1
|
Kumar DL, Mittal R, Bhalla A, Kumar A, Madan H, Pandhi K, Garg Y, Singh K, Jain A, Rana S. Knowledge and Awareness About Diabetes Mellitus Among Urban and Rural Population Attending a Tertiary Care Hospital in Haryana. Cureus 2023; 15:e38359. [PMID: 37266052 PMCID: PMC10230119 DOI: 10.7759/cureus.38359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is one of the fastest-growing public health problems in the twenty-first century. The ignorance among people about their disease may be related to their low socioeconomic status and lack of quality education available to them about the disease. It is a serious condition leading to several complications if the individual does not follow up regularly for check-ups and blood sugar monitoring. Lifestyle modifications such as a healthy diet, regular exercise, reducing weight, stress management, and smoking cessation can play a critical role in managing diabetes and improving the health and well-being of diabetic patients. Thus, through this study, we want to assess and create awareness among diabetic patients. METHODOLOGY It is a hospital-based cross-sectional study conducted at a tertiary care hospital on diagnosed cases of DM. The patients aged 18 years or above of either gender who had already been diagnosed with DM type 1 and type 2 were included, and patients with gestational DM were excluded from the study. Informed consent was taken from the patients, and all the required details were obtained using a well-structured questionnaire. After obtaining all the answers, the level of knowledge and awareness was analyzed, and the data was entered into an MS Excel sheet (Microsoft, Redmond, Washington) and analyzed by Statistical Package for the Social Sciences (SPSS) version 22.0 (IBM Corp., Armonk, NY). RESULTS In our study, the maximum prevalence of diabetes was seen in males (55.5%) than females (44.5%), and the mean age of our study population was 53.3 ± 16.4 years. In our study, participants from rural areas made up the majority (59%) compared to those from urban areas (41%), and the majority of participants had a high school education. Among 211 diabetics, about 84%, 79%, and 41% of the patients knew about diabetes, symptoms of diabetes, and complication of diabetes. Only 18% of the patients were aware of the symptoms of hypoglycemia, and 38% of the patients possess their own glucometers and monitor their blood sugar levels on a regular basis. Merely 38% of the diabetics were aware of the various DM treatment choices. About 52% of patients had some awareness of insulin therapy. Out of 211 patients, about half skipped their antidiabetic prescriptions, and of those, 22% took a double dose the next day. A total of 121 patients (57%) combined the use of alternative and allopathic medications, and among these, 22% of patients had replaced the allopathic with alternative medicines. Almost 53% of patients had a positive family history of diabetes; 54% of patients believe that obesity is unrelated to diabetes, and 79% of diabetics are aware of the lifestyle changes that must be done for diabetes. Almost 67% of the patients believed that diabetes could be permanently treated, and 84% of patients believed that eating too much sugar caused their diabetes. CONCLUSION In our study, a significant number of patients suffering from diabetes had less knowledge and awareness about it. The prevalence of myths about the onset of diabetes was noticeably higher among diabetic patients. It was observed that a greater number of patients were shifting to alternative medications instead of allopathic ones, and in the long run, it can lead to various complications. Therefore, there is an immediate need to promote awareness about diabetes among the general population.
