1
|
Zhang HJ, Ming JJ, Zhang HX, Fang SYIH, Liu QW, Zhang HY. A Comprehensive Review: Advances in Mesenchymal Stem Cell Applications for Burn Wound Repair. Stem Cells Int 2025; 2025:6683745. [PMID: 40151391 PMCID: PMC11949610 DOI: 10.1155/sci/6683745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 02/12/2025] [Indexed: 03/29/2025] Open
Abstract
Tissue repair following skin injury is a complex process that encompasses hemostasis, inflammation, tissue cell proliferation, and structural remodeling. Mesenchymal stem cells (MSCs) are derived from the mesodermal layer of tissues and possess multidirectional differentiation potential and self-renewal capabilities. MSCs from various sources, including the bone marrow, adipose tissue, dental pulp, umbilical cord, and amniotic membrane, have demonstrated effectiveness in promoting skin injury repair. They aid in this process by fostering the formation of new blood vessels in damaged tissues, self-renewal, or transdifferentiation into skin or sweat gland cells. Moreover, MSCs promote the proliferation and migration of skin cells, reduce wound inflammation, and restore the extracellular matrix through paracrine secretion. In this paper, we review recent findings regarding MSCs and their role in burn wound repair. Additionally, we explore the potential of combining MSCs with various biomaterials for treating burn wounds and analyze clinical cases wherein MSCs were administered to patients, offering insights into ongoing research on MSC-based therapies for skin injuries.
Collapse
Affiliation(s)
- Hui-Juan Zhang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Jing-Jie Ming
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Hong-Xiao Zhang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Shao-YI-Han Fang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Quan-Wen Liu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
- Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, Nanchang 330031, China
| | - Hong-Yan Zhang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| |
Collapse
|
2
|
Gandolfi S, Sanouj A, Chaput B, Coste A, Sallerin B, Varin A. The role of adipose tissue-derived stromal cells, macrophages and bioscaffolds in cutaneous wound repair. Biol Direct 2024; 19:85. [PMID: 39343924 PMCID: PMC11439310 DOI: 10.1186/s13062-024-00534-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
Skin healing is a complex and dynamic physiological process that follows mechanical alteration of the skin barrier. Under normal conditions, this complex process can be divided into at least three continuous and overlapping phases: an inflammatory reaction, a proliferative phase that leads to tissue reconstruction and a phase of tissue remodeling. Macrophages critically contribute to the physiological cascade for tissue repair. In fact, as the inflammatory phase progresses, macrophage gene expression gradually shifts from pro-inflammatory M1-like to pro-resolutive M2-like characteristics, which is critical for entry into the repair phase. A dysregulation in this macrophage' shift phenotype leads to the persistence of the inflammatory phase. Mesenchymal stromal cells and specifically the MSC-derived from adipose tissue (ADSCs) are more and more use to treat inflammatory diseases and several studies have demonstrated that ADSCs promote the wound healing thanks to their neoangiogenic, immunomodulant and regenerative properties. In several studies, ADSCs and macrophages have been injected directly into the wound bed, but the delivery of exogenous cells directly to the wound raise the problem of cell engraftment and preservation of pro-resolutive phenotype and viability of the cells. Complementary approaches have therefore been explored, such as the use of biomaterials enriched with therapeutic cell to improve cell survival and function. This review will present a background of the current scaffold models, using adipose derived stromal-cells and macrophage as therapeutic cells for wound healing, through a discussion on the potential impact for future applications in skin regeneration. According to the PRISMA statement, we resumed data from investigations reporting the use ADSCs and bioscaffolds and data from macrophages behavior with functional biomaterials in wound healing models. In the era of tissue engineering, functional biomaterials, that can maintain cell delivery and cellular viability, have had a profound impact on the development of dressings for the treatment of chronic wounds. Promising results have been showed in pre-clinical reports using ADSCs- and macrophages-based scaffolds to accelerate and to improve the quality of the cutaneous healing.
Collapse
Affiliation(s)
- S Gandolfi
- FLAMES Team, Restore Institute, Inserm, Toulouse III Paul Sabatier University, 4Bis Av. H. Curien, 31100, Toulouse, France.
