1
|
Bryl R, Kulus M, Bryja A, Domagała D, Mozdziak P, Antosik P, Bukowska D, Zabel M, Dzięgiel P, Kempisty B. Cardiac progenitor cell therapy: mechanisms of action. Cell Biosci 2024; 14:30. [PMID: 38444042 PMCID: PMC10913616 DOI: 10.1186/s13578-024-01211-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 02/17/2024] [Indexed: 03/07/2024] Open
Abstract
Heart failure (HF) is an end-stage of many cardiac diseases and one of the main causes of death worldwide. The current management of this disease remains suboptimal. The adult mammalian heart was considered a post-mitotic organ. However, several reports suggest that it may possess modest regenerative potential. Adult cardiac progenitor cells (CPCs), the main players in the cardiac regeneration, constitute, as it may seem, a heterogenous group of cells, which remain quiescent in physiological conditions and become activated after an injury, contributing to cardiomyocytes renewal. They can mediate their beneficial effects through direct differentiation into cardiac cells and activation of resident stem cells but majorly do so through paracrine release of factors. CPCs can secrete cytokines, chemokines, and growth factors as well as exosomes, rich in proteins, lipids and non-coding RNAs, such as miRNAs and YRNAs, which contribute to reparation of myocardium by promoting angiogenesis, cardioprotection, cardiomyogenesis, anti-fibrotic activity, and by immune modulation. Preclinical studies assessing cardiac progenitor cells and cardiac progenitor cells-derived exosomes on damaged myocardium show that administration of cardiac progenitor cells-derived exosomes can mimic effects of cell transplantation. Exosomes may become new promising therapeutic strategy for heart regeneration nevertheless there are still several limitations as to their use in the clinic. Key questions regarding their dosage, safety, specificity, pharmacokinetics, pharmacodynamics and route of administration remain outstanding. There are still gaps in the knowledge on basic biology of exosomes and filling them will bring as closer to translation into clinic.
Collapse
Affiliation(s)
- Rut Bryl
- Section of Regenerative Medicine and Cancer Research, Natural Sciences Club, Faculty of Biology, Adam Mickiewicz University, Poznań, Poznan, 61-614, Poland
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University, Torun, 87-100, Poland
| | - Artur Bryja
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wroclaw, 50-367, Poland
| | - Dominika Domagała
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wroclaw, 50-367, Poland
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, 27695, USA
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC, 27695, USA
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University, Torun, 87-100, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, 87-100, Poland
| | - Maciej Zabel
- Division of Anatomy and Histology, University of Zielona Góra, Zielona Góra, 65-046, Poland
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, Wroclaw, 50-368, Poland
| | - Piotr Dzięgiel
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, Wroclaw, 50-368, Poland
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University, Torun, 87-100, Poland.
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wroclaw, 50-367, Poland.
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC, 27695, USA.
- Department of Obstetrics and Gynaecology, University Hospital and Masaryk University, Brno, 62500, Czech Republic.
| |
Collapse
|
2
|
He X, Dutta S, Liang J, Paul C, Huang W, Xu M, Chang V, Ao I, Wang Y. Direct cellular reprogramming techniques for cardiovascular regenerative therapeutics. Can J Physiol Pharmacol 2024; 102:1-13. [PMID: 37903419 DOI: 10.1139/cjpp-2023-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Cardiovascular diseases remain a leading cause of hospitalization affecting approximately 38 million people worldwide. While pharmacological and revascularization techniques can improve the patient's survival and quality of life, they cannot help reversing myocardial infarction injury and heart failure. Direct reprogramming of somatic cells to cardiomyocyte and cardiac progenitor cells offers a new approach to cellular reprogramming and paves the way for translational regenerative medicine. Direct reprogramming can bypass the pluripotent stage with the potential advantage of non-immunogenic cell products, reduced carcinogenic risk, and no requirement for embryonic tissue. The process of directly reprogramming cardiac cells was first achieved through the overexpression of transcription factors such as GATA4, MEF2C, and TBX5. However, over the past decade, significant work has been focused on enhancing direct reprogramming using a mixture of transcription factors, microRNAs, and small molecules to achieve cardiac cell fate. This review discusses the evolution of direct reprogramming, recent progress in achieving efficient cardiac cell fate conversion, and describes the reprogramming mechanisms at a molecular level. We also explore various viral and non-viral delivery methods currently being used to aid in the delivery of reprogramming factors to improve efficiency. However, further studies will be needed to overcome molecular and epigenetic barriers to successfully achieve translational cardiac regenerative therapeutics.
Collapse
Affiliation(s)
- Xingyu He
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Suchandrima Dutta
- Department of Internal MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Jialiang Liang
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Christian Paul
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Wei Huang
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Meifeng Xu
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Vivian Chang
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Ian Ao
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Yigang Wang
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| |
Collapse
|
3
|
He X, Liang J, Paul C, Huang W, Dutta S, Wang Y. Advances in Cellular Reprogramming-Based Approaches for Heart Regenerative Repair. Cells 2022; 11:3914. [PMID: 36497171 PMCID: PMC9740402 DOI: 10.3390/cells11233914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/18/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Continuous loss of cardiomyocytes (CMs) is one of the fundamental characteristics of many heart diseases, which eventually can lead to heart failure. Due to the limited proliferation ability of human adult CMs, treatment efficacy has been limited in terms of fully repairing damaged hearts. It has been shown that cell lineage conversion can be achieved by using cell reprogramming approaches, including human induced pluripotent stem cells (hiPSCs), providing a promising therapeutic for regenerative heart medicine. Recent studies using advanced cellular reprogramming-based techniques have also contributed some new strategies for regenerative heart repair. In this review, hiPSC-derived cell therapeutic methods are introduced, and the clinical setting challenges (maturation, engraftment, immune response, scalability, and tumorigenicity), with potential solutions, are discussed. Inspired by the iPSC reprogramming, the approaches of direct cell lineage conversion are merging, such as induced cardiomyocyte-like cells (iCMs) and induced cardiac progenitor cells (iCPCs) derived from fibroblasts, without induction of pluripotency. The studies of cellular and molecular pathways also reveal that epigenetic resetting is the essential mechanism of reprogramming and lineage conversion. Therefore, CRISPR techniques that can be repurposed for genomic or epigenetic editing become attractive approaches for cellular reprogramming. In addition, viral and non-viral delivery strategies that are utilized to achieve CM reprogramming will be introduced, and the therapeutic effects of iCMs or iCPCs on myocardial infarction will be compared. After the improvement of reprogramming efficiency by developing new techniques, reprogrammed iCPCs or iCMs will provide an alternative to hiPSC-based approaches for regenerative heart therapies, heart disease modeling, and new drug screening.