Collapse
Affiliation(s)
- Dr Lalit Kumar
- Internal Medicine, Adesh Medical College and Hospital, Shahbad, Kurukshetra, IND
| | - Rahul Mittal
- Internal Medicine, Adesh Medical College and Hospital, Shahbad, Kurukshetra, IND
| | - Akhil Bhalla
- Pain Medicine, Adesh Medical College and Hospital, Shahbad, Kurukshetra, IND
| | - Ashwani Kumar
- Internal Medicine, Adesh Medical College and Hospital, Shahbad, Kurukshetra, IND
| | - Hritik Madan
- Internal Medicine, Adesh Medical College and Hospital, Shahbad, Kurukshetra, IND
| | - Kushagra Pandhi
- Internal Medicine, Adesh Medical College and Hospital, Shahbad, Kurukshetra, IND
| | - Yukta Garg
- Pharmacy, Adesh Institute of Pharmacy and Biomedical Sciences, Adesh University, Bathinda, IND
| | - Kamaldeep Singh
- Internal Medicine, Jawaharlal Nehru Medical College, Chandigarh, IND
| | - Arpit Jain
- Emergency Medicine, All India Institute of Medical Sciences, New Delhi, New Delhi, IND
| | - Surya Rana
- Internal Medicine, Adesh Medical College and Hospital, Shahbad, Kurukshetra, IND
| |
Collapse
|
2
|
Bolla AM, Montefusco L, Pastore I, Lunati ME, Ben Nasr M, Fiorina P. Benefits and Hurdles of Pancreatic β-Cell Replacement. Stem Cells Transl Med 2022; 11:1029-1039. [PMID: 36073717 PMCID: PMC9585952 DOI: 10.1093/stcltm/szac058] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/02/2022] [Indexed: 11/13/2022] Open
Abstract
Insulin represents a life-saving treatment in patients with type 1 diabetes, and technological advancements have improved glucose control in an increasing number of patients. Despite this, adequate control is often still difficult to achieve and insulin remains a therapy and not a cure for the disease. β-cell replacement strategies can potentially restore pancreas endocrine function and aim to maintain normoglycemia; both pancreas and islet transplantation have greatly progressed over the last decades and, in subjects with extreme glycemic variability and diabetes complications, represent a concrete and effective treatment option. Some issues still limit the adoption of this approach on a larger scale. One is represented by the strict selection criteria for the recipient who can benefit from a transplant and maintain the lifelong immunosuppression necessary to avoid organ rejection. Second, with regard to islet transplantation, up to 40% of islets can be lost during hepatic engraftment. Recent studies showed very preliminarily but promising results to overcome these hurdles: the ability to induce β-cell maturation from stem cells may represent a solution to the organ shortage, and the creation of semi-permeable membranes that envelope or package cells in either micro- or macro- encapsulation strategies, together with engineering cells to be hypo-immunogenic, pave the way for developing strategies without immunosuppression. The aim of this review is to describe the state of the art in β-cell replacement with a focus on its efficacy and clinical benefits, on the actual limitations and still unmet needs, and on the latest findings and future directions.
Collapse
Affiliation(s)
| | - Laura Montefusco
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Ida Pastore
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | | | - Moufida Ben Nasr
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy.,Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Paolo Fiorina
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy.,International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy.,Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Kou X, Liu J, Wang D, Yu M, Li C, Lu L, Chen C, Liu D, Yu W, Yu T, Liu Y, Mao X, Naji A, Cai T, Sun L, Shi S. Exocrine pancreas regeneration modifies original pancreas to alleviate diabetes in mouse models. Sci Transl Med 2022; 14:eabg9170. [PMID: 35921475 DOI: 10.1126/scitranslmed.abg9170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Diabetes is a major public health issue because of its widely epidemic nature and lack of cure. Here, we show that pancreas-derived mesenchymal stem cells (PMSCs) are capable of regenerating exocrine pancreas when implanted into the kidney capsule of mice with streptozotocin (STZ)-induced diabetes. Mechanistically, we found that the regenerated exocrine pancreas elevated interleukin-6 (IL-6) in PMSC implants, which transiently activated tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) to inhibit IL-17, thereby rescuing damaged exocrine pancreas and islet β cells. In addition, we used knockout mouse models to show that global lack of IL-6, TNF-α, or IFN-γ resulted in increased severity of STZ-induced diabetes and resistance to PMSC implantation therapy, confirming the roles of these factors in safeguarding pancreatic β cells. Furthermore, removal of the kidney capsule PMSC implants at 28 days after implantation did not affect the PMSC-initiated therapeutic effect on diabetic mice. This study reveals a previously unknown role of exocrine pancreas regeneration in safeguarding β cells and demonstrates a "soil-rescues-seed" strategy for type 1 diabetes therapy.
