenue, Miami, FL 33136, United States of America.
| | - Christian Camargo
- University of Miami Miller School of Medicine, Department of Neurology, 1150 Northwest 14th Street, Miami, FL 33136, United States of America.
| | - Courtney Premer
- Interdisciplinary Stem Cell Institute, Biomedical Research Building, 1501 NW 10th Avenue, Suite 909, Miami, FL 33136, United States of America.
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, Biomedical Research Building, 1501 NW 10th Avenue, Suite 909, Miami, FL 33136, United States of America.
| | - Bernard S Baumel
- University of Miami Miller School of Medicine, Department of Neurology, 1150 Northwest 14th Street, Miami, FL 33136, United States of America.
| | - Milena Pinto
- University of Miami Miller School of Medicine, Department of Neurology, 1420 NW 9th Avenue, Miami, FL 33136, United States of America.
| |
Collapse
|
9
|
Bolli R, Tang XL, Guo Y, Li Q. After the storm: an objective appraisal of the efficacy of c-kit+ cardiac progenitor cells in preclinical models of heart disease. Can J Physiol Pharmacol 2021; 99:129-139. [PMID: 32937086 PMCID: PMC8299902 DOI: 10.1139/cjpp-2020-0406] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The falsification of data related to c-kit+ cardiac progenitor cells (CPCs) by a Harvard laboratory has been a veritable tragedy. Does this fraud mean that CPCs are not beneficial in models of ischemic cardiomyopathy? At least 50 studies from 26 laboratories independent of the Harvard group have reported beneficial effects of CPCs in mice, rats, pigs, and cats. The mechanism of action remains unclear. Our group has shown that CPCs do not engraft in the diseased heart, do not differentiate into new cardiac myocytes, do not regenerate dead myocardium, and thus work via paracrine mechanisms. A casualty of the misconduct at Harvard has been the SCIPIO trial, a collaboration between the Harvard group and the group in Louisville. The retraction of the SCIPIO paper was caused exclusively by issues with data generated at Harvard, not those generated in Louisville. In the retraction notice, the Lancet editors stated: "Although we do not have any reservations about the clinical work in Louisville that used the preparations from Anversa's laboratory in good faith, the lack of reliability regarding the laboratory work at Harvard means that we are now retracting this paper". We must be careful not to dismiss all work on CPCs because of one laboratory's misconduct. An unbiased review of the literature supports the therapeutic potential of CPCs for heart failure at the preclinical level.
Collapse
Affiliation(s)
- Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
| | - Xian-Liang Tang
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
| | - Yiru Guo
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
| | - Qianghong Li
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
10
|
The Future of Regenerative Medicine: Cell Therapy Using Pluripotent Stem Cells and Acellular Therapies Based on Extracellular Vesicles. Cells 2021; 10:cells10020240. [PMID: 33513719 PMCID: PMC7912181 DOI: 10.3390/cells10020240] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/13/2021] [Accepted: 01/23/2021] [Indexed: 12/11/2022] Open
Abstract
The rapid progress in the field of stem cell research has laid strong foundations for their use in regenerative medicine applications of injured or diseased tissues. Growing evidences indicate that some observed therapeutic outcomes of stem cell-based therapy are due to paracrine effects rather than long-term engraftment and survival of transplanted cells. Given their ability to cross biological barriers and mediate intercellular information transfer of bioactive molecules, extracellular vesicles are being explored as potential cell-free therapeutic agents. In this review, we first discuss the state of the art of regenerative medicine and its current limitations and challenges, with particular attention on pluripotent stem cell-derived products to repair organs like the eye, heart, skeletal muscle and skin. We then focus on emerging beneficial roles of extracellular vesicles to alleviate these pathological conditions and address hurdles and operational issues of this acellular strategy. Finally, we discuss future directions and examine how careful integration of different approaches presented in this review could help to potentiate therapeutic results in preclinical models and their good manufacturing practice (GMP) implementation for future clinical trials.
Collapse
|
11
|
Rallapalli S, Guhathakurta S, Korrapati PS. Isolation, growth kinetics, and immunophenotypic characterization of adult human cardiac progenitor cells. J Cell Physiol 2020; 236:1840-1853. [PMID: 33242343 DOI: 10.1002/jcp.29965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 11/10/2022]
Abstract
The discovery of cardiac progenitor cells (CPCs) has raised expectations for the development of cell-based therapy of the heart. Although cell therapy is emerging as a novel treatment for heart failure, several issues still exist concerning an unambiguous definition of the phenotype of CPC types. There is a need to define and validate the methods for the generation of quality CPC populations used in cell therapy applications. Considering the critical roles of cardiac cell progenitors in cellular therapy, we speculate that long term culture might modulate the immunophenotypes of CPCs. Hence, a strategy to validate the isolation and cell culture expansion of cardiac cell populations was devised. Isolation of three subpopulations of human CPCs was done from a single tissue sample using explant, enzymatic isolation, and c-kit+ immunomagnetic sorting methods. The study assessed the effects of ex vivo expansion on proliferation, immunophenotypes, and differentiation of CPCs. Additionally, we report that an explant culture can take over 2 months to achieve similar cell yields, and cell sorting requires a much larger starting population to match this expansion time frame. In comparison, an enzymatic method is expected to yield equivalent quantities of CPCs in 2-3 weeks, notably at a significantly lower cost, which may intensify their use in therapeutic approaches. We determined that ex vivo expansion caused changes in cellular characteristics, and hence propose validated molecular signatures should be established to evaluate the impact of ex vivo expansion for a safe cell therapy product.
Collapse
Affiliation(s)
- Suneel Rallapalli
- Biological Material Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, India
| | | | - Purna S Korrapati
- Biological Material Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, India
| |
Collapse
|
12
|
Gomes SA, Hare JM, Rangel EB. Kidney-Derived c-Kit + Cells Possess Regenerative Potential. Stem Cells Transl Med 2019; 7:317-324. [PMID: 29575816 PMCID: PMC5866938 DOI: 10.1002/sctm.17-0232] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/15/2017] [Accepted: 01/14/2018] [Indexed: 12/27/2022] Open
Abstract
Kidney‐derived c‐Kit+ cells exhibit progenitor/stem cell properties in vitro (self‐renewal capacity, clonogenicity, and multipotentiality). These cells can regenerate epithelial tubular cells following ischemia‐reperfusion injury and accelerate foot processes effacement reversal in a model of acute proteinuria in rats. Several mechanisms are involved in kidney regeneration by kidney‐derived c‐Kit+ cells, including cell engraftment and differentiation into renal‐like structures, such as tubules, vessels, and podocytes. Moreover, paracrine mechanisms could also account for kidney regeneration, either by stimulating proliferation of surviving cells or modulating autophagy and podocyte cytoskeleton rearrangement through mTOR‐Raptor and ‐Rictor signaling, which ultimately lead to morphological and functional improvement. To gain insights into the functional properties of c‐Kit+ cells during kidney development, homeostasis, and disease, studies on lineage tracing using transgenic mice will unveil their fate. The results obtained from these studies will set the basis for establishing further investigation on the therapeutic potential of c‐Kit+ cells for treatment of kidney disease in preclinical and clinical studies. stemcellstranslationalmedicine2018;7:317–324
Collapse
Affiliation(s)
- Samirah A Gomes
- Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, Leonard M Miller School of Medicine, University of Miami, Miami, Florida, USA.,Department of Molecular and Cellular Pharmacology, Leonard M Miller School of Medicine, University of Miami, Miami, Florida, USA.,Division of Cardiology, Leonard M Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Erika B Rangel
- Instituto Israelita de Ensino e Pesquisa Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, São Paulo, Brazil.,Division of Nephrology, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Pooria A, Pourya A, Gheini A. Animal- and human-based evidence for the protective effects of stem cell therapy against cardiovascular disorders. J Cell Physiol 2019; 234:14927-14940. [PMID: 30811030 DOI: 10.1002/jcp.28330] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/06/2018] [Accepted: 01/22/2019] [Indexed: 01/24/2023]
Abstract
The increasing rate of mortality and morbidity because of cardiac diseases has called for efficient therapeutic needs. With the advancement in cell-based therapies, stem cells are abundantly studied in this area. Nearly, all sources of stem cells are experimented to treat cardiac injuries. Tissue engineering has also backed this technique by providing an advantageous platform to improve stem cell therapy. After in vitro studies, primary treatment-based research studies comprise small and large animal studies. Furthermore, these studies are implemented in human models in the form of clinical trials. Purpose of this review is to highlight the animal- and human-based studies, exploiting various stem cell sources, to treat cardiovascular disorders.
Collapse
Affiliation(s)
- Ali Pooria
- Department of Cardiology, Lorestan University of Medical Sciences, Khoramabad, Iran
| | - Afsoun Pourya
- Student of Research committee, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Gheini
- Department of Cardiology, Lorestan University of Medical Sciences, Khoramabad, Iran
| |
Collapse
|
14
|
Tompkins BA, Balkan W, Winkler J, Gyöngyösi M, Goliasch G, Fernández-Avilés F, Hare JM. Preclinical Studies of Stem Cell Therapy for Heart Disease. Circ Res 2019; 122:1006-1020. [PMID: 29599277 DOI: 10.1161/circresaha.117.312486] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As part of the TACTICS (Transnational Alliance for Regenerative Therapies in Cardiovascular Syndromes) series to enhance regenerative medicine, here, we discuss the role of preclinical studies designed to advance stem cell therapies for cardiovascular disease. The quality of this research has improved over the past 10 to 15 years and overall indicates that cell therapy promotes cardiac repair. However, many issues remain, including inability to provide complete cardiac recovery. Recent studies question the need for intact cells suggesting that harnessing what the cells release is the solution. Our contribution describes important breakthroughs and current directions in a cell-based approach to alleviating cardiovascular disease.
Collapse
Affiliation(s)
- Bryon A Tompkins
- From the Interdisciplinary Stem Cell Institute (B.A.T., W.B., J.M.H.), Department of Surgery (B.A.T.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; Department of Cardiology, Medical University of Vienna, Austria (J.W., M.G., G.G.); Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain (F.F.-A.); and CIBERCV, ISCIII, Madrid, Spain (F.F.-A.)
| | - Wayne Balkan
- From the Interdisciplinary Stem Cell Institute (B.A.T., W.B., J.M.H.), Department of Surgery (B.A.T.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; Department of Cardiology, Medical University of Vienna, Austria (J.W., M.G., G.G.); Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain (F.F.-A.); and CIBERCV, ISCIII, Madrid, Spain (F.F.-A.)
| | - Johannes Winkler
- From the Interdisciplinary Stem Cell Institute (B.A.T., W.B., J.M.H.), Department of Surgery (B.A.T.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; Department of Cardiology, Medical University of Vienna, Austria (J.W., M.G., G.G.); Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain (F.F.-A.); and CIBERCV, ISCIII, Madrid, Spain (F.F.-A.)
| | - Mariann Gyöngyösi
- From the Interdisciplinary Stem Cell Institute (B.A.T., W.B., J.M.H.), Department of Surgery (B.A.T.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; Department of Cardiology, Medical University of Vienna, Austria (J.W., M.G., G.G.); Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain (F.F.-A.); and CIBERCV, ISCIII, Madrid, Spain (F.F.-A.)
| | - Georg Goliasch
- From the Interdisciplinary Stem Cell Institute (B.A.T., W.B., J.M.H.), Department of Surgery (B.A.T.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; Department of Cardiology, Medical University of Vienna, Austria (J.W., M.G., G.G.); Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain (F.F.-A.); and CIBERCV, ISCIII, Madrid, Spain (F.F.-A.)
| | - Francisco Fernández-Avilés
- From the Interdisciplinary Stem Cell Institute (B.A.T., W.B., J.M.H.), Department of Surgery (B.A.T.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; Department of Cardiology, Medical University of Vienna, Austria (J.W., M.G., G.G.); Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain (F.F.-A.); and CIBERCV, ISCIII, Madrid, Spain (F.F.-A.)
| | - Joshua M Hare
- From the Interdisciplinary Stem Cell Institute (B.A.T., W.B., J.M.H.), Department of Surgery (B.A.T.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; Department of Cardiology, Medical University of Vienna, Austria (J.W., M.G., G.G.); Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain (F.F.-A.); and CIBERCV, ISCIII, Madrid, Spain (F.F.-A.).
| |
Collapse
|
15
|
Menasché P, Vanneaux V, Hagège A, Bel A, Cholley B, Parouchev A, Cacciapuoti I, Al-Daccak R, Benhamouda N, Blons H, Agbulut O, Tosca L, Trouvin JH, Fabreguettes JR, Bellamy V, Charron D, Tartour E, Tachdjian G, Desnos M, Larghero J. Transplantation of Human Embryonic Stem Cell-Derived Cardiovascular Progenitors for Severe Ischemic Left Ventricular Dysfunction. J Am Coll Cardiol 2019; 71:429-438. [PMID: 29389360 DOI: 10.1016/j.jacc.2017.11.047] [Citation(s) in RCA: 279] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND In addition to scalability, human embryonic stem cells (hESCs) have the unique advantage of allowing their directed differentiation toward lineage-specific cells. OBJECTIVES This study tested the feasibility of leveraging the properties of hESCs to generate clinical-grade cardiovascular progenitor cells and assessed their safety in patients with severe ischemic left ventricular dysfunction. METHODS Six patients (median age 66.5 years [interquartile range (IQR): 60.5 to 74.7 years]; median left ventricular ejection fraction 26% [IQR: 22% to 32%]) received a median dose of 8.2 million (IQR: 5 to 10 million) hESC-derived cardiovascular progenitors embedded in a fibrin patch that was epicardially delivered during a coronary artery bypass procedure. The primary endpoint was safety at 1 year and focused on: 1) cardiac or off-target tumor, assessed by imaging (computed tomography and fluorine-18 fluorodeoxyglucose positron emission tomography scans); 2) arrhythmias, detected by serial interrogations of the cardioverter-defibrillators implanted in all patients; and 3) alloimmunization, assessed by the presence of donor-specific antibodies. Patients were followed up for a median of 18 months. RESULTS The protocol generated a highly purified (median 97.5% [IQR: 95.5% to 98.7%]) population of cardiovascular progenitors. One patient died early post-operatively from treatment-unrelated comorbidities. All others had uneventful recoveries. No tumor was detected during follow-up, and none of the patients presented with arrhythmias. Three patients developed clinically silent alloimmunization. All patients were symptomatically improved with an increased systolic motion of the cell-treated segments. One patient died of heart failure after 22 months. CONCLUSIONS This trial demonstrates the technical feasibility of producing clinical-grade hESC-derived cardiovascular progenitors and supports their short- and medium-term safety, thereby setting the grounds for adequately powered efficacy studies. (Transplantation of Human Embryonic Stem Cell-derived Progenitors in Severe Heart Failure [ESCORT]; NCT02057900).
