1
|
Cao Z, Quazi S, Arora S, Osellame LD, Burvenich IJ, Janes PW, Scott AM. Cancer-associated fibroblasts as therapeutic targets for cancer: advances, challenges, and future prospects. J Biomed Sci 2025; 32:7. [PMID: 39780187 PMCID: PMC11715488 DOI: 10.1186/s12929-024-01099-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/09/2024] [Indexed: 01/11/2025] Open
Abstract
Research into cancer treatment has been mainly focused on developing therapies to directly target cancer cells. Over the past decade, extensive studies have revealed critical roles of the tumour microenvironment (TME) in cancer initiation, progression, and drug resistance. Notably, cancer-associated fibroblasts (CAFs) have emerged as one of the primary contributors in shaping TME, creating a favourable environment for cancer development. Many preclinical studies have identified promising targets on CAFs, demonstrating remarkable efficacy of some CAF-targeted treatments in preclinical models. Encouraged by these compelling findings, therapeutic strategies have now advanced into clinical evaluation. We aim to provide a comprehensive review of relevant subjects on CAFs, including CAF-related markers and targets, their multifaceted roles, and current landscape of ongoing clinical trials. This knowledge can guide future research on CAFs and advocate for clinical investigations targeting CAFs.
Collapse
Affiliation(s)
- Zhipeng Cao
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia.
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia.
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, 3084, Australia.
| | - Sadia Quazi
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Sakshi Arora
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Laura D Osellame
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Ingrid J Burvenich
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Peter W Janes
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia.
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia.
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, 3084, Australia.
- Department of Medicine, University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
2
|
Kamposioras K, Dinas PC, Barriuoso J, Trachana V, Dimas K. Caveolin-1 protein expression as a prognostic biomarker of gastrointestinal tumours: A systematic review and meta-analysis. Eur J Clin Invest 2023; 53:e14065. [PMID: 37497737 DOI: 10.1111/eci.14065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/02/2023] [Accepted: 07/08/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Gastrointestinal (GI) cancers remain a major threat worldwide, accounting for over 30% of cancer deaths. The identification of novel prognostic biomarkers remains a challenge despite significant advances in the field. The CAV1 gene, encoding the caveolin-1 protein, remains enigmatic in cancer and carcinogenesis, as it has been proposed to act as both a tumour promoter and a tumour suppressor. METHODS To analyse the differential role of caveolin-1 expression in both tumour cells and stroma in relation to prognosis in GI tumours, we performed a systematic review and meta-analysis according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines; PROSPERO registration number: CRD42022299148. RESULTS Our analysis showed that high levels of caveolin-1 in tumour cells were associated with poor prognosis and inferior overall survival (OS) in oesophageal and pancreatic cancer and hepatocellular carcinoma (HCC), but not in gastric and colorectal cancer. Importantly, our study showed that higher stromal caveolin-1 expression was associated with significantly longer OS and disease-free survival in colorectal cancer. Analysis of stromal caveolin-1 expression in the remaining tumours showed a similar trend, although it did not reach statistical significance. CONCLUSIONS The data suggest that caveolin-1 expression in the tumour cells of oesophageal, pancreatic cancer and HCC and in the stroma of colorectal cancer may be an important novel predictive biomarker for the clinical management of these diseases in a curative setting. However, the main conclusion of our analysis is that caveolin-1 expression should always be assessed separately in stroma and tumour cells.
Collapse
Affiliation(s)
| | - Petros C Dinas
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Volos, Greece
| | - Jorge Barriuoso
- The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Varvara Trachana
- Department of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Volos, Greece
| | - Konstantinos Dimas
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Volos, Greece
| |
Collapse
|
3
|
Zhang S, Shen Y, Liu H, Zhu D, Fang J, Pan H, Liu W. Inflammatory microenvironment in gastric premalignant lesions: implication and application. Front Immunol 2023; 14:1297101. [PMID: 38035066 PMCID: PMC10684945 DOI: 10.3389/fimmu.2023.1297101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Gastric precancerous lesions (GPL) are a major health concern worldwide due to their potential to progress to gastric cancer (GC). Understanding the mechanism underlying the transformation from GPL to GC can provide a fresh insight for the early detection of GC. Although chronic inflammation is prevalent in the GPL, how the inflammatory microenvironment monitored the progression of GPL-to-GC are still elusive. Inflammation has been recognized as a key player in the progression of GPL. This review aims to provide an overview of the inflammatory microenvironment in GPL and its implications for disease progression and potential therapeutic applications. We discuss the involvement of inflammation in the progression of GPL, highlighting Helicobacter pylori (H. pylori) as a mediator for inflammatory microenvironment and a key driver to GC progression. We explore the role of immune cells in mediating the progression of GPL, and focus on the regulation of inflammatory molecules in this disease. Furthermore, we discuss the potential of targeting inflammatory pathways for GPL. There are currently no specific drugs for GPL treatment, but traditional Chinese Medicine (TCM) and natural antioxidants, known as antioxidant and anti-inflammatory properties, exhibit promising effects in suppressing or reversing the progression of GPL. Finally, the challenges and future perspectives in the field are proposed. Overall, this review highlights the central role of the inflammatory microenvironment in the progression of GPL, paving the way for innovative therapeutic approaches in the future.
Collapse
Affiliation(s)
- Shengxiong Zhang
- Rehabilitation Department, Guangdong Work Injury Rehabilitation Hospital, Guangzhou, China
- Department of Spleen and Stomach, GuangZhou Tianhe District Hospital of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yang Shen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hao Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Di Zhu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiansong Fang
- Science and Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huafeng Pan
- Science and Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
4
|
Zhang Y, Zhao L, Bi Y, Zhao J, Gao C, Si X, Dai H, Asmamaw MD, Zhang Q, Chen W, Liu H. The role of lncRNAs and exosomal lncRNAs in cancer metastasis. Biomed Pharmacother 2023; 165:115207. [PMID: 37499455 DOI: 10.1016/j.biopha.2023.115207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Tumor metastasis is the main reason for cancer-related death, but there is still a lack of effective therapeutic to inhibit tumor metastasis. Therefore, the discovery and study of new tumor metastasis regulators is a prominent measure for cancer diagnosis and treatment. Long non-coding RNA (lncRNA) is a type of non-coding RNAs over 200 bp in length. It has been shown that the abnormally expressed lncRNAs promote tumor metastasis by participating in the epithelial-to-mesenchymal transition (EMT) process, altering the metastatic tumor microenvironment, or changing the extracellular matrix. It is,thus, critical to explore the regulation of lncRNAs expression in cells and the molecular mechanism of lncRNA-mediated cancer metastasis. Simultaneously, it has been shown that lncRNA is one kind of the main components of exosomes, which protects lncRNAs from being rapidly degraded. Meanwhile, the components of exosomes are parent-specific, making exosomal lncRNAs to be potential tumor metastasis markers and therapeutic targets. In view of this, we also summarized the aberrant enrichment of lncRNAs in exosomes and their role in metastatic cancer. The aberrant lncRNAs and exosomal lncRNAs gradually become biomarkers and therapeutic targets for tumor metastatic, and the potential of lncRNAs in therapeutics are studied here. Besides, the lncRNA-related databases, which could greatly facilitate in the study of lncRNAs and exosomal lncRNAs in metastatic of cancer are included in this review.
Collapse
Affiliation(s)
- Yutong Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China; The People's Hospital of Zhang Dian District, Zibo, China
| | - Lijuan Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Science, Zhengzhou University, Zhengzhou China
| | - Yaping Bi
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China
| | - Jinyuan Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China
| | - Chao Gao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China
| | - Xiaojie Si
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China
| | - Honglin Dai
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China
| | - Moges Dessale Asmamaw
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China
| | - Qiurong Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China.
| | - Wenchao Chen
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital; Zhengzhou University People's Hospital; Henan University People's Hospital, Zhengzhou China.
| | - Hongmin Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China.
| |
Collapse
|
5
|
Devarasou S, Kang M, Kwon TY, Cho Y, Shin JH. Fibrous Matrix Architecture-Dependent Activation of Fibroblasts with a Cancer-Associated Fibroblast-like Phenotype. ACS Biomater Sci Eng 2023; 9:280-291. [PMID: 36573928 DOI: 10.1021/acsbiomaterials.2c00694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cancer-associated fibroblasts (CAFs) are one of the most prevalent cell types within the tumor microenvironment (TME). While several physicochemical cues from the TME, including growth factors, cytokines, and ECM specificity, have been identified as essential factors for CAF activation, the precise mechanism of how the ECM architecture regulates CAF initiation remains elusive. Using a gelatin-based electrospun fiber mesh, we examined the effect of matrix fiber density on CAF activation induced by MCF-7 conditioned media (CM). A less dense (3D) gelatin mesh matrix facilitated better activation of dermal fibroblasts into a CAF-like phenotype in the CM than a highly dense (3D) gelatin mesh matrix. In addition, it was discovered that CAF activation on the less dense (LD) matrix is dependent on the cell size-related AKT/mTOR signaling cascade, accompanied by an increase in intracellular tension within the well-spread fibroblasts.