Collapse
Affiliation(s)
- Xiaoxing Kou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.,Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA.,Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Jin Liu
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA.,Laboratory for Aging Research, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dandan Wang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Ming Yu
- Division of Transplantation, Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Can Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Lu Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Chider Chen
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA
| | - Dawei Liu
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA.,Department of Orthodontics, Peking University School & Hospital of Stomatology, #22 Zhongguancun South Avenue, Beijing 100081, China
| | - Wenjing Yu
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA
| | - Tingting Yu
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA.,Department of Orthodontics, Peking University School & Hospital of Stomatology, #22 Zhongguancun South Avenue, Beijing 100081, China
| | - Yao Liu
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA.,Department of Pediatric Dentistry, School of Stomatology, China Medical University, Shenyang 110002, China
| | - Xueli Mao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Ali Naji
- Division of Transplantation, Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tao Cai
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.,Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Songtao Shi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.,Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA.,Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| |
Collapse
|
4
|
Triolo TM, Bellin MD. Lessons from Human Islet Transplantation Inform Stem Cell-Based Approaches in the Treatment of Diabetes. Front Endocrinol (Lausanne) 2021; 12:636824. [PMID: 33776933 PMCID: PMC7992005 DOI: 10.3389/fendo.2021.636824] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus is characterized by the body's inability to control blood glucose levels within a physiological range due to loss and/or dysfunction of insulin producing beta cells. Progressive beta cell loss leads to hyperglycemia and if untreated can lead to severe complications and/or death. Treatments at this time are limited to pharmacologic therapies, including exogenous insulin or oral/injectable agents that improve insulin sensitivity or augment endogenous insulin secretion. Cell transplantation can restore physiologic endogenous insulin production and minimize hyper- and hypoglycemic excursions. Islet isolation procedures and management of transplant recipients have advanced over the last several decades; both tight glycemic control and insulin independence are achievable. Research has been conducted in isolating islets, monitoring islet function, and mitigating the immune response. However, this procedure is still only performed in a small minority of patients. One major barrier is the scarcity of human pancreatic islet donors, variation in donor pancreas quality, and variability in islet isolation success. Advances have been made in generation of glucose responsive human stem cell derived beta cells (sBCs) and islets from human pluripotent stem cells using directed differentiation. This is an emerging promising treatment for patients with diabetes because they could potentially serve as an unlimited source of functional, glucose-responsive beta cells. Challenges exist in their generation including long term survival of grafts, safety of transplantation, and protection from the immune response. This review focuses on the progress made in islet allo- and auto transplantation and how these advances may be extrapolated to the sBC context.
Collapse
Affiliation(s)
- Taylor M. Triolo
- The Barbara Davis Center for Diabetes, School of Medicine, University of Colorado Denver, Aurora, CO, United States
- *Correspondence: Taylor M. Triolo,
| | - Melena D. Bellin
- Department of Pediatrics, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
5
|
Robert T, De Mesmaeker I, Van Hulle FO, Suenens KG, Stangé GM, Ling Z, Haller C, Bouche N, Keymeulen B, Kraus MRC, Pipeleers DG. Cell Mass Increase Associated with Formation of Glucose-Controlling β-Cell Mass in Device-Encapsulated Implants of hiPS-Derived Pancreatic Endoderm. Stem Cells Transl Med 2019; 8:1296-1305. [PMID: 31379140 PMCID: PMC6877770 DOI: 10.1002/sctm.19-0043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/17/2019] [Indexed: 12/26/2022] Open
Abstract
Device-encapsulated human stem cell-derived pancreatic endoderm (PE) can generate functional β-cell implants in the subcutis of mice, which has led to the start of clinical studies in type 1 diabetes. Assessment of the formed functional β-cell mass (FBM) and its correlation with in vivo metabolic markers can guide clinical translation. We recently reported ex vivo characteristics of device-encapsulated human embryonic stem cell-derived (hES)-PE implants in mice that had established a metabolically adequate FBM during 50-week follow-up. Cell suspensions from retrieved implants indicated a correlation with the number of formed β cells and their maturation to a functional state comparable to human pancreatic β cells. Variability in metabolic outcome was attributed to differences in number of PE-generated β cells. This variability hinders studies on processes involved in FBM-formation. This study reports modifications that reduce variability. It is undertaken with device-encapsulated human induced pluripotent stem cell-derived-PE subcutaneously implanted in mice. Cell mass of each cell type was determined on intact tissue inside the device to obtain more precise data than following isolation and dispersion. Implants in a preformed pouch generated a glucose-controlling β-cell mass within 20 weeks in over 60% of recipients versus less than 20% in the absence of a pouch, whether the same or threefold higher cell dose had been inserted. In situ analysis of implants indicated a role for pancreatic progenitor cell expansion and endocrine differentiation in achieving the size of β- and α-cell mass that correlated with in vivo markers of metabolic control. Stem Cells Translational Medicine 2019;8:1296&1305.