Collapse
Affiliation(s)
- Philippe Menasché
- Department of Cardiovascular Surgery, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France; University Paris Descartes, Sorbonne Paris Cité, Paris, France; National Institute of Health and Medical Research (INSERM) U970, Hôpital Européen Georges Pompidou, Paris, France.
| | - Valérie Vanneaux
- Cell Therapy Unit, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France; INSERM, Clinical Investigation Center in Biotherapies (CBT-501) and U1160, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France
| | - Albert Hagège
- University Paris Descartes, Sorbonne Paris Cité, Paris, France; National Institute of Health and Medical Research (INSERM) U970, Hôpital Européen Georges Pompidou, Paris, France; Department of Cardiology, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Alain Bel
- Department of Cardiovascular Surgery, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Bernard Cholley
- University Paris Descartes, Sorbonne Paris Cité, Paris, France; Department of Anesthesiology and Intensive Care, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Alexandre Parouchev
- Cell Therapy Unit, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France; INSERM, Clinical Investigation Center in Biotherapies (CBT-501) and U1160, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France
| | - Isabelle Cacciapuoti
- Cell Therapy Unit, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France; INSERM, Clinical Investigation Center in Biotherapies (CBT-501) and U1160, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France
| | - Reem Al-Daccak
- INSERM U976, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Nadine Benhamouda
- Department of Biological Immunology, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Hélène Blons
- INSERM Mixed Research Units (UMR)-S1147, National Scientific Research Center (CNRS) Non CNRS Structure 5014, Sorbonne Paris Cité, Department of Biochemistry, Pharmacogenetic and Molecular Oncology Unit, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Onnik Agbulut
- Sorbonne Universités, Université Pierre et Marie Curie, University Paris-6, Institut de Biologie Paris-Seine, UMR CNRS 8256, Biological Adaptation and Ageing, Paris, France
| | - Lucie Tosca
- Assistance Publique-Hôpitaux de Paris, University Paris Sud, Histology-Embryology-Cytogenetics, Hôpitaux Universitaires Paris Sud, Clamart, France
| | - Jean-Hugues Trouvin
- School of Pharmacy, University Paris Descartes, Paris, France; Central Pharmacy, Pharmaceutical Innovation Department, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jean-Roch Fabreguettes
- Central Pharmacy, Clinical Trials Department, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Valérie Bellamy
- National Institute of Health and Medical Research (INSERM) U970, Hôpital Européen Georges Pompidou, Paris, France
| | - Dominique Charron
- Human Leukocyte Antigen and Médecine, Hôpital Saint-Louis, INSERM U976, Paris, France; University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Eric Tartour
- University Paris Descartes, Sorbonne Paris Cité, Paris, France; National Institute of Health and Medical Research (INSERM) U970, Hôpital Européen Georges Pompidou, Paris, France; Department of Biological Immunology, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Gérard Tachdjian
- Assistance Publique-Hôpitaux de Paris, University Paris Sud, Histology-Embryology-Cytogenetics, Hôpitaux Universitaires Paris Sud, Clamart, France
| | - Michel Desnos
- University Paris Descartes, Sorbonne Paris Cité, Paris, France; National Institute of Health and Medical Research (INSERM) U970, Hôpital Européen Georges Pompidou, Paris, France; Department of Cardiology, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Jérôme Larghero
- Cell Therapy Unit, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France; INSERM, Clinical Investigation Center in Biotherapies (CBT-501) and U1160, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France; University Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
16
|
Wang X, Lu L, Tan Y, Jiang L, Zhao M, Gao E, Yu S, Liu J. GPR 30 reduces myocardial infarct area and fibrosis in female ovariectomized mice by activating the PI3K/AKT pathway. Life Sci 2019; 226:22-32. [PMID: 30905784 DOI: 10.1016/j.lfs.2019.03.049] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/14/2019] [Accepted: 03/20/2019] [Indexed: 12/30/2022]
Abstract
AIMS Estrogen plays an important role in cardioprotection. Animal experiments showed that the G-protein coupled estrogen receptor 30 (GPR30) specific agonist G1 could reduce post-ischemic dysfunction and inhibit cardiac fibroblast proliferation. However, the underlying mechanism of action is not clear. The current study tests the hypothesis that GPR30 reduces myocardial infarct area and fibrosis in female ovariectomized (OVX) mice by activating the PI3K/AKT pathway. MAIN METHODS In this study, we established a myocardial infarction (MI) animal model derived from OVX C57BL/6 female mice, and investigated the effect of G1 on cardiac function by echocardiography and Hemodynamics, morphology and expression of fibrosis-related and apoptosis-related proteins by Masson's trichrome and H&E, Immunofluorescence, Western blotting and TUNEL. KEY FINDINGS Combination with OVX significantly increased myocardial fibrosis and MI area compared to MI treatment alone, as determined by echocardiography and hemodynamics. Further addition of G1 changed the expression of apoptosis-related proteins, decreased the levels of tumor necrosis factor-α and interleukin-10, and reduced the degree of myocardial fibrosis and myocardial infarct area. Primary cultured cardiac fibroblasts (CFs) were subjected to hypoxia/serum deprivation (H/SD) simulating the in vivo ischemia model. When the PI3K/AKT pathway was inhibited by wortmanin in H/SD CFs, G1 failed to induce significant changes in the expression of apoptosis-related proteins. SIGNIFICANCE It suggested that GPR30 may improve cardiac function in female OVX mice by activating the PI3K/AKT pathway and reducing myocardial infarct size and fibrosis.
Collapse
Affiliation(s)
- Xiaowu Wang
- Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Linhe Lu
- Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Yanzhen Tan
- Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Liqing Jiang
- Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Minggao Zhao
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, PR China
| | - Erhe Gao
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Shiqiang Yu
- Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Jincheng Liu
- Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China.
| |
Collapse
|
17
|
Combination of Mesenchymal Stromal Cells and Cardiac Stem Cells in a Multilayer Cell Construct Promotes Activation of Notch Signaling and Initiation of Endothelial Differentiation. Bull Exp Biol Med 2019; 166:548-552. [PMID: 30783844 DOI: 10.1007/s10517-019-04390-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Indexed: 10/27/2022]
Abstract
We showed the possibility of generating combined tissue-engineered cell consisting of layers of rat cardiac stem cells and mesenchymal stromal cells from the adipose tissue. Cell-cell interaction within the cell sheet promoted proliferation of cardiac stem cells, expression of endothelial differentiation marker ETS1, and Notch signaling activation. The obtained results provide new insights into possible mechanisms of stimulation of endogenous regeneration processes after myocardial damage and demonstrate potential of cell-based cardiomyoplasty with the use of these combined cell sheets.
Collapse
|
18
|
Samal R, Sappa PK, Gesell Salazar M, Wenzel K, Reinke Y, Völker U, Felix SB, Hammer E, Könemann S. Global secretome analysis of resident cardiac progenitor cells from wild-type and transgenic heart failure mice: Why ambience matters. J Cell Physiol 2018; 234:10111-10122. [PMID: 30575044 DOI: 10.1002/jcp.27677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 10/04/2018] [Indexed: 01/08/2023]
Abstract
Resident cardiac progenitor cells (CPCs) have gained attention in cardiac regenerative medicine primarily due to their paracrine activity. In our current study we determined the role of pathological conditions such as heart failure on the autocrine-paracrine action of stem cell antigen-1 (Sca-1) expressing CPC. This comparative secretome profiling of Sca-1+ cells derived from transgenic heart failure (αMHC-cyclin-T1/Gαq overexpression [Cyc] cells) versus healthy (wild-type [Wt] cells) mice, achieved via mass-spectrometric quantification, enabled the identification of over 700 proteins. Our results demonstrate that the heart failure milieu caused a 2-fold enrichment of extracellular matrix proteins (ECM) like biglycan, versican, collagen XII, and angiogenic factors like heparan sulfate proteoglycan 2, plasminogen activator inhibitor 1 in the secretome. We further elucidated the direct influence of the secretome on the functional behavior of Sca-1 + cells via in vitro tube forming assay. Secreted factors present in the diseased milieu induced tube formation in Cyc cells (1.7-fold; p < 0.01) when compared with Wt cells after 24 hr of exposure. The presence of conditioned media moderately increased the proliferation of Cyc cells but had a more pronounced effect on Wt cells. Overall, these findings revealed global modifications in the secretory activity of adult Sca-1 + cells in the heart failure milieu. The secretion of ECM proteins and angiogenic factors, which are crucial for cardiac remodeling and recovery, was notably enriched in the supernatant of Cyc cells. Thus, during heart failure the microenvironment of Sca-1 + cells might favor angiogenesis and proliferation suggesting their potential to recover the damaged heart.
Collapse
Affiliation(s)
- Rasmita Samal
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany.,Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Center for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
| | - Praveen Kumar Sappa
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.,Department of Hematology and Oncology, Internal Medicine C, University Greifswald, Greifswald, Germany
| | - Manuela Gesell Salazar
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Kristin Wenzel
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Center for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
| | - Yvonne Reinke
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Center for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Center for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
| | - Stephan Burkhard Felix
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Center for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
| | - Elke Hammer
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Center for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
| | - Stephanie Könemann
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Center for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
| |
Collapse
|
19
|
Banovic M, Pusnik-Vrckovnik M, Nakou E, Vardas P. Myocardial regeneration therapy in heart failure: Current status and future therapeutic implications in clinical practice. Int J Cardiol 2018; 260:124-130. [DOI: 10.1016/j.ijcard.2018.01.144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/25/2018] [Accepted: 01/31/2018] [Indexed: 12/16/2022]
|
20
|
Marotta P, Cianflone E, Aquila I, Vicinanza C, Scalise M, Marino F, Mancuso T, Torella M, Indolfi C, Torella D. Combining cell and gene therapy to advance cardiac regeneration. Expert Opin Biol Ther 2018; 18:409-423. [PMID: 29347847 DOI: 10.1080/14712598.2018.1430762] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The characterization of multipotent endogenous cardiac stem cells (eCSCs) and the breakthroughs of somatic cell reprogramming to boost cardiomyocyte replacement have fostered the prospect of achieving functional heart repair/regeneration. AREAS COVERED Allogeneic CSC therapy through its paracrine stimulation of the endogenous resident reparative/regenerative process produces functional meaningful myocardial regeneration in pre-clinical porcine myocardial infarction models and is currently tested in the first-in-man human trial. The in vivo test of somatic reprogramming and cardioregenerative non-coding RNAs revived the interest in gene therapy for myocardial regeneration. The latter, together with the advent of genome editing, has prompted most recent efforts to produce genetically-modified allogeneic CSCs that secrete cardioregenerative factors to optimize effective myocardial repair. EXPERT OPINION The current war against heart failure epidemics in western countries seeks to find effective treatments to set back the failing hearts prolonging human lifespan. Off-the-shelf allogeneic-genetically-modified CSCs producing regenerative agents are a novel and evolving therapy set to be affordable, safe, effective and available at all times for myocardial regeneration to either prevent or treat heart failure.
