1
|
Dai Q, Peng Y, He P, Wu X. Interactions and communications in the prostate tumour microenvironment: evolving towards effective cancer therapy. J Drug Target 2024:1-21. [PMID: 39445641 DOI: 10.1080/1061186x.2024.2418344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Prostate cancer is one of the most common malignancies in men. The tumour microenvironment (TME) has a critical role in the initiation, progression, and metastasis of prostate cancer. TME contains various cell types, including cancer-associated fibroblasts (CAFs), endothelial cells, immune cells such as macrophages, lymphocytes B and T, natural killer (NK) cells, and other proteins such as extracellular matrix (ECM) components. The interactions and communications between these cells within the TME are crucial for the growth and response of various solid tumours, such as prostate cancer to different anticancer modalities. In this review article, we exemplify the various mechanisms by which the TME influences prostate cancer progression. The roles of different cells, cytokines, chemokines, and growth factors in modulating the immune response and prostate tumour growth will be discussed. The impact of these cells and factors and other ECM components on tumour cell invasion and metastasis will also be discussed. We explain how these interactions in TME can affect the response of prostate cancer to therapy. We also highlight the importance of understanding these interactions to develop novel therapeutic approaches for prostate cancer.
Collapse
Affiliation(s)
- Qiang Dai
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yanling Peng
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Peng He
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaojun Wu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
2
|
Kaviani M, Soleimanian S, Keshtkar S, Azarpira N, Asvar Z, Pakbaz S. Molecular Prospective on Malignant Transformation of Mesenchymal Stem Cells: An Issue in Cell Therapy. Cell Reprogram 2024; 26:96-106. [PMID: 38917438 DOI: 10.1089/cell.2024.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
Mesenchymal stem cell (MSCs) therapy, as a rapidly developing area of medicine, holds great promise for the treatment of a variety of medical conditions. MSCs are multipotent stem cells that can be isolated from various tissues and could self-renew and differentiate. They secrete cytokines and trophic factors that create a regenerative microenvironment and have immunomodulatory properties. Although clinical trials have been conducted with MSCs in various diseases, concerns regarding the possibility of malignant transformation of these cells have been raised. The studies showed a higher rate of hematological malignancy and carcinogenesis in experimental models after MSC transplantation. The mechanisms underlying malignant transformation of MSCs are complex and not fully understood, but they are believed to involve the presence of special signaling molecules and alterations in cell behavior regulation pathways. Possible pathways that lead to MSCs' oncogenic transformation occur through two mechanisms: spontaneous and stimulated malignant transformation, including cell fusion, fusion proteins, and the tumor microenvironment. MSC-based therapies have the potential to revolutionize medicine, and addressing the issue of malignancy is crucial to ensure their safety and efficacy. Therefore, the purpose of the present review is to summarize the potential mechanisms of the malignant transformation of MSCs. [Figure: see text].
Collapse
Affiliation(s)
- Maryam Kaviani
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeede Soleimanian
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Keshtkar
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Asvar
- Nanotechnology School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Pakbaz
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, Mount Sinai Hospital, Toronto, ON, Canada
| |
Collapse
|
3
|
Popov A, Mandys V. Senescence-Associated miRNAs and Their Role in Pancreatic Cancer. Pathol Oncol Res 2022; 28:1610156. [PMID: 35570840 PMCID: PMC9098800 DOI: 10.3389/pore.2022.1610156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/12/2022] [Indexed: 01/17/2023]
Abstract