Collapse
Affiliation(s)
- Xingyu He
- Department of Pathology & Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jialiang Liang
- Department of Pathology & Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Christian Paul
- Department of Pathology & Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Wei Huang
- Department of Pathology & Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Suchandrima Dutta
- Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Yigang Wang
- Department of Pathology & Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
4
|
Jiang L, Liang J, Huang W, Ma J, Park KH, Wu Z, Chen P, Zhu H, Ma JJ, Cai W, Paul C, Niu L, Fan GC, Wang HS, Kanisicak O, Xu M, Wang Y. CRISPR activation of endogenous genes reprograms fibroblasts into cardiovascular progenitor cells for myocardial infarction therapy. Mol Ther 2022; 30:54-74. [PMID: 34678511 PMCID: PMC8753567 DOI: 10.1016/j.ymthe.2021.10.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/27/2021] [Accepted: 10/18/2021] [Indexed: 01/07/2023] Open
Abstract
Fibroblasts can be reprogrammed into cardiovascular progenitor cells (CPCs) using transgenic approaches, although the underlying mechanism remains unclear. We determined whether activation of endogenous genes such as Gata4, Nkx2.5, and Tbx5 can rapidly establish autoregulatory loops and initiate CPC generation in adult extracardiac fibroblasts using a CRISPR activation system. The induced fibroblasts (>80%) showed phenotypic changes as indicated by an Nkx2.5 cardiac enhancer reporter. The progenitor characteristics were confirmed by colony formation and expression of cardiovascular genes. Cardiac sphere induction segregated the early and late reprogrammed cells that can generate functional cardiomyocytes and vascular cells in vitro. Therefore, they were termed CRISPR-induced CPCs (ciCPCs). Transcriptomic analysis showed that cell cycle and heart development pathways were important to accelerate CPC formation during the early reprogramming stage. The CRISPR system opened the silenced chromatin locus, thereby allowing transcriptional factors to access their own promoters and eventually forming a positive feedback loop. The regenerative potential of ciCPCs was assessed after implantation in mouse myocardial infarction models. The engrafted ciCPCs differentiated into cardiovascular cells in vivo but also significantly improved contractile function and scar formation. In conclusion, multiplex gene activation was sufficient to drive CPC reprogramming, providing a new cell source for regenerative therapeutics.
Collapse
Affiliation(s)
- Lin Jiang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Jialiang Liang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA.
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Jianyong Ma
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Ki Ho Park
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Zhichao Wu
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Peng Chen
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Hua Zhu
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jian-Jie Ma
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Wenfeng Cai
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Christian Paul
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Liang Niu
- Division of Biostatistics and Bioinformatics, Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Hong-Sheng Wang
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Onur Kanisicak
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Meifeng Xu
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA.
| |
Collapse
|
5
|
Zhou W, Ma T, Ding S. Non-viral approaches for somatic cell reprogramming into cardiomyocytes. Semin Cell Dev Biol 2021; 122:28-36. [PMID: 34238675 DOI: 10.1016/j.semcdb.2021.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/04/2021] [Accepted: 06/23/2021] [Indexed: 11/27/2022]
Abstract
Heart disease is the leading cause of human deaths worldwide. Due to lacking cardiomyocytes with replicative capacity and cardiac progenitor cells with differentiation potential in adult hearts, massive loss of cardiomyocytes after ischemic events produces permanent damage, ultimately leading to heart failure. Cellular reprogramming is a promising strategy to regenerate heart by induction of cardiomyocytes from other cell types, such as cardiac fibroblasts. In contrast to conventional virus-based cardiac reprogramming, non-viral approaches greatly reduce the potential risk that includes disruption of genome integrity by integration of foreign DNAs, expression of exogenous genes with oncogenic potential, and appearance of partially reprogrammed cells harmful for the physiological functions of tissues/organs, which impedes their in-vivo applications. Here, we review the recent progress in development of non-viral approaches to directly reprogram somatic cells towards cardiomyocytes and their therapeutic application for heart regeneration.
Collapse
Affiliation(s)
- Wei Zhou
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Tianhua Ma
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Sheng Ding
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
6
|
Wu Y, Jiang L, Dong Z, Chen S, Yu XY, Tang S. Intracellular Delivery of Proteins into Living Cells by Low-Molecular-Weight Polyethyleneimine. Int J Nanomedicine 2021; 16:4197-4208. [PMID: 34188469 PMCID: PMC8232877 DOI: 10.2147/ijn.s315444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/01/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Intracellular protein delivery is emerging as a potential strategy to revolutionize therapeutics in the field of biomedicine, aiming at treating a wide range of diseases including cancer, inflammatory diseases and other oxidative stress-related disorders with high specificity. However, the current challenges and limitations are addressed to either synthetically or biologically through multipotency of engineering, such as protein modification, insufficient delivery of large-size proteins, deficiency or mutation of proteins, and high cytotoxicity. Methods We prepared the nanocomposites by mixing protein with PEI1200 at a certain molar ratio and demonstrated that it can deliver proteins into living cells in high efficiency and safety through the following experiments, such as dynamic light scattering, fluorescent detection, agarose gel electrophoresis, ß-Galactosidase activity detection, immunofluorescence staining, digital fluorescent detection, cell viability assay and flow cytometry. Results The self-assembly of PEI1200/protein nanocomposites with appropriate molar ratio (4:1 and 8:1) could provide efficiently delivery of active proteins to a variety of cell types in the presence of serum. The nanocomposites could continuously release protein up to 96 h in their desired intracellular locations. In addition, these nanocomposites were able to preserve protein activity while maintain low cytotoxicity (when final concentration <1 μg/mL). Conclusion Collectively, PEI1200-based delivery system provided an alternative strategy to direct protein delivery in high efficiency and safety, offering increased potential applications in clinical biomedicine.
Collapse
Affiliation(s)
- Yueheng Wu
- National Engineering Research Center for Healthcare Devices, Guangdong Institute of Medical Instruments, Biomedical Engineering Institute, Jinan University, Guangzhou, 510632, People's Republic of China.,Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, 510080, People's Republic of China
| | - Lin Jiang
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, 510080, People's Republic of China
| | - Zixuan Dong
- National Engineering Research Center for Healthcare Devices, Guangdong Institute of Medical Instruments, Biomedical Engineering Institute, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Shaoxian Chen
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, 510080, People's Republic of China
| | - Xi-Yong Yu
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, 510080, People's Republic of China
| | - Shunqing Tang
- National Engineering Research Center for Healthcare Devices, Guangdong Institute of Medical Instruments, Biomedical Engineering Institute, Jinan University, Guangzhou, 510632, People's Republic of China
| |
Collapse
|
7
|
Chingale M, Zhu D, Cheng K, Huang K. Bioengineering Technologies for Cardiac Regenerative Medicine. Front Bioeng Biotechnol 2021; 9:681705. [PMID: 34150737 PMCID: PMC8209515 DOI: 10.3389/fbioe.2021.681705] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiac regenerative medicine faces big challenges such as a lack of adult cardiac stem cells, low turnover of mature cardiomyocytes, and difficulty in therapeutic delivery to the injured heart. The interaction of bioengineering and cardiac regenerative medicine offers innovative solutions to this field. For example, cell reprogramming technology has been applied by both direct and indirect routes to generate patient-specific cardiomyocytes. Various viral and non-viral vectors have been utilized for gene editing to intervene gene expression patterns during the cardiac remodeling process. Cell-derived protein factors, exosomes, and miRNAs have been isolated and delivered through engineered particles to overcome many innate limitations of live cell therapy. Protein decoration, antibody modification, and platelet membranes have been used for targeting and precision medicine. Cardiac patches have been used for transferring therapeutics with better retention and integration. Other technologies such as 3D printing and 3D culture have been used to create replaceable cardiac tissue. In this review, we discuss recent advancements in bioengineering and biotechnologies for cardiac regenerative medicine.