Collapse
Affiliation(s)
- Pina Marotta
- a Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences , Magna Graecia University , Catanzaro , Italy
| | - Eleonora Cianflone
- a Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences , Magna Graecia University , Catanzaro , Italy
| | - Iolanda Aquila
- a Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences , Magna Graecia University , Catanzaro , Italy
| | - Carla Vicinanza
- a Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences , Magna Graecia University , Catanzaro , Italy
| | - Mariangela Scalise
- a Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences , Magna Graecia University , Catanzaro , Italy
| | - Fabiola Marino
- a Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences , Magna Graecia University , Catanzaro , Italy
| | - Teresa Mancuso
- a Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences , Magna Graecia University , Catanzaro , Italy
| | - Michele Torella
- b Department of Cardiothoracic Sciences , University of Campania "L. Vanvitelli" , Naples , Italy
| | - Ciro Indolfi
- a Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences , Magna Graecia University , Catanzaro , Italy
| | - Daniele Torella
- a Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences , Magna Graecia University , Catanzaro , Italy
| |
Collapse
|
21
|
A Combination of Allogeneic Stem Cells Promotes Cardiac Regeneration. J Am Coll Cardiol 2017; 70:2504-2515. [PMID: 29145950 DOI: 10.1016/j.jacc.2017.09.036] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 09/15/2017] [Accepted: 09/15/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND The combination of autologous mesenchymal stem cells (MSCs) and cardiac stem cells (CSCs) synergistically reduces scar size and improves cardiac function in ischemic cardiomyopathy. Whereas allogeneic (allo-)MSCs are immunoevasive, the capacity of CSCs to similarly elude the immune system remains controversial, potentially limiting the success of allogeneic cell combination therapy (ACCT). OBJECTIVES This study sought to test the hypothesis that ACCT synergistically promotes cardiac regeneration without provoking immunologic reactions. METHODS Göttingen swine with experimental ischemic cardiomyopathy were randomized to receive transendocardial injections of allo-MSCs + allo-CSCs (ACCT: 200 million MSCs/1 million CSCs, n = 7), 200 million allo-MSCs (n = 8), 1 million allo-CSCs (n = 4), or placebo (Plasma-Lyte A, n = 6). Swine were assessed by cardiac magnetic resonance imaging and pressure volume catheterization. Immune response was tested by histologic analyses. RESULTS Both ACCT and allo-MSCs reduced scar size by -11.1 ± 4.8% (p = 0.012) and -9.5 ± 4.8% (p = 0.047), respectively. Only ACCT, but not MSCs or CSCs, prevented ongoing negative remodeling by offsetting increases in chamber volumes. Importantly, ACCT exerted the greatest effect on systolic function, improving the end-systolic pressure-volume relation (+0.98 ± 0.41 mm Hg/ml; p = 0.016). The ACCT group had more phospho-histone H3+ (a marker of mitosis) cardiomyocytes (p = 0.04), and noncardiomyocytes (p = 0.0002) than did the placebo group in some regions of the heart. Inflammatory sites in ACCT and MSC-treated swine contained immunotolerant CD3+/CD25+/FoxP3+ regulatory T cells (p < 0.0001). Histologic analysis showed absent to low-grade inflammatory infiltrates without cardiomyocyte necrosis. CONCLUSIONS ACCT demonstrates synergistic effects to enhance cardiac regeneration and left ventricular functional recovery in a swine model of chronic ischemic cardiomyopathy without adverse immunologic reaction. Clinical translation to humans is warranted.
Collapse
|
22
|
Rocca A, Tafuri D, Paccone M, Giuliani A, Zamboli AGI, Surfaro G, Paccone A, Compagna R, Amato M, Serra R, Amato B. Cell Based Therapeutic Approach in Vascular Surgery: Application and Review. Open Med (Wars) 2017; 12:308-322. [PMID: 29071303 PMCID: PMC5651406 DOI: 10.1515/med-2017-0045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 08/16/2017] [Indexed: 01/14/2023] Open
Abstract
Multipotent stem cells - such as mesenchymal stem/stromal cells and stem cells derived from different sources like vascular wall are intensely studied to try to rapidly translate their discovered features from bench to bedside. Vascular wall resident stem cells recruitment, differentiation, survival, proliferation, growth factor production, and signaling pathways transduced were analyzed. We studied biological properties of vascular resident stem cells and explored the relationship from several factors as Matrix Metalloproteinases (MMPs) and regulations of biological, translational and clinical features of these cells. In this review we described a translational and clinical approach to Adult Vascular Wall Resident Multipotent Vascular Stem Cells (VW-SCs) and reported their involvement in alternative clinical approach as cells based therapy in vascular disease like arterial aneurysms or peripheral arterial obstructive disease.
Collapse
Affiliation(s)
- Aldo Rocca
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, ItalyVia Sergio Pansini, 80131Naples, Italy
| | - Domenico Tafuri
- Department of Sport Sciences and Wellness, University of Naples “Parthenope”, Naples, Italy
| | - Marianna Paccone
- Department of Medicine and Health Sciences Vincenzo Tiberio, University of Molise, Campobasso, Italy
| | - Antonio Giuliani
- A.O.R.N. A. Cardarelli Hepatobiliary and Liver Transplatation Center, Naples, Italy
| | | | - Giuseppe Surfaro
- Antonio Cardarelli Hospital, General Surgery Unit, Campobasso, Italy
| | - Andrea Paccone
- Department of Medicine and Health Sciences Vincenzo Tiberio, University of Molise, Campobasso, Italy
| | - Rita Compagna
- Department of Translational Medical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Maurizo Amato
- Department of Translational Medical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Raffaele Serra
- Department of Medical and Surgical Sciences, University of Catanzaro, Catanzaro, Italy
| | - Bruno Amato
- Department of Translational Medical Sciences, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
23
|
Sharp TE, Schena GJ, Hobby AR, Starosta T, Berretta RM, Wallner M, Borghetti G, Gross P, Yu D, Johnson J, Feldsott E, Trappanese DM, Toib A, Rabinowitz JE, George JC, Kubo H, Mohsin S, Houser SR. Cortical Bone Stem Cell Therapy Preserves Cardiac Structure and Function After Myocardial Infarction. Circ Res 2017; 121:1263-1278. [PMID: 28912121 DOI: 10.1161/circresaha.117.311174] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/30/2017] [Accepted: 09/14/2017] [Indexed: 12/20/2022]
Abstract
RATIONALE Cortical bone stem cells (CBSCs) have been shown to reduce ventricular remodeling and improve cardiac function in a murine myocardial infarction (MI) model. These effects were superior to other stem cell types that have been used in recent early-stage clinical trials. However, CBSC efficacy has not been tested in a preclinical large animal model using approaches that could be applied to patients. OBJECTIVE To determine whether post-MI transendocardial injection of allogeneic CBSCs reduces pathological structural and functional remodeling and prevents the development of heart failure in a swine MI model. METHODS AND RESULTS Female Göttingen swine underwent left anterior descending coronary artery occlusion, followed by reperfusion (ischemia-reperfusion MI). Animals received, in a randomized, blinded manner, 1:1 ratio, CBSCs (n=9; 2×107 cells total) or placebo (vehicle; n=9) through NOGA-guided transendocardial injections. 5-ethynyl-2'deoxyuridine (EdU)-a thymidine analog-containing minipumps were inserted at the time of MI induction. At 72 hours (n=8), initial injury and cell retention were assessed. At 3 months post-MI, cardiac structure and function were evaluated by serial echocardiography and terminal invasive hemodynamics. CBSCs were present in the MI border zone and proliferating at 72 hours post-MI but had no effect on initial cardiac injury or structure. At 3 months, CBSC-treated hearts had significantly reduced scar size, smaller myocytes, and increased myocyte nuclear density. Noninvasive echocardiographic measurements showed that left ventricular volumes and ejection fraction were significantly more preserved in CBSC-treated hearts, and invasive hemodynamic measurements documented improved cardiac structure and functional reserve. The number of EdU+ cardiac myocytes was increased in CBSC- versus vehicle- treated animals. CONCLUSIONS CBSC administration into the MI border zone reduces pathological cardiac structural and functional remodeling and improves left ventricular functional reserve. These effects reduce those processes that can lead to heart failure with reduced ejection fraction.
Collapse
Affiliation(s)
- Thomas E Sharp
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Giana J Schena
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Alexander R Hobby
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Timothy Starosta
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Remus M Berretta
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Markus Wallner
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Giulia Borghetti
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Polina Gross
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Daohai Yu
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Jaslyn Johnson
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Eric Feldsott
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Danielle M Trappanese
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Amir Toib
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Joseph E Rabinowitz
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Jon C George
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Hajime Kubo
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Sadia Mohsin
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Steven R Houser
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.).
| |
Collapse
|
24
|
Abstract
INTRODUCTION Over the past decade, it has become clear that long-term engraftment of any ex vivo expanded cell product transplanted into injured myocardium is modest and all therapeutic regeneration is mediated by stimulation of endogenous repair rather than differentiation of transplanted cells into working myocardium. Given that increasing the retention of transplanted cells boosts myocardial function, focus on the fundamental mechanisms limiting retention and survival of transplanted cells may enable strategies to help to restore normal cardiac function. Areas covered: This review outlines the challenges confronting cardiac engraftment of ex vivo expanded cells and explores means of enhancing cell-mediated repair of injured myocardium. Expert opinion: Stem cell therapy has already come a long way in terms of regenerating damaged hearts though the poor retention of transplanted cells limits the full potential of truly cardiotrophic cell products. Multifaceted strategies directed towards fundamental mechanisms limiting the long-term survival of transplanted cells will be needed to enhance transplanted cell retention and cell-mediated repair of damaged myocardium for cardiac cell therapy to reach its full potential.
Collapse
Affiliation(s)
| | - Darryl R Davis
- a University of Ottawa Heart Institute , Ottawa , ON , Canada
| |
Collapse
|
25
|
Cambria E, Pasqualini FS, Wolint P, Günter J, Steiger J, Bopp A, Hoerstrup SP, Emmert MY. Translational cardiac stem cell therapy: advancing from first-generation to next-generation cell types. NPJ Regen Med 2017; 2:17. [PMID: 29302353 PMCID: PMC5677990 DOI: 10.1038/s41536-017-0024-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 05/16/2017] [Accepted: 05/22/2017] [Indexed: 12/16/2022] Open
Abstract
Acute myocardial infarction and chronic heart failure rank among the major causes of morbidity and mortality worldwide. Except for heart transplantation, current therapy options only treat the symptoms but do not cure the disease. Stem cell-based therapies represent a possible paradigm shift for cardiac repair. However, most of the first-generation approaches displayed heterogeneous clinical outcomes regarding efficacy. Stemming from the desire to closely match the target organ, second-generation cell types were introduced and rapidly moved from bench to bedside. Unfortunately, debates remain around the benefit of stem cell therapy, optimal trial design parameters, and the ideal cell type. Aiming at highlighting controversies, this article provides a critical overview of the translation of first-generation and second-generation cell types. It further emphasizes the importance of understanding the mechanisms of cardiac repair and the lessons learned from first-generation trials, in order to improve cell-based therapies and to potentially finally implement cell-free therapies.
Collapse
Affiliation(s)
- Elena Cambria
- Institute for Regenerative Medicine, University of Zurich, Zurich, 8044 Switzerland.,Division of Surgical Research, University Hospital of Zurich, Zurich, 8091 Switzerland
| | | | - Petra Wolint
- Institute for Regenerative Medicine, University of Zurich, Zurich, 8044 Switzerland.,Division of Surgical Research, University Hospital of Zurich, Zurich, 8091 Switzerland
| | - Julia Günter
- Institute for Regenerative Medicine, University of Zurich, Zurich, 8044 Switzerland.,Division of Surgical Research, University Hospital of Zurich, Zurich, 8091 Switzerland
| | - Julia Steiger
- Institute for Regenerative Medicine, University of Zurich, Zurich, 8044 Switzerland.,Division of Surgical Research, University Hospital of Zurich, Zurich, 8091 Switzerland
| | - Annina Bopp
- Institute for Regenerative Medicine, University of Zurich, Zurich, 8044 Switzerland.,Division of Surgical Research, University Hospital of Zurich, Zurich, 8091 Switzerland
| | - Simon P Hoerstrup
- Institute for Regenerative Medicine, University of Zurich, Zurich, 8044 Switzerland.,Division of Surgical Research, University Hospital of Zurich, Zurich, 8091 Switzerland.,Heart Center Zurich, University Hospital of Zurich, Zurich, Switzerland.,Wyss Translational Center Zurich, Zurich, Switzerland
| | - Maximilian Y Emmert
- Institute for Regenerative Medicine, University of Zurich, Zurich, 8044 Switzerland.,Division of Surgical Research, University Hospital of Zurich, Zurich, 8091 Switzerland.,Heart Center Zurich, University Hospital of Zurich, Zurich, Switzerland.,Wyss Translational Center Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Abstract
Stem cell mediated cardiac repair is an exciting and controversial area of cardiovascular research that holds the potential to produce novel, revolutionary therapies for the treatment of heart disease. Extensive investigation to define cell types contributing to cardiac formation, homeostasis and regeneration has produced several candidates, including adult cardiac c-Kit+ expressing stem and progenitor cells that have even been employed in a Phase I clinical trial demonstrating safety and feasibility of this therapeutic approach. However, the field of cardiac cell based therapy remains deeply divided due to strong disagreement among researchers and clinicians over which cell types, if any, are the best candidates for these applications. Research models that identify and define specific cardiac cells that effectively contribute to heart repair are urgently needed to resolve this debate. In this review, current c-Kit reporter models are discussed with respect to myocardial c-Kit cell biology and function, and future designs imagined to better represent endogenous myocardial c-Kit expression.