Replicative senescence is irreversible cell proliferation arrest for somatic cells which can be circumvented in cancers. Cellular senescence is a process, which may play two opposite roles. On the one hand, this is a natural protection of somatic cells against unlimited proliferation and malignant transformation. On the other hand, cellular secretion caused by senescence can stimulate inflammation and proliferation of adjacent cells that may promote malignancy. The main genes controlling the senescence pathways are also well known as tumor suppressors. Almost 140 genes regulate both cellular senescence and cancer pathways. About two thirds of these genes (64%) are regulated by microRNAs. Senescence-associated miRNAs can stimulate cancer progression or act as tumor suppressors. Here we review the role playing by senescence-associated miRNAs in development, diagnostics and treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Alexey Popov
- Department of Pathology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czechia
| | | |
Collapse
|
4
|
Abstract
Over the years, the engineering aspect of nanotechnology has been significantly exploited. Medical intervention strategies have been developed by leveraging existing molecular biology knowledge and combining it with nanotechnology tools to improve outcomes. However, little attention has been paid to harnessing the strengths of nanotechnology as a biological discovery tool. Fundamental understanding of controlling dynamic biological processes at the subcellular level is key to developing personalized therapeutic and diagnostic interventions. Single-cell analyses using intravital microscopy, expansion microscopy, and microfluidic-based platforms have been helping to better understand cell heterogeneity in healthy and diseased cells, a major challenge in oncology. Also, single-cell analysis has revealed critical signaling pathways and biological intracellular components with key biological functions. The physical manipulation enabled by nanotools can allow real-time monitoring of biological changes at a single-cell level by sampling intracellular fluid from the same cell. The formation of intercellular highways by nanotube-like structures has important clinical implications such as metastasis development. The integration of nanomaterials into optical and molecular imaging techniques has rendered valuable morphological, structural, and biological information. Nanoscale imaging unravels mechanisms of temporality by enabling the visualization of nanoscale dynamics never observed or measured between individual cells with standard biological techniques. The exceptional sensitivity of nanozymes, artificial enzymes, make them perfect components of the next-generation mobile diagnostics devices. Here, we highlight these impactful cancer-related biological discoveries enabled by nanotechnology and producing a paradigm shift in cancer research and oncology.
Collapse
Affiliation(s)
- Carolina Salvador-Morales
- Nanodelivery Systems and Devices Branch, Cancer Imaging Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Piotr Grodzinski
- Nanodelivery Systems and Devices Branch, Cancer Imaging Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, Maryland 20850, United States
| |
Collapse
|
5
|
Zhang C, Wang XY, Zhang P, He TC, Han JH, Zhang R, Lin J, Fan J, Lu L, Zhu WW, Jia HL, Zhang JB, Chen JH. Cancer-derived exosomal HSPC111 promotes colorectal cancer liver metastasis by reprogramming lipid metabolism in cancer-associated fibroblasts. Cell Death Dis 2022; 13:57. [PMID: 35027547 PMCID: PMC8758774 DOI: 10.1038/s41419-022-04506-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/08/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023]
Abstract
Tumor metastasis is a hallmark of cancer. The communication between cancer-derived exosomes and stroma plays an irreplaceable role in facilitating pre-metastatic niche formation and cancer metastasis. However, the mechanisms underlying exosome-mediated pre-metastatic niche formation during colorectal cancer (CRC) liver metastasis remain incompletely understood. Here we identified HSPC111 was the leading upregulated gene in hepatic stellate cells (HSCs) incubated with CRC cell-derived exosomes. In xenograft mouse model, CRC cell-derived exosomal HSPC111 facilitated pre-metastatic niche formation and CRC liver metastases (CRLM). Consistently, CRC patients with liver metastasis had higher level of HSPC111 in serum exosomes, primary tumors and cancer-associated fibroblasts (CAFs) in liver metastasis than those without. Mechanistically, HSPC111 altered lipid metabolism of CAFs by phosphorylating ATP-citrate lyase (ACLY), which upregulated the level of acetyl-CoA. The accumulation of acetyl-CoA further promoted CXCL5 expression and secretion by increasing H3K27 acetylation in CAFs. Moreover, CXCL5-CXCR2 axis reinforced exosomal HSPC111 excretion from CRC cells and promoted liver metastasis. These results uncovered that CRC cell-derived exosomal HSPC111 promotes pre-metastatic niche formation and CRLM via reprogramming lipid metabolism in CAFs, and implicate HSPC111 may be a potential therapeutic target for preventing CRLM.