- Department of Plastic and Reconstructive Surgery, Toulouse University Hospital, 1 Av. Pr.Jean Poulhès, 31400, Toulouse, France.
| | - A Sanouj
- FLAMES Team, Restore Institute, Inserm, Toulouse III Paul Sabatier University, 4Bis Av. H. Curien, 31100, Toulouse, France
| | - B Chaput
- Department of Plastic and Reconstructive Surgery, Toulouse University Hospital, 1 Av. Pr.Jean Poulhès, 31400, Toulouse, France
| | - A Coste
- FLAMES Team, Restore Institute, Inserm, Toulouse III Paul Sabatier University, 4Bis Av. H. Curien, 31100, Toulouse, France
| | - B Sallerin
- FLAMES Team, Restore Institute, Inserm, Toulouse III Paul Sabatier University, 4Bis Av. H. Curien, 31100, Toulouse, France
- Department of Pharmacology, Toulouse University Hospital, 1 Av Pr.Jean Poulhès, 31400, Toulouse, France
| | - A Varin
- FLAMES Team, Restore Institute, Inserm, Toulouse III Paul Sabatier University, 4Bis Av. H. Curien, 31100, Toulouse, France
| |
Collapse
|
3
|
Nilforoushzadeh MA, Raoofi A, Afzali H, Gholami O, Zare S, Nasiry D, Khodaverdi Darian E, Rustamzadeh A, Alavi S, Ahmadi R, Alimohammadi A, Razzaghi Z, Safaie Naraghi Z, Mahmoudbeyk M, Amirkhani MA, Mousavi Khaneghah A. Promotion of cutaneous diabetic wound healing by subcutaneous administration of Wharton's jelly mesenchymal stem cells derived from umbilical cord. Arch Dermatol Res 2023; 315:147-159. [PMID: 35129662 DOI: 10.1007/s00403-022-02326-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 12/20/2022]
Abstract
Wound healing is a major problem in diabetic patients, and current treatments have been confronted with limited success. The present study examined the benefit of Wharton's jelly mesenchymal stem cells (WJ-MSCs) derived from the human umbilical cord (UC) in wound healing in diabetic rats. Thirty days after inducing diabetes, a circular excision was created in the skin of rats, and the treatments were performed for 21 days. Two groups were studied, which included the Control group and WJ-MSCs group. The studied groups were sampled on the 7th, 14th, and 21st days after wounding. Histological ultrasound imaging of dermis and epidermis in the wound area for thickness and density measurement and skin elasticity were evaluated. Our results on post-wounding days 7, 14, and 21 showed that the wound closure, thickness, and density of new epidermis and dermis, as well as skin elasticity in the healed wound, were significantly higher in the WJ-MSCs group compared to the Control group. Subcutaneous administration of WJ-MSCs in diabetic wounds can effectively accelerate healing. Based on this, these cells can be used along with other treatment methods in the healing of different types of chronic wounds.
Collapse
Affiliation(s)
- Mohammad Ali Nilforoushzadeh
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Jordan Dermatology and Hair Transplantation Center, Tehran, Iran
| | - Amir Raoofi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Hamideh Afzali
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Gholami
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Sona Zare
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Davood Nasiry
- Amol Faculty of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ebrahim Khodaverdi Darian
- Department of Medical Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.,Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Auob Rustamzadeh
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shiva Alavi
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Rahim Ahmadi
- Department of Biology, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Alimohammad Alimohammadi
- Forensic Medicine Specialist, Research Center of Legal Medicine Organization of Iran, Tehran, Iran
| | - Zahra Razzaghi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Safaie Naraghi
- Department of Pathology, Razi Skin Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Mahmoudbeyk
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas, Caixa Postal: 6121.CEP: 13083-862, São Paulo, Brazil
| |
Collapse
|
4
|
Picker J, Lan Z, Arora S, Green M, Hahn M, Cosgriff-Hernandez E, Hook M. Prokaryotic Collagen-Like Proteins as Novel Biomaterials. Front Bioeng Biotechnol 2022; 10:840939. [PMID: 35372322 PMCID: PMC8968730 DOI: 10.3389/fbioe.2022.840939] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
Abstract
Collagens are the major structural component in animal extracellular matrices and are critical signaling molecules in various cell-matrix interactions. Its unique triple helical structure is enabled by tripeptide Gly-X-Y repeats. Understanding of sequence requirements for animal-derived collagen led to the discovery of prokaryotic collagen-like protein in the early 2000s. These prokaryotic collagen-like proteins are structurally similar to mammalian collagens in many ways. However, unlike the challenges associated with recombinant expression of mammalian collagens, these prokaryotic collagen-like proteins can be readily expressed in E. coli and are amenable to genetic modification. In this review article, we will first discuss the properties of mammalian collagen and provide a comparative analysis of mammalian collagen and prokaryotic collagen-like proteins. We will then review the use of prokaryotic collagen-like proteins to both study the biology of conventional collagen and develop a new biomaterial platform. Finally, we will describe the application of Scl2 protein, a streptococcal collagen-like protein, in thromboresistant coating for cardiovascular devices, scaffolds for bone regeneration, chronic wound dressing and matrices for cartilage regeneration.