Collapse
|
27
|
Deddens JC, Feyen DA, Zwetsloot PP, Brans MA, Siddiqi S, van Laake LW, Doevendans PA, Sluijter JP. Targeting chronic cardiac remodeling with cardiac progenitor cells in a murine model of ischemia/reperfusion injury. PLoS One 2017; 12:e0173657. [PMID: 28319168 PMCID: PMC5358772 DOI: 10.1371/journal.pone.0173657] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 02/20/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Translational failure for cardiovascular disease is a substantial problem involving both high research costs and an ongoing lack of novel treatment modalities. Despite the progress already made, cell therapy for chronic heart failure in the clinical setting is still hampered by poor translation. We used a murine model of chronic ischemia/reperfusion injury to examine the effect of minimally invasive application of cardiac progenitor cells (CPC) in cardiac remodeling and to improve clinical translation. METHODS 28 days after the induction of I/R injury, mice were randomized to receive either CPC (0.5 million) or vehicle by echo-guided intra-myocardial injection. To determine retention, CPC were localized in vivo by bioluminescence imaging (BLI) two days after injection. Cardiac function was assessed by 3D echocardiography and speckle tracking analysis to quantify left ventricular geometry and regional myocardial deformation. RESULTS BLI demonstrated successful injection of CPC (18/23), which were mainly located along the needle track in the anterior/septal wall. Although CPC treatment did not result in overall restoration of cardiac function, a relative preservation of the left ventricular end-diastolic volume was observed at 4 weeks follow-up compared to vehicle control (+5.3 ± 2.1 μl vs. +10.8 ± 1.5 μl). This difference was reflected in an increased strain rate (+16%) in CPC treated mice. CONCLUSIONS CPC transplantation can be adequately studied in chronic cardiac remodeling using this study set-up and by that provide a translatable murine model facilitating advances in research for new therapeutic approaches to ultimately improve therapy for chronic heart failure.
Collapse
Affiliation(s)
- Janine C. Deddens
- Department of Cardiology, Experimental Cardiology laboratory, University Medical Center Utrecht, Utrecht, The Netherlands
- Netherlands Heart Institute (ICIN), Utrecht, The Netherlands
| | - Dries A. Feyen
- Department of Cardiology, Experimental Cardiology laboratory, University Medical Center Utrecht, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter-Paul Zwetsloot
- Department of Cardiology, Experimental Cardiology laboratory, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maike A. Brans
- Department of Cardiology, Experimental Cardiology laboratory, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sailay Siddiqi
- Department of Cardiology, Experimental Cardiology laboratory, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Linda W. van Laake
- Department of Cardiology, Experimental Cardiology laboratory, University Medical Center Utrecht, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pieter A. Doevendans
- Department of Cardiology, Experimental Cardiology laboratory, University Medical Center Utrecht, Utrecht, The Netherlands
- Netherlands Heart Institute (ICIN), Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Joost P. Sluijter
- Department of Cardiology, Experimental Cardiology laboratory, University Medical Center Utrecht, Utrecht, The Netherlands
- Netherlands Heart Institute (ICIN), Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
28
|
Obtaining spontaneously beating cardiomyocyte-like cells from adipose-derived stromal vascular fractions cultured on enzyme-crosslinked gelatin hydrogels. Sci Rep 2017; 7:41781. [PMID: 28155919 PMCID: PMC5290532 DOI: 10.1038/srep41781] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 12/29/2016] [Indexed: 02/05/2023] Open
Abstract
Heart failure often develops after acute myocardial infarction because the injured myocardial tissue fails to recover or regenerate. Stem cell transplantation using adult cell sources, such as adipose-derived stromal vascular fraction (SVF), draws extensive attention. In this study, SVF cells were isolated from rat adipose tissue and cultivated on enzyme-crosslinked gelatin hydrogels. Morphological features of cell development and spontaneous beating behavior from these cells were observed and recorded. Cardiac phenotypes were characterized via immunofluorescence staining, and the expression of cardiac-specific genes was measured via RT-PCR. The functional assessment of SVF-derived cardiomyocyte-like cells (SVF-CMs) was performed by detecting cellular calcium transient activities and pharmacological responses. Results showed that most SVF-CMs exhibited elongated myotubule shapes and expressed cardiac troponin I strongly. SVF-CMs expressed cardiac-specific RNA (including transcription factors GATA binding protein 4) and myocyte enhancer factor 2c, as well as the structural proteins, namely, sarcomere actinin alpha 2, cardiac troponin I type 3, cardiac troponin T type 2, and cardiac gap junction protein alpha 1. Their beating mode, calcium activities, and pharmacological responses were similar to those of native CMs. Spontaneously beating SVF-CMs can be derived from adipose tissue-derived SVFs, and enzyme-crosslinked gelatin hydrogel promoted the cardiac differentiation of SVF cells.
Collapse
|
29
|
RajendranNair DS, Karunakaran J, Nair RR. Differential response of human cardiac stem cells and bone marrow mesenchymal stem cells to hypoxia-reoxygenation injury. Mol Cell Biochem 2016; 425:139-153. [PMID: 27844250 DOI: 10.1007/s11010-016-2869-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/02/2016] [Indexed: 02/06/2023]
Abstract
Cardiosphere-derived cells (CDCs) and bone marrow mesenchymal stem cells (MSCs) are popularly used in stem cell therapy for myocardial regeneration. The cell type that survives and maintains stem cell characteristics in the adverse microenvironment following ischemia-reperfusion injury is presumed to be ideal for transplantation. The study was therefore aimed at identifying the cell type with relatively greater resistance to ischemia-reperfusion injury. CDCs were isolated from the right atrial appendage and MSCs from bone marrow of patients who underwent coronary artery bypass graft surgery. Ischemia-reperfusion injury was simulated in vitro by subjecting the cells to hypoxia (0.5% O2) followed by reintroduction of oxygen (HR injury). Greater resistance of CDCs to HR injury was apparent from the decreased expression of senescence markers and lower proportion of apoptotic cells (one-sixth of that in MSCs). HR injury retarded cell cycle progression in MSCs. Consequent to HR injury, cell migration and secretion of stromal-derived growth factor were stimulated, significantly in CDCs. The differentiation to myocyte lineage and angiogenesis assessed by tube formation ability was better for CDCs. Release of vascular endothelial growth factor was relatively more in CDCs and was further stimulated by HR injury. Differentiation to osteogenic and angiogenic lineage was stimulated by HR injury in MSCs. Compared to MSCs, CDCs appear to be the cell of choice for promoting myocardial regeneration by virtue of its survival capacity in the event of ischemic insult along with higher proliferation rate, migration efficiency, release of growth factors with paracrine effects and differentiation to cardiac lineage.
Collapse
Affiliation(s)
- Deepthi Sreerengam RajendranNair
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, India
| | - Jayakumar Karunakaran
- Department of Cardiovascular and Thoracic Surgery, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, India
| | - Renuka R Nair
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, India.
| |
Collapse
|
30
|
Li Y, Wen Y, Wang Z, Wei Y, Wani P, Green M, Swaminathan G, Ramamurthi A, Pera RR, Chen B. Smooth Muscle Progenitor Cells Derived From Human Pluripotent Stem Cells Induce Histologic Changes in Injured Urethral Sphincter. Stem Cells Transl Med 2016; 5:1719-1729. [PMID: 27460854 DOI: 10.5966/sctm.2016-0035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/13/2016] [Indexed: 12/21/2022] Open
Abstract
: Data suggest that myoblasts from various sources, including bone marrow, skeletal muscle, and adipose tissue, can restore muscle function in patients with urinary incontinence. Animal data have indicated that these progenitor cells exert mostly a paracrine effect on the native tissues rather than cell regeneration. Limited knowledge is available on the in vivo effect of human stem cells or muscle progenitors on injured muscles. We examined in vivo integration of smooth muscle progenitor cells (pSMCs) derived from human pluripotent stem cells (hPSCs). pSMCs were derived from a human embryonic stem cell line (H9-ESCs) and two induced pluripotent stem cell (iPSC) lines. pSMCs were injected periurethrally into urethral injury rat models (2 × 106 cells per rat) or intramuscularly into severe combined immunodeficiency mice. Histologic and quantitative image analysis revealed that the urethras in pSMC-treated rats contained abundant elastic fibers and thicker muscle layers compared with the control rats. Western blot confirmed increased elastin/collagen III content in the urethra and bladder of the H9-pSMC-treated rats compared with controls. iPSC-pSMC treatment also showed similar trends in elastin and collagen III. Human elastin gene expression was not detectable in rodent tissues, suggesting that the extracellular matrix synthesis resulted from the native rodent tissues rather than from the implanted human cells. Immunofluorescence staining and in vivo bioluminescence imaging confirmed long-term engraftment of pSMCs into the host urethra and the persistence of the smooth muscle phenotype. Taken together, the data suggest that hPSC-derived pSMCs facilitate restoration of urethral sphincter function by direct smooth muscle cell regeneration and by inducing native tissue elastin/collagen III remodeling. SIGNIFICANCE The present study provides evidence that a pure population of human smooth muscle progenitor cells (pSMCs) derived from human pluripotent stem cells (hPSCs) (human embryonic stem cells and patient induced pluripotent stem cells) restores urethral sphincter function by two mechanisms: modulation of extracellular matrix protein metabolism in vivo and pSMC proliferation and differentiation into smooth muscle cells to regenerate the muscle layer in the lower urinary tract. These findings on the in vivo effects of human pSMCs should aid in optimizing regenerative therapies using human myoblasts.
Collapse
Affiliation(s)
- Yanhui Li
- Department of Obstetrics/Gynecology, Stanford University School of Medicine, Stanford, California, USA
- Department of Obstetrics/Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, People's Republic of China
| | - Yan Wen
- Department of Obstetrics/Gynecology, Stanford University School of Medicine, Stanford, California, USA
| | - Zhe Wang
- Department of Obstetrics/Gynecology, Stanford University School of Medicine, Stanford, California, USA
- Department of Obstetrics/Gynecology, NanFang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yi Wei
- Department of Obstetrics/Gynecology, Stanford University School of Medicine, Stanford, California, USA
| | - Prachi Wani
- Department of Obstetrics/Gynecology, Stanford University School of Medicine, Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Morgaine Green
- Department of Obstetrics/Gynecology, Stanford University School of Medicine, Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Ganesh Swaminathan
- Department of Biomedical Engineering, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Anand Ramamurthi
- Department of Biomedical Engineering, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Renee Reijo Pera
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana, USA
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Bertha Chen
- Department of Obstetrics/Gynecology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
31
|
Abstract
Stem cell-based therapy is currently tested in several trials of chronic heart failure. The main question is to determine how its implementation could be extended to common clinical practice. To fill this gap, it is critical to first validate the hypothesis that the grafted stem cells primarily act by harnessing endogenous repair pathways. The confirmation of this mechanism would have three major clinically relevant consequences: (i) the use of cardiac-committed cells, since even though cells primarily act in a paracrine manner, such a phenotype seems the most functionally effective; (ii) the optimization of early cell retention, rather than of sustained cell survival, so that the cells reside in the target tissue long enough to deliver the factors underpinning their action; and (iii) the reliance on allogeneic cells, the expected rejection of which should only have to be delayed since a permanent engraftment would no longer be the objective. One step further, the long-term objective of cell therapy could be to use the cells exclusively for producing factors and then to only administer them to the patient. The production process would then be closer to that of a biological pharmaceutic, thereby facilitating an extended clinical use.
Collapse
Affiliation(s)
- Philippe Menasché
- Department of Cardiovascular Surgery; Université Paris Descartes, Sorbonne Paris Cité; INSERM U-970, Hôpital Européen Georges Pompidou 20, rue Leblanc 75015 Paris, France
| |
Collapse
|
32
|
Tokita Y, Tang XL, Li Q, Wysoczynski M, Hong KU, Nakamura S, Wu WJ, Xie W, Li D, Hunt G, Ou Q, Stowers H, Bolli R. Repeated Administrations of Cardiac Progenitor Cells Are Markedly More Effective Than a Single Administration: A New Paradigm in Cell Therapy. Circ Res 2016; 119:635-51. [PMID: 27364016 DOI: 10.1161/circresaha.116.308937] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/30/2016] [Indexed: 12/28/2022]
Abstract
RATIONALE The effects of c-kit(POS) cardiac progenitor cells (CPCs, and adult cell therapy in general) on left ventricular (LV) function have been regarded as modest or inconsistent. OBJECTIVE To determine whether 3 CPC infusions have greater efficacy than 1 infusion. METHODS AND RESULTS Rats with a 30-day-old myocardial infarction received 1 or 3 CPC infusions into the LV cavity, 35 days apart. Compared with vehicle-treated rats, the single-dose group exhibited improved LV function after the first infusion (consisting of CPCs) but not after the second and third (vehicle). In contrast, in the multiple-dose group, regional and global LV function improved by a similar degree after each CPC infusion, resulting in greater cumulative effects. For example, the total increase in LV ejection fraction was approximately triple in the multiple-dose group versus the single-dose group (P<0.01). The multiple-dose group also exhibited more viable tissue and less scar, less collagen in the risk and noninfarcted regions, and greater myocyte density in the risk region. CONCLUSIONS This is the first demonstration that repeated CPC administrations are markedly more effective than a single administration. The concept that the full effects of CPCs require repeated doses has significant implications for both preclinical and clinical studies; it suggests that the benefits of cell therapy may be underestimated or even overlooked if they are measured after a single dose, and that repeated administrations are necessary to evaluate the effectiveness of a cell product properly. In addition, we describe a new method that enables studies of repeated cell administrations in rodents.