Collapse
Affiliation(s)
- Mira Chingale
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - Dashuai Zhu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, North Carolina State University, Raleigh, NC, United States
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, North Carolina State University, Raleigh, NC, United States
| | - Ke Huang
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
8
|
Yang L, Xue S, Du M, Lian F. Highly Efficient MicroRNA Delivery Using Functionalized Carbon Dots for Enhanced Conversion of Fibroblasts to Cardiomyocytes. Int J Nanomedicine 2021; 16:3741-3754. [PMID: 34113099 PMCID: PMC8186278 DOI: 10.2147/ijn.s304873] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/01/2021] [Indexed: 01/14/2023] Open
Abstract
Introduction The reprogramming of induced cardiomyocytes (iCMs) is of particular significance in regenerative medicine; however, it remains a great challenge to fabricate an efficient and safe gene delivery system to induce reprogramming of iCMs for therapeutic applications in heart injury. Here, we report branched polyethyleneimine (BP) coated nitrogen-enriched carbon dots (BP-NCDs) as highly efficient nanocarriers loaded with microRNAs-combo (BP-NCDs/MC) for cardiac reprogramming. Methods The BP-NCDs nanocarriers were prepared and characterized by several analytical techniques. Results The BP-NCDs nanocarriers showed good microRNAs-combo binding affinity, negligible cytotoxicity, and long-term microRNAs expression. Importantly, BP-NCDs/MC nanocomplexes led to the efficient direct reprogramming of fibroblasts into iCMs without genomic integration and resulting in effective recovery of cardiac function after myocardial infarction (MI). Conclusion This study offers a novel strategy to provide safe and effective microRNAs-delivery nanoplatforms based on carbon dots for promising cardiac regeneration and disease therapy.
Collapse
Affiliation(s)
- Lei Yang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Mingjun Du
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Feng Lian
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| |
Collapse
|
9
|
Khosravi F, Ahmadvand N, Bellusci S, Sauer H. The Multifunctional Contribution of FGF Signaling to Cardiac Development, Homeostasis, Disease and Repair. Front Cell Dev Biol 2021; 9:672935. [PMID: 34095143 PMCID: PMC8169986 DOI: 10.3389/fcell.2021.672935] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
The current focus on cardiovascular research reflects society’s concerns regarding the alarming incidence of cardiac-related diseases and mortality in the industrialized world and, notably, an urgent need to combat them by more efficient therapies. To pursue these therapeutic approaches, a comprehensive understanding of the mechanism of action for multifunctional fibroblast growth factor (FGF) signaling in the biology of the heart is a matter of high importance. The roles of FGFs in heart development range from outflow tract formation to the proliferation of cardiomyocytes and the formation of heart chambers. In the context of cardiac regeneration, FGFs 1, 2, 9, 16, 19, and 21 mediate adaptive responses including restoration of cardiac contracting rate after myocardial infarction and reduction of myocardial infarct size. However, cardiac complications in human diseases are correlated with pathogenic effects of FGF ligands and/or FGF signaling impairment. FGFs 2 and 23 are involved in maladaptive responses such as cardiac hypertrophic, fibrotic responses and heart failure. Among FGFs with known causative (FGFs 2, 21, and 23) or protective (FGFs 2, 15/19, 16, and 21) roles in cardiac diseases, FGFs 15/19, 21, and 23 display diagnostic potential. The effective role of FGFs on the induction of progenitor stem cells to cardiac cells during development has been employed to boost the limited capacity of postnatal cardiac repair. To renew or replenish damaged cardiomyocytes, FGFs 1, 2, 10, and 16 were tested in (induced-) pluripotent stem cell-based approaches and for stimulation of cell cycle re-entry in adult cardiomyocytes. This review will shed light on the wide range of beneficiary and detrimental actions mediated by FGF ligands and their receptors in the heart, which may open new therapeutic avenues for ameliorating cardiac complications.
Collapse
Affiliation(s)
- Farhad Khosravi
- Department of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Negah Ahmadvand
- Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Saverio Bellusci
- Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Heinrich Sauer
- Department of Physiology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
10
|
Yamoah MA, Thai PN, Zhang XD. Transgene Delivery to Human Induced Pluripotent Stem Cells Using Nanoparticles. Pharmaceuticals (Basel) 2021; 14:334. [PMID: 33917388 PMCID: PMC8067386 DOI: 10.3390/ph14040334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/25/2021] [Accepted: 04/02/2021] [Indexed: 11/25/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) and hiPSCs-derived cells have the potential to revolutionize regenerative and precision medicine. Genetically reprograming somatic cells to generate hiPSCs and genetic modification of hiPSCs are considered the key procedures for the study and application of hiPSCs. However, there are significant technical challenges for transgene delivery into somatic cells and hiPSCs since these cells are known to be difficult to transfect. The existing methods, such as viral transduction and chemical transfection, may introduce significant alternations to hiPSC culture which affect the potency, purity, consistency, safety, and functional capacity of hiPSCs. Therefore, generation and genetic modification of hiPSCs through non-viral approaches are necessary and desirable. Nanotechnology has revolutionized fields from astrophysics to biology over the past two decades. Increasingly, nanoparticles have been used in biomedicine as powerful tools for transgene and drug delivery, imaging, diagnostics, and therapeutics. The most successful example is the recent development of SARS-CoV-2 vaccines at warp speed to combat the 2019 coronavirus disease (COVID-19), which brought nanoparticles to the center stage of biomedicine and demonstrated the efficient nanoparticle-mediated transgene delivery into human body. Nanoparticles have the potential to facilitate the transgene delivery into the hiPSCs and offer a simple and robust approach. Nanoparticle-mediated transgene delivery has significant advantages over other methods, such as high efficiency, low cytotoxicity, biodegradability, low cost, directional and distal controllability, efficient in vivo applications, and lack of immune responses. Our recent study using magnetic nanoparticles for transfection of hiPSCs provided an example of the successful applications, supporting the potential roles of nanoparticles in hiPSC biology. This review discusses the principle, applications, and significance of nanoparticles in the transgene delivery to hiPSCs and their successful application in the development of COVID-19 vaccines.
Collapse
Affiliation(s)
- Megan A. Yamoah
- Department of Economics, University of Oxford, Oxford OX1 3UQ, UK;
| | - Phung N. Thai
- Department of Internal Medicine, School of Medicine, University of California, Davis, CA 95616, USA;
| | - Xiao-Dong Zhang
- Department of Internal Medicine, School of Medicine, University of California, Davis, CA 95616, USA;
- Department of Veterans Affairs, Northern California Health Care System, Mather, CA 95655, USA
| |
Collapse
|
11
|
Välimäki MJ, Leigh RS, Kinnunen SM, March AR, de Sande AH, Kinnunen M, Varjosalo M, Heinäniemi M, Kaynak BL, Ruskoaho H. GATA-targeted compounds modulate cardiac subtype cell differentiation in dual reporter stem cell line. Stem Cell Res Ther 2021; 12:190. [PMID: 33736688 PMCID: PMC7977156 DOI: 10.1186/s13287-021-02259-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
Background Pharmacological modulation of cell fate decisions and developmental gene regulatory networks holds promise for the treatment of heart failure. Compounds that target tissue-specific transcription factors could overcome non-specific effects of small molecules and lead to the regeneration of heart muscle following myocardial infarction. Due to cellular heterogeneity in the heart, the activation of gene programs representing specific atrial and ventricular cardiomyocyte subtypes would be highly desirable. Chemical compounds that modulate atrial and ventricular cell fate could be used to improve subtype-specific differentiation of endogenous or exogenously delivered progenitor cells in order to promote cardiac regeneration. Methods Transcription factor GATA4-targeted compounds that have previously shown in vivo efficacy in cardiac injury models were tested for stage-specific activation of atrial and ventricular reporter genes in differentiating pluripotent stem cells using a dual reporter assay. Chemically induced gene expression changes were characterized by qRT-PCR, global run-on sequencing (GRO-seq) and immunoblotting, and the network of cooperative proteins of GATA4 and NKX2-5 were further explored by the examination of the GATA4 and NKX2-5 interactome by BioID. Reporter gene assays were conducted to examine combinatorial effects of GATA-targeted compounds and bromodomain and extraterminal domain (BET) inhibition on chamber-specific gene expression. Results GATA4-targeted compounds 3i-1000 and 3i-1103 were identified as differential modulators of atrial and ventricular gene expression. More detailed structure-function analysis revealed a distinct subclass of GATA4/NKX2-5 inhibitory compounds with an acetyl lysine-like domain that contributed to ventricular cells (%Myl2-eGFP+). Additionally, BioID analysis indicated broad interaction between GATA4 and BET family of proteins, such as BRD4. This indicated the involvement of epigenetic modulators in the regulation of GATA-dependent transcription. In this line, reporter gene assays with combinatorial treatment of 3i-1000 and the BET bromodomain inhibitor (+)-JQ1 demonstrated the cooperative role of GATA4 and BRD4 in the modulation of chamber-specific cardiac gene expression. Conclusions Collectively, these results indicate the potential for therapeutic alteration of cell fate decisions and pathological gene regulatory networks by GATA4-targeted compounds modulating chamber-specific transcriptional programs in multipotent cardiac progenitor cells and cardiomyocytes. The compound scaffolds described within this study could be used to develop regenerative strategies for myocardial regeneration. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02259-z.