Collapse
Affiliation(s)
- Thomas Robert
- Diabetes Research Center, Brussels Free University-VUB, Brussels, Belgium.,Beta Cell Therapy Consortium, Brussels, Belgium
| | - Ines De Mesmaeker
- Diabetes Research Center, Brussels Free University-VUB, Brussels, Belgium.,Beta Cell Therapy Consortium, Brussels, Belgium
| | - Freya O Van Hulle
- Diabetes Research Center, Brussels Free University-VUB, Brussels, Belgium.,Beta Cell Therapy Consortium, Brussels, Belgium.,University Hospital Brussels-UZB, Brussels, Belgium
| | - Krista G Suenens
- Diabetes Research Center, Brussels Free University-VUB, Brussels, Belgium
| | - Geert M Stangé
- Diabetes Research Center, Brussels Free University-VUB, Brussels, Belgium
| | - Zhidong Ling
- Diabetes Research Center, Brussels Free University-VUB, Brussels, Belgium.,Beta Cell Therapy Consortium, Brussels, Belgium.,University Hospital Brussels-UZB, Brussels, Belgium
| | | | | | - Bart Keymeulen
- Diabetes Research Center, Brussels Free University-VUB, Brussels, Belgium.,Beta Cell Therapy Consortium, Brussels, Belgium.,University Hospital Brussels-UZB, Brussels, Belgium
| | - Marine R C Kraus
- Beta Cell Therapy Consortium, Brussels, Belgium.,Nestlé Research, Lausanne, Switzerland
| | - Daniel G Pipeleers
- Diabetes Research Center, Brussels Free University-VUB, Brussels, Belgium.,Beta Cell Therapy Consortium, Brussels, Belgium.,University Hospital Brussels-UZB, Brussels, Belgium
| |
Collapse
|
6
|
Abstract
β cell replacement with either pancreas or islet transplantation has progressed immensely over the last decades with current 1- and 5-year insulin independence rates of approximately 85% and 50%, respectively. Recent advances are largely attributed to improvements in immunosuppressive regimen, donor selection, and surgical technique. However, both strategies are compromised by a scarce donor source. Xenotransplantation offers a potential solution by providing a theoretically unlimited supply of islets, but clinical application has been limited by concerns for a potent immune response against xenogeneic tissue. β cell clusters derived from embryonic or induced pluripotent stem cells represent another promising unlimited source of insulin producing cells, but clinical application is pending further advances in the function of the β cell like clusters. Exciting developments and rapid progress in all areas of β cell replacement prompted a lively debate by members of the young investigator committee of the International Pancreas and Islet Transplant Association at the 15th International Pancreas and Islet Transplant Association Congress in Melbourne and at the 26th international congress of The Transplant Society in Hong Kong. This international group of young investigators debated which modality of β cell replacement would predominate the landscape in 10 years, and their arguments are summarized here.
Collapse
|
7
|
Odorico J, Markmann J, Melton D, Greenstein J, Hwa A, Nostro C, Rezania A, Oberholzer J, Pipeleers D, Yang L, Cowan C, Huangfu D, Egli D, Ben-David U, Vallier L, Grey ST, Tang Q, Roep B, Ricordi C, Naji A, Orlando G, Anderson DG, Poznansky M, Ludwig B, Tomei A, Greiner DL, Graham M, Carpenter M, Migliaccio G, D'Amour K, Hering B, Piemonti L, Berney T, Rickels M, Kay T, Adams A. Report of the Key Opinion Leaders Meeting on Stem Cell-derived Beta Cells. Transplantation 2018; 102:1223-1229. [PMID: 29781950 PMCID: PMC6775764 DOI: 10.1097/tp.0000000000002217] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Beta cell replacement has the potential to restore euglycemia in patients with insulin-dependent diabetes. Although great progress has been made in establishing allogeneic islet transplantation from deceased donors as the standard of care for those with the most labile diabetes, it is also clear that the deceased donor organ supply cannot possibly treat all those who could benefit from restoration of a normal beta cell mass, especially if immunosuppression were not required. Against this background, the International Pancreas and Islet Transplant Association in collaboration with the Harvard Stem Cell Institute, the Juvenile Diabetes Research Foundation (JDRF), and the Helmsley Foundation held a 2-day Key Opinion Leaders Meeting in Boston in 2016 to bring together experts in generating and transplanting beta cells derived from stem cells. The following summary highlights current technology, recent significant breakthroughs, unmet needs and roadblocks to stem cell-derived beta cell therapies, with the aim of spurring future preclinical collaborative investigations and progress toward the clinical application of stem cell-derived beta cells.