Collapse
Affiliation(s)
- Yukichi Tokita
- From the Division of Cardiovascular Medicine, Institute of Molecular Cardiology, University of Louisville, KY
| | - Xian-Liang Tang
- From the Division of Cardiovascular Medicine, Institute of Molecular Cardiology, University of Louisville, KY
| | - Qianhong Li
- From the Division of Cardiovascular Medicine, Institute of Molecular Cardiology, University of Louisville, KY
| | - Marcin Wysoczynski
- From the Division of Cardiovascular Medicine, Institute of Molecular Cardiology, University of Louisville, KY
| | - Kyung U Hong
- From the Division of Cardiovascular Medicine, Institute of Molecular Cardiology, University of Louisville, KY
| | - Shunichi Nakamura
- From the Division of Cardiovascular Medicine, Institute of Molecular Cardiology, University of Louisville, KY
| | - Wen-Jian Wu
- From the Division of Cardiovascular Medicine, Institute of Molecular Cardiology, University of Louisville, KY
| | - Wei Xie
- From the Division of Cardiovascular Medicine, Institute of Molecular Cardiology, University of Louisville, KY
| | - Ding Li
- From the Division of Cardiovascular Medicine, Institute of Molecular Cardiology, University of Louisville, KY
| | - Greg Hunt
- From the Division of Cardiovascular Medicine, Institute of Molecular Cardiology, University of Louisville, KY
| | - Qinghui Ou
- From the Division of Cardiovascular Medicine, Institute of Molecular Cardiology, University of Louisville, KY
| | - Heather Stowers
- From the Division of Cardiovascular Medicine, Institute of Molecular Cardiology, University of Louisville, KY
| | - Roberto Bolli
- From the Division of Cardiovascular Medicine, Institute of Molecular Cardiology, University of Louisville, KY.
| |
Collapse
|
33
|
Singh A, Singh A, Sen D. Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010-2015). Stem Cell Res Ther 2016; 7:82. [PMID: 27259550 PMCID: PMC4893234 DOI: 10.1186/s13287-016-0341-0] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells have been used for cardiovascular regenerative therapy for decades. These cells have been established as one of the potential therapeutic agents, following several tests in animal models and clinical trials. In the process, various sources of mesenchymal stem cells have been identified which help in cardiac regeneration by either revitalizing the cardiac stem cells or revascularizing the arteries and veins of the heart. Although mesenchymal cell therapy has achieved considerable admiration, some challenges still remain that need to be overcome in order to establish it as a successful technique. This in-depth review is an attempt to summarize the major sources of mesenchymal stem cells involved in myocardial regeneration, the significant mechanisms involved in the process with a focus on studies (human and animal) conducted in the last 6 years and the challenges that remain to be addressed.
Collapse
Affiliation(s)
- Aastha Singh
- School of Bio Sciences and Technology, VIT University, Vellore, India
| | - Abhishek Singh
- School of Bio Sciences and Technology, VIT University, Vellore, India
| | - Dwaipayan Sen
- School of Bio Sciences and Technology, VIT University, Vellore, India. .,Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), VIT University, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
34
|
Menasché P, Vanneaux V. Stem cells for the treatment of heart failure. Curr Res Transl Med 2016; 64:97-106. [PMID: 27316393 DOI: 10.1016/j.retram.2016.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 04/02/2016] [Accepted: 04/08/2016] [Indexed: 12/17/2022]
Abstract
Stem cell-based therapy is currently tested in several trials of chronic heart failure. The main question is to determine how its implementation could be extended to standard clinical practice. To answer this question, it is helpful to capitalize on the three main lessons drawn from the accumulated experience, both in the laboratory and in the clinics. Regarding the cell type, the best outcomes seem to be achieved by cells the phenotype of which closely matches that of the target tissue. This argues in favor of the use of cardiac-committed cells among which the pluripotent stem cell-derived cardiac progeny is particularly attractive. Regarding the mechanism of action, there has been a major paradigm shift whereby cells are no longer expected to structurally integrate within the recipient myocardium but rather to release biomolecules that foster endogenous repair processes. This implies to focus on early cell retention, rather than on sustained cell survival, so that the cells reside in the target tissue long enough and in sufficient amounts to deliver the factors underpinning their action. Biomaterials are here critical adjuncts to optimize this residency time. Furthermore, the paracrine hypothesis gives more flexibility for using allogeneic cells in that targeting an only transient engraftment requires to delay, and no longer to avoid, rejection, which, in turn, should simplify immunomodulation regimens. Regarding manufacturing, a broad dissemination of cardiac cell therapy requires the development of automated systems allowing to yield highly reproducible cell products. This further emphasizes the interest of allogeneic cells because of their suitability for industrially-relevant and cost-effective scale-up and quality control procedures. At the end, definite confirmation that the effects of cells can be recapitulated by the factors they secrete could lead to acellular therapies whereby factors alone (possibly clustered in extracellular vesicles) would be delivered to the patient. The production process of these cell-derived biologics would then be closer to that of a pharmaceutical compound, which could streamline the manufacturing and regulatory paths and thereby facilitate an expended clinical use.
Collapse
Affiliation(s)
- P Menasché
- Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, 20, rue Leblanc, 75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75010 Paris, France; INSERM U 970, 75010 Paris, France.
| | - V Vanneaux
- INSERM UMR1160, Institut Universitaire d'Hématologie, 75475 Paris cedex 10, France; Assistance publique-Hôpitaux de Paris, Unité de thérapie cellulaire et CIC de Biothérapies, Hôpital Saint-Louis, 75475 Paris cedex 10, France
| |
Collapse
|
35
|
Cui J, Zhang F, Wang Y, Liu J, Ming X, Hou J, Lv B, Fang S, Yu B. Macrophage migration inhibitory factor promotes cardiac stem cell proliferation and endothelial differentiation through the activation of the PI3K/Akt/mTOR and AMPK pathways. Int J Mol Med 2016; 37:1299-309. [PMID: 27035848 PMCID: PMC4829139 DOI: 10.3892/ijmm.2016.2542] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 03/16/2016] [Indexed: 01/05/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) has pleiotropic immune functions in a number of inflammatory diseases. Recent evidence from expression and functional studies has indicated that MIF is involved in various aspects of cardiovascular disease. In this study, we aimed to determine whether MIF supports in vitro c-kit+CD45− cardiac stem cell (CSC) survival, proliferation and differentiation into endothelial cells, as well as the possible mechanisms involved. We observed MIF receptor (CD74) expression in mouse CSCs (mCSCs) using PCR and immunofluorescence staining, and MIF secretion by mCSCs using PCR and ELISA in vitro. Increasing amounts of exogenous MIF did not affect CD74 expression, but promoted mCSC survival, proliferation and endothelial differentiation. By contrast, treatment with an MIF inhibitor (ISO-1) or siRNA targeting CD74 (CD74-siRNA) suppressed the biological changes induced by MIF in the mCSCs. Increasing amounts of MIF increased the phosphorylation of Akt and mammalian target of rapamycin (mTOR), which are known to support cell survival, proliferation and differentiation. These effects of MIF on the mCSCs were abolished by LY294002 [a phosphoinositide 3-kinase (PI3K) inhibitor] and MK-2206 (an Akt inhibitor). Moreover, adenosine monophosphate-activated protein kinase (AMPK) phosphorylation increased following treatment with MIF. The AMPK inhibitor, compound C, partly blocked the pro-proliferative effects of MIF on the mCSCs. In conclusion, our results suggest that MIF promotes mCSC survival, proliferation and endothelial differentiation through the activation of the PI3K/Akt/mTOR and AMPK signaling pathways. Thus, MIF may prove to be a potential therapeutic factor in the treatment of heart failure and myocardial infarction by activating CSCs.
Collapse
Affiliation(s)
- Jinjin Cui
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Fengyun Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yongshun Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Jingjin Liu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xing Ming
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Jingbo Hou
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Bo Lv
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Shaohong Fang
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang 150081, P.R. China
| | - Bo Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
36
|
Harnessing the secretome of cardiac stem cells as therapy for ischemic heart disease. Biochem Pharmacol 2016; 113:1-11. [PMID: 26903387 DOI: 10.1016/j.bcp.2016.02.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/18/2016] [Indexed: 12/22/2022]
Abstract
Adult stem cells continue to promise opportunities to repair damaged cardiac tissue. However, precisely how adult stem cells accomplish cardiac repair, especially after ischemic damage, remains controversial. It has been postulated that the clinical benefit of adult stem cells for cardiovascular disease results from the release of cytokines and growth factors by the transplanted cells. Studies in animal models of myocardial infarction have reported that such paracrine factors released from transplanted adult stem cells contribute to improved cardiac function by several processes. These include promoting neovascularization of damaged tissue, reducing inflammation, reducing fibrosis and scar formation, as well as protecting cardiomyocytes from apoptosis. In addition, these factors might also stimulate endogenous repair by activating cardiac stem cells. Interestingly, stem cells discovered to be resident in the heart appear to be functionally superior to extra-cardiac adult stem cells when transplanted for cardiac repair and regeneration. In this review, we discuss the therapeutic potential of cardiac stem cells and how the proteins secreted from these cells might be harnessed to promote repair and regeneration of damaged cardiac tissue. We also highlight how recent controversies about the efficacy of adult stem cells in clinical trials of ischemic heart disease have not dampened enthusiasm for the application of cardiac stem cells and their paracrine factors for cardiac repair: the latter have proved superior to the mesenchymal stem cells used in most clinical trials in the past, some of which appear to have been conducted with sub-optimal rigor.
Collapse
|
37
|
Zwetsloot PP, Végh AMD, Jansen of Lorkeers SJ, van Hout GPJ, Currie GL, Sena ES, Gremmels H, Buikema JW, Goumans MJ, Macleod MR, Doevendans PA, Chamuleau SAJ, Sluijter JPG. Cardiac Stem Cell Treatment in Myocardial Infarction: A Systematic Review and Meta-Analysis of Preclinical Studies. Circ Res 2016; 118:1223-32. [PMID: 26888636 DOI: 10.1161/circresaha.115.307676] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/17/2016] [Indexed: 12/09/2022]
Abstract
RATIONALE Cardiac stem cells (CSC) therapy has been clinically introduced for cardiac repair after myocardial infarction (MI). To date, there has been no systematic overview and meta-analysis of studies using CSC therapy for MI. OBJECTIVE Here, we used meta-analysis to establish the overall effect of CSCs in preclinical studies and assessed translational differences between and within large and small animals in the CSC therapy field. In addition, we explored the effect of CSC type and other clinically relevant parameters on functional outcome to better predict and design future (pre)clinical studies using CSCs for MI. METHODS AND RESULTS A systematic search was performed, yielding 80 studies. We determined the overall effect of CSC therapy on left ventricular ejection fraction and performed meta-regression to investigate clinically relevant parameters. We also assessed the quality of included studies and possible bias. The overall effect observed in CSC-treated animals was 10.7% (95% confidence interval 9.4-12.1; P<0.001) improvement in ejection fraction compared with placebo controls. Interestingly, CSC therapy had a greater effect in small animals compared with large animals (P<0.001). Meta-regression indicated that cell type was a significant predictor for ejection fraction improvement in small animals. Minor publication bias was observed in small animal studies. CONCLUSIONS CSC treatment resulted in significant improvement of ejection fraction in preclinical animal models of MI compared with placebo. There was a reduction in the magnitude of effect in large compared with small animal models. Although different CSC types have overlapping culture characteristics, we observed a significant difference in their effect in post-MI animal studies.
Collapse
Affiliation(s)
- Peter Paul Zwetsloot
- From the Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, The Netherlands (P.P.Z., A.M.D.V., S.J.J.o.L., G.P.J.v.H., J.W.B., P.A.D., S.A.J.C., J.P.G.S.); Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands (A.M.D.V., M.-J.G.); Department of Clinical Neurosciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom (G.L.C., E.S.S., M.R.M.); Department of Nephrology & Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands (H.G.); ICIN, Netherlands Heart Institute, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.); and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.)
| | - Anna Maria Dorothea Végh
- From the Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, The Netherlands (P.P.Z., A.M.D.V., S.J.J.o.L., G.P.J.v.H., J.W.B., P.A.D., S.A.J.C., J.P.G.S.); Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands (A.M.D.V., M.-J.G.); Department of Clinical Neurosciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom (G.L.C., E.S.S., M.R.M.); Department of Nephrology & Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands (H.G.); ICIN, Netherlands Heart Institute, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.); and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.)
| | - Sanne Johanna Jansen of Lorkeers
- From the Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, The Netherlands (P.P.Z., A.M.D.V., S.J.J.o.L., G.P.J.v.H., J.W.B., P.A.D., S.A.J.C., J.P.G.S.); Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands (A.M.D.V., M.-J.G.); Department of Clinical Neurosciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom (G.L.C., E.S.S., M.R.M.); Department of Nephrology & Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands (H.G.); ICIN, Netherlands Heart Institute, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.); and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.)
| | - Gerardus P J van Hout
- From the Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, The Netherlands (P.P.Z., A.M.D.V., S.J.J.o.L., G.P.J.v.H., J.W.B., P.A.D., S.A.J.C., J.P.G.S.); Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands (A.M.D.V., M.-J.G.); Department of Clinical Neurosciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom (G.L.C., E.S.S., M.R.M.); Department of Nephrology & Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands (H.G.); ICIN, Netherlands Heart Institute, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.); and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.)
| | - Gillian L Currie
- From the Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, The Netherlands (P.P.Z., A.M.D.V., S.J.J.o.L., G.P.J.v.H., J.W.B., P.A.D., S.A.J.C., J.P.G.S.); Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands (A.M.D.V., M.-J.G.); Department of Clinical Neurosciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom (G.L.C., E.S.S., M.R.M.); Department of Nephrology & Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands (H.G.); ICIN, Netherlands Heart Institute, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.); and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.)
| | - Emily S Sena
- From the Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, The Netherlands (P.P.Z., A.M.D.V., S.J.J.o.L., G.P.J.v.H., J.W.B., P.A.D., S.A.J.C., J.P.G.S.); Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands (A.M.D.V., M.-J.G.); Department of Clinical Neurosciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom (G.L.C., E.S.S., M.R.M.); Department of Nephrology & Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands (H.G.); ICIN, Netherlands Heart Institute, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.); and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.)