Collapse
Affiliation(s)
- Mika J Välimäki
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
| | - Robert S Leigh
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
| | - Sini M Kinnunen
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
| | - Alexander R March
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
| | - Ana Hernández de Sande
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Matias Kinnunen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Bogac L Kaynak
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland.
| | - Heikki Ruskoaho
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland.
| |
Collapse
|
12
|
Zhu D, Cheng K. Cardiac Cell Therapy for Heart Repair: Should the Cells Be Left Out? Cells 2021; 10:641. [PMID: 33805763 PMCID: PMC7999733 DOI: 10.3390/cells10030641] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/25/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CVD) is still the leading cause of death worldwide. Coronary artery occlusion, or myocardial infarction (MI) causes massive loss of cardiomyocytes. The ischemia area is eventually replaced by a fibrotic scar. From the mechanical dysfunctions of the scar in electronic transduction, contraction and compliance, pathological cardiac dilation and heart failure develops. Once end-stage heart failure occurs, the only option is to perform heart transplantation. The sequential changes are termed cardiac remodeling, and are due to the lack of endogenous regenerative actions in the adult human heart. Regenerative medicine and biomedical engineering strategies have been pursued to repair the damaged heart and to restore normal cardiac function. Such strategies include both cellular and acellular products, in combination with biomaterials. In addition, substantial progress has been made to elucidate the molecular and cellular mechanisms underlying heart repair and regeneration. In this review, we summarize and discuss current therapeutic approaches for cardiac repair and provide a perspective on novel strategies that holding potential opportunities for future research and clinical translation.
Collapse
Affiliation(s)
- Dashuai Zhu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA;
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill & North Carolina State University, Raleigh, NC 27607, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA;
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill & North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
13
|
Generation of cell-permeant recombinant human transcription factor GATA4 from E. coli. Bioprocess Biosyst Eng 2021; 44:1131-1146. [PMID: 33559005 DOI: 10.1007/s00449-021-02516-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/17/2021] [Indexed: 12/11/2022]
Abstract
Transcription factor GATA4 is expressed during early embryogenesis and is vital for proper development. In addition, it is a crucial reprogramming factor for deriving functional cardiomyocytes and was recently identified as a tumor suppressor protein in various cancers. To generate a safe and effective molecular tool that can potentially be used in a cell reprogramming process and as an anti-cancer agent, we have identified optimal expression parameters to obtain soluble expression of human GATA4 in E. coli and purified the same to homogeneity under native conditions using immobilized metal ion affinity chromatography. The identity of GATA4 protein was confirmed using western blotting and mass spectrometry. Using circular dichroism spectroscopy, it was demonstrated that the purified recombinant protein has maintained its secondary structure, primarily comprising of random coils and α-helices. Subsequently, this purified recombinant protein was applied to human cells and was found that it was non-toxic and able to enter the cells as well as translocate to the nucleus. Prospectively, this cell- and nuclear-permeant molecular tool is suitable for cell reprogramming experiments and can be a safe and effective therapeutic agent for cancer therapy.
Collapse
|
14
|
The Future of Direct Cardiac Reprogramming: Any GMT Cocktail Variety? Int J Mol Sci 2020; 21:ijms21217950. [PMID: 33114756 PMCID: PMC7663133 DOI: 10.3390/ijms21217950] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022] Open
Abstract
Direct cardiac reprogramming has emerged as a novel therapeutic approach to treat and regenerate injured hearts through the direct conversion of fibroblasts into cardiac cells. Most studies have focused on the reprogramming of fibroblasts into induced cardiomyocytes (iCMs). The first study in which this technology was described, showed that at least a combination of three transcription factors, GATA4, MEF2C and TBX5 (GMT cocktail), was required for the reprogramming into iCMs in vitro using mouse cells. However, this was later demonstrated to be insufficient for the reprogramming of human cells and additional factors were required. Thereafter, most studies have focused on implementing reprogramming efficiency and obtaining fully reprogrammed and functional iCMs, by the incorporation of other transcription factors, microRNAs or small molecules to the original GMT cocktail. In this respect, great advances have been made in recent years. However, there is still no consensus on which of these GMT-based varieties is best, and robust and highly reproducible protocols are still urgently required, especially in the case of human cells. On the other hand, apart from CMs, other cells such as endothelial and smooth muscle cells to form new blood vessels will be fundamental for the correct reconstruction of damaged cardiac tissue. With this aim, several studies have centered on the direct reprogramming of fibroblasts into induced cardiac progenitor cells (iCPCs) able to give rise to all myocardial cell lineages. Especially interesting are reports in which multipotent and highly expandable mouse iCPCs have been obtained, suggesting that clinically relevant amounts of these cells could be created. However, as of yet, this has not been achieved with human iCPCs, and exactly what stage of maturity is appropriate for a cell therapy product remains an open question. Nonetheless, the major concern in regenerative medicine is the poor retention, survival, and engraftment of transplanted cells in the cardiac tissue. To circumvent this issue, several cell pre-conditioning approaches are currently being explored. As an alternative to cell injection, in vivo reprogramming may face fewer barriers for its translation to the clinic. This approach has achieved better results in terms of efficiency and iCMs maturity in mouse models, indicating that the heart environment can favor this process. In this context, in recent years some studies have focused on the development of safer delivery systems such as Sendai virus, Adenovirus, chemical cocktails or nanoparticles. This article provides an in-depth review of the in vitro and in vivo cardiac reprograming technology used in mouse and human cells to obtain iCMs and iCPCs, and discusses what challenges still lie ahead and what hurdles are to be overcome before results from this field can be transferred to the clinical settings.
Collapse
|
15
|
Jiang L, Liang J, Huang W, Wu Z, Paul C, Wang Y. Strategies and Challenges to Improve Cellular Programming-Based Approaches for Heart Regeneration Therapy. Int J Mol Sci 2020; 21:E7662. [PMID: 33081233 PMCID: PMC7589611 DOI: 10.3390/ijms21207662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/29/2022] Open
Abstract
Limited adult cardiac cell proliferation after cardiovascular disease, such as heart failure, hampers regeneration, resulting in a major loss of cardiomyocytes (CMs) at the site of injury. Recent studies in cellular reprogramming approaches have provided the opportunity to improve upon previous techniques used to regenerate damaged heart. Using these approaches, new CMs can be regenerated from differentiation of iPSCs (similar to embryonic stem cells), the direct reprogramming of fibroblasts [induced cardiomyocytes (iCMs)], or induced cardiac progenitors. Although these CMs have been shown to functionally repair infarcted heart, advancements in technology are still in the early stages of development in research laboratories. In this review, reprogramming-based approaches for generating CMs are briefly introduced and reviewed, and the challenges (including low efficiency, functional maturity, and safety issues) that hinder further translation of these approaches into a clinical setting are discussed. The creative and combined optimal methods to address these challenges are also summarized, with optimism that further investigation into tissue engineering, cardiac development signaling, and epigenetic mechanisms will help to establish methods that improve cell-reprogramming approaches for heart regeneration.