Collapse
Affiliation(s)
- Jonathan Picker
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M, Houston, TX, United States
| | - Ziyang Lan
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Srishtee Arora
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M, Houston, TX, United States
| | - Mykel Green
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Mariah Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| | | | - Magnus Hook
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M, Houston, TX, United States
| |
Collapse
|
5
|
Nazbar A, Samani S, Yazdian Kashani S, Amanzadeh A, Shoeibi S, Bonakdar S. Molecular imprinting as a simple way for the long-term maintenance of the stemness and proliferation potential of adipose-derived stem cells: an in vitro study. J Mater Chem B 2022; 10:6816-6830. [DOI: 10.1039/d2tb00279e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Culturing adipose-derived stem cells (ADSCs) on the biomimetic ADSC-imprinted substrate is a simple way for long-term maintenance of their stemness and proliferation potential.
Collapse
Affiliation(s)
- Abolfazl Nazbar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| | - Saeed Samani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Yazdian Kashani
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Amir Amanzadeh
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| | - Shahram Shoeibi
- Food and Drug Laboratory Research Center (FDLRC), Iran Food and Drug Administration (IFDA), MOH & ME, Tehran, Iran
| | - Shahin Bonakdar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
6
|
Dhavalikar P, Robinson A, Lan Z, Jenkins D, Chwatko M, Salhadar K, Jose A, Kar R, Shoga E, Kannapiran A, Cosgriff-Hernandez E. Review of Integrin-Targeting Biomaterials in Tissue Engineering. Adv Healthc Mater 2020; 9:e2000795. [PMID: 32940020 PMCID: PMC7960574 DOI: 10.1002/adhm.202000795] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/27/2020] [Indexed: 12/12/2022]
Abstract
The ability to direct cell behavior has been central to the success of numerous therapeutics to regenerate tissue or facilitate device integration. Biomaterial scientists are challenged to understand and modulate the interactions of biomaterials with biological systems in order to achieve effective tissue repair. One key area of research investigates the use of extracellular matrix-derived ligands to target specific integrin interactions and induce cellular responses, such as increased cell migration, proliferation, and differentiation of mesenchymal stem cells. These integrin-targeting proteins and peptides have been implemented in a variety of different polymeric scaffolds and devices to enhance tissue regeneration and integration. This review first presents an overview of integrin-mediated cellular processes that have been identified in angiogenesis, wound healing, and bone regeneration. Then, research utilizing biomaterials are highlighted with integrin-targeting motifs as a means to direct these cellular processes to enhance tissue regeneration. In addition to providing improved materials for tissue repair and device integration, these innovative biomaterials provide new tools to probe the complex processes of tissue remodeling in order to enhance the rational design of biomaterial scaffolds and guide tissue regeneration strategies.
Collapse
Affiliation(s)
- Prachi Dhavalikar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrew Robinson
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Ziyang Lan
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Dana Jenkins
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Malgorzata Chwatko
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Karim Salhadar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Anupriya Jose
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Ronit Kar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Erik Shoga
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Aparajith Kannapiran
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | | |
Collapse
|
7
|
Henriksen JL, Sørensen NB, Fink T, Zachar V, Porsborg SR. Systematic Review of Stem-Cell-Based Therapy of Burn Wounds: Lessons Learned from Animal and Clinical Studies. Cells 2020; 9:E2545. [PMID: 33256038 PMCID: PMC7761075 DOI: 10.3390/cells9122545] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Treatment of severe burn wounds presents a daunting medical challenge, and novel approaches promoting healing and reducing scarring are highly desirable. The application of mesenchymal stem/stromal cells (MSCs) has been suggested as a novel treatment. In this paper, we present systematic reviews of pre-clinical and clinical studies of MSC therapy for second- or third-degree thermal burn wounds. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines, the PubMed and Embase databases were searched, and interventional studies of MSC therapy using rodent models (21 studies) or human burn patients (three studies) were included in the pre-clinical and clinical reviews, respectively, where both overall outcome and wound-healing-phase-specific methodologies and effects were assessed. The pre-clinical studies demonstrated a promising effect of the application of MSCs on several wound healing phases. The clinical studies also suggested that the MSC treatment was beneficial, particularly in the remodeling phase. However, the limited number of studies, their lack of homogeneity in study design, relatively high risk of bias, lack of reporting on mode of action (MOA), and discontinuity of evidence restrict the strength of these findings. This comprehensive review presents an overview of available methodologies to assess the MOA of MSC treatment for distinct wound healing phases. Furthermore, it includes a set of recommendations for the design of high-quality clinical studies that can determine the efficacy of MSCs as a therapy for burn wounds.