| | - Hendrik Gremmels
- From the Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, The Netherlands (P.P.Z., A.M.D.V., S.J.J.o.L., G.P.J.v.H., J.W.B., P.A.D., S.A.J.C., J.P.G.S.); Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands (A.M.D.V., M.-J.G.); Department of Clinical Neurosciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom (G.L.C., E.S.S., M.R.M.); Department of Nephrology & Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands (H.G.); ICIN, Netherlands Heart Institute, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.); and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.)
| | - Jan Willem Buikema
- From the Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, The Netherlands (P.P.Z., A.M.D.V., S.J.J.o.L., G.P.J.v.H., J.W.B., P.A.D., S.A.J.C., J.P.G.S.); Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands (A.M.D.V., M.-J.G.); Department of Clinical Neurosciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom (G.L.C., E.S.S., M.R.M.); Department of Nephrology & Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands (H.G.); ICIN, Netherlands Heart Institute, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.); and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.)
| | - Marie-Jose Goumans
- From the Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, The Netherlands (P.P.Z., A.M.D.V., S.J.J.o.L., G.P.J.v.H., J.W.B., P.A.D., S.A.J.C., J.P.G.S.); Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands (A.M.D.V., M.-J.G.); Department of Clinical Neurosciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom (G.L.C., E.S.S., M.R.M.); Department of Nephrology & Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands (H.G.); ICIN, Netherlands Heart Institute, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.); and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.)
| | - Malcolm R Macleod
- From the Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, The Netherlands (P.P.Z., A.M.D.V., S.J.J.o.L., G.P.J.v.H., J.W.B., P.A.D., S.A.J.C., J.P.G.S.); Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands (A.M.D.V., M.-J.G.); Department of Clinical Neurosciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom (G.L.C., E.S.S., M.R.M.); Department of Nephrology & Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands (H.G.); ICIN, Netherlands Heart Institute, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.); and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.)
| | - Pieter A Doevendans
- From the Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, The Netherlands (P.P.Z., A.M.D.V., S.J.J.o.L., G.P.J.v.H., J.W.B., P.A.D., S.A.J.C., J.P.G.S.); Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands (A.M.D.V., M.-J.G.); Department of Clinical Neurosciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom (G.L.C., E.S.S., M.R.M.); Department of Nephrology & Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands (H.G.); ICIN, Netherlands Heart Institute, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.); and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.)
| | - Steven A J Chamuleau
- From the Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, The Netherlands (P.P.Z., A.M.D.V., S.J.J.o.L., G.P.J.v.H., J.W.B., P.A.D., S.A.J.C., J.P.G.S.); Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands (A.M.D.V., M.-J.G.); Department of Clinical Neurosciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom (G.L.C., E.S.S., M.R.M.); Department of Nephrology & Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands (H.G.); ICIN, Netherlands Heart Institute, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.); and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.)
| | - Joost P G Sluijter
- From the Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, The Netherlands (P.P.Z., A.M.D.V., S.J.J.o.L., G.P.J.v.H., J.W.B., P.A.D., S.A.J.C., J.P.G.S.); Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands (A.M.D.V., M.-J.G.); Department of Clinical Neurosciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom (G.L.C., E.S.S., M.R.M.); Department of Nephrology & Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands (H.G.); ICIN, Netherlands Heart Institute, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.); and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands (P.A.D., S.A.J.C., J.P.G.S.).
| |
Collapse
|
38
|
Karantalis V, Suncion-Loescher VY, Bagno L, Golpanian S, Wolf A, Sanina C, Premer C, Kanelidis AJ, McCall F, Wang B, Balkan W, Rodriguez J, Rosado M, Morales A, Hatzistergos K, Natsumeda M, Margitich I, Schulman IH, Gomes SA, Mushtaq M, DiFede DL, Fishman JE, Pattany P, Zambrano JP, Heldman AW, Hare JM. Synergistic Effects of Combined Cell Therapy for Chronic Ischemic Cardiomyopathy. J Am Coll Cardiol 2016; 66:1990-1999. [PMID: 26516002 DOI: 10.1016/j.jacc.2015.08.879] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/12/2015] [Accepted: 08/17/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND Both bone marrow-derived mesenchymal stem cells (MSCs) and c-kit(+) cardiac stem cells (CSCs) improve left ventricular remodeling in porcine models and clinical trials. Using xenogeneic (human) cells in immunosuppressed animals with acute ischemic heart disease, we previously showed that these 2 cell types act synergistically. OBJECTIVES To more accurately model clinical applications for heart failure, this study tested whether the combination of autologous MSCs and CSCs produce greater improvement in cardiac performance than MSCs alone in a nonimmunosuppressed porcine model of chronic ischemic cardiomyopathy. METHODS Three months after ischemia/reperfusion injury, Göttingen swine received transendocardial injections with MSCs alone (n = 6) or in combination with cardiac-derived CSCs (n = 8), or placebo (vehicle; n = 6). Cardiac functional and anatomic parameters were assessed using cardiac magnetic resonance at baseline and before and after therapy. RESULTS Both groups of cell-treated animals exhibited significantly reduced scar size (MSCs -44.1 ± 6.8%; CSC/MSC -37.2 ± 5.4%; placebo -12.9 ± 4.2%; p < 0.0001), increased viable tissue, and improved wall motion relative to placebo 3 months post-injection. Ejection fraction (EF) improved (MSCs 2.9 ± 1.6 EF units; CSC/MSC 6.9 ± 2.8 EF units; placebo 2.5 ± 1.6 EF units; p = 0.0009), as did stroke volume, cardiac output, and diastolic strain only in the combination-treated animals, which also exhibited increased cardiomyocyte mitotic activity. CONCLUSIONS These findings illustrate that interactions between MSCs and CSCs enhance cardiac performance more than MSCs alone, establish the safety of autologous cell combination strategies, and support the development of second-generation cell therapeutic products.
Collapse
Affiliation(s)
- Vasileios Karantalis
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Viky Y Suncion-Loescher
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Luiza Bagno
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Samuel Golpanian
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Ariel Wolf
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Cristina Sanina
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Courtney Premer
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Anthony J Kanelidis
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Frederic McCall
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Bo Wang
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Wayne Balkan
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Jose Rodriguez
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Marcos Rosado
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Azorides Morales
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida
| | - Konstantinos Hatzistergos
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Makoto Natsumeda
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Irene Margitich
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Ivonne Hernandez Schulman
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Samirah A Gomes
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Muzammil Mushtaq
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Darcy L DiFede
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Joel E Fishman
- Department of Radiology, University of Miami Miller School of Medicine, Miami, Florida
| | - Pradip Pattany
- Department of Radiology, University of Miami Miller School of Medicine, Miami, Florida
| | | | - Alan W Heldman
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Joshua M Hare
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida.
| |
Collapse
|
39
|
Tang XL, Li Q, Rokosh G, Sanganalmath SK, Chen N, Ou Q, Stowers H, Hunt G, Bolli R. Long-Term Outcome of Administration of c-kit(POS) Cardiac Progenitor Cells After Acute Myocardial Infarction: Transplanted Cells Do not Become Cardiomyocytes, but Structural and Functional Improvement and Proliferation of Endogenous Cells Persist for at Least One Year. Circ Res 2016; 118:1091-105. [PMID: 26838790 DOI: 10.1161/circresaha.115.307647] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/02/2016] [Indexed: 12/16/2022]
Abstract
RATIONALE Cardiac progenitor cells (CPCs) improve left ventricular remodeling and function after acute or chronic myocardial infarction. However, the long-term (>5 weeks) effects, potential tumorigenicity, and fate of transplanted CPCs are unknown. OBJECTIVE To assess the outcome of CPC therapy at 1 year. METHODS AND RESULTS Female rats underwent a 90-minute coronary occlusion; 4 hours after reperfusion, they received intracoronarily vehicle or 1 million male, syngeneic CPCs. One year later, CPC-treated rats exhibited smaller scars and more viable myocardium in the risk region, along with improved left ventricular remodeling and regional and global left ventricular function. No tumors were observed. Some transplanted (Y-chromosome(POS)) CPCs (or their progeny) persisted and continued to proliferate, but they failed to acquire a mature cardiomyocyte phenotype and were too few (4-8% of nuclei) to account for the benefits of CPC therapy. Surprisingly, CPC transplantation triggered a prolonged proliferative response of endogenous cells, resulting in increased formation of endothelial cells and Y-chromosome(NEG) CPCs for 12 months and increased formation, for at least 7 months, of small cells that expressed cardiomyocytic proteins (α-sarcomeric actin) but did not have a mature cardiomyocyte phenotype. CONCLUSIONS The beneficial effects of CPCs on left ventricular remodeling and dysfunction are sustained for at least 1 year and thus are likely to be permanent. Because transplanted CPCs do not differentiate into mature myocytes, their major mechanism of action must involve paracrine actions. These paracrine mechanisms could be very prolonged because some CPCs engraft, proliferate, and persist at 1 year. This is the first report that transplantation of any cell type in the heart induces a proliferative response that lasts at least 1 year. The results strongly support the safety and clinical utility of CPC therapy.
Collapse
Affiliation(s)
- Xian-Liang Tang
- From the Division of Cardiovascular Medicine, Institute of Molecular Cardiology, University of Louisville, KY
| | - Qianhong Li
- From the Division of Cardiovascular Medicine, Institute of Molecular Cardiology, University of Louisville, KY
| | - Gregg Rokosh
- From the Division of Cardiovascular Medicine, Institute of Molecular Cardiology, University of Louisville, KY
| | - Santosh K Sanganalmath
- From the Division of Cardiovascular Medicine, Institute of Molecular Cardiology, University of Louisville, KY
| | - Ning Chen
- From the Division of Cardiovascular Medicine, Institute of Molecular Cardiology, University of Louisville, KY
| | - Qinghui Ou
- From the Division of Cardiovascular Medicine, Institute of Molecular Cardiology, University of Louisville, KY
| | - Heather Stowers
- From the Division of Cardiovascular Medicine, Institute of Molecular Cardiology, University of Louisville, KY
| | - Greg Hunt
- From the Division of Cardiovascular Medicine, Institute of Molecular Cardiology, University of Louisville, KY
| | - Roberto Bolli
- From the Division of Cardiovascular Medicine, Institute of Molecular Cardiology, University of Louisville, KY.
| |
Collapse
|
40
|
Joanne P, Kitsara M, Boitard SE, Naemetalla H, Vanneaux V, Pernot M, Larghero J, Forest P, Chen Y, Menasché P, Agbulut O. Nanofibrous clinical-grade collagen scaffolds seeded with human cardiomyocytes induces cardiac remodeling in dilated cardiomyopathy. Biomaterials 2016; 80:157-168. [DOI: 10.1016/j.biomaterials.2015.11.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 11/29/2015] [Indexed: 12/13/2022]
|
41
|
Kervadec A, Bellamy V, El Harane N, Arakélian L, Vanneaux V, Cacciapuoti I, Nemetalla H, Périer MC, Toeg HD, Richart A, Lemitre M, Yin M, Loyer X, Larghero J, Hagège A, Ruel M, Boulanger CM, Silvestre JS, Menasché P, Renault NKE. Cardiovascular progenitor-derived extracellular vesicles recapitulate the beneficial effects of their parent cells in the treatment of chronic heart failure. J Heart Lung Transplant 2016; 35:795-807. [PMID: 27041495 DOI: 10.1016/j.healun.2016.01.013] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 12/23/2015] [Accepted: 01/10/2016] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Cell-based therapies are being explored as a therapeutic option for patients with chronic heart failure following myocardial infarction. Extracellular vesicles (EV), including exosomes and microparticles, secreted by transplanted cells may orchestrate their paracrine therapeutic effects. We assessed whether post-infarction administration of EV released by human embryonic stem cell-derived cardiovascular progenitors (hESC-Pg) can provide equivalent benefits to administered hESC-Pg and whether hESC-Pg and EV treatments activate similar endogenous pathways. METHODS Mice underwent surgical occlusion of their left coronary arteries. After 2-3 weeks, 95 mice included in the study were treated with hESC-Pg, EV, or Minimal Essential Medium Alpha Medium (alpha-MEM; vehicle control) delivered by percutaneous injections under echocardiographic guidance into the peri-infarct myocardium. functional and histologic end-points were blindly assessed 6 weeks later, and hearts were processed for gene profiling. Genes differentially expressed between control hearts and hESC-Pg-treated and EV-treated hearts were clustered into functionally relevant pathways. RESULTS At 6 weeks after hESC-Pg administration, treated mice had significantly reduced left ventricular end-systolic (-4.20 ± 0.96 µl or -7.5%, p = 0.0007) and end-diastolic (-4.48 ± 1.47 µl or -4.4%, p = 0.009) volumes compared with baseline values despite the absence of any transplanted hESC-Pg or human embryonic stem cell-derived cardiomyocytes in the treated mouse hearts. Equal benefits were seen with the injection of hESC-Pg-derived EV, whereas animals injected with alpha-MEM (vehicle control) did not improve significantly. Histologic examination suggested a slight reduction in infarct size in hESC-Pg-treated animals and EV-treated animals compared with alpha-MEM-treated control animals. In the hESC-Pg-treated and EV-treated groups, heart gene profiling identified 927 genes that were similarly upregulated compared with the control group. Among the 49 enriched pathways associated with these up-regulated genes that could be related to cardiac function or regeneration, 78% were predicted to improve cardiac function through increased cell survival and/or proliferation or DNA repair as well as pathways related to decreased fibrosis and heart failure. CONCLUSIONS In this post-infarct heart failure model, either hESC-Pg or their secreted EV enhance recovery of cardiac function and similarly affect cardiac gene expression patterns that could be related to this recovery. Although the mechanisms by which EV improve cardiac function remain to be determined, these results support the idea that a paracrine mechanism is sufficient to effect functional recovery in cell-based therapies for post-infarction-related chronic heart failure.