Collapse
Affiliation(s)
- Chong Zhang
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Institute of Cancer Metastasis, Fudan University, Shanghai, China
| | - Xiang-Yu Wang
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Institute of Cancer Metastasis, Fudan University, Shanghai, China
| | - Peng Zhang
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Institute of Cancer Metastasis, Fudan University, Shanghai, China
| | - Tao-Chen He
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Institute of Cancer Metastasis, Fudan University, Shanghai, China
| | - Jia-Hao Han
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Institute of Cancer Metastasis, Fudan University, Shanghai, China
| | - Rui Zhang
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Institute of Cancer Metastasis, Fudan University, Shanghai, China
| | - Jing Lin
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Institute of Cancer Metastasis, Fudan University, Shanghai, China
| | - Jie Fan
- Department of Pathology, Huashan Hospital, Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China
| | - Lu Lu
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Institute of Cancer Metastasis, Fudan University, Shanghai, China
| | - Wen-Wei Zhu
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Institute of Cancer Metastasis, Fudan University, Shanghai, China
| | - Hu-Liang Jia
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Institute of Cancer Metastasis, Fudan University, Shanghai, China
| | - Ju-Bo Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China
| | - Jin-Hong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China. .,Institute of Cancer Metastasis, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
D’Andrea MR, Cereda V, Coppola L, Giordano G, Remo A, De Santis E. Propensity for Early Metastatic Spread in Breast Cancer: Role of Tumor Vascularization Features and Tumor Immune Infiltrate. Cancers (Basel) 2021; 13:cancers13235917. [PMID: 34885027 PMCID: PMC8657227 DOI: 10.3390/cancers13235917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 02/05/2023] Open
Abstract
Breast cancer is a complex and highly heterogeneous disease consisting of various subtypes. It is classified into human epidermal growth receptor 2 (HER-2)-enriched, luminal A, luminal B and basal-like/triple negative (TNBC) breast cancer, based on histological and molecular features. At present, clinical decision-making in breast cancer is focused only on the assessment of tumor cells; nevertheless, it has been recognized that the tumor microenvironment (TME) plays a critical biologic role in breast cancer. This is constituted by a large group of immune and non-immune cells, but also by non-cellular components, such as several cytokines. TME is deeply involved in angiogenesis, immune-evasion strategies, and propensity for early metastatic spread, impacting on prognosis and prediction of response to specific treatments. In this review, we focused our attention on the early morphological changes of tumor microenvironment (tumor vasculature features, presence of immune and non-immune cells infiltrating the stroma, levels of cytokines) during breast cancer development. At the same time, we correlate these characteristics with early metastatic propensity (defined as synchronous metastasis or early recurrence) with particular attention to breast cancer subtypes.
Collapse
Affiliation(s)
- Mario Rosario D’Andrea
- Clinical Oncology Unit, San Paolo Hospital, Largo Donatori del Sangue 1, Civitavecchia, 00053 Rome, Italy;
| | - Vittore Cereda
- Clinical Oncology Unit, San Paolo Hospital, Largo Donatori del Sangue 1, Civitavecchia, 00053 Rome, Italy;
- Correspondence: ; Tel.: +39-07-6659-1230
| | - Luigi Coppola
- Unit of Anatomy, Pathological Histology and Diagnostic Cytology, Department of Diagnostic and Pharma-Ceutical Services, Sandro Pertini Hospital, 00157 Rome, Italy;
| | - Guido Giordano
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, 71122 Foggia, Italy;
| | - Andrea Remo
- Pathology Unit, Mater Salutis Hospital, ULSS9, Legnago, 37045 Verona, Italy;
| | - Elena De Santis
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| |
Collapse
|
7
|
Rickard BP, Conrad C, Sorrin AJ, Ruhi MK, Reader JC, Huang SA, Franco W, Scarcelli G, Polacheck WJ, Roque DM, del Carmen MG, Huang HC, Demirci U, Rizvi I. Malignant Ascites in Ovarian Cancer: Cellular, Acellular, and Biophysical Determinants of Molecular Characteristics and Therapy Response. Cancers (Basel) 2021; 13:4318. [PMID: 34503128 PMCID: PMC8430600 DOI: 10.3390/cancers13174318] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/17/2021] [Accepted: 08/22/2021] [Indexed: 12/27/2022] Open
Abstract
Ascites refers to the abnormal accumulation of fluid in the peritoneum resulting from an underlying pathology, such as metastatic cancer. Among all cancers, advanced-stage epithelial ovarian cancer is most frequently associated with the production of malignant ascites and is the leading cause of death from gynecologic malignancies. Despite decades of evidence showing that the accumulation of peritoneal fluid portends the poorest outcomes for cancer patients, the role of malignant ascites in promoting metastasis and therapy resistance remains poorly understood. This review summarizes the current understanding of malignant ascites, with a focus on ovarian cancer. The first section provides an overview of heterogeneity in ovarian cancer and the pathophysiology of malignant ascites. Next, analytical methods used to characterize the cellular and acellular components of malignant ascites, as well the role of these components in modulating cell biology, are discussed. The review then provides a perspective on the pressures and forces that tumors are subjected to in the presence of malignant ascites and the impact of physical stress on therapy resistance. Treatment options for malignant ascites, including surgical, pharmacological and photochemical interventions are then discussed to highlight challenges and opportunities at the interface of drug discovery, device development and physical sciences in oncology.