Collapse
Affiliation(s)
- Jon Odorico
- Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - James Markmann
- Department of Surgery, Massachusetts General Hospital, Boston, MA
| | - Douglas Melton
- Harvard Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Boston MA
| | | | - Albert Hwa
- Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Cristina Nostro
- Department of Physiology, University of Toronto, University of Toronto, Toronto Canada
| | | | - Jose Oberholzer
- Department of Surgery, University of Illinois at Chicago, Chicago, IL
| | - Daniel Pipeleers
- Center for Beta Cell Therapy in Diabetes, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Chad Cowan
- Harvard Stem Cell Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Danwei Huangfu
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Dieter Egli
- Columbia Stem Cell Initiative, Columbia University, New York, NY
| | - Uri Ben-David
- Broad Institute of MIT and Harvard, Cancer Program, Golub Lab, Cambridge MA
| | - Ludovic Vallier
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | - Shane T Grey
- Department of Medicine, University of Sydney, Sydney, Australia
| | - Qizhi Tang
- Department of Surgery, UCSF Medical Center, San Francisco, CA
| | - Bart Roep
- National Diabetes Center of Excellence, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Ali Naji
- Department of Surgery, University of Pennsylvania, Philadelphia, PA
| | - Giuseppe Orlando
- Center on Diabetes, Obesity, and Metabolism, Wake Forest School of Medicine, Winston-Salem, NC
| | - Daniel G Anderson
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA
| | - Mark Poznansky
- Department of Medicine, Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Barbara Ludwig
- Department of Endocrinology and Diabetes, University Hospital Dresden, Dresden, Germany
| | - Alice Tomei
- Department of Surgery, University of Miami, Miami, FL
| | - Dale L Greiner
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Melanie Graham
- Department of Surgery, University of Minnesota, Minneapolis, MN
| | | | | | | | - Bernhard Hering
- Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan Italy
| | - Thierry Berney
- Department of Surgery, Geneva University, Geneva, Switzerland
| | - Mike Rickels
- Department of Surgery, University of Pennsylvania, Philadelphia, PA
| | - Thomas Kay
- Department of Medicine, St. Vincent's Institute, Melbourne, Australia
| | - Ann Adams
- Department of Surgery, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
8
|
Robert T, De Mesmaeker I, Stangé GM, Suenens KG, Ling Z, Kroon EJ, Pipeleers DG. Functional Beta Cell Mass from Device-Encapsulated hESC-Derived Pancreatic Endoderm Achieving Metabolic Control. Stem Cell Reports 2018; 10:739-750. [PMID: 29503087 PMCID: PMC5918665 DOI: 10.1016/j.stemcr.2018.01.040] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 12/12/2022] Open
Abstract
Human stem cells represent a potential source for implants that replace the depleted functional beta cell mass (FBM) in diabetes patients. Human embryonic stem cell-derived pancreatic endoderm (hES-PE) can generate implants with glucose-responsive beta cells capable of reducing hyperglycemia in mice. This study with device-encapsulated hES-PE (4 × 106 cells/mouse) determines the biologic characteristics at which implants establish metabolic control during a 50-week follow-up. A metabolically adequate FBM was achieved by (1) formation of a sufficient beta cell number (>0.3 × 106/mouse) at >50% endocrine purity and (2) their maturation to a functional state comparable with human pancreatic beta cells, as judged by their secretory responses during perifusion, their content in typical secretory vesicles, and their nuclear NKX6.1-PDX1-MAFA co-expression. Assessment of FBM in implants and its correlation with in vivo metabolic markers will guide clinical translation of stem cell-derived grafts in diabetes. Human stem cell-derived pancreatic precursors generate functional beta cell mass Cellular markers identify metabolically adequate human stem cell-generated implants Significance of determining beta cell number and maturation in implants Functional implants differ in endocrine composition from endocrine pancreas