Collapse
Affiliation(s)
- Anaïs Kervadec
- INSERM U970, Hôpital Européen Georges Pompidou, Paris Centre de Recherche Cardiovasculaire, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR-S970, Paris, France
| | - Valérie Bellamy
- INSERM U970, Hôpital Européen Georges Pompidou, Paris Centre de Recherche Cardiovasculaire, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR-S970, Paris, France
| | - Nadia El Harane
- INSERM U970, Hôpital Européen Georges Pompidou, Paris Centre de Recherche Cardiovasculaire, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR-S970, Paris, France
| | - Lousineh Arakélian
- Cell Therapy Unit, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France; INSERM, CIC de Biothérapies (CBT-501) and U1160, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France
| | - Valérie Vanneaux
- Cell Therapy Unit, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France; INSERM, CIC de Biothérapies (CBT-501) and U1160, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France
| | - Isabelle Cacciapuoti
- Cell Therapy Unit, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France; INSERM, CIC de Biothérapies (CBT-501) and U1160, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France
| | - Hany Nemetalla
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Department of Cardiology, Paris, France
| | - Marie-Cécile Périer
- INSERM U970, Hôpital Européen Georges Pompidou, Paris Centre de Recherche Cardiovasculaire, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR-S970, Paris, France
| | - Hadi D Toeg
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Adèle Richart
- INSERM U970, Hôpital Européen Georges Pompidou, Paris Centre de Recherche Cardiovasculaire, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR-S970, Paris, France
| | - Mathilde Lemitre
- INSERM U970, Hôpital Européen Georges Pompidou, Paris Centre de Recherche Cardiovasculaire, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR-S970, Paris, France
| | - Min Yin
- INSERM U970, Hôpital Européen Georges Pompidou, Paris Centre de Recherche Cardiovasculaire, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR-S970, Paris, France; University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Xavier Loyer
- INSERM U970, Hôpital Européen Georges Pompidou, Paris Centre de Recherche Cardiovasculaire, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR-S970, Paris, France
| | - Jérôme Larghero
- Cell Therapy Unit, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France; INSERM, CIC de Biothérapies (CBT-501) and U1160, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France; University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Albert Hagège
- INSERM U970, Hôpital Européen Georges Pompidou, Paris Centre de Recherche Cardiovasculaire, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR-S970, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Department of Cardiology, Paris, France
| | - Marc Ruel
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Chantal M Boulanger
- INSERM U970, Hôpital Européen Georges Pompidou, Paris Centre de Recherche Cardiovasculaire, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR-S970, Paris, France
| | - Jean-Sébastien Silvestre
- INSERM U970, Hôpital Européen Georges Pompidou, Paris Centre de Recherche Cardiovasculaire, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR-S970, Paris, France
| | - Philippe Menasché
- INSERM U970, Hôpital Européen Georges Pompidou, Paris Centre de Recherche Cardiovasculaire, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR-S970, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Department of Cardiovascular Surgery, Paris, France.
| | - Nisa K E Renault
- INSERM U970, Hôpital Européen Georges Pompidou, Paris Centre de Recherche Cardiovasculaire, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR-S970, Paris, France
| |
Collapse
|
42
|
|
43
|
How to Improve the Survival of Transplanted Mesenchymal Stem Cell in Ischemic Heart? Stem Cells Int 2015; 2016:9682757. [PMID: 26681958 PMCID: PMC4670674 DOI: 10.1155/2016/9682757] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/18/2015] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cell (MSC) is an intensely studied stem cell type applied for cardiac repair. For decades, the preclinical researches on animal model and clinical trials have suggested that MSC transplantation exerts therapeutic effect on ischemic heart disease. However, there remain major limitations to be overcome, one of which is the very low survival rate after transplantation in heart tissue. Various strategies have been tried to improve the MSC survival, and many of them showed promising results. In this review, we analyzed the studies in recent years to summarize the methods, effects, and mechanisms of the new strategies to address this question.
Collapse
|
44
|
The Evolution of the Stem Cell Theory for Heart Failure. EBioMedicine 2015; 2:1871-9. [PMID: 26844266 PMCID: PMC4703721 DOI: 10.1016/j.ebiom.2015.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 10/16/2015] [Accepted: 11/04/2015] [Indexed: 12/22/2022] Open
Abstract
Various stem cell-based approaches for cardiac repair have achieved encouraging results in animal experiments, often leading to their rapid proceeding to clinical testing. However, freewheeling evolutionary developments of the stem cell theory might lead to dystopian scenarios where heterogeneous sources of therapeutic cells could promote mixed clinical outcomes in un-stratified patient populations. This review focuses on the lessons that should be learnt from the first generation of stem cell-based strategies and emphasizes the absolute requirement to better understand the basic mechanisms of stem cell biology and cardiogenesis. We will also discuss about the unexpected “big bang” in the stem cell theory, “blasting” the therapeutic cells to their unchallenged ability to release paracrine factors such as extracellular membrane vesicles. Paradoxically, the natural evolution of the stem cell theory for cardiac regeneration may end with the development of cell-free strategies with multiple cellular targets including cardiomyocytes but also other infiltrating or resident cardiac cells. Varied sources of therapeutic cells and low repair ability of the failing heart contribute to mixed results in clinical trials. Consensus is still lacking concerning the appropriate type of therapeutic stem cells. A clear understanding of cardiac development and adult cardiogenesis might increase the efficiency of regenerative therapies. Delivery of stem cell-derived paracrine factor alone to the damaged heart may be sufficient to activate repair mechanisms.
Collapse
|
45
|
Mohsin S, Troupes CD, Starosta T, Sharp TE, Agra EJ, Smith S, Duran JM, Zalavadia N, Zhou Y, Kubo H, Berretta RM, Houser SR. Unique Features of Cortical Bone Stem Cells Associated With Repair of the Injured Heart. Circ Res 2015; 117:1024-33. [PMID: 26472818 DOI: 10.1161/circresaha.115.307362] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/15/2015] [Indexed: 12/26/2022]
Abstract
RATIONALE Adoptive transfer of multiple stem cell types has only had modest effects on the structure and function of failing human hearts. Despite increasing the use of stem cell therapies, consensus on the optimal stem cell type is not adequately defined. The modest cardiac repair and functional improvement in patients with cardiac disease warrants identification of a novel stem cell population that possesses properties that induce a more substantial improvement in patients with heart failure. OBJECTIVE To characterize and compare surface marker expression, proliferation, survival, migration, and differentiation capacity of cortical bone stem cells (CBSCs) relative to mesenchymal stem cells (MSCs) and cardiac-derived stem cells (CDCs), which have already been tested in early stage clinical trials. METHODS AND RESULTS CBSCs, MSCs, and CDCs were isolated from Gottingen miniswine or transgenic C57/BL6 mice expressing enhanced green fluorescent protein and were expanded in vitro. CBSCs possess a unique surface marker profile, including high expression of CD61 and integrin β4 versus CDCs and MSCs. In addition, CBSCs were morphologically distinct and showed enhanced proliferation capacity versus CDCs and MSCs. CBSCs had significantly better survival after exposure to an apoptotic stimuli when compared with MSCs. ATP and histamine induced a transient increase of intracellular Ca(2+) concentration in CBSCs versus CDCs and MSCs, which either respond to ATP or histamine only further documenting the differences between the 3 cell types. CONCLUSIONS CBSCs are unique from CDCs and MSCs and possess enhanced proliferative, survival, and lineage commitment capacity that could account for the enhanced protective effects after cardiac injury.
Collapse
Affiliation(s)
- Sadia Mohsin
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Constantine D Troupes
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Timothy Starosta
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Thomas E Sharp
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Elorm J Agra
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Shavonn Smith
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Jason M Duran
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Neil Zalavadia
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Yan Zhou
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Hajime Kubo
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Remus M Berretta
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Steven R Houser
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.).
| |
Collapse
|
46
|
Weil BR, Suzuki G, Leiker MM, Fallavollita JA, Canty JM. Comparative Efficacy of Intracoronary Allogeneic Mesenchymal Stem Cells and Cardiosphere-Derived Cells in Swine with Hibernating Myocardium. Circ Res 2015; 117:634-44. [PMID: 26271689 DOI: 10.1161/circresaha.115.306850] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/12/2015] [Indexed: 01/29/2023]
Abstract
RATIONALE Allogeneic bone marrow-derived mesenchymal stem cells (MSCs) and cardiosphere-derived cells (CDCs) have each entered clinical trials, but a direct comparison of these cell types has not been performed in a large animal model of hibernating myocardium. OBJECTIVE Using completely blinded methodology, we compared the efficacy of global intracoronary allogeneic MSCs (icMSCs, ≈35×10(6)) and CDCs (icCDCs, ≈35×10(6)) versus vehicle in cyclosporine-immunosuppressed swine with a chronic left anterior descending coronary artery stenosis (n=26). METHODS AND RESULTS Studies began 3 months after instrumentation when wall thickening was reduced (left anterior descending coronary artery % wall thickening [mean±SD], 38±11% versus 83±26% in remote; P<0.01) and similar among groups. Four weeks after treatment, left anterior descending coronary artery % wall thickening increased similarly after icCDCs and icMSCs, whereas it remained depressed in vehicle-treated controls (icMSCs, 51±13%; icCDCs, 51±17%; vehicle, 34±3%, treatments P<0.05 versus vehicle). There was no change in myocardial perfusion. Both icMSCs and icCDCs increased left anterior descending coronary artery myocyte nuclear density (icMSCs, 1601±279 nuclei/mm(2); icCDCs, 1569±294 nuclei/mm(2); vehicle, 973±181 nuclei/mm(2); treatments P<0.05 versus vehicle) and reduced myocyte diameter (icMSCs, 16.4±1.5 μm; icCDCs, 16.8±1.2 μm; vehicle, 20.2±3.7 μm; treatments P<0.05 versus vehicle) to the same extent. Similar changes in myocyte nuclear density and diameter were observed in the remote region of cell-treated animals. Cell fate analysis using Y-chromosome fluorescent in situ hybridization demonstrated rare cells from sex-mismatched donors. CONCLUSIONS Allogeneic icMSCs and icCDCs exhibit comparable therapeutic efficacy in a large animal model of hibernating myocardium. Both cell types produced equivalent increases in regional function and stimulated myocyte regeneration in ischemic and remote myocardium. The activation of endogenous myocyte proliferation and regression of myocyte cellular hypertrophy support a common mechanism of cardiac repair.
Collapse
Affiliation(s)
- Brian R Weil
- From the Departments of Medicine, Physiology and Biophysics and Biomedical Engineering, and the Clinical and Translational Research Center, University at Buffalo and the VA WNY Health Care System, NY
| | - Gen Suzuki
- From the Departments of Medicine, Physiology and Biophysics and Biomedical Engineering, and the Clinical and Translational Research Center, University at Buffalo and the VA WNY Health Care System, NY
| | - Merced M Leiker
- From the Departments of Medicine, Physiology and Biophysics and Biomedical Engineering, and the Clinical and Translational Research Center, University at Buffalo and the VA WNY Health Care System, NY
| | - James A Fallavollita
- From the Departments of Medicine, Physiology and Biophysics and Biomedical Engineering, and the Clinical and Translational Research Center, University at Buffalo and the VA WNY Health Care System, NY
| | - John M Canty
- From the Departments of Medicine, Physiology and Biophysics and Biomedical Engineering, and the Clinical and Translational Research Center, University at Buffalo and the VA WNY Health Care System, NY.