Collapse
Affiliation(s)
- Brittany P. Rickard
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, and North Carolina State University, Raleigh, NC 27599, USA; (M.K.R.); (S.A.H.); (W.J.P.)
| | - Christina Conrad
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (C.C.); (A.J.S.); (G.S.); (H.-C.H.)
| | - Aaron J. Sorrin
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (C.C.); (A.J.S.); (G.S.); (H.-C.H.)
| | - Mustafa Kemal Ruhi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, and North Carolina State University, Raleigh, NC 27599, USA; (M.K.R.); (S.A.H.); (W.J.P.)
| | - Jocelyn C. Reader
- Department of Obstetrics, Gynecology and Reproductive Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (J.C.R.); (D.M.R.)
- Marlene and Stewart Greenebaum Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Stephanie A. Huang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, and North Carolina State University, Raleigh, NC 27599, USA; (M.K.R.); (S.A.H.); (W.J.P.)
| | - Walfre Franco
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA;
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (C.C.); (A.J.S.); (G.S.); (H.-C.H.)
| | - William J. Polacheck
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, and North Carolina State University, Raleigh, NC 27599, USA; (M.K.R.); (S.A.H.); (W.J.P.)
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dana M. Roque
- Department of Obstetrics, Gynecology and Reproductive Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (J.C.R.); (D.M.R.)
- Marlene and Stewart Greenebaum Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Marcela G. del Carmen
- Division of Gynecologic Oncology, Vincent Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (C.C.); (A.J.S.); (G.S.); (H.-C.H.)
- Marlene and Stewart Greenebaum Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA;
| | - Imran Rizvi
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, and North Carolina State University, Raleigh, NC 27599, USA; (M.K.R.); (S.A.H.); (W.J.P.)
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Hu Y, Luo X, Zhou J, Chen S, Gong M, Deng Y, Zhang H. Piperlongumine inhibits the progression of osteosarcoma by downregulating the SOCS3/JAK2/STAT3 pathway via miR-30d-5p. Life Sci 2021; 277:119501. [PMID: 33862108 DOI: 10.1016/j.lfs.2021.119501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/22/2021] [Accepted: 04/07/2021] [Indexed: 12/28/2022]
Abstract
AIMS The present study evaluated the functions of Piperlongumine (PL) in osteosarcoma (OS) cell growth and metastasis both in vitro and in vivo. MAIN METHODS MTT assay was conducted to test the cytotoxic effects of PL on the human osteoblasts line HFOB1.19 and the human normal chondrocyte line C28/I2T. FITC-Annexin V and propidium iodide (PI) were used to examine cell apoptosis. The migration, invasion and relative epithelial-mesenchymal transition were examined by Transwell assay and Western blotting. Reverse transcription-quantitative PCR (RT-qPCR) was performed to analyze the cytokine signaling 3 (SOCS3) mRNA expression. TargetScan database was used to predict the target of SOCS3. The binding association between miR-30d-5p and SOCS3 in U2OS and MG63 cells was evaluated by the dual-luciferase reporter assay. A xenograft model was constructed to evaluate the effect of PL on OS cell growth in vivo. KEY FINDINGS The results revealed that PL inhibited the growth, migration, invasion, epithelial-mesenchymal transition, and promoted the apoptosis of OS cells dose-dependently. In addition, PL upregulated the protein levels of suppressor of SOCS3, while it inactivated the JAK2/STAT3 pathway, which was accompanied by a decreased level of microRNA (miR)-30d-5p. Furthermore, SOCS3was confirmed as a novel target of miR-30d-5p. Overexpression of miR-30d-5p not only led to decreased expression of SOCS3, but also dampened the antitumor effect of PL on OS. SIGNIFICANCE The present data demonstrated that PL inhibited the progression of OS via downregulation of the SOCS3-mediated JAK2/STAT3 pathway by inhibiting miR-30d-5p.