Collapse
Affiliation(s)
- Lin Jiang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267-0529, USA
| | - Jialiang Liang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267-0529, USA
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267-0529, USA
| | - Zhichao Wu
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267-0529, USA
| | - Christian Paul
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267-0529, USA
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267-0529, USA
| |
Collapse
|
16
|
Reprogramming and transdifferentiation - two key processes for regenerative medicine. Eur J Pharmacol 2020; 882:173202. [PMID: 32562801 DOI: 10.1016/j.ejphar.2020.173202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/22/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022]
Abstract
Regenerative medicine based on transplants obtained from donors or foetal and new-born mesenchymal stem cells, encounter important obstacles such as limited availability of organs, ethical issues and immune rejection. The growing demand for therapeutic methods for patients being treated after serious accidents, severe organ dysfunction and an increasing number of cancer surgeries, exceeds the possibilities of the therapies that are currently available. Reprogramming and transdifferentiation provide powerful bioengineering tools. Both procedures are based on the somatic differentiated cells, which are easily and unlimitedly available, like for example: fibroblasts. During the reprogramming procedure mature cells are converted into pluripotent cells - which are capable to differentiate into almost any kind of desired cells. Transdifferentiation directly converts differentiated cells of one type into another differentiated cells type. Both procedures allow to obtained patient's dedicated cells for therapeutic purpose in regenerative medicine. In combination with biomaterials, it is possible to obtain even whole anatomical structures. Those patient's dedicated structures may serve for them upon serious accidents with massive tissue damage but also upon cancer surgeries as a replacement of damaged organ. Detailed information about reprogramming and transdifferentiation procedures as well as the current state of the art are presented in our review.
Collapse
|
17
|
Wang J, Jiang X, Zhao L, Zuo S, Chen X, Zhang L, Lin Z, Zhao X, Qin Y, Zhou X, Yu XY. Lineage reprogramming of fibroblasts into induced cardiac progenitor cells by CRISPR/Cas9-based transcriptional activators. Acta Pharm Sin B 2020; 10:313-326. [PMID: 32082976 PMCID: PMC7016296 DOI: 10.1016/j.apsb.2019.09.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/26/2019] [Accepted: 08/29/2019] [Indexed: 12/16/2022] Open
Abstract
Overexpression of exogenous lineage-determining factors succeeds in directly reprogramming fibroblasts to various cell types. Several studies have reported reprogramming of fibroblasts into induced cardiac progenitor cells (iCPCs). CRISPR/Cas9-mediated gene activation is a potential approach for cellular reprogramming due to its high precision and multiplexing capacity. Here we show lineage reprogramming to iCPCs through a dead Cas9 (dCas9)-based transcription activation system. Targeted and robust activation of endogenous cardiac factors, including GATA4, HAND2, MEF2C and TBX5 (G, H, M and T; GHMT), can reprogram human fibroblasts toward iCPCs. The iCPCs show potentials to differentiate into cardiomyocytes, smooth muscle cells and endothelial cells in vitro. Addition of MEIS1 to GHMT induces cell cycle arrest in G2/M and facilitates cardiac reprogramming. Lineage reprogramming of human fibroblasts into iCPCs provides a promising cellular resource for disease modeling, drug discovery and individualized cardiac cell therapy.
Collapse
|
18
|
Barreto S, Hamel L, Schiatti T, Yang Y, George V. Cardiac Progenitor Cells from Stem Cells: Learning from Genetics and Biomaterials. Cells 2019; 8:E1536. [PMID: 31795206 PMCID: PMC6952950 DOI: 10.3390/cells8121536] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
Cardiac Progenitor Cells (CPCs) show great potential as a cell resource for restoring cardiac function in patients affected by heart disease or heart failure. CPCs are proliferative and committed to cardiac fate, capable of generating cells of all the cardiac lineages. These cells offer a significant shift in paradigm over the use of human induced pluripotent stem cell (iPSC)-derived cardiomyocytes owing to the latter's inability to recapitulate mature features of a native myocardium, limiting their translational applications. The iPSCs and direct reprogramming of somatic cells have been attempted to produce CPCs and, in this process, a variety of chemical and/or genetic factors have been evaluated for their ability to generate, expand, and maintain CPCs in vitro. However, the precise stoichiometry and spatiotemporal activity of these factors and the genetic interplay during embryonic CPC development remain challenging to reproduce in culture, in terms of efficiency, numbers, and translational potential. Recent advances in biomaterials to mimic the native cardiac microenvironment have shown promise to influence CPC regenerative functions, while being capable of integrating with host tissue. This review highlights recent developments and limitations in the generation and use of CPCs from stem cells, and the trends that influence the direction of research to promote better application of CPCs.
Collapse
Affiliation(s)
- Sara Barreto
- Guy Hilton Research Centre, School of Pharmacy & Bioengineering, Keele University, Staffordshire ST4 7QB, UK; (S.B.); (T.S.); (Y.Y.)
| | | | - Teresa Schiatti
- Guy Hilton Research Centre, School of Pharmacy & Bioengineering, Keele University, Staffordshire ST4 7QB, UK; (S.B.); (T.S.); (Y.Y.)
| | - Ying Yang
- Guy Hilton Research Centre, School of Pharmacy & Bioengineering, Keele University, Staffordshire ST4 7QB, UK; (S.B.); (T.S.); (Y.Y.)
| | - Vinoj George
- Guy Hilton Research Centre, School of Pharmacy & Bioengineering, Keele University, Staffordshire ST4 7QB, UK; (S.B.); (T.S.); (Y.Y.)
| |
Collapse
|
19
|
Alexanian RA, Mahapatra K, Lang D, Vaidyanathan R, Markandeya YS, Gill RK, Zhai AJ, Dhillon A, Lea MR, Abozeid S, Schmuck EG, Raval AN, Eckhardt LL, Glukhov AV, Lalit PA, Kamp TJ. Induced cardiac progenitor cells repopulate decellularized mouse heart scaffolds and differentiate to generate cardiac tissue. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118559. [PMID: 31634503 DOI: 10.1016/j.bbamcr.2019.118559] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/28/2019] [Accepted: 09/12/2019] [Indexed: 12/15/2022]
Abstract
Native myocardium has limited regenerative potential post injury. Advances in lineage reprogramming have provided promising cellular sources for regenerative medicine in addition to research applications. Recently we have shown that adult mouse fibroblasts can be reprogrammed to expandable, multipotent, induced cardiac progenitor cells (iCPCs) by employing forced expression of five cardiac factors along with activation of canonical Wnt and JAK/STAT signaling. Here we aim to further characterize iCPCs by highlighting their safety, ease of attainability, and functionality within a three-dimensional cardiac extracellular matrix scaffold. Specifically, iCPCs did not form teratomas in contrast to embryonic stem cells when injected into immunodeficient mice. iCPC reprogramming was achieved in wild type mouse fibroblasts without requiring a cardiac-specific reporter, solely utilizing morphological changes to identify, clonally isolate, and expand iCPCs, thus increasing the versatility of this technology. iCPCs also show the ability to repopulate decellularized native heart scaffolds and differentiated into organized structures containing cardiomyocytes, smooth muscle, and endothelial cells. Optical mapping of recellularized scaffolds shows field-stimulated calcium transients that propagate across islands of reconstituted tissue and bipolar local stimulation demonstrates cell-cell coupling within scaffolds. Overall, iCPCs provide a readily attainable, scalable, safe, and functional cell source for a variety of application including drug discovery, disease modeling, and regenerative therapy.