Collapse
Affiliation(s)
- Thomas Robert
- Diabetes Research Center, Brussels Free University-VUB and University Hospital Brussels-UZB, Brussels 1090, Belgium; BetaCellTherapy Consortium (supported by EU and JDRF), Brussels, Belgium
| | - Ines De Mesmaeker
- Diabetes Research Center, Brussels Free University-VUB and University Hospital Brussels-UZB, Brussels 1090, Belgium; BetaCellTherapy Consortium (supported by EU and JDRF), Brussels, Belgium
| | - Geert M Stangé
- Diabetes Research Center, Brussels Free University-VUB and University Hospital Brussels-UZB, Brussels 1090, Belgium; BetaCellTherapy Consortium (supported by EU and JDRF), Brussels, Belgium
| | - Krista G Suenens
- Diabetes Research Center, Brussels Free University-VUB and University Hospital Brussels-UZB, Brussels 1090, Belgium; BetaCellTherapy Consortium (supported by EU and JDRF), Brussels, Belgium
| | - Zhidong Ling
- Diabetes Research Center, Brussels Free University-VUB and University Hospital Brussels-UZB, Brussels 1090, Belgium; BetaCellTherapy Consortium (supported by EU and JDRF), Brussels, Belgium
| | - Evert J Kroon
- ViaCyte, Inc., San Diego, CA 92121, USA; BetaCellTherapy Consortium (supported by EU and JDRF), Brussels, Belgium
| | - Daniel G Pipeleers
- Diabetes Research Center, Brussels Free University-VUB and University Hospital Brussels-UZB, Brussels 1090, Belgium; BetaCellTherapy Consortium (supported by EU and JDRF), Brussels, Belgium.
| |
Collapse
|
9
|
Wallet MA, Santostefano KE, Terada N, Brusko TM. Isogenic Cellular Systems Model the Impact of Genetic Risk Variants in the Pathogenesis of Type 1 Diabetes. Front Endocrinol (Lausanne) 2017; 8:276. [PMID: 29093700 PMCID: PMC5651267 DOI: 10.3389/fendo.2017.00276] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/02/2017] [Indexed: 12/31/2022] Open
Abstract
At least 57 independent loci within the human genome confer varying degrees of risk for the development of type 1 diabetes (T1D). The majority of these variants are thought to contribute to overall genetic risk by modulating host innate and adaptive immune responses, ultimately resulting in a loss of immunological tolerance to β cell antigens. Early efforts to link specific risk variants with functional alterations in host immune responses have employed animal models or genotype-selected individuals from clinical bioresource banks. While some notable genotype:phenotype associations have been described, there remains an urgent need to accelerate the discovery of causal variants and elucidate the molecular mechanisms by which susceptible alleles alter immune functions. One significant limitation has been the inability to study human T1D risk loci on an isogenic background. The advent of induced pluripotent stem cells (iPSCs) and genome-editing technologies have made it possible to address a number of these outstanding questions. Specifically, the ability to drive multiple cell fates from iPSC under isogenic conditions now facilitates the analysis of causal variants in multiple cellular lineages. Bioinformatic analyses have revealed that T1D risk genes cluster within a limited number of immune signaling pathways, yet the relevant immune cell subsets and cellular activation states in which candidate risk genes impact cellular activities remain largely unknown. In this review, we summarize the functional impact of several candidate risk variants on host immunity in T1D and present an isogenic disease-in-a-dish model system for interrogating risk variants, with the goal of expediting precision therapeutics in T1D.
Collapse
Affiliation(s)
- Mark A. Wallet
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL, United States
| | - Katherine E. Santostefano
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL, United States
| | - Naohiro Terada
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL, United States
| | - Todd M. Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL, United States
- *Correspondence: Todd M. Brusko,
| |
Collapse
|