Collapse
Affiliation(s)
- Yawei Hu
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, Guangdong 518000, Shenzhen, China
| | - Xinle Luo
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, Guangdong 518000, Shenzhen, China
| | - Jianhua Zhou
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, Guangdong 518000, Shenzhen, China
| | - Shaochu Chen
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, Guangdong 518000, Shenzhen, China
| | - Ming Gong
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, Guangdong 518000, Shenzhen, China
| | - Yue Deng
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, Guangdong 518000, Shenzhen, China
| | - Hao Zhang
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, Guangdong 518000, Shenzhen, China.
| |
Collapse
|
9
|
Khalaf K, Hana D, Chou JTT, Singh C, Mackiewicz A, Kaczmarek M. Aspects of the Tumor Microenvironment Involved in Immune Resistance and Drug Resistance. Front Immunol 2021; 12:656364. [PMID: 34122412 PMCID: PMC8190405 DOI: 10.3389/fimmu.2021.656364] [Citation(s) in RCA: 209] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/27/2021] [Indexed: 12/11/2022] Open
Abstract
The tumor microenvironment (TME) is a complex and ever-changing "rogue organ" composed of its own blood supply, lymphatic and nervous systems, stroma, immune cells and extracellular matrix (ECM). These complex components, utilizing both benign and malignant cells, nurture the harsh, immunosuppressive and nutrient-deficient environment necessary for tumor cell growth, proliferation and phenotypic flexibility and variation. An important aspect of the TME is cellular crosstalk and cell-to-ECM communication. This interaction induces the release of soluble factors responsible for immune evasion and ECM remodeling, which further contribute to therapy resistance. Other aspects are the presence of exosomes contributed by both malignant and benign cells, circulating deregulated microRNAs and TME-specific metabolic patterns which further potentiate the progression and/or resistance to therapy. In addition to biochemical signaling, specific TME characteristics such as the hypoxic environment, metabolic derangements, and abnormal mechanical forces have been implicated in the development of treatment resistance. In this review, we will provide an overview of tumor microenvironmental composition, structure, and features that influence immune suppression and contribute to treatment resistance.
Collapse
Affiliation(s)
- Khalil Khalaf
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Doris Hana
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Jadzia Tin-Tsen Chou
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Chandpreet Singh
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Andrzej Mackiewicz
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Mariusz Kaczmarek
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
10
|
Lee S, Hong JH, Kim JS, Yoon JS, Chun SH, Hong SA, Kim EJ, Kang K, Lee Kang J, Ko YH, Ahn YH. Cancer-associated fibroblasts activated by miR-196a promote the migration and invasion of lung cancer cells. Cancer Lett 2021; 508:92-103. [PMID: 33775710 DOI: 10.1016/j.canlet.2021.03.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023]
Abstract
Fibroblasts in the tumor microenvironment, known as cancer-associated fibroblasts (CAFs), promote the migration, invasion, and metastasis of cancer cells when they are activated through diverse processes, including post-transcriptional regulation by microRNAs (miRNAs). To identify the miRNAs that regulate CAF activation, we used NanoString to profile miRNA expression within normal mouse lung fibroblasts (LFs) and CAFs. Based on NanoString profiling, miR-196a was selected as a candidate that was up-regulated in CAFs. miR-196a-overexpressed LFs (LF-196a) promoted the migration and invasion of lung cancer cells in co-culture systems (Transwell migration and spheroid invasion assays). ANXA1 was confirmed as a direct target of miR-196a, and adding back ANXA1 to LF-196a restored the cancer cell invasion promoted by miR-196a. miR-196a increased CCL2 secretion in fibroblasts, and that was suppressed by ANXA1. Furthermore, blocking CCL2 impeded cancer spheroid invasion. In lung adenocarcinoma patients, high miR-196a expression was associated with poor prognosis. Collectively, our results suggest that CAF-specific miR-196a promotes lung cancer progression in the tumor microenvironment via ANXA1 and CCL2 and that miR-196a will be a good therapeutic target