Collapse
Affiliation(s)
- Ruben A Alexanian
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; Stem Cell & Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaushiki Mahapatra
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; Stem Cell & Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Di Lang
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Ravi Vaidyanathan
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Ramandeep K Gill
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Andrew J Zhai
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Anisa Dhillon
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Martin R Lea
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Sara Abozeid
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Eric G Schmuck
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Amish N Raval
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Lee L Eckhardt
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Alexey V Glukhov
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Pratik A Lalit
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; Stem Cell & Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI, USA.
| | - Timothy J Kamp
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; Stem Cell & Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Cell & Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
20
|
Ebrahimi B. Cardiac progenitor reprogramming for heart regeneration. CELL REGENERATION 2019; 7:1-6. [PMID: 30671223 PMCID: PMC6326243 DOI: 10.1016/j.cr.2018.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/21/2017] [Accepted: 01/02/2018] [Indexed: 02/06/2023]
Abstract
Myocardial infarction leads to the loss of a huge number of cardiomyocytes and the reparatory response to this phenomenon is scar tissue formation, which impairs heart function. Direct reprogramming technology offers an alternative strategy for the generation of functional cardiomyocytes not only in vitro, but also in vivo in the site of injury. Results have demonstrated cardiac tissue regeneration and improvement in heart function after myocardial infarction following local injection of vectors encoding reprogramming transcription factors or miRNAs. This shows the great potential of cardiac reprogramming technology for heart regeneration. However, in addition to cardiomyocytes, other cell types, including endothelial cells and smooth muscle cells are also required to be generated in the damaged area in order to achieve complete cardiac tissue regeneration. To this aim induced proliferative/expandable cardiovascular progenitor cells (iCPCs) appear to be an appropriate cell source, which is capable of differentiation into three cardiovascular lineages both in vitro and in vivo. In this regard, this study goes over in vitro and in vivo cardiac reprogramming technology and specifically deals with cardiac progenitor reprogramming and its potential for heart regeneration.
Collapse
Key Words
- CASD, cell-activation and signaling-directed
- Cellular reprogramming
- ECs, endothelial cells
- FGF, fibroblast growth factor
- GMT, Gata4, Mef2c, and Tbx5
- Heart regeneration
- Myocardial infarction
- PI3K/AKT, phosphoinositol 3-kinase pathway
- SMCs, smooth muscle cells
- TF, transcription factor
- Transdifferentiation
- VEGF, vascular endothelial growth factor
- iCMs, induced cardiomyocytes
- iCPCs, induced cardiac progenitor cells
- iCSs, induced cardiospheres
- iPSC, induced pluripotent stem cell
- p38 MAPK, p38 mitogen-activated protein kinase pathway
Collapse
Affiliation(s)
- Behnam Ebrahimi
- Yazd Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
21
|
Cellular Therapy for Ischemic Heart Disease: An Update. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1201:195-213. [PMID: 31898788 DOI: 10.1007/978-3-030-31206-0_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ischemic heart disease (IHD), which includes heart failure (HF) induced by heart attack (myocardial infarction, MI), is a significant cause of morbidity and mortality worldwide (Benjamin, et al. Circulation 139:e56-e66, 2019). MI occurs at an alarmingly high rate in the United States (approx. One case every 40 seconds), and the failure to repair damaged myocardium is the leading cause of recurrent heart attacks, heart failure (HF), and death within 5 years of MI (Benjamin, et al. Circulation 139:e56-e66, 2019). At present, HF represents an unmet need with no approved clinical therapies to replace the damaged myocardium. As the population ages, the number of heart failure patients is projected to increase, doubling the annual cost by 2030 (Benjamin, et al. Circulation 139:e56-e66, 2019). In the past decades, stem cell therapy has become a promising strategy for cardiac regeneration. However, stem cell-based therapy yielded modest success in human clinical trials. This chapter examines the types of cells examined in cardiac therapy in the setting of IHD, with a brief introduction to ongoing research aiming at enhancing the therapeutic potential of transplanted cells.
Collapse
|
22
|
Klose K, Gossen M, Stamm C. Turning fibroblasts into cardiomyocytes: technological review of cardiac transdifferentiation strategies. FASEB J 2018; 33:49-70. [DOI: 10.1096/fj.201800712r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Kristin Klose
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT) Berlin Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT) Berlin Germany
- Charité–Universitätsmedizin Berlin Berlin Germany
| | - Manfred Gossen
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT) Berlin Germany
- Helmholtz‐Zentrum Geesthacht (HZG)Institute of Biomaterial Science Teltow Germany
| | - Christof Stamm
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT) Berlin Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT) Berlin Germany
- Charité–Universitätsmedizin Berlin Berlin Germany
- German Centre for Cardiovascular Research (DZHK)Partner Site Berlin Berlin Germany
- Department of Cardiothoracic and Vascular SurgeryDeutsches Herzzentrum Berlin (DHZB) Berlin Germany
| |
Collapse
|
23
|
Pesaresi M, Bonilla-Pons SA, Cosma MP. In vivo somatic cell reprogramming for tissue regeneration: the emerging role of the local microenvironment. Curr Opin Cell Biol 2018; 55:119-128. [PMID: 30071468 DOI: 10.1016/j.ceb.2018.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/01/2018] [Accepted: 07/09/2018] [Indexed: 12/16/2022]
Abstract
The past few years have witnessed an exponential increase of interest in the reprogramming process. This has been motivated by the enthusiasm of unravelling key aspects not only of cell identity and dedifferentiation, but also of the endogenous regenerative capacities of mammalian organs. Here, we present the most recent advances in the field of reprogramming, stressing how they are re-defining the rules of cell fate and plasticity in vivo. Specifically, we focus on the emerging role of the tissue microenvironment, with particular emphasis on tissue damage, inflammation and senescence that can facilitate in vivo reprogramming and regeneration through cell-extrinsic mechanisms.
Collapse
Affiliation(s)
- Martina Pesaresi
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Sergi A Bonilla-Pons
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Universitat de Barcelona (UB), Barcelona, Spain
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
24
|
Lam KH, Fernandez-Perez A, Schmidtke DW, Munshi NV. Functional cargo delivery into mouse and human fibroblasts using a versatile microfluidic device. Biomed Microdevices 2018; 20:52. [PMID: 29938310 DOI: 10.1007/s10544-018-0292-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Efficient intracellular cargo delivery is a key hurdle for the translation of many emerging stem cell and cellular reprogramming therapies. Recently, a microfluidic-based device constructed from silicon was shown to transduce macromolecules into cells via shear-induced formation of plasma membrane pores. However, the scalability and widespread application of the current platform is limited since physical deformation-mediated delivery must be optimized for each therapeutic application. Therefore, we sought to create a low-cost, versatile device that could facilitate rapid prototyping and application-specific optimization in most academic research labs. Here we describe the design and implementation of a microfluidic device constructed from Polydimethylsiloxane (PDMS) that we call Cyto-PDMS (Cytoplasmic PDMS-based Delivery and Modification System). Using a systematic Cyto-PDMS workflow, we demonstrate intracellular cargo delivery with minimal effects on cellular viability. We identify specific flow rates at which a wide range of cargo sizes (1-70 kDa) can be delivered to the cell interior. As a proof-of-principle for the biological utility of Cyto-PDMS, we show (i) F-actin labeling in live human fibroblasts and (ii) intracellular delivery of recombinant Cre protein with appropriate genomic recombination in recipient fibroblasts. Taken together, our results demonstrate that Cyto-PDMS can deliver small-molecules to the cytoplasm and biologically active cargo to the nucleus without major effects on viability. We anticipate that the cost and versatility of PDMS can be leveraged to optimize delivery to a broad array of possible cell types and thus expand the potential impact of cellular therapies.