| |
Collapse
|
47
|
Zhang Y, Sivakumaran P, Newcomb AE, Hernandez D, Harris N, Khanabdali R, Liu GS, Kelly DJ, Pébay A, Hewitt AW, Boyle A, Harvey R, Morrison WA, Elliott DA, Dusting GJ, Lim SY. Cardiac Repair With a Novel Population of Mesenchymal Stem Cells Resident in the Human Heart. Stem Cells 2015; 33:3100-13. [PMID: 26184084 DOI: 10.1002/stem.2101] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 05/26/2015] [Accepted: 06/14/2015] [Indexed: 01/20/2023]
Abstract
Cardiac resident stem cells (CRSCs) hold much promise to treat heart disease but this remains a controversial field. Here, we describe a novel population of CRSCs, which are positive for W8B2 antigen and were obtained from adult human atrial appendages. W8B2(+) CRSCs exhibit a spindle-shaped morphology, are clonogenic and capable of self-renewal. W8B2(+) CRSCs show high expression of mesenchymal but not hematopoietic nor endothelial markers. W8B2(+) CRSCs expressed GATA4, HAND2, and TBX5, but not C-KIT, SCA-1, NKX2.5, PDGFRα, ISL1, or WT1. W8B2(+) CRSCs can differentiate into cardiovascular lineages and secrete a range of cytokines implicated in angiogenesis, chemotaxis, inflammation, extracellular matrix remodeling, cell growth, and survival. In vitro, conditioned medium collected from W8B2(+) CRSCs displayed prosurvival, proangiogenic, and promigratory effects on endothelial cells, superior to that of other adult stem cells tested, and additionally promoted survival and proliferation of neonatal rat cardiomyocytes. Intramyocardial transplantation of human W8B2(+) CRSCs into immunocompromised rats 1 week after myocardial infarction markedly improved cardiac function (∼40% improvement in ejection fraction) and reduced fibrotic scar tissue 4 weeks after infarction. Hearts treated with W8B2(+) CRSCs showed less adverse remodeling of the left ventricle, a greater number of proliferating cardiomyocytes (Ki67(+) cTnT(+) cells) in the remote region, higher myocardial vascular density, and greater infiltration of CD163(+) cells (a marker for M2 macrophages) into the border zone and scar regions. In summary, W8B2(+) CRSCs are distinct from currently known CRSCs found in human hearts, and as such may be an ideal cell source to repair myocardial damage after infarction.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Andrew E Newcomb
- Department of Surgery, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia.,Department of Cardiothoracic Surgery, St. Vincent's Hospital, Melbourne, Victoria, Australia.,Vascular and Cardiac Surgery, The Cardiovascular Research Centre (CvRC), Australian Catholic University, Fitzroy, Victoria, Australia
| | - Damián Hernandez
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia.,O'Brien Institute Department, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Nicole Harris
- O'Brien Institute Department, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Ramin Khanabdali
- Department of Surgery, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia.,O'Brien Institute Department, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Guei-Sheung Liu
- Department of Ophthalmology, University of Melbourne, Melbourne, Victoria, Australia.,Centre for Eye Research Australia & Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Darren J Kelly
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Alice Pébay
- Department of Ophthalmology, University of Melbourne, Melbourne, Victoria, Australia.,Centre for Eye Research Australia & Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Alex W Hewitt
- Department of Ophthalmology, University of Melbourne, Melbourne, Victoria, Australia.,Centre for Eye Research Australia & Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Andrew Boyle
- School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - Richard Harvey
- Developmental and Stem Cell Biology, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Wayne A Morrison
- Department of Surgery, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia.,O'Brien Institute Department, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,AORTEC, Faculty of Health Sciences, Australian Catholic University, Fitzroy, Victoria, Australia
| | - David A Elliott
- Cardiac Development, Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia
| | - Gregory J Dusting
- Department of Surgery, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia.,Department of Ophthalmology, University of Melbourne, Melbourne, Victoria, Australia.,O'Brien Institute Department, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,Centre for Eye Research Australia & Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Shiang Y Lim
- Department of Surgery, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia.,O'Brien Institute Department, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| |
Collapse
|
48
|
Hatzistergos KE, Paulino EC, Dulce RA, Takeuchi LM, Bellio MA, Kulandavelu S, Cao Y, Balkan W, Kanashiro-Takeuchi RM, Hare JM. S-Nitrosoglutathione Reductase Deficiency Enhances the Proliferative Expansion of Adult Heart Progenitors and Myocytes Post Myocardial Infarction. J Am Heart Assoc 2015; 4:JAHA.115.001974. [PMID: 26178404 PMCID: PMC4608081 DOI: 10.1161/jaha.115.001974] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background Mammalian heart regenerative activity is lost before adulthood but increases after cardiac injury. Cardiac repair mechanisms, which involve both endogenous cardiac stem cells (CSCs) and cardiomyocyte cell-cycle reentry, are inadequate to achieve full recovery after myocardial infarction (MI). Mice deficient in S-nitrosoglutathione reductase (GSNOR−⁄−), an enzyme regulating S-nitrosothiol turnover, have preserved cardiac function after MI. Here, we tested the hypothesis that GSNOR activity modulates cardiac cell proliferation in the post-MI adult heart. Methods and Results GSNOR−⁄− and C57Bl6/J (wild-type [WT]) mice were subjected to sham operation (n=3 GSNOR−⁄−; n=3 WT) or MI (n=41 GSNOR−⁄−; n=65 WT). Compared with WT,GSNOR−⁄− mice exhibited improved survival, cardiac performance, and architecture after MI, as demonstrated by higher ejection fraction (P<0.05), lower endocardial volumes (P<0.001), and diminished scar size (P<0.05). In addition, cardiomyocytes from post-MI GSNOR−⁄− hearts exhibited faster calcium decay and sarcomeric relaxation times (P<0.001). Immunophenotypic analysis illustrated that post-MI GSNOR−⁄− hearts demonstrated enhanced neovascularization (P<0.001), c-kit+ CSC abundance (P=0.013), and a ≈3-fold increase in proliferation of adult cardiomyocytes and c-kit+/CD45− CSCs (P<0.0001 and P=0.023, respectively) as measured by using 5-bromodeoxyuridine. Conclusions Loss of GSNOR confers enhanced post-MI cardiac regenerative activity, characterized by enhanced turnover of cardiomyocytes and CSCs. Endogenous denitrosylases exert an inhibitory effect over cardiac repair mechanisms and therefore represents a potential novel therapeutic target.
Collapse
Affiliation(s)
- Konstantinos E Hatzistergos
- Interdisciplinary Stem Cell Institute, University of Miami, FL (K.E.H., E.C.P., R.A.D., L.M.T., M.A.B., S.K., Y.C., W.B., R.M.K.T., J.M.H.)
| | - Ellena C Paulino
- Interdisciplinary Stem Cell Institute, University of Miami, FL (K.E.H., E.C.P., R.A.D., L.M.T., M.A.B., S.K., Y.C., W.B., R.M.K.T., J.M.H.)
| | - Raul A Dulce
- Interdisciplinary Stem Cell Institute, University of Miami, FL (K.E.H., E.C.P., R.A.D., L.M.T., M.A.B., S.K., Y.C., W.B., R.M.K.T., J.M.H.)
| | - Lauro M Takeuchi
- Interdisciplinary Stem Cell Institute, University of Miami, FL (K.E.H., E.C.P., R.A.D., L.M.T., M.A.B., S.K., Y.C., W.B., R.M.K.T., J.M.H.)
| | - Michael A Bellio
- Interdisciplinary Stem Cell Institute, University of Miami, FL (K.E.H., E.C.P., R.A.D., L.M.T., M.A.B., S.K., Y.C., W.B., R.M.K.T., J.M.H.) Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL (M.A.B., R.M.K.T., J.M.H.)
| | - Shathiyah Kulandavelu
- Interdisciplinary Stem Cell Institute, University of Miami, FL (K.E.H., E.C.P., R.A.D., L.M.T., M.A.B., S.K., Y.C., W.B., R.M.K.T., J.M.H.)
| | - Yenong Cao
- Interdisciplinary Stem Cell Institute, University of Miami, FL (K.E.H., E.C.P., R.A.D., L.M.T., M.A.B., S.K., Y.C., W.B., R.M.K.T., J.M.H.)
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, University of Miami, FL (K.E.H., E.C.P., R.A.D., L.M.T., M.A.B., S.K., Y.C., W.B., R.M.K.T., J.M.H.) Department of Medicine, University of Miami Miller School of Medicine, Miami, FL (W.B., J.M.H.)
| | - Rosemeire M Kanashiro-Takeuchi
- Interdisciplinary Stem Cell Institute, University of Miami, FL (K.E.H., E.C.P., R.A.D., L.M.T., M.A.B., S.K., Y.C., W.B., R.M.K.T., J.M.H.) Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL (M.A.B., R.M.K.T., J.M.H.)
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami, FL (K.E.H., E.C.P., R.A.D., L.M.T., M.A.B., S.K., Y.C., W.B., R.M.K.T., J.M.H.) Department of Medicine, University of Miami Miller School of Medicine, Miami, FL (W.B., J.M.H.) Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL (M.A.B., R.M.K.T., J.M.H.)
| |
Collapse
|
49
|
Keith MCL, Bolli R. "String theory" of c-kit(pos) cardiac cells: a new paradigm regarding the nature of these cells that may reconcile apparently discrepant results. Circ Res 2015; 116:1216-30. [PMID: 25814683 DOI: 10.1161/circresaha.116.305557] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although numerous preclinical investigations have consistently demonstrated salubrious effects of c-kit(pos) cardiac cells administered after myocardial infarction, the mechanism of action remains highly controversial. We and others have found little or no evidence that these cells differentiate into mature functional cardiomyocytes, suggesting paracrine effects. In this review, we propose a new paradigm predicated on a comprehensive analysis of the literature, including studies of cardiac development; we have (facetiously) dubbed this conceptual construct "string theory" of c-kit(pos) cardiac cells because it reconciles multifarious and sometimes apparently discrepant results. There is strong evidence that, during development, the c-kit receptor is expressed in different pools of cardiac progenitors (some capable of robust cardiomyogenesis and others with little or no contribution to myocytes). Accordingly, c-kit positivity, in itself, does not define the embryonic origins, lineage capabilities, or differentiation capacities of specific cardiac progenitors. C-kit(pos) cells derived from the first heart field exhibit cardiomyogenic potential during development, but these cells are likely depleted shortly before or after birth. The residual c-kit(pos) cells found in the adult heart are probably of proepicardial origin, possess a mesenchymal phenotype (resembling bone marrow mesenchymal stem/stromal cells), and are capable of contributing significantly only to nonmyocytic lineages (fibroblasts, smooth muscle cells, and endothelial cells). If these 2 populations (first heart field and proepicardium) express different levels of c-kit, the cardiomyogenic potential of first heart field progenitors might be reconciled with recent results of c-kit(pos) cell lineage tracing studies. The concept that c-kit expression in the adult heart identifies epicardium-derived, noncardiomyogenic precursors with a mesenchymal phenotype helps to explain the beneficial effects of c-kit(pos) cell administration to ischemically damaged hearts despite the observed paucity of cardiomyogenic differentiation of these cells.
Collapse
Affiliation(s)
- Matthew C L Keith
- From the Division of Cardiovascular Medicine, Department of Cardiology, University of Louisville, KY
| | - Roberto Bolli
- From the Division of Cardiovascular Medicine, Department of Cardiology, University of Louisville, KY.
| |
Collapse
|
50
|
Dhingra S, Wu J, Li SH, Guo J, Huang XP, Mihic A, Hu J, Weisel RD, Li RK. Modulation of Alloimmune Responses by Interleukin-10 Prevents Rejection of Implanted Allogeneic Smooth Muscle Cells and Restores Postinfarction Ventricular Function. Cell Transplant 2015; 24:1013-29. [DOI: 10.3727/096368914x681036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Interleukin-10 (IL-10) gene transduction into allogeneic smooth muscle cells (SMCs) was evaluated to improve the long-term benefits of allogeneic cell transplantation into infarcted myocardium. Allogeneic cells, including SMCs, have been demonstrated to restore cardiac function and repair the infarcted myocardium, but late rejection of the transplanted cells by the host immune system may reverse the benefits of cell therapy. In a rat myocardial infarction model, three groups of rats were injected with either unmodified autologous, unmodified allogeneic, or allogeneic + IL-10 SMCs into the infarct region. Three weeks later, most of the allogeneic cells were rejected, whereas autologous cells were engrafted in the myocardium. IL-10 gene transduction of the allogeneic SMCs significantly improved the cell survival. To understand the mechanism of this improved survival, we evaluated the host immune responses against the SMCs. Allogeneic SMCs expressing IL-10 decreased leukocyte-mediated cytotoxicity in coculture, decreased the number of cytotoxic CD8+ T-cells, and increased the number of CD4+CD25+ regulatory T-cells in vitro and in vivo. Furthermore, IL-10 prevented the production of antidonor antibodies by the recipients against the allogeneic SMCs. Transplantation of unmodified autologous SMCs, but not unmodified allogeneic SMCs, significantly improved fractional shortening and left ventricular dimensions compared to the media-injected control group. However, IL-10 gene-enhanced allogeneic SMCs improved ventricular function, increased wall thickness, and decreased scar length in association with their enhanced survival. We conclude that IL-10 gene-enhanced cell therapy with allogeneic SMCs prevents detrimental alloimmune responses in the recipient, thereby increasing the survival of transplanted allogeneic SMCs and more effectively restoring cardiac function.
Collapse
Affiliation(s)
- Sanjiv Dhingra
- Division of Cardiovascular Surgery, Toronto General Research Institute, University Health Network and Department of Surgery, Division of Cardiac Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Jun Wu
- Division of Cardiovascular Surgery, Toronto General Research Institute, University Health Network and Department of Surgery, Division of Cardiac Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Shu-Hong Li
- Division of Cardiovascular Surgery, Toronto General Research Institute, University Health Network and Department of Surgery, Division of Cardiac Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Jian Guo
- Division of Cardiovascular Surgery, Toronto General Research Institute, University Health Network and Department of Surgery, Division of Cardiac Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Xi-Ping Huang
- Division of Cardiovascular Surgery, Toronto General Research Institute, University Health Network and Department of Surgery, Division of Cardiac Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Anton Mihic
- Division of Cardiovascular Surgery, Toronto General Research Institute, University Health Network and Department of Surgery, Division of Cardiac Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Jim Hu
- Department of Laboratory Medicine and Pathobiology (Pediatrics), University of Toronto and Physiology and Experimental Medicine Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Richard D. Weisel
- Division of Cardiovascular Surgery, Toronto General Research Institute, University Health Network and Department of Surgery, Division of Cardiac Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Ren-Ke Li
- Division of Cardiovascular Surgery, Toronto General Research Institute, University Health Network and Department of Surgery, Division of Cardiac Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|