Collapse
Affiliation(s)
- Josefine Lin Henriksen
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7, 9220 Aalborg, Denmark; (J.L.H.); (N.B.S.)
| | - Nana Brandborg Sørensen
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7, 9220 Aalborg, Denmark; (J.L.H.); (N.B.S.)
| | - Trine Fink
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, 9220 Aalborg, Denmark; (T.F.); (V.Z.)
| | - Vladimir Zachar
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, 9220 Aalborg, Denmark; (T.F.); (V.Z.)
| | - Simone Riis Porsborg
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, 9220 Aalborg, Denmark; (T.F.); (V.Z.)
| |
Collapse
|
8
|
Autologous Fat Transfer for Scar Prevention and Remodeling: A Randomized, Blinded, Placebo-controlled Trial. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2020; 8:e2830. [PMID: 33154872 PMCID: PMC7605847 DOI: 10.1097/gox.0000000000002830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/18/2020] [Indexed: 12/24/2022]
Abstract
Autologous fat transfer—also referred to as fat grafting—has been reported to provide beneficial effects to overlying scar and skin. Despite procedural frequency, there is a paucity of high-level evidence guiding the surgeon in technique, patient selection, and efficacy.
Collapse
|
9
|
Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J. Mesenchymal Stem Cells for Regenerative Medicine. Cells 2019; 8:E886. [PMID: 31412678 PMCID: PMC6721852 DOI: 10.3390/cells8080886] [Citation(s) in RCA: 699] [Impact Index Per Article: 116.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
In recent decades, the biomedical applications of mesenchymal stem cells (MSCs) have attracted increasing attention. MSCs are easily extracted from the bone marrow, fat, and synovium, and differentiate into various cell lineages according to the requirements of specific biomedical applications. As MSCs do not express significant histocompatibility complexes and immune stimulating molecules, they are not detected by immune surveillance and do not lead to graft rejection after transplantation. These properties make them competent biomedical candidates, especially in tissue engineering. We present a brief overview of MSC extraction methods and subsequent potential for differentiation, and a comprehensive overview of their preclinical and clinical applications in regenerative medicine, and discuss future challenges.
Collapse
Affiliation(s)
- Yu Han
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Xuezhou Li
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Yanbo Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China.
| | - Yuping Han
- Department of Urology, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China.
| | - Fei Chang
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China.
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| |
Collapse
|
10
|
Yang Q, Pinto VMR, Duan W, Paxton EE, Dessauer JH, Ryan W, Lopez MJ. In vitro Characteristics of Heterogeneous Equine Hoof Progenitor Cell Isolates. Front Bioeng Biotechnol 2019; 7:155. [PMID: 31355191 PMCID: PMC6637248 DOI: 10.3389/fbioe.2019.00155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/10/2019] [Indexed: 12/12/2022] Open
Abstract
Damage to an ectodermal-mesodermal interface like that in the equine hoof and human finger nail bed can permanently alter tissue structure and associated function. The purpose of this study was to establish and validate in vitro culture of primary progenitor cell isolates from the ectodermal-mesodermal tissue junction in equine hooves, the stratum internum, with and without chronic inflammation known to contribute to lifelong tissue defects. The following were evaluated in hoof stratum internum cell isolates up to 5 cell passages (P): expansion capacity by cell doublings and doubling time; plasticity with multi-lineage differentiation and colony-forming unit (CFU) frequency percentage; immunophenotype with immunocytochemistry and flow cytometry; gene expression with RT-PCR; and ultrastructure with transmission electron microscopy. The presence of keratin (K)14, 15 and K19 as well as cluster of differentiation (CD)44 and CD29 was determined in situ with immunohistochemistry. To confirm in vivo extracellular matrix (ECM) formation, cell-scaffold (polyethylene glycol/poly-L-lactic acid and tricalcium phosphate/hydroxyapatite) constructs were evaluated with scanning electron microscopy 9 weeks after implantation in athymic mice. Cultured cells had characteristic progenitor cell morphology, expansion, CFU frequency percentage and adipocytic, osteoblastic, and neurocytic differentiation capacity. CD44, CD29, K14, K15 and K19 proteins were present in native hoof stratum internum. Cultured cells also expressed K15, K19 and desmogleins 1 and 3. Gene expression of CD105, CD44, K14, K15, sex determining region Y-box 2 (SOX2) and octamer-binding transcription factor 4 (OCT4) was confirmed in vitro. Cultured cells had large, eccentric nuclei, elongated mitochondria, and intracellular vacuoles. Scaffold implants with cells contained fibrous ECM 9 weeks after implantation compared to little or none on acellular scaffolds. In vitro expansion and plasticity and in vivo ECM deposition of heterogeneous, immature cell isolates from the ectodermal-mesodermal tissue interface of normal and chronically inflamed hooves are typical of primary cell isolates from other adult tissues, and they appear to have both mesodermal and ectodermal qualities in vitro. These results establish a unique cell culture model to target preventative and restorative therapies for ectodermal-mesodermal tissue junctions.