Collapse
Affiliation(s)
- Kevin H Lam
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | | | - David W Schmidtke
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Nikhil V Munshi
- Department of Internal Medicine-Cardiology, UT Southwestern Medical Center, Dallas, TX, USA. .,Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA. .,McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA. .,Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
25
|
Marotta P, Cianflone E, Aquila I, Vicinanza C, Scalise M, Marino F, Mancuso T, Torella M, Indolfi C, Torella D. Combining cell and gene therapy to advance cardiac regeneration. Expert Opin Biol Ther 2018; 18:409-423. [PMID: 29347847 DOI: 10.1080/14712598.2018.1430762] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The characterization of multipotent endogenous cardiac stem cells (eCSCs) and the breakthroughs of somatic cell reprogramming to boost cardiomyocyte replacement have fostered the prospect of achieving functional heart repair/regeneration. AREAS COVERED Allogeneic CSC therapy through its paracrine stimulation of the endogenous resident reparative/regenerative process produces functional meaningful myocardial regeneration in pre-clinical porcine myocardial infarction models and is currently tested in the first-in-man human trial. The in vivo test of somatic reprogramming and cardioregenerative non-coding RNAs revived the interest in gene therapy for myocardial regeneration. The latter, together with the advent of genome editing, has prompted most recent efforts to produce genetically-modified allogeneic CSCs that secrete cardioregenerative factors to optimize effective myocardial repair. EXPERT OPINION The current war against heart failure epidemics in western countries seeks to find effective treatments to set back the failing hearts prolonging human lifespan. Off-the-shelf allogeneic-genetically-modified CSCs producing regenerative agents are a novel and evolving therapy set to be affordable, safe, effective and available at all times for myocardial regeneration to either prevent or treat heart failure.
Collapse
Affiliation(s)
- Pina Marotta
- a Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences , Magna Graecia University , Catanzaro , Italy
| | - Eleonora Cianflone
- a Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences , Magna Graecia University , Catanzaro , Italy
| | - Iolanda Aquila
- a Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences , Magna Graecia University , Catanzaro , Italy
| | - Carla Vicinanza
- a Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences , Magna Graecia University , Catanzaro , Italy
| | - Mariangela Scalise
- a Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences , Magna Graecia University , Catanzaro , Italy
| | - Fabiola Marino
- a Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences , Magna Graecia University , Catanzaro , Italy
| | - Teresa Mancuso
- a Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences , Magna Graecia University , Catanzaro , Italy
| | - Michele Torella
- b Department of Cardiothoracic Sciences , University of Campania "L. Vanvitelli" , Naples , Italy
| | - Ciro Indolfi
- a Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences , Magna Graecia University , Catanzaro , Italy
| | - Daniele Torella
- a Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences , Magna Graecia University , Catanzaro , Italy
| |
Collapse
|
26
|
Ulasov AV, Rosenkranz AA, Sobolev AS. Transcription factors: Time to deliver. J Control Release 2017; 269:24-35. [PMID: 29113792 DOI: 10.1016/j.jconrel.2017.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 12/17/2022]
Abstract
Transcription factors (TFs) are at the center of the broad regulatory network orchestrating gene expression programs that elicit different biological responses. For a long time, TFs have been considered as potent drug targets due to their implications in the pathogenesis of a variety of diseases. At the same time, TFs, located at convergence points of cellular regulatory pathways, are powerful tools providing opportunities both for cell type change and for managing the state of cells. This task formulation requires the TF modulation problem to come to the fore. We review several ways to manage TF activity (small molecules, transfection, nanocarriers, protein-based approaches), analyzing their limitations and the possibilities to overcome them. Delivery of TFs could revolutionize the biomedical field. Whether this forecast comes true will depend on the ability to develop convenient technologies for targeted delivery of TFs.
Collapse
Affiliation(s)
- Alexey V Ulasov
- Department of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Andrey A Rosenkranz
- Department of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; Faculty of Biology, Moscow State University, 1-12 Leninskiye Gory St., 119234 Moscow, Russia
| | - Alexander S Sobolev
- Department of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; Faculty of Biology, Moscow State University, 1-12 Leninskiye Gory St., 119234 Moscow, Russia.
| |
Collapse
|
27
|
Ghiroldi A, Piccoli M, Ciconte G, Pappone C, Anastasia L. Regenerating the human heart: direct reprogramming strategies and their current limitations. Basic Res Cardiol 2017; 112:68. [DOI: 10.1007/s00395-017-0655-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 10/12/2017] [Indexed: 12/15/2022]
|
28
|
Li H, Chen G. In Vivo Reprogramming for CNS Repair: Regenerating Neurons from Endogenous Glial Cells. Neuron 2017; 91:728-738. [PMID: 27537482 DOI: 10.1016/j.neuron.2016.08.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neuroregeneration in the CNS has proven to be difficult despite decades of research. The old dogma that CNS neurons cannot be regenerated in the adult mammalian brain has been overturned; however, endogenous adult neurogenesis appears to be insufficient for brain repair. Stem cell therapy once held promise for generating large quantities of neurons in the CNS, but immunorejection and long-term functional integration remain major hurdles. In this Perspective, we discuss the use of in vivo reprogramming as an emerging technology to regenerate functional neurons from endogenous glial cells inside the brain and spinal cord. Besides the CNS, in vivo reprogramming has been demonstrated successfully in the pancreas, heart, and liver and may be adopted in other organs. Although challenges remain for translating this technology into clinical therapies, we anticipate that in vivo reprogramming may revolutionize regenerative medicine by using a patient's own internal cells for tissue repair.
Collapse
Affiliation(s)
- Hedong Li
- Department of Biology, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| | - Gong Chen
- Department of Biology, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
29
|
Abstract
Cardiovascular diseases are the leading causes of death in the world. The limited regenerative capacity of adult cardiomyocytes is the major barrier for heart regeneration. After myocardial infarction, myofibroblasts are the dominant cell type in the infarct zone. Therefore, it is a good idea to reprogram terminally differentiated myofibroblasts into cardiomyocyte-like cells directly, providing a good strategy to simultaneously reduce scar tissue and increase functional cardiomyocytes. Transcription factors were first identified to reprogram myofibroblasts into cardiomyocytes. Thereafter, microRNAs and/or small molecules showed great potential to optimize the reprogramming process. Here, we systemically summarize and compare the major progress in directed cardiac reprogramming including transcription factors and miRNAs, especially the small molecules. Furthermore, we discuss the challenges needed to be overcome to apply this strategy clinically.