Collapse
Affiliation(s)
- Somayadineshraj Devarasou
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Minwoo Kang
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Tae Yoon Kwon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Youngbin Cho
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jennifer H Shin
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
6
|
Gradowski Farias da Costa do Nascimento T, de Oliveira Thomazini ME, de França Junior N, de Castro Poncio L, Fonseca AS, de Figueiredo BC, Weber SH, Herai RH, de Noronha L, Cavalli LR, Feltes BC, Elifio-Esposito S. Systems biology network reveals the correlation between COX-2 expression and Ch 7q copy number alterations in Ch 11q-deleted pediatric neuroblastoma tumors. Genes Cancer 2022; 13:60-71. [PMCID: PMC9718587 DOI: 10.18632/genesandcancer.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022] Open
Abstract
Tumor-associated inflammation and chromosomal aberrations can play crucial roles in cancer development and progression. In neuroblastoma (NB), the enzyme cyclooxygenase-2 (COX-2) is associated with copy number alterations on the long arm of chromosome 11 (Ch 11q), defining an aggressive disease subset. This retrospective study included formalin-fixed paraffin-embedded tumor samples collected from nine patients during diagnosis at the pediatric Pequeno Principe Hospital, Curitiba, PR, Brazil, and post-chemotherapy (CT). COX-2 expression was evaluated using immunohistochemistry and correlated with the genome profile of paired pre- and post-CT samples, determined by array comparative genomic hybridization. A systems biology approach elucidated the PTGS2 network interaction. The results showed positive correlations between pre-CT Ch 7q gain and COX-2 expression (ρ = 0.825; p-value = 0.006) and negative correlations between Ch 7q gain and Ch 11q deletion (ρ = −0.919; p-value = 0.0005). Three samples showed Ch 11q deletion and Ch 7q gain. Network analysis identified a direct connection between CAV-1 (Ch 7q) and COX-2 in NB tumors and highlighted the connection between amplified genes in Ch 7q and deleted ones in 11q. The identification of hub-bottleneck-switch genes provides new biological insights into this connection between NB, tumorigenesis, and inflammation.
Collapse
Affiliation(s)
| | - Mateus Eduardo de Oliveira Thomazini
- 1Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil,2Biotechnology Undergraduate Program. School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - Nilton de França Junior
- 1Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | | | - Aline Simoneti Fonseca
- 3Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | | | - Saulo Henrique Weber
- 4Graduate Program in Animal Science, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - Roberto Hirochi Herai
- 1Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil,5Research Department, Instituto Buko Kaesemodel (IBK), Curitiba, Paraná, Brazil
| | - Lucia de Noronha
- 1Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - Luciane R. Cavalli
- 3Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil,6Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
| | - Bruno César Feltes
- 7Institute of Informatics, Department of Theoretical Informatics, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil,8Institute of Biosciences, Department of Biophysics, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Selene Elifio-Esposito
- 1Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil,Correspondence to:Selene Elifio-Esposito, email:
| |
Collapse
|
7
|
Sun H, Wang X, Wang X, Xu M, Sheng W. The role of cancer-associated fibroblasts in tumorigenesis of gastric cancer. Cell Death Dis 2022; 13:874. [PMID: 36244987 PMCID: PMC9573863 DOI: 10.1038/s41419-022-05320-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/25/2022]
Abstract
Despite advances in anticancer therapy, the prognosis of gastric cancer (GC) remains unsatisfactory. Research in recent years has shown that the malignant behavior of cancer is not only attributable to tumor cells but is partly mediated by the activity of the cancer stroma and controlled by various molecular networks in the tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) are one of the most abundant mesenchymal cell components of the stroma and extensively participate in the malignant development of GC malignancy. CAFs modulate the biological properties of tumor cells in multiple ways, including the secretion of various bioactive molecules that have effects through paracrine and autocrine signaling, the release of exosomes, and direct interactions, thereby affecting GC initiation and development. However, there is marked heterogeneity in the cellular origins, phenotypes, and functions of CAFs in the TME of GC. Furthermore, variations in factors, such as proteins, microRNAs, and lncRNAs, affect interactions between CAFs and GC cells, although, the potential molecular mechanisms are still poorly understood. In this review, we aim to describe the current knowledge of the cellular features and heterogeneity of CAFs and discuss how these factors are regulated in CAFs, with a focus on how they affect GC biology. This review provides mechanistic insight that could inform therapeutic strategies and improve the prognosis of GC patients.
Collapse
Affiliation(s)
- Hui Sun
- grid.452404.30000 0004 1808 0942Department of Pathology, Fudan University Shanghai Cancer Center, 200032 Shanghai, China ,grid.11841.3d0000 0004 0619 8943Department of Oncology, Shanghai Medical College, Fudan University, 200032 Shanghai, China ,grid.8547.e0000 0001 0125 2443Institute of Pathology, Fudan University, 200032 Shanghai, China
| | - Xu Wang
- grid.452404.30000 0004 1808 0942Department of Pathology, Fudan University Shanghai Cancer Center, 200032 Shanghai, China ,grid.11841.3d0000 0004 0619 8943Department of Oncology, Shanghai Medical College, Fudan University, 200032 Shanghai, China ,grid.8547.e0000 0001 0125 2443Institute of Pathology, Fudan University, 200032 Shanghai, China
| | - Xin Wang
- grid.452404.30000 0004 1808 0942Department of Pathology, Fudan University Shanghai Cancer Center, 200032 Shanghai, China ,grid.11841.3d0000 0004 0619 8943Department of Oncology, Shanghai Medical College, Fudan University, 200032 Shanghai, China ,grid.8547.e0000 0001 0125 2443Institute of Pathology, Fudan University, 200032 Shanghai, China
| | - Midie Xu
- grid.452404.30000 0004 1808 0942Department of Pathology, Fudan University Shanghai Cancer Center, 200032 Shanghai, China ,grid.11841.3d0000 0004 0619 8943Department of Oncology, Shanghai Medical College, Fudan University, 200032 Shanghai, China
| | - Weiqi Sheng
- grid.452404.30000 0004 1808 0942Department of Pathology, Fudan University Shanghai Cancer Center, 200032 Shanghai, China ,grid.11841.3d0000 0004 0619 8943Department of Oncology, Shanghai Medical College, Fudan University, 200032 Shanghai, China
| |
Collapse
|
8
|
Hu D, Li Z, Zheng B, Lin X, Pan Y, Gong P, Zhuo W, Hu Y, Chen C, Chen L, Zhou J, Wang L. Cancer-associated fibroblasts in breast cancer: Challenges and opportunities. Cancer Commun (Lond) 2022; 42:401-434. [PMID: 35481621 PMCID: PMC9118050 DOI: 10.1002/cac2.12291] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/06/2022] [Accepted: 04/07/2022] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment is proposed to contribute substantially to the progression of cancers, including breast cancer. Cancer-associated fibroblasts (CAFs) are the most abundant components of the tumor microenvironment. Studies have revealed that CAFs in breast cancer originate from several types of cells and promote breast cancer malignancy by secreting factors, generating exosomes, releasing nutrients, reshaping the extracellular matrix, and suppressing the function of immune cells. CAFs are also becoming therapeutic targets for breast cancer due to their specific distribution in tumors and their unique biomarkers. Agents interrupting the effect of CAFs on surrounding cells have been developed and applied in clinical trials. Here, we reviewed studies examining the heterogeneity of CAFs in breast cancer and expression patterns of CAF markers in different subtypes of breast cancer. We hope that summarizing CAF-related studies from a historical perspective will help to accelerate the development of CAF-targeted therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Dengdi Hu
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Zhaoqing Li
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Bin Zheng
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Xixi Lin
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Yuehong Pan
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Peirong Gong
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Wenying Zhuo
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China.,Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Yujie Hu
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Cong Chen
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Lini Chen
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Jichun Zhou
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Linbo Wang
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| |
Collapse
|
9
|
Li C, Teixeira AF, Zhu HJ, Ten Dijke P. Cancer associated-fibroblast-derived exosomes in cancer progression. Mol Cancer 2021; 20:154. [PMID: 34852849 PMCID: PMC8638446 DOI: 10.1186/s12943-021-01463-y] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/11/2021] [Indexed: 02/08/2023] Open
Abstract
To identify novel cancer therapies, the tumor microenvironment (TME) has received a lot of attention in recent years in particular with the advent of clinical successes achieved by targeting immune checkpoint inhibitors (ICIs). The TME consists of multiple cell types that are embedded in the extracellular matrix (ECM), including immune cells, endothelial cells and cancer associated fibroblasts (CAFs), which communicate with cancer cells and each other during tumor progression. CAFs are a dominant and heterogeneous cell type within the TME with a pivotal role in controlling cancer cell invasion and metastasis, immune evasion, angiogenesis and chemotherapy resistance. CAFs mediate their effects in part by remodeling the ECM and by secreting soluble factors and extracellular vesicles. Exosomes are a subtype of extracellular vesicles (EVs), which contain various biomolecules such as nucleic acids, lipids, and proteins. The biomolecules in exosomes can be transmitted from one to another cell, and thereby affect the behavior of the receiving cell. As exosomes are also present in circulation, their contents can also be explored as biomarkers for the diagnosis and prognosis of cancer patients. In this review, we concentrate on the role of CAFs-derived exosomes in the communication between CAFs and cancer cells and other cells of the TME. First, we introduce the multiple roles of CAFs in tumorigenesis. Thereafter, we discuss the ways CAFs communicate with cancer cells and interplay with other cells of the TME, and focus in particular on the role of exosomes. Then, we elaborate on the mechanisms by which CAFs-derived exosomes contribute to cancer progression, as well as and the clinical impact of exosomes. We conclude by discussing aspects of exosomes that deserve further investigation, including emerging insights into making treatment with immune checkpoint inhibitor blockade more efficient.
Collapse
Affiliation(s)
- Chao Li
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Adilson Fonseca Teixeira
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Hong-Jian Zhu
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Peter Ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
10
|
Chen X, Zhu Z, Li X, Yao X, Luo L. The Ferroptosis-Related Noncoding RNA Signature as a Novel Prognostic Biomarker in the Tumor Microenvironment, Immunotherapy, and Drug Screening of Gastric Adenocarcinoma. Front Oncol 2021; 11:778557. [PMID: 34790582 PMCID: PMC8591298 DOI: 10.3389/fonc.2021.778557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/12/2021] [Indexed: 01/09/2023] Open
Abstract
Background Ferroptosis is a new type of cell death different from apoptosis, necrosis, autophagy, and pyroptosis. This study aimed to explore the relationship between ferroptosis-related noncoding RNA (ncRNA) and gastric adenocarcinoma with regard to immunity and prognosis. Methods Ferroptosis-related ncRNA expression profiles and clinical pathology and overall survival information were collected from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus database. The ferroptosis-related ncRNA signature was identified by Cox regression analysis and the least absolute shrinkage and selection operator analysis. The survival analysis, receiver operating characteristic (ROC) analysis, and decision curve analysis were adopted to evaluate the prognostic prediction performance of the signature. The correlation between risk and multiple clinical characteristics was analyzed using the chi-square test. The Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and gene set enrichment analysis were used for mining functions and pathways. The CIBERSORT, ssGSEA, and ESTIMATE algorithms were used to assess immune infiltration and the tumor microenvironment. The response of immunotherapy was predicted using the Submap algorithm, and the Connectivity Map and the ridge regression model were used to screen and evaluate drugs. Results A carcinogenic risk signature was constructed using five ferroptosis-related ncRNAs. It showed an extraordinary ability to predict the prognoses of patients with gastric adenocarcinoma [area under the ROC curve (AUC) after 6 years = 0.689; GSE84426, AUC after 6 years = 0.747]. The lower ferroptosis potential level and lower tumor mutation burden were related to the poor prognoses of patients. The high-risk group had more immune cell recruitment, and the overall effect of the anti-immune checkpoint immunotherapy was not as good as that of the low-risk group. The high- and low-risk groups were enriched in tumor- and immune-related pathways, respectively. The screened antitumor drugs, such as genistein, guanabenz, and betulinic acid, improved the survival of the patients. Conclusions The ferroptosis-related ncRNA signature is a potential carcinogenic prognostic biomarker of gastric adenocarcinoma.
Collapse
Affiliation(s)
- Xinming Chen
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Zheng Zhu
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Xiaoling Li
- Experimental Animal Center, Guangdong Medical University, Zhanjiang, China
| | - Xinyue Yao
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| |
Collapse
|
11
|
Kamposioras K, Vassilakopoulou M, Anthoney A, Bariuoso J, Mauri D, Mansoor W, Papadopoulos V, Dimas K. Prognostic significance and therapeutic implications of Caveolin-1 in gastrointestinal tract malignancies. Pharmacol Ther 2021; 233:108028. [PMID: 34755606 DOI: 10.1016/j.pharmthera.2021.108028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 02/07/2023]
Abstract
Caveolin-1 (CAV1) is expressed in several solid tumors both in cancerous cells as well as in tumor stroma and is reported to be related to cancer progression, metastasis, therapy resistance and clinical outcomes. Many studies report contrasting functions of this protein depending on the tumor cell model, the tumor type, or the stage of cancer studied. This protein is reported to function both as tumor suppressor and as tumor promoter. In this review, we aim to summarize translational and clinical studies that provide evidence of the role of CAV1 in tumor progression and survival outcome focusing on tumors of the gastrointestinal (GI) tract. Towards this aim, a detailed search has been performed for studies on the expression and the role of CAV1 in oesophageal, gastric, colorectal, pancreatic cancer and cholangiocarcinoma prognosis. We also review and discuss the implication of CAV1 in the outcome of pharmacological interventions. We conclude that CAV1 has the potential to become an important prognostic, and possibly predictive, biomarker in GI malignancies. It may also become a novel target towards the development of improved cancer therapies. However, it is obvious that there remains a lack of consensus on important issues such as the methodologies and cut-off levels in caveolin assessment. This ultimately result in many studies being contradictory not only in terms of the role of CAV1 as a tumor-promoting or suppressing gene but also in terms of the tumor compartment in which the levels of this protein may be of clinical significance. Addressing these important technical issues, in conjunction with a further elucidation of the role of CAV1 in tumor formation and progression, will delineate the importance of CAV1 in prognostic and therapeutic perspectives.
Collapse
Affiliation(s)
| | - Maria Vassilakopoulou
- Department of Medical Oncology, School of Medicine, University of Crete, Heraklion, Greece
| | - Alan Anthoney
- Leeds Institute of Medical Research at St James' Hospital, University of Leeds, Leeds, UK
| | - Jorge Bariuoso
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK; Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK; Manchester Cancer Research Centre, UK
| | - Davide Mauri
- Department of Medical Oncology, University Hospital of Ioannina, Ioannina, Greece
| | - Was Mansoor
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Vassilios Papadopoulos
- Department of Medical Oncology, University Hospital of Larissa, University of Thessaly, Greece
| | | |
Collapse
|
12
|
Cancer-associated fibroblast senescence and its relation with tumour-infiltrating lymphocytes and PD-L1 expressions in intrahepatic cholangiocarcinoma. Br J Cancer 2021; 126:219-227. [PMID: 34616011 DOI: 10.1038/s41416-021-01569-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/04/2021] [Accepted: 09/27/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Caveolin-1 (CAV1) in cancer-associated fibroblasts (CAFs) has pro- or anti-tumourigenic effect depending on the cancer type. However, its effect in intrahepatic carcinoma (ICC) remains unknown. Therefore, this study aimed to investigate the relationship between CAV1 in CAFs and tumour-infiltrating lymphocyte (TIL) numbers or PD-L1 levels in ICC patients. METHODS Consecutive ICC patients (n = 158) were enrolled in this study. The levels of CAV1 in CAFs, CD8 + TILs, Foxp3+ TILs and PD-L1 in cancer cells were analysed using immunohistochemistry. Their association with the clinicopathological factors and prognosis were evaluated. The correlation between these factors was evaluated. RESULTS CAV1 upregulation in CAFs was associated with a poor overall survival (OS) (P < 0.001) and recurrence-free survival (P = 0.008). Clinicopathological factors were associated with high CA19-9 levels (P < 0.001), advanced tumour stage (P = 0.046) and lymph node metastasis (P = 0.004). CAV1 level was positively correlated with Foxp3+ TIL numbers (P = 0.01). There were no significant correlations between CAV1 levels and CD8 + TIL numbers (P = 0.80) and PD-L1 levels (P = 0.97). An increased CD8 + TIL number and decreased Foxp3+ TIL number were associated with an increased OS. In multivariate analysis, positive CAV1 expression in CAFs (P = 0.013) and decreased CD8 + TIL numbers (P = 0.021) were independent poor prognostic factors. CONCLUSION Cellular senescence, represented by CAV1 levels, may be a marker of CAFs and a prognostic indicator of ICC through Foxp3+ TIL regulation. CAV1 expression in CAFs can be a therapeutic target for ICC.
Collapse
|
13
|
An integrated approach for identification of a panel of candidate genes arbitrated for invasion and metastasis in oral squamous cell carcinoma. Sci Rep 2021; 11:6208. [PMID: 33739025 PMCID: PMC7973753 DOI: 10.1038/s41598-021-85729-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 03/01/2021] [Indexed: 12/24/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is known for its aggressiveness associated with poor prognosis. The molecular mechanisms underlying the invasion and metastasis are still poorly understood. An improved understanding of these mechanisms shall precede the development of new diagnostic tools and targeted therapies. We report an integrated approach using bioinformatics to predict candidate genes, coupled with proteomics and immunohistochemistry for validating their presence and involvement in OSCC pathways heralding invasion and metastasis. Four genes POSTN, TNC, CAV1 and FSCN1 were identified. A protein–protein interaction network analysis teamed with pathway analysis led us to propose the role of the identified genes in invasion and metastasis in OSCC. Further analyses of archived FFPE blocks of various grades of oral cancer was carried out using TMT-based mass spectrometry and immunohistochemistry. Results of this study expressed a strong communiqué and interrelationship between these candidate genes. This study emphasizes the significance of a molecular biomarker panel as a diagnostic tool and its correlation with the invasion and metastatic pathway of OSCC. An insight into the probable association of CAF's and these biomarkers in the evolution and malignant transformation of OSCC further magnifies the molecular-biological spectrum of OSCC tumour microenvironment.
Collapse
|
14
|
Bioinformatics analysis of a-three-gene signature as an independent prediction of survival in follicular gastritis developing into gastric cancer. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Zeng Y, Chen M, Ganesh S, Hu S, Chen H. Clinicopathological and prognostic significance of caveolin-1 and ATG4C expression in the epithelial ovarian cancer. PLoS One 2020; 15:e0232235. [PMID: 32401768 PMCID: PMC7219755 DOI: 10.1371/journal.pone.0232235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 04/09/2020] [Indexed: 12/24/2022] Open
Abstract
Objective Altered expression of caveolin-1 (CAV1) and autophagy marker ATG4C is observed in various types of human cancers. However, the clinical significance of CAV1 and ATG4C expression in epithelial ovarian cancer (EOC) remains largely unknown. The present study aims to explore the clinicopathological value and prognostic significance of CAV1 and ATG4C expression in EOC. Methods The expression pattern and prognostic value of CAV1 and ATG4C mRNA in EOC were analyzed using data from the Cancer Genome Atlas (TCGA) database (N = 373). In addition, immunohistochemistry analysis was performed to detect and assay the expression of CAV1 and ATG4C proteins in tissue microarray of EOC. Results Based on TCGA data, Kaplan-Meier analysis indicated that patients with low CAV1 mRNA (p = 0.021) and high ATG4C mRNA (p = 0.018) expression had a significantly shorter overall survival (OS). Cox regression analysis demonstrated that the expression levels of CAV1 (p = 0.023) and ATG4C mRNA (p = 0.040) were independent prognostic factors for OS in EOC. In addition, the Concordance Index of the nomogram for OS prediction was 0.660. Immunohistochemical analysis showed the expression levels of stromal CAV1 and cancerous ATG4C proteins, and high expression of both CAV1 and ATG4C protein in the stroma were found to significantly correlate with the histologic subtypes of EOC, especially with serous subtype. Conclusions Decreased expression of CAV1 mRNA and increased expression of ATG4C mRNA in EOC can predict poor overall survival. The expression levels of CAV1 protein in stromal cells and ATG4C protein in cancer cells are significantly associated with histologic subtypes of EOC. These findings suggest that CAV1 and ATG4C serve as useful prognostic biomarkers and candidate therapeutic targets in EOC.
Collapse
Affiliation(s)
- Yuyang Zeng
- Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei Province, P. R. China
| | - Mengxi Chen
- Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei Province, P. R. China
| | - Sridha Ganesh
- Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei Province, P. R. China
| | - Shunze Hu
- Department of Pathology, Maternal and Child Health Hospital of Hubei, Wuhan, Hubei Province, P. R. China
- * E-mail: (SH); (HC)
| | - Honglei Chen
- Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei Province, P. R. China
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, P. R. China
- * E-mail: (SH); (HC)
| |
Collapse
|
16
|
Liu B, Zheng T, Dong L, Mao C, Xu C, Mou X, Luo X, Lu Q, Dong X, Liu J, Kang P, Ding C, Xiao Y, Jiang P. Caveolin-1 Regulates CCL5 and PPARγ Expression in Nthy-ori 3-1 Cells: Possible Involvement of Caveolin-1 and CCL5 in the Pathogenesis of Hashimoto's Thyroiditis. Endocr Metab Immune Disord Drug Targets 2019; 20:609-618. [PMID: 31789139 DOI: 10.2174/1871530319666191202115149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/09/2019] [Accepted: 10/12/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Hashimoto's thyroiditis (HT) is characterized by lymphocytic infiltration of the thyroid parenchyma, which ultimately leads to tissue destruction and loss of function. Caveolin-1 (Cav-1) is an essential structural constituent of lipid rafts in the plasma membrane of cells and is reported to be significantly reduced in thyrocytes from HT patients. However, the mechanism of Cav-1 involvement in HT pathogenesis is still largely unclear. METHODS Cav-1 expression in thyroid tissues from HT patients and euthyroid nodular goiter tissues was detected by immunohistochemistry staining. Cav-1 knockdown and overexpression were constructed by lentiviral transfection in the human thyroid follicular epithelial cell (TFC) line of Nthy-ori 3-1. The mRNA expression levels of chemokines in TFCs were determined by quantitative real-time PCR (qPCR). Cav-1 and peroxisome proliferator-activated receptor gamma (PPARγ) levels were analysed by qPCR and Western blot analysis. The migration ability of peripheral blood mononuclear cells (PBMCs) was detected by the Transwell assay. RESULTS In this study, Cav-1 and PPARγ expression was reduced in the thyroid tissues from HT patients. In vitro experiments showed that the expressions of chemokine (C-C motif) ligand 5 (CCL5) and migration of PBMCs were markedly increased, while the level of PPARγ was significantly decreased after the lentivirus-mediated knockdown of Cav-1 in Nthy-ori 3-1 cells. Interestingly, pioglitazone, a PPARγ agonist, not only upregulated PPARγ and Cav-1 proteins significantly, but also effectively reversed the Cav-1-knockdown-induced upregulation of CCL5 in Nthy-ori 3-1 cells and reduced the infiltration of lymphocytes. CONCLUSION The inhibition of Cav-1 upregulated the CCL5 expression and downregulated the PPARγ expression in TFC while pioglitazone, a PPARγ agonist, reversed the detrimental consequence. This outcome might be a potential target for the treatment of lymphocyte infiltration into the thyroid gland and HT development.
Collapse
Affiliation(s)
- Baocui Liu
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Reproductive Medicine Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Tingting Zheng
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Liyang Dong
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chaoming Mao
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chengcheng Xu
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiao Mou
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xuan Luo
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Qingyan Lu
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xin Dong
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jiameng Liu
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ping Kang
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chao Ding
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yichuan Xiao
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Peng Jiang
- Department of Anesthesiology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
17
|
Garufi A, Traversi G, Cirone M, D'Orazi G. HIPK2 role in the tumor-host interaction: Impact on fibroblasts transdifferentiation CAF-like. IUBMB Life 2019; 71:2055-2061. [PMID: 31414572 PMCID: PMC6899452 DOI: 10.1002/iub.2144] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022]
Abstract
The dialogue between cancer cells and the surrounding fibroblasts, tumor-associated macrophages (TAM), and immune cells can create a tumor microenvironment (TME) able to promote tumor progression and metastasis and induce resistance to anticancer therapies. Cancer cells, by producing growth factors and cytokines, can recruit and activate fibroblasts in the TME inducing their transdifferention in cancer-associated fibroblasts (CAFs). Then, CAFs, in a reciprocal cross-talk with cancer cells, sustain cancer growth and survival and support malignancy and tumor resistance to therapies. Therefore, the identification of the molecular mechanisms regulating the interplay between cancer cells and fibroblasts can offer an intriguing opportunity for novel diagnostic and therapeutic anticancer purpose. HIPK2 is a multifunctional tumor suppressor protein that modulates cancer cell growth and apoptosis in response to anticancer drugs and negatively regulates pathways involved in tumor progression and chemoresistance. HIPK2 protein downregulation is induced by hypoxia and hyperglycemia and HIPK2 knockdown favors tumor progression and resistance to therapy other than a pseudohypoxic, inflammatory, and angiogenic cancer phenotype. Therefore, we hypothesized that HIPK2 modulation in cancer cells could contribute to modify the tumor-host interaction. In support of our hypothesis, here we provide evidence that culturing human fibroblasts (hFB) with conditioned media derived from cancer cells undergoing HIPK2 knockdown (CMsiHIPK2 ) triggered their transdifferentiation CAF-like, compared to hFB cultured with CM-derived from HIPK2-carrying control cancer cells. CAF transdifferentiation was identified by expression of several markers including α-smooth muscle actin (α-SMA) and collagen I and correlated with autophagy-mediated caveolin-1 degradation. Although the molecular mechanisms dictating CAF-transdifferentiation need to be elucidated, these results open the way to further study the role of HIPK2 in TME remodeling for prognostic and therapeutic purpose.
Collapse
Affiliation(s)
- Alessia Garufi
- Department of Medical SciencesUniversity “G. d'Annunzio”ChietiItaly
- Department of ResearchIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Gianandrea Traversi
- Department of Medical SciencesUniversity “G. d'Annunzio”ChietiItaly
- Department of ResearchIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Mara Cirone
- Department of Experimental Medicine“Sapienza” University of Rome, Italy, Laboratory affiliated to Pasteur InstituteRomeItaly
| | - Gabriella D'Orazi
- Department of Medical SciencesUniversity “G. d'Annunzio”ChietiItaly
- Department of ResearchIRCCS Regina Elena National Cancer InstituteRomeItaly
| |
Collapse
|
18
|
Extracellular Matrix Alterations in Metastatic Processes. Int J Mol Sci 2019; 20:ijms20194947. [PMID: 31591367 PMCID: PMC6802000 DOI: 10.3390/ijms20194947] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) is a complex network of extracellular-secreted macromolecules, such as collagen, enzymes and glycoproteins, whose main functions deal with structural scaffolding and biochemical support of cells and tissues. ECM homeostasis is essential for organ development and functioning under physiological conditions, while its sustained modification or dysregulation can result in pathological conditions. During cancer progression, epithelial tumor cells may undergo epithelial-to-mesenchymal transition (EMT), a morphological and functional remodeling, that deeply alters tumor cell features, leading to loss of epithelial markers (i.e., E-cadherin), changes in cell polarity and intercellular junctions and increase of mesenchymal markers (i.e., N-cadherin, fibronectin and vimentin). This process enhances cancer cell detachment from the original tumor mass and invasiveness, which are necessary for metastasis onset, thus allowing cancer cells to enter the bloodstream or lymphatic flow and colonize distant sites. The mechanisms that lead to development of metastases in specific sites are still largely obscure but modifications occurring in target tissue ECM are being intensively studied. Matrix metalloproteases and several adhesion receptors, among which integrins play a key role, are involved in metastasis-linked ECM modifications. In addition, cells involved in the metastatic niche formation, like cancer associated fibroblasts (CAF) and tumor associated macrophages (TAM), have been found to play crucial roles in ECM alterations aimed at promoting cancer cells adhesion and growth. In this review we focus on molecular mechanisms of ECM modifications occurring during cancer progression and metastatic dissemination to distant sites, with special attention to lung, liver and bone. Moreover, the functional role of cells forming the tumor niche will also be reviewed in light of the most recent findings.
Collapse
|
19
|
Yamao T, Yamashita YI, Yamamura K, Nakao Y, Tsukamoto M, Nakagawa S, Okabe H, Hayashi H, Imai K, Baba H. Cellular Senescence, Represented by Expression of Caveolin-1, in Cancer-Associated Fibroblasts Promotes Tumor Invasion in Pancreatic Cancer. Ann Surg Oncol 2019; 26:1552-1559. [PMID: 30805811 DOI: 10.1245/s10434-019-07266-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND The role of senescence of cancer-associated fibroblasts (CAFs) in the development of cancer is controversial. In this study, we investigated whether cellular senescence of CAFs, represented by CAV1 expression, affects tumor progression in pancreatic cancers (PC). METHODS Because CAV1 plays a major role in cellular senescence, we used CAV1 expression to monitor cellular senescence. A total of 157 consecutive patients with PC who underwent curative resection were enrolled in the study. Patients were divided into two groups according to CAV1 expression in CAFs by immunohistochemistry. We investigated the relationship between the CAV1 expression in CAFs and the patients' clinicopathological characteristics, including survival. We also established ten CAFs cell lines using PC clinical samples and chose one of them to knock down CAV1 expression. Finally, we cultured a PC cell line (MIAPaCa-2) in CAF-conditioned medium (CM). RESULTS Regarding patients' clinicopathological characteristics, the serum levels of carbohydrate antigen 19-9 and the rate of advanced tumor stage (pT2, 3, and 4) were significantly higher in the high-CAV1 group. The high-CAV1 group had significantly worse outcomes in both overall and disease-free survival (p < 0.01). Additionally, in co-culture assays using CAFs-CM and MIAPaCa-2 cells, we found that knockdown of CAV1 in CAFs negatively affected the invasion of PC cells. CONCLUSIONS In PC, CAV1 expression in CAFs is associated with patients' poor prognosis and the downregulation of CAV1 in CAFs reduces the invasiveness of PC cells. Therefore, CAV1 of CAFs might be a new target for the treatment of PC.
Collapse
Affiliation(s)
- Takanobu Yamao
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yo-Ichi Yamashita
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kensuke Yamamura
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yosuke Nakao
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Masayo Tsukamoto
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shigeki Nakagawa
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirohisa Okabe
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiromitsu Hayashi
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Katsunori Imai
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan. .,Center for Metabolic Regulation of Healthy Aging, Kumamoto University Faculty of Life Sciences, Kumamoto, Japan.
| |
Collapse
|
20
|
Guo S, Deng CX. Effect of Stromal Cells in Tumor Microenvironment on Metastasis Initiation. Int J Biol Sci 2018; 14:2083-2093. [PMID: 30585271 PMCID: PMC6299363 DOI: 10.7150/ijbs.25720] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 06/02/2018] [Indexed: 12/11/2022] Open
Abstract
The cellular environment where tumor cells reside is called the tumor microenvironment (TME), which consists of borders, blood vessels, lymph vessels, extracellular matrix (ECM), stromal cells, immune/inflammatory cells, secreted proteins, RNAs and small organelles. By dynamically interacting with tumor cells, stromal cells participate in all stages of tumor initiation, progression, metastasis, recurrence and drug response, and consequently, affect the fate of patients. During the processes of tumor evolution and metastasis initiation, stromal cells in TME also experience some changes and play roles in both the suppression and promotion of metastasis, while the overall function of stromal cells is beneficial for cancer cell survival and movement. In this review, we examine the effects of stromal cells in TME on metastasis initiation, including angiogenesis, epithelial-mesenchymal transition (EMT) and invasion. We also highlight functions of proteins, RNAs and small organelles secreted by stromal cells in their influences on multiple stages of tumor metastasis.
Collapse
Affiliation(s)
| | - Chu-Xia Deng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
21
|
Wang X, Liu Z, Yang Z. Expression and clinical significance of Caveolin-1 in prostate Cancer after transurethral surgery. BMC Urol 2018; 18:102. [PMID: 30424755 PMCID: PMC6234622 DOI: 10.1186/s12894-018-0418-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 10/30/2018] [Indexed: 12/19/2022] Open
Abstract
Background Prostate cancer is a common malignancy of the male genitourinary system that occurs worldwide. The current research aims to investigate caveolin-1 expression in prostate cancer tissue and its relationship with pathological grade, clinical pathologic staging, and preoperative prostate-specific antigen (PSA) levels. Methods From January 2012 to December 2014, samples from 47 patients with prostate cancer who had received transurethral prostatic resection (TURP) and 20 patients with benign prostatic hyperplasia were collected at the First Affiliated Hospital of Guangxi Medical University. Caveolin-1 was detected by streptavidin-perosidase (SP) immunohistochemical staining in pathological tissue slices. The results were statistically analyzed for pathological grade, clinical stage, and preoperative PSA level. Results The expression of caveolin-1 was significantly higher in prostate cancer samples than in benign prostatic hyperplasia samples (P < 0.05), and caveolin-1 expression was significantly different among the pathological grades of poorly, moderately and well-differentiated prostate cancer (P < 0.05). The difference in caveolin-1 expression was significant for different clinical stages (T1-T2 and T3-T4) of prostate cancer (P < 0.05). The difference in caveolin-1 expression was not significant among samples with different preoperative PSA levels (0–10, 10–100 and > 100 μg/L) (P > 0.05). Conclusions Caveolin-1 is closely related to the pathological grade and clinical stage of prostate cancer after transurethral surgery, and it may be a novel tumor marker for prostate cancer. The expression of caveolin-1 is not associated with preoperative serum PSA levels.
Collapse
Affiliation(s)
- Xiaoming Wang
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China. .,Department of Urology, The Second Affiliated Hospital of Guangxi Medical University, No 166 DaXueDong Road, Nanning, 530007, Guangxi, China.
| | - Zhigui Liu
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Zhanbin Yang
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|
22
|
Stromal Caveolin-1 and Caveolin-2 Expression in Primary Tumors and Lymph Node Metastases. Anal Cell Pathol (Amst) 2018; 2018:8651790. [PMID: 29850392 PMCID: PMC5914130 DOI: 10.1155/2018/8651790] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/23/2018] [Indexed: 12/26/2022] Open
Abstract
The expression of caveolin-1 (CAV1) in both tumor cell and cancer-associated fibroblasts (CAFs) has been found to correlate with tumor aggressiveness in different epithelial tumor entities, whereas less is known for caveolin-2 (CAV2). The aim of this study was to investigate the clinicopathological significance and prognostic value of stromal CAV1 and CAV2 expression in lung cancer. The expression of these two genes was investigated at protein level on a tissue microarray (TMA) consisting of 161 primary tumor samples. 50.7% of squamous cell lung cancer (SCC) tumors showed strong expression of CAV1 in the tumor-associated stromal cells, whereas only 15.1% of adenocarcinomas (AC) showed a strong CAV1 expression (p < 0.01). A strong CAV2 stromal expression was found in 46.0% of the lung tumor specimens, with no significant difference between the subtypes. Neither CAV1 nor CAV2 stromal expression was associated with any other clinicopathological factor including survival. When the stromal expression in matched primary tumors and lymph node metastases was compared, both CAV1 and CAV2 expressions were frequently found lost in the corresponding stroma of the lymph node metastasis (40.6%, p = 0.003 and 38.4%, p = 0.001, resp.). Loss of stromal CAV2 in the lymph node metastases was also significantly associated with earlier death (p = 0.011). In conclusion, in contrast to the expression patterns in the tumor tissue of lung cancer, stromal expression of CAV1 in primary tumors was not associated with clinical outcome whereas the stromal expression of especially CAV2 in the metastatic lymph nodes could be associated with lung cancer pathogenesis.
Collapse
|
23
|
Abstract
Resistance of solid tumors to chemo- and radiotherapy remains a major obstacle in anti-cancer treatment. Herein, the membrane protein caveolin-1 (CAV1) came into focus as it is highly expressed in many tumors and high CAV1 levels were correlated with tumor progression, invasion and metastasis, and thus a worse clinical outcome. Increasing evidence further indicates that the heterogeneous tumor microenvironment, also known as the tumor stroma, contributes to therapy resistance resulting in poor clinical outcome. Again, CAV1 seems to play an important role in modulating tumor host interactions by promoting tumor growth, metastasis, therapy resistance and cell survival. However, the mechanisms driving stroma-mediated tumor growth and radiation resistance remain to be clarified. Understanding these interactions and thus, targeting CAV1 may offer a novel strategy for preventing cancer therapy resistance and improving clinical outcomes. In this review, we will summarize the resistance-promoting effects of CAV1 in tumors, and emphasize its role in the tumor-stroma communication as well as the resulting malignant phenotype of epithelial tumors.
Collapse
Affiliation(s)
- Julia Ketteler
- Institute for Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Diana Klein
- Institute for Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
24
|
Sun Y, Wang R, Qiao M, Xu Y, Guan W, Wang L. Cancer associated fibroblasts tailored tumor microenvironment of therapy resistance in gastrointestinal cancers. J Cell Physiol 2018; 233:6359-6369. [PMID: 29334123 DOI: 10.1002/jcp.26433] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 01/05/2018] [Indexed: 02/06/2023]
Abstract
Gastrointestinal cancers (GI), are a group of highly aggressive malignancies with heavy cancer-related mortalities. Even if continued development of therapy methods, therapy resistance has been a great obstruction for cancer treatment and thereby inevitably leads to depressed final mortality. Peritumoral cancer associated fibroblasts (CAFs), a versatile population assisting cancer cells to build a facilitated tumor microenvironment (TME), has been demonstrated exerting a promotion influence on cancer proliferation, migration, invasion, metastasis, and also therapy resistance. In this review, we provide an update progress in describing how CAFs mediate therapy resistance in GI by various means, meanwhile highlight the crosstalk between CAFs and cancer cells and present some vital signaling pathways activated by CAFs in this resistant process. Furthermore, we discuss the current advances in adopting novel drugs against CAFs and how the knowledge contributing to improved therapy efficacy in clinical practice. In sum, CAFs create a therapy-resistant TME in several aspects of GI progression, although some key problems about distinguishing CAFs subpopulations and controversial issues on pleiotropic CAFs in medication need to be solved for subsequent clinical application. Predictably, targeting therapy-resistant CAFs is a promising adjunctive treatment to benefit GI patients.
Collapse
Affiliation(s)
- Yeqi Sun
- Department of Pathology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruifen Wang
- Department of Pathology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Meng Qiao
- Department of Pathology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanchun Xu
- Department of Pathology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenbin Guan
- Department of Pathology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lifeng Wang
- Department of Pathology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
25
|
Wu J, Hong Y, Wu T, Wang J, Chen X, Wang Z, Cheng B, Xia J. Stromal-epithelial lactate shuttle induced by tumor‑derived interleukin‑1β promotes cell proliferation in oral squamous cell carcinoma. Int J Mol Med 2017; 41:687-696. [PMID: 29207019 PMCID: PMC5752169 DOI: 10.3892/ijmm.2017.3267] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 10/24/2017] [Indexed: 12/17/2022] Open
Abstract
Stromal-epithelial lactate shuttle is an essential process to support fast‑growing tumor cells, however, the underlying mechanism remains ambiguous. Interleukin‑1β (IL‑1β), which is a key node gene in both stromal and epithelial cells of oral squamous cell carcinoma (OSCC), may participate in this metabolic reprogramming. In the present study, anaerobic glycolysis of cancer‑associated fibroblasts (CAFs) was evaluated and the role of IL‑1β in regulating stromal‑epithelial lactate shuttle was determined. A co‑culture system of primary fibroblasts and OSCC cell lines (CAL27, UM1 or SCC25) was created to investigate the stromal‑epithelial interaction. α‑smooth muscle actin (α‑SMA) expression of fibroblasts, IL‑1β expression and cell proliferation of OSCC cells, and a series of glycolytic genes were measured. Recombinant IL‑1β treatment and IL‑1β knockdown in UM1 cells were also used to evaluate the effect of IL‑1β. Expression of α‑SMA, glucose transporter 1, hexokinase 2, lactic dehydrogenase and mono‑carboxylate transporter (MCT) 4 were significantly overexpressed in activated fibroblasts, while IL‑1β and MCT1 were upregulated in OSCC cells, indicating enhanced glycolysis in cells of the tumor stroma and a lactate shuttle to the tumor cells. Furthermore, exogenous IL‑1β induced fibroblasts to present similar expression profiles as that in the co‑culture system. Silencing of IL‑1β significantly abrogated the regulatory effect of UM1 cells on stromal glycolysis. Additionally, carboxy‑fluorescein succinimidyl ester cell tracing indicated that OSCC cell proliferation was accelerated during co‑cultivation with fibroblasts. These results indicate that tumor‑derived IL‑1β enhanced stromal glycolysis and induced one‑way lactate flow from the tumor mesenchyme to transformed epithelium, which promotes OSCC proliferation.
Collapse
Affiliation(s)
- Jie Wu
- Department of Oral Medicine, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Yun Hong
- Department of Oral Medicine, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Tong Wu
- Department of Oral Medicine, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Juan Wang
- Department of Oral Medicine, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Xiaobing Chen
- Department of Oral Medicine, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Zhi Wang
- Department of Oral Medicine, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Bin Cheng
- Department of Oral Medicine, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Juan Xia
- Department of Oral Medicine, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
26
|
Vangapandu HV, Chen H, Wierda WG, Keating MJ, Korkut A, Gandhi V. Proteomics profiling identifies induction of caveolin-1 in chronic lymphocytic leukemia cells by bone marrow stromal cells. Leuk Lymphoma 2017; 59:1427-1438. [PMID: 28971726 DOI: 10.1080/10428194.2017.1376747] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is an indolent B-cell malignancy in which cells reside in bone marrow, lymph nodes, and peripheral blood, each of which provides a unique microenvironment. Although the levels of certain proteins are reported to induce, changes in the CLL cell proteome in the presence of bone marrow stromal cells have not been elucidated. Reverse-phase protein array analysis of CLL cells before and 24 h after stromal cell interaction revealed changed levels of proteins that regulate cell cycle, gene transcription, and protein translation. The most hit with respect to both the extent of change in expression level and statistical significance was caveolin-1, which was confirmed with immunoblotting. Caveolin-1 mRNA levels were also upregulated in CLL cells after stromal cell interaction. The induction of caveolin-1 levels was rapid and occurred as early as 1 h. Studies to determine the significance of upregulated caveolin-1 levels in CLL lymphocytes are warranted.
Collapse
Affiliation(s)
- Hima V Vangapandu
- a Department of Experimental Therapeutics , The University of Texas MD Anderson Cancer Center , Houston , TX , USA.,b MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences , Houston , TX , USA
| | - Huiqin Chen
- c Department of Biostatistics , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - William G Wierda
- d Department of Leukemia , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Michael J Keating
- d Department of Leukemia , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Anil Korkut
- e Department of Bioinformatics and Computer Biology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Varsha Gandhi
- a Department of Experimental Therapeutics , The University of Texas MD Anderson Cancer Center , Houston , TX , USA.,b MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences , Houston , TX , USA.,c Department of Biostatistics , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
27
|
Yang T, Chen M, Yang X, Zhang X, Zhang Z, Sun Y, Xu B, Hua J, He Z, Song Z. Down-regulation of KLF5 in cancer-associated fibroblasts inhibit gastric cancer cells progression by CCL5/CCR5 axis. Cancer Biol Ther 2017; 18:806-815. [PMID: 28934010 DOI: 10.1080/15384047.2017.1373219] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
It was well known that cancer-associated fibroblasts (CAFs) were an essential factor in tumor progression. However, the actual mechanism of stromal fibroblasts activation and tumor promoting effects remain unclear. Here, we showed that KLF5 expression was more frequently observed in gastric cancer-associated fibroblasts compared with normal mucosal fibroblasts. Moreover, KLF5 expression in tumor stroma was closely associated with clinicopathological features such as tumor size, invasion depth, cell grade and lymph node metastasis, as well as poor prognosis in patients with gastric cancer. In addition, we further demonstrated that KLF5-regulating CAFs affect gastric cancer cells progression by CCL5 secretion and activation of CCR5. Taken together, we concluded that KLF5 expression in gastric cancer-associated fibroblasts contribute to poor survival and promote cancer cells progression by activation of CCL5/CCR5 axis, which suggesting that KLF5 in CAFs might be considered as a promising target for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Tingsong Yang
- a Department of General Surgery , Shanghai Tenth Peoples' Hospital affiliated Tongji University , No. 301, Middle Yanchang Road, Shanghai , China
| | - Min Chen
- b Department of Pathology , Dahua Hospital, No. 901, Old Humin Road, Xuhui District, Shanghai , China
| | - Xiaohu Yang
- c Department of Anesthesiology , Shanghai East Hospital Affiliated Tongji University , No. 150, JiMo Road, Shanghai , China
| | - Xiaobing Zhang
- a Department of General Surgery , Shanghai Tenth Peoples' Hospital affiliated Tongji University , No. 301, Middle Yanchang Road, Shanghai , China
| | - Zhou Zhang
- a Department of General Surgery , Shanghai Tenth Peoples' Hospital affiliated Tongji University , No. 301, Middle Yanchang Road, Shanghai , China
| | - Yingying Sun
- a Department of General Surgery , Shanghai Tenth Peoples' Hospital affiliated Tongji University , No. 301, Middle Yanchang Road, Shanghai , China
| | - Bin Xu
- a Department of General Surgery , Shanghai Tenth Peoples' Hospital affiliated Tongji University , No. 301, Middle Yanchang Road, Shanghai , China
| | - Jie Hua
- a Department of General Surgery , Shanghai Tenth Peoples' Hospital affiliated Tongji University , No. 301, Middle Yanchang Road, Shanghai , China
| | - Zhigang He
- a Department of General Surgery , Shanghai Tenth Peoples' Hospital affiliated Tongji University , No. 301, Middle Yanchang Road, Shanghai , China
| | - Zhenshun Song
- a Department of General Surgery , Shanghai Tenth Peoples' Hospital affiliated Tongji University , No. 301, Middle Yanchang Road, Shanghai , China
| |
Collapse
|
28
|
Prognostic Value of Metastatic Tumoral Caveolin-1 Expression in Patients with Resected Gastric Cancer. Gastroenterol Res Pract 2017; 2017:5905173. [PMID: 28828003 PMCID: PMC5554552 DOI: 10.1155/2017/5905173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/08/2017] [Accepted: 06/15/2017] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Caveolin-1 (Cav-1), as the main component of caveolae, has complex roles in tumourigenesis in human malignancies. We investigated Cav-1 in primary and metastatic tumor cells of gastric cancer (GC) and its association with clinical outcomes. METHODS We retrieved 145 cases of GC who had undergone curative gastrectomy. The expression levels of Cav-1 was evaluated by immunohistochemistry, and its association with clinicopathological parameters and patient survival was analyzed. RESULTS High expression of Cav-1 protein of the GC in the stomach and metastatic lymph node was 12.4% (18/145) and 16.5% (15/91). In the multivariate analysis, tumoral Cav-1 protein in metastatic lymph node showed prognostic significance for relapse-free survival (RFS, HR, 3.934; 95% CI, 1.882-8.224; P = 0.001) and cancer-specific survival outcome (CSS, HR, 2.681; 95% CI, 1.613-8.623; P = 0.002). Among the GCs with metastatic lymph node, it remained as a strong indicator of poor prognosis for RFS (HR, 3.136; 95% CI, 1.444-6.810; P = 0.004) and CSS (HR, 2.509; 95% CI, 1.078-5.837; P = 0.032). CONCLUSION High expression of tumoral Cav-1 protein in metastatic lymph node is associated with unfavorable prognosis of curative resected GC, indicating the potential of novel prognostic markers.
Collapse
|
29
|
Yeong J, Thike AA, Ikeda M, Lim JCT, Lee B, Nakamura S, Iqbal J, Tan PH. Caveolin-1 expression as a prognostic marker in triple negative breast cancers of Asian women. J Clin Pathol 2017; 71:161-167. [PMID: 28735300 DOI: 10.1136/jclinpath-2017-204495] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/15/2017] [Accepted: 06/16/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND Triple-negative breast cancers (TNBCs) are defined by their lack of oestrogen receptor, progesterone receptor and epidermal growth factor receptor 2. Although heterogeneous, the majority are aggressive and treatment options are limited. Caveolin acts as tumour suppressor or promoter depending on the cancer type. AIM In this study, we aimed to determine if the expression levels of the candidate biomarker caveolin-1 on stromal or tumour cells were associated with clinicopathological parameters and disease outcomes in TNBCs from an ethnically diverse cohort of Asian women. METHODS Tumour specimens from 699 women with TNBC were subjected to immunohistochemical analysis of the frequency and intensity of caveolin-1 expression in tumour and stromal cells. A subset of 141 tumour samples also underwent Nanostring measurement of CAV1 mRNA. Results were correlated with clinicopathological parameters and disease outcomes. RESULTS Expression of caveolin-1 in stromal cells was observed in 14.4% of TNBC cases. TNBCs of the basal-like phenotype (85% of samples) were significantly more likely to exhibit stromal cell caveolin-1 expression (p=0.028), as were those with a trabecular growth pattern (p=0.007). Lack of stromal caveolin-1 expression in both TNBCs and those with the basal-like phenotype was significantly associated with worse overall survival (p=0.009 and p=0.026, respectively): accordingly, increasing mRNA levels of CAV1 in TNBC samples predicted better overall survival. Caveolin-1 expression on TNBC tumour cells was not associated with clinical outcome. CONCLUSION Stromal, but not tumoural, caveolin-1 expression is significantly associated with survival in Asian women with TNBC.
Collapse
Affiliation(s)
- Joe Yeong
- Division of Pathology, Singapore General Hospital, Singapore.,Singapore Immunology Network (SIgN), Agency of Science, Technology and Research (A*STAR), Singapore
| | - Aye Aye Thike
- Division of Pathology, Singapore General Hospital, Singapore
| | - Murasaki Ikeda
- Division of Breast Surgical Oncology, Showa University School of Medicine, Tokyo, Japan
| | | | - Bernett Lee
- Singapore Immunology Network (SIgN), Agency of Science, Technology and Research (A*STAR), Singapore
| | - Seigo Nakamura
- Division of Breast Surgical Oncology, Showa University School of Medicine, Tokyo, Japan
| | - Jabed Iqbal
- Division of Pathology, Singapore General Hospital, Singapore
| | - Puay Hoon Tan
- Division of Pathology, Singapore General Hospital, Singapore
| |
Collapse
|
30
|
Caveolin-1: An Oxidative Stress-Related Target for Cancer Prevention. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7454031. [PMID: 28546853 PMCID: PMC5436035 DOI: 10.1155/2017/7454031] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/23/2017] [Accepted: 03/07/2017] [Indexed: 01/19/2023]
Abstract
Aberrant oxidative metabolism is one of the hallmarks of cancer. Reactive species overproduction could promote carcinogenesis via inducing genetic mutations and activating oncogenic pathways, and thus, antioxidant therapy was considered as an important strategy for cancer prevention and treatment. Caveolin-1 (Cav-1), a constituent protein of caveolae, has been shown to mediate tumorigenesis and progression through oxidative stress modulation recently. Reactive species could modulate the expression, degradation, posttranslational modifications, and membrane trafficking of Cav-1, while Cav-1-targeted treatments could scavenge the reactive species. More importantly, emerging evidences have indicated that multiple antioxidants could exert antitumor activities in cancer cells and protective activities in normal cells by modulating the Cav-1 pathway. Altogether, these findings indicate that Cav-1 may be a promising oxidative stress-related target for cancer antioxidant prevention. Elucidating the underlying interaction mechanisms between oxidative stress and Cav-1 is helpful for enhancing the preventive effects of antioxidants on cancer, for improving clinical outcomes of antioxidant-related therapeutics in cancer patients, and for developing Cav-1 targeted drugs. Herein, we summarize the available evidence of the roles of Cav-1 and oxidative stress in tumorigenesis and development and shed novel light on designing strategies for cancer prevention or treatment by utilizing the interaction mode between Cav-1 and oxidative stress.
Collapse
|
31
|
Abstract
SIGNIFICANCE In the last years, metabolic reprogramming, fluctuations in bioenergetic fuels, and modulation of oxidative stress became new key hallmarks of tumor development. In cancer, elevated glucose uptake and high glycolytic rate, as a source of adenosine triphosphate, constitute a growth advantage for tumors. This represents the universally known Warburg effect, which gave rise to one major clinical application for detecting cancer cells using glucose analogs: the positron emission tomography scan imaging. Recent Advances: Glucose utilization and carbon sources in tumors are much more heterogeneous than initially thought. Indeed, new studies emerged and revealed a dual capacity of tumor cells for glycolytic and oxidative phosphorylation (OXPHOS) metabolism. OXPHOS metabolism, which relies predominantly on mitochondrial respiration, exhibits fine-tuned regulation of respiratory chain complexes and enhanced antioxidant response or detoxification capacity. CRITICAL ISSUES OXPHOS-dependent cancer cells use alternative oxidizable substrates, such as glutamine and fatty acids. The diversity of carbon substrates fueling neoplastic cells is indicative of metabolic heterogeneity, even within tumors sharing the same clinical diagnosis. Metabolic switch supports cancer cell stemness and their bioenergy-consuming functions, such as proliferation, survival, migration, and invasion. Moreover, reactive oxygen species-induced mitochondrial metabolism and nutrient availability are important for interaction with tumor microenvironment components. Carcinoma-associated fibroblasts and immune cells participate in the metabolic interplay with neoplastic cells. They collectively adapt in a dynamic manner to the metabolic needs of cancer cells, thus participating in tumorigenesis and resistance to treatments. FUTURE DIRECTIONS Characterizing the reciprocal metabolic interplay between stromal, immune, and neoplastic cells will provide a better understanding of treatment resistance. Antioxid. Redox Signal. 26, 462-485.
Collapse
Affiliation(s)
- Géraldine Gentric
- 1 Stress and Cancer Laboratory, Équipe Labelisée LNCC, Institut Curie , Paris, France .,2 Inserm , U830, Paris, France
| | - Virginie Mieulet
- 1 Stress and Cancer Laboratory, Équipe Labelisée LNCC, Institut Curie , Paris, France .,2 Inserm , U830, Paris, France
| | - Fatima Mechta-Grigoriou
- 1 Stress and Cancer Laboratory, Équipe Labelisée LNCC, Institut Curie , Paris, France .,2 Inserm , U830, Paris, France
| |
Collapse
|
32
|
Fu P, Chen F, Pan Q, Zhao X, Zhao C, Cho WCS, Chen H. The different functions and clinical significances of caveolin-1 in human adenocarcinoma and squamous cell carcinoma. Onco Targets Ther 2017; 10:819-835. [PMID: 28243118 PMCID: PMC5317307 DOI: 10.2147/ott.s123912] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Caveolin-1 (Cav-1), a major structural protein of caveolae, is an integral membrane protein which plays an important role in the progression of carcinoma. However, whether Cav-1 acts as a tumor promoter or a tumor suppressor still remains controversial. For example, the tumor-promoting function of Cav-1 has been found in renal cancer, prostate cancer, tongue squamous cell carcinoma (SCC), lung SCC and bladder SCC. In contrast, Cav-1 also plays an inhibitory role in esophagus adenocarcinoma, lung adenocarcinoma and cutaneous SCC. The role of Cav-1 is still controversial in thyroid cancer, hepatocellular carcinoma, gastric adenocarcinoma, colon adenocarcinoma, breast cancer, pancreas cancer, oral SCC, laryngeal SCC, head and neck SCC, esophageal SCC and cervical SCC. Besides, it has been reported that the loss of stromal Cav-1 might predict poor prognosis in breast cancer, gastric cancer, pancreas cancer, prostate cancer, oral SCC and esophageal SCC. However, the accumulation of stromal Cav-1 has been found to be promoted by the progression of tongue SCC. Taken together, Cav-1 seems playing a different role in different cancer subtypes even of the same organ, as well as acting differently in the same cancer subtype of different organs. Thus, we hereby explore the functions of Cav-1 in human adenocarcinoma and SCC from the perspective of clinical significances and pathogenesis. We envision that novel targets may come with the further investigation of Cav-1 in carcinogenesis.
Collapse
Affiliation(s)
- Pin Fu
- Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan
| | - Fuchun Chen
- Department of Thoracosurgery, Traditional Chinese Medical Hospital of Wenling, Wenling, Zhejiang
| | - Qi Pan
- Department of Thoracosurgery, Traditional Chinese Medical Hospital of Wenling, Wenling, Zhejiang
| | - Xianda Zhao
- Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan
| | - Chen Zhao
- Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan
| | | | - Honglei Chen
- Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan; Department of Pathology, Maternal and Child Health Hospital of Hubei, Wuhan, People's Republic of China
| |
Collapse
|
33
|
Kang C, Lee Y, Lee JE. Recent advances in mass spectrometry-based proteomics of gastric cancer. World J Gastroenterol 2016; 22:8283-8293. [PMID: 27729735 PMCID: PMC5055859 DOI: 10.3748/wjg.v22.i37.8283] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/28/2016] [Accepted: 08/10/2016] [Indexed: 02/06/2023] Open
Abstract
The last decade has witnessed remarkable technological advances in mass spectrometry-based proteomics. The development of proteomics techniques has enabled the reliable analysis of complex proteomes, leading to the identification and quantification of thousands of proteins in gastric cancer cells, tissues, and sera. This quantitative information has been used to profile the anomalies in gastric cancer and provide insights into the pathogenic mechanism of the disease. In this review, we mainly focus on the advances in mass spectrometry and quantitative proteomics that were achieved in the last five years and how these up-and-coming technologies are employed to track biochemical changes in gastric cancer cells. We conclude by presenting a perspective on quantitative proteomics and its future applications in the clinic and translational gastric cancer research.
Collapse
|
34
|
Yan W, Xue W, Chen J, Hu G. Biological Networks for Cancer Candidate Biomarkers Discovery. Cancer Inform 2016; 15:1-7. [PMID: 27625573 PMCID: PMC5012434 DOI: 10.4137/cin.s39458] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/06/2016] [Accepted: 06/16/2016] [Indexed: 12/16/2022] Open
Abstract
Due to its extraordinary heterogeneity and complexity, cancer is often proposed as a model case of a systems biology disease or network disease. There is a critical need of effective biomarkers for cancer diagnosis and/or outcome prediction from system level analyses. Methods based on integrating omics data into networks have the potential to revolutionize the identification of cancer biomarkers. Deciphering the biological networks underlying cancer is undoubtedly important for understanding the molecular mechanisms of the disease and identifying effective biomarkers. In this review, the networks constructed for cancer biomarker discovery based on different omics level data are described and illustrated from recent advances in the field.
Collapse
Affiliation(s)
- Wenying Yan
- Center for Systems Biology, Soochow University, Suzhou, Jiangsu, China
| | - Wenjin Xue
- Department of Electrical Engineering, Technician College of Taizhou, Taizhou, Jiangsu, China
| | - Jiajia Chen
- School of Chemistry, Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Guang Hu
- Center for Systems Biology, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
35
|
Lu S, Ma Y, Sun T, Ren R, Zhang X, Ma W. Expression of α-fetoprotein in gastric cancer AGS cells contributes to invasion and metastasis by influencing anoikis sensitivity. Oncol Rep 2016; 35:2984-90. [PMID: 26986949 DOI: 10.3892/or.2016.4678] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/05/2016] [Indexed: 11/06/2022] Open
Abstract
α-fetoprotein (AFP) is a valuable tumor marker for many types of cancers, including primary gastric cancer (GC). However, the effects of AFP expression on the metastasis and anoikis sensitivity of GC remain unclear. The present study aimed to explore the role and possible mechanism of AFP in the invasion and metastasis of GC AGS cells, particularly in the anoikis sensitivity of AGS cells. In the present study, the expression of AFP in cultured AGS cells was assayed firstly by RT-PCR, western blotting and sequencing. Then, a specific AFP siRNA was applied to interfere with AFP expression and poly(2-hydroxyethyl methacrylate) (poly-HEMA) was used to block cell anchorage. The invasion and metastatic ability, and anoikis sensitivity detections were conducted based on Transwell chamber assay, anoikis assay kit and western blotting. Our results confirmed the expression of AFP in AGS cells. Then, we found that interference of AFP with siRNA attenuated the invasion and metastasis of AGS cells and induced a significant upregulation of E-cadherin and downregulation of N-cadherin expression (P<0.05). Cell apoptosis and anoikis were induced when cell anchorage was blocked by poly-HEMA treatment, which was exacerbated significantly when cells were exposed to AFP siRNA. Moreover, interference of AFP when cell anchorage was blocked enhanced the expression of the pro-apoptotic proteins Bax, caspase-3 and -9, and decreased the expression of the anti-apoptotic protein B-cell lymphoma-2 (Bcl-2). In conclusion, the present study demonstrated that interference of AFP reduced AGS cell invasion and metastasis by enhancing anoikis sensitivity. The present study provides new insight for the treatment of GC and suggests AFP as a potential therapeutic target by regulating anoikis sensitivity.
Collapse
Affiliation(s)
- Sumei Lu
- Department of Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Yongmei Ma
- Department of Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Tao Sun
- Department of Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Rui Ren
- Department of Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Xiaoning Zhang
- Department of Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Wanshan Ma
- Department of Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|