Collapse
Affiliation(s)
- Qingqiu Yang
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Vanessa Marigo Rocha Pinto
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Wei Duan
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Erica E Paxton
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Jenna H Dessauer
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - William Ryan
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Mandi J Lopez
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
11
|
Ishihara M, Kishimoto S, Nakamura S, Fukuda K, Sato Y, Hattori H. Biomaterials as cell carriers for augmentation of adipose tissue-derived stromal cell transplantation. Biomed Mater Eng 2019; 29:567-585. [PMID: 30400072 DOI: 10.3233/bme-181009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Adipose tissue-derived stromal cells (ADSCs) contain lineage-committed progenitor cells that have the ability to differentiate into various cell types that may be useful for autologous cell transplantation to correct defects of skin, adipose, cartilage, bone, tendon, and blood vessels. The multipotent characteristics of ADSCs, as well as their abundance in the human body, make them an attractive potential resource for wound repair and applications to tissue engineering. ADSC transplantation has been used in combination with biomaterials, including cell sheets, hydrogel, and three-dimensional (3D) scaffolds based on chitosan, fibrin, atelocollagen, and decellularized porcine dermis, etc. Furthermore, low molecular weight heparin/protamine nanoparticles (LH/P NPs) have been used as an inducer of ADSC aggregation. The tissue engineering potential of these biomaterials as cell carriers is increased by the synergistic relationship between ADSCs and the biomaterials, resulting in the release of angiogenic cytokines and growth factors. In this review article, we describe the advantages of ADSC transplantation for tissue engineering, focusing on biomaterials as cell carriers which we have studied.
Collapse
Affiliation(s)
- Masayuki Ishihara
- Division of Biomedical Engineering Research Institute, National Defense Medical College, Saitama 359-8513, Japan
| | - Satoko Kishimoto
- Research Support Center, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Shingo Nakamura
- Division of Biomedical Engineering Research Institute, National Defense Medical College, Saitama 359-8513, Japan
| | - Koichi Fukuda
- Division of Biomedical Engineering Research Institute, National Defense Medical College, Saitama 359-8513, Japan
| | - Yoko Sato
- Division of Biomedical Engineering Research Institute, National Defense Medical College, Saitama 359-8513, Japan
| | - Hidemi Hattori
- Department of Biochemistry and Applied Sciences, University of Miyazaki, Miyazaki 889-2162, Japan
| |
Collapse
|
12
|
Zhou ZQ, Chen Y, Chai M, Tao R, Lei YH, Jia YQ, Shu J, Ren J, Li G, Wei WX, Han YD, Han Y. Adipose extracellular matrix promotes skin wound healing by inducing the differentiation of adipose‑derived stem cells into fibroblasts. Int J Mol Med 2019; 43:890-900. [PMID: 30535488 PMCID: PMC6317660 DOI: 10.3892/ijmm.2018.4006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/20/2018] [Indexed: 12/25/2022] Open
Abstract
Fibroblasts are the major effector cells of skin wound healing. Adipose‑derived stem cells can differentiate into fibroblasts under certain conditions. In the present study, it was hypothesized that adipose‑derived stem cells (ADSCs) could be induced by the adipose extracellular matrix (ECM) to differentiate into fibroblasts in order to promote skin wound healing. First, flow cytometry was used to detect the ratio of fibroblasts and relative expression of the fibroblast markers cytokeratin 19 (CK19) and vimentin in ADSCs. Then, the effect of the adipose ECM during the differentiation of ADSCs into fibroblasts was investigated by detecting the total amount of collagen fibers and degree of fibrosis, and the proliferation and cell cycle of differentiated fibroblasts, using the MTT assay and flow cytometry analysis respectively. Finally, a mouse skin wound model was established and treated with PBS, ADSC suspension or ECM + ADSCs to compare wound healing rate and expression of collagen I and collagen III by immunohistochemistry. Following induction of ADSCs with the adipose ECM, more fibroblasts were found, expression of CK19 and vimentin increased, and a greater degree of fibrosis occurred, which revealed the positive effect of the adipose ECM on the differentiation of ADSCs into fibroblasts. In addition, the induced fibroblasts had enhanced proliferation activity, with more cells in the S phase and fewer in the G2/M phase. The in vivo experiment indicated that the ECM produced by the ADSCs had a faster wound healing rate and increased expression of collagen I and collagen III compared with mice injected with PBS or ADSCs alone, which verified that ADSCs induced by the adipose ECM had a positive effect on skin wound healing. The present study demonstrated that the adipose ECM in combination with ADSCs may be a novel therapeutic target for the repair of skin injury, due to the ability of the adipose ECM to induce the differentiation of ADSCs into fibroblasts and to facilitate the wound healing process.
Collapse
Affiliation(s)
- Zhi-Qiang Zhou
- Department of Plastic and Reconstructive Surgery, General Hospital of Chinese PLA, Beijing 100853
| | - Yi Chen
- Institute of Bioengineering, Academy of Military Medical Research, Academy of Military Science of Chinese PLA, Beijing 100071, P.R. China
| | - Mi Chai
- Department of Plastic and Reconstructive Surgery, General Hospital of Chinese PLA, Beijing 100853
| | - Ran Tao
- Department of Plastic and Reconstructive Surgery, General Hospital of Chinese PLA, Beijing 100853
| | - Yong-Hong Lei
- Department of Plastic and Reconstructive Surgery, General Hospital of Chinese PLA, Beijing 100853
| | - Yi-Qing Jia
- Department of Plastic and Reconstructive Surgery, General Hospital of Chinese PLA, Beijing 100853
| | - Jun Shu
- Department of Plastic and Reconstructive Surgery, General Hospital of Chinese PLA, Beijing 100853
| | - Jing Ren
- Department of Plastic and Reconstructive Surgery, General Hospital of Chinese PLA, Beijing 100853
| | - Guo Li
- Department of Plastic and Reconstructive Surgery, General Hospital of Chinese PLA, Beijing 100853
| | - Wen-Xin Wei
- Department of Plastic and Reconstructive Surgery, General Hospital of Chinese PLA, Beijing 100853
| | - Yu-Di Han
- Department of Plastic and Reconstructive Surgery, General Hospital of Chinese PLA, Beijing 100853
| | - Yan Han
- Department of Plastic and Reconstructive Surgery, General Hospital of Chinese PLA, Beijing 100853
| |
Collapse
|
13
|
Wei LG, Chang HI, Wang Y, Hsu SH, Dai LG, Fu KY, Dai NT. A gelatin/collagen/polycaprolactone scaffold for skin regeneration. PeerJ 2019; 7:e6358. [PMID: 30723629 PMCID: PMC6361006 DOI: 10.7717/peerj.6358] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 12/28/2018] [Indexed: 01/22/2023] Open
Abstract
Background A tissue-engineered skin substitute, based on gelatin (“G”), collagen (“C”), and poly(ε-caprolactone) (PCL; “P”), was developed. Method G/C/P biocomposites were fabricated by impregnation of lyophilized gelatin/collagen (GC) mats with PCL solutions, followed by solvent evaporation. Two different GC:PCL ratios (1:8 and 1:20) were used. Results Differential scanning calorimetry revealed that all G/C/P biocomposites had characteristic melting point of PCL at around 60 °C. Scanning electron microscopy showed that all biocomposites had similar fibrous structures. Good cytocompatibility was present in all G/C/P biocomposites when incubated with primary human epidermal keratinocytes (PHEK), human dermal fibroblasts (PHDF) and human adipose-derived stem cells (ASCs) in vitro. All G/C/P biocomposites exhibited similar cell growth and mechanical characteristics in comparison with C/P biocomposites. G/C/P biocomposites with a lower collagen content showed better cell proliferation than those with a higher collagen content in vitro. Due to reasonable mechanical strength and biocompatibility in vitro, G/C/P with a lower content of collagen and a higher content of PCL (GCLPH) was selected for animal wound healing studies. According to our data, a significant promotion in wound healing and skin regeneration could be observed in GCLPH seeded with adipose-derived stem cells by Gomori’s trichrome staining. Conclusion This study may provide an effective and low-cost wound dressings to assist skin regeneration for clinical use.
Collapse
Affiliation(s)
- Lin-Gwei Wei
- Division of Plastic and Reconstructive Surgery, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan, R.O.C
| | - Hsin-I Chang
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan, R.O.C
| | - Yiwei Wang
- Burns Research Group, ANZAC Research Institute, Concord Hospital, University of Sydney, Concord West, NSW, Australia
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, R.O.C.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan, R.O.C
| | - Lien-Guo Dai
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan, R.O.C
| | - Keng-Yen Fu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Niann-Tzyy Dai
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C
| |
Collapse
|
14
|
Jazayeri M, Shokrgozar MA, Haghighipour N, Bolouri B, Mirahmadi F, Farokhi M. Effects of Electromagnetic Stimulation on Gene Expression of Mesenchymal Stem Cells and Repair of Bone Lesions. CELL JOURNAL 2016; 19:34-44. [PMID: 28367415 PMCID: PMC5241516 DOI: 10.22074/cellj.2016.4870] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 06/28/2016] [Indexed: 01/08/2023]
Abstract
Objective Most people experience bone damage and bone disorders during their lifetimes.
The use of autografts is a suitable way for injury recovery and healing. Mesenchymal stem
cells (MSCs) are key players in tissue engineering and regenerative medicine. Their proliferation potential and multipotent differentiation ability enable MSCs to be considered as appropriate cells for therapy and clinical applications. Differentiation of stem cells depends on
their microenvironment and biophysical stimulations. The aim of this study is to analyze the
effects of an electromagnetic field on osteogenic differentiation of stem cells.
Materials and Methods In this experimental animal study, we assessed the effects of the
essential parameters of a pulsatile electromagnetic field on osteogenic differentiation. The
main purpose was to identify an optimum electromagnetic field for osteogenesis induction. After isolating MSCs from male Wistar rats, passage-3 (P3) cells were exposed to an
electromagnetic field that had an intensity of 0.2 millitesla (mT) and frequency of 15 Hz for
10 days. Flow cytometry analysis confirmed the mesenchymal identity of the isolated cells.
Pulsatile electromagnetic field-stimulated cells were examined by immunocytochemistry
and real-time polymerase chain reaction (PCR).
Results Electromagnetic field stimulation alone motivated the expression of osteogenic
genes. This stimulation was more effective when combined with osteogenic differentiation
medium 6 hours per day for 10 days. For the in vivo study, an incision was made in the
cranium of each animal, after which we implanted a collagen scaffold seeded with stimulated cells into the animals. Histological analysis revealed bone formation after 10 weeks
of implantation.
Conclusion We have shown that the combined use of chemical factors and an electromagnetic field was more effective for inducing osteogenesis. These elements have synergistic effects and are beneficial for bone tissue engineering applications.
Collapse
Affiliation(s)
- Maryam Jazayeri
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | | | | | - Bahram Bolouri
- Department of Biophysics and Medical Physics, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
15
|
Ghanavati Z, Orazizadeh M, Bayati V, Abbaspour MR, Khorsandi L, Mansouri E, Neisi N. Characterization of A Three-Dimensional Organotypic Co-Culture Skin Model for Epidermal Differentiation of Rat Adipose-Derived Stem Cells. CELL JOURNAL 2016; 18:289-301. [PMID: 27602310 PMCID: PMC5011316 DOI: 10.22074/cellj.2016.4553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/28/2015] [Indexed: 12/17/2022]
Abstract
Objective The organotypic co-culture is a well-known technique to examine cellular
interactions and their roles in stem cell proliferation and differentiation. This study
aims to evaluate the effects of dermal fibroblasts (DFs) on epidermal differentiation
of adipose-derived stem cells (ASCs) using a three-dimensional (3D) organotypic co-
culture technique.
Materials and Methods In this experimental research study, rat DFs and ASCs were
isolated and cultured separately on electrospun polycaprolactone (PCL) matrices.
The PCL matrices seeded by ASCs were superimposed on to the matrices seeded
by DFs in order to create a 3D organotypic co-culture. In the control groups, PCL
matrices seeded by ASCs were placed on matrices devoid of DFs. After 10 days, we
assessed the expressions of keratinocyte-related genes by real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and expression of pan-cytokeratin
protein by immunofluorescence in the differentiated keratinocyte-like cells from co-
culture and control groups. Keratinocyte-like cell morphologies were also observed
by scanning electron microscopy (SEM).
Results The early, intermediate, and terminal differentiation keratinocyte markers-Cytokeratin14, Filaggrin, and Involucrin significantly expressed in the co-culture groups com-
pared to the control ones (P<0.05). We observed pan-cytokeratin in keratinocyte-like cells
of both groups by immunofluorescence. SEM observation of the co-culture groups showed
that the differentiated keratinocyte-like cells developed a polygonal cobblestone shape,
considered characteristic of keratinocytes.
Conclusion The 3D organotypic co-culture bilayered construct that consisted of DFs and
ASCs was an effective technique for epidermal differentiation of ASCs. This co-culture
might be useful for epidermal differentiation of stem cells for future applications in skin
regeneration.
Collapse
Affiliation(s)
- Zeinab Ghanavati
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahmoud Orazizadeh
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Vahid Bayati
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Reza Abbaspour
- Targeted Drug Delivery Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Esrafil Mansouri
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Niloofar Neisi
- Department of Medical Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
16
|
Taghiabadi E, Nasri S, Shafieyan S, Jalili Firoozinezhad S, Aghdami N. Fabrication and characterization of spongy denuded amniotic membrane based scaffold for tissue engineering. CELL JOURNAL 2015; 16:476-87. [PMID: 25685738 PMCID: PMC4297486 DOI: 10.22074/cellj.2015.493] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 01/29/2014] [Indexed: 12/11/2022]
Abstract
Objective As a biological tissue material, amniotic membrane (AM) has low immunogenicity and to date has been widely adopted in clinical practice. However, some features
such as low biomechanical consistency and rapid biodegradation is limited the application
of AM. Therefore, in this study, we fabricated a novel three-dimensional (3D) spongy scaffold made of the extracellular matrix (ECM) of denuded AM. Due to their unique characteristics which are similar to the skin, these scaffolds can be considered as an alternative
option in skin tissue engineering.
Materials and Methods In this experimental study, cellular components of human amniotic
membrane (HAM) were removed with 0.03% (w/v) sodium dodecyl sulphate (SDS). Quantitative analysis was performed to determine levels of Glycosaminoglycans (GAGs), collagen, and
deoxyribonucleic acid (DNA). To increase the low efficiency and purity of the ECM component,
especially collagen and GAG, we applied an acid solubilization procedure hydrochloridric acid
(HCl 0.1 M) with pepsin (1 mg/ml). In the present experiment 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS) cross linker agent was
used to improve the mechanical properties of 3D lyophilized AM scaffold. The spongy 3D AM
scaffolds were specified, by scanning electron microscopy, hematoxylin and eosin (H&E) staining, a swelling test, and mechanical strength and in vitro biodegradation tests. Human fetal
fibroblast culture systems were used to establish that the scaffolds were cytocompatible.
Results Histological analysis of treated human AM showed impressive removal of cellular components. DNA content was diminished after treatment (39 ± 4.06 μg/ml vs. 341 ±
29.60 μg/ml). Differences were observed between cellular and denude AM in matrix collagen (478 ± 18.06 μg/mg vs. 361 ± 27.47 μg/mg).With the optimum concentration of 1 mM
NHS/EDC ratio1:4, chemical cross-linker agent could significantly increase the mechanical property, and resistance to collagenase digestion. The results of 2, 4, 6-Trinitrobenzenesulfonic acid (TNBS) test showed that cross-linking efficiency of AM derived ECM scaffolds was about 65% ± 10.53. Scaffolds treated with NHS/EDC cross-linker agent by 100
μg/ml collagenase, lost 75% of their dry weight after 14 days. The average pore size of
3D spongy scaffold was 160 µm measured from scanning electron microscope (SEM) images that it is suitable for cell penetration, nutrients and gas change. In addition, the NHS/
EDC cross-linked AM scaffolds were able to support human fetal fibroblast cell proliferation in vitro. Extracts and contact prepared from the 3D spongy scaffold of AM showed a
significant increase in the attachment and proliferation of the human fetal fibroblasts cells. Conclusion The extra-cellular matrix of denuded AM-based scaffold displays the main
properties required for substitute skin including natural in vitro biodegradation, similar
physical and mechanical characterization, nontoxic biomaterial and no toxic effect on cell
attachment and cell proliferation.
Collapse
Affiliation(s)
- Ehsan Taghiabadi
- Department of Biology, Faculty of Science, Payame NOOR University, Tehran, Iran ; Department of Regenerative Biomedicine at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sima Nasri
- Department of Biology, Faculty of Science, Payame NOOR University, Tehran, Iran
| | - Saeed Shafieyan
- Department of Regenerative Biomedicine at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sasan Jalili Firoozinezhad
- Department of Regenerative Biomedicine at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nasser Aghdami
- Department of Regenerative Biomedicine at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
17
|
Chang HH, Wang YL, Chiang YC, Chen YL, Chuang YH, Tsai SJ, Heish KH, Lin FH, Lin CP. A novel chitosan-γPGA polyelectrolyte complex hydrogel promotes early new bone formation in the alveolar socket following tooth extraction. PLoS One 2014; 9:e92362. [PMID: 24658174 PMCID: PMC3962413 DOI: 10.1371/journal.pone.0092362] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 02/20/2014] [Indexed: 11/18/2022] Open
Abstract
A novel chitosan-γPGA polyelectrolyte complex hydrogel (C-PGA) has been developed and proven to be an effective dressing for wound healing. The purpose of this study was to evaluate if C-PGA could promote new bone formation in the alveolar socket following tooth extraction. An animal model was proposed using radiography and histomorphology simultaneously to analyze the symmetrical sections of Wistar rats. The upper incisors of Wistar rats were extracted and the extraction sockets were randomly treated with gelatin sponge, neat chitosan, C-PGA, or received no treatment. The extraction sockets of selected rats from each group were evaluated at 1, 2, 4, or 6 wk post-extraction. The results of radiography and histopathology indicated that the extraction sockets treated with C-PGA exhibited lamellar bone formation (6.5%) as early as 2 wk after the extraction was performed. Moreover, the degree of new bone formation was significantly higher (P < 0.05) in the extraction sockets treated with C-PGA at 6 wk post-extraction than that in the other study groups. In this study, we demonstrated that the proposed animal model involving symmetrical sections and simultaneous radiography and histomorphology evaluation is feasible. We also conclude that the novel C-PGA has great potential for new bone formation in the alveolar socket following tooth extraction.
Collapse
Affiliation(s)
- Hao-Hueng Chang
- School of Dentistry, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Yin-Lin Wang
- School of Dentistry, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Chih Chiang
- School of Dentistry, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Liang Chen
- School of Dentistry, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Horng Chuang
- School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Shang-Jye Tsai
- School of Dentistry, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, Cardinal Tien Hospital Yonghe Branch, New Taipei, Taiwan
| | - Kuo-Huang Heish
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Feng-Huei Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Chun-Pin Lin
- School of Dentistry, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
- * E-mail:
| |
Collapse
|