Collapse
Affiliation(s)
- Yueqiu Chen
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of The First Affiliated Hospital, Soochow University, 708 Renmin Road, Building 1, Room 1628, Suzhou, Jiangsu, 215007, China.,Institute for Cardiovascular Science, Soochow University, 708 Renmin Road, Suzhou, Jiangsu, 215007, China
| | - Ziying Yang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of The First Affiliated Hospital, Soochow University, 708 Renmin Road, Building 1, Room 1628, Suzhou, Jiangsu, 215007, China
| | - Zhen-Ao Zhao
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of The First Affiliated Hospital, Soochow University, 708 Renmin Road, Building 1, Room 1628, Suzhou, Jiangsu, 215007, China.
| | - Zhenya Shen
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of The First Affiliated Hospital, Soochow University, 708 Renmin Road, Building 1, Room 1628, Suzhou, Jiangsu, 215007, China.
| |
Collapse
|
30
|
Ebrahimi B. In vivo reprogramming for heart regeneration: A glance at efficiency, environmental impacts, challenges and future directions. J Mol Cell Cardiol 2017; 108:61-72. [PMID: 28502796 DOI: 10.1016/j.yjmcc.2017.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/08/2017] [Indexed: 02/08/2023]
Abstract
Replacing dying or diseased cells of a tissue with new ones that are converted from patient's own cells is an attractive strategy in regenerative medicine. In vivo reprogramming is a novel strategy that can circumvent the hurdles of autologous/allogeneic cell injection therapies. Interestingly, studies have demonstrated that direct injection of cardiac transcription factors or specific miRNAs into the infarct border zone of murine hearts following myocardial infarction converts resident cardiac fibroblasts into functional cardiomyocytes. Moreover, in vivo cardiac reprogramming not only drives cardiac tissue regeneration, but also improves cardiac function and survival rate after myocardial infarction. Thanks to the influence of cardiac microenvironment and the same developmental origin, cardiac fibroblasts seem to be more amenable to reprogramming toward cardiomyocyte fate than other cell sources (e.g. skin fibroblasts). Thus, reprogramming of cardiac fibroblasts to functional induced cardiomyocytes in the cardiac environment holds great promises for induced regeneration and potential clinical purposes. Application of small molecules in future studies may represent a major advancement in this arena and pharmacological reprogramming would convey reprogramming technology to the translational medicine paradigm. This study reviews accomplishments in the field of in vitro and in vivo mouse cardiac reprogramming and then deals with strategies for the enhancement of the efficiency and quality of the process. Furthermore, it discusses challenges ahead and provides suggestions for future research. Human cardiac reprogramming is also addressed as a foundation for possible application of in vivo cardiac reprogramming for human heart regeneration in the future.
Collapse
Affiliation(s)
- Behnam Ebrahimi
- Yazd Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
31
|
Nordin F, Ahmad RNR, Farzaneh F. Transactivator protein: An alternative for delivery of recombinant proteins for safer reprogramming of induced Pluripotent Stem Cell. Virus Res 2017; 235:106-114. [DOI: 10.1016/j.virusres.2017.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/08/2017] [Indexed: 10/19/2022]
|
32
|
Talkhabi M, Zonooz ER, Baharvand H. Boosters and barriers for direct cardiac reprogramming. Life Sci 2017; 178:70-86. [PMID: 28427897 DOI: 10.1016/j.lfs.2017.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/08/2017] [Accepted: 04/16/2017] [Indexed: 12/16/2022]
Abstract
Heart disease is currently the most significant cause of morbidity and mortality worldwide, which accounts for approximately 33% of all deaths. Recently, a promising and alchemy-like strategy has been developed called direct cardiac reprogramming, which directly converts somatic cells such as fibroblasts to cardiac lineage cells such as cardiomyocytes (CMs), termed induced CMs or iCMs. The first in vitro cardiac reprogramming study, mediated by cardiac transcription factors (TFs)-Gata4, Tbx5 and Mef2C-, was not enough efficient to produce an adequate number of fully reprogrammed, functional iCMs. As a result, numerous combinations of cardiac TFs exist for direct cardiac reprogramming of mouse and human fibroblasts. However, the efficiency of direct cardiac reprogramming remains low. Recently, a number of cellular and molecular mechanisms have been identified to increase the efficiency of direct cardiac reprogramming and the quality of iCMs. For example, microgrooved substrate, cardiogenic growth factors [VEGF, FGF, BMP4 and Activin A], and an appropriate stoichiometry of TFs boost the direct cardiac reprogramming. On the other hand, serum, TGFβ signaling, activators of epithelial to mesenchymal transition, and some epigenetic factors (Bmi1 and Ezh2) are barriers for direct cardiac reprogramming. Manipulating these mechanisms by the application of boosters and removing barriers can increase the efficiency of direct cardiac reprogramming and possibly make iCMs reliable for cell-based therapy or other potential applications. In this review, we summarize the latest trends in cardiac TF- or miRNA-based direct cardiac reprogramming and comprehensively discuses all molecular and cellular boosters and barriers affecting direct cardiac reprogramming.
Collapse
Affiliation(s)
- Mahmood Talkhabi
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Elmira Rezaei Zonooz
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
33
|
Cellular Reprogramming Using Protein and Cell-Penetrating Peptides. Int J Mol Sci 2017; 18:ijms18030552. [PMID: 28273812 PMCID: PMC5372568 DOI: 10.3390/ijms18030552] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 12/13/2022] Open
Abstract
Recently, stem cells have been suggested as invaluable tools for cell therapy because of their self-renewal and multilineage differentiation potential. Thus, scientists have developed a variety of methods to generate pluripotent stem cells, from nuclear transfer technology to direct reprogramming using defined factors, or induced pluripotent stem cells (iPSCs). Considering the ethical issues and efficiency, iPSCs are thought to be one of the most promising stem cells for cell therapy. Induced pluripotent stem cells can be generated by transduction with a virus, plasmid, RNA, or protein. Herein, we provide an overview of the current technology for iPSC generation and describe protein-based transduction technology in detail.
Collapse
|
34
|
Yamakawa H. Heart regeneration for clinical application update 2016: from induced pluripotent stem cells to direct cardiac reprogramming. Inflamm Regen 2016; 36:23. [PMID: 29259696 PMCID: PMC5725846 DOI: 10.1186/s41232-016-0028-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 10/07/2016] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular disease remains a major cause of death for which current therapeutic regimens are limited. Following myocardial injury, endogenous cardiac fibroblasts, which account for more than half of the cells in the heart, proliferate and synthesize extracellular matrix, leading to fibrosis and heart failure. As terminally differentiated cardiomyocytes have little regenerative capacity following injury, the development of cardiac regenerative therapy is highly desired. Embryonic stem and induced pluripotent stem (iPS) cells are promising tools for regenerative medicine. However, these stem cells demonstrate variable cardiac differentiation efficiency and tumorigenicity, which must be resolved prior to clinical regenerative applications. Until the last decade, an established theory was that cardiomyocytes could only be produced from fibroblasts through iPS cell generation. In 2010, we first reported cardiac differentiation from fibroblasts by direct reprogramming, and we demonstrated that various cardiac reprogramming pathways exist. This review summarizes the latest trends in stem cell and regenerative research regarding iPS cells, a partial reprogramming strategy, and direct cardiac reprogramming. We also examine the many recent advances in direct cardiac reprogramming and explore the suitable utilization of these methods for regenerative medicine in the cardiovascular field.
Collapse
Affiliation(s)
- Hiroyuki Yamakawa
- Department of Clinical and Molecular Cardiovascular Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan.,Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| |
Collapse
|
35
|
Emerging landscape of cell penetrating peptide in reprogramming and gene editing. J Control Release 2016; 226:124-37. [DOI: 10.1016/j.jconrel.2016.02.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/31/2016] [Accepted: 02/01/2016] [Indexed: 12/11/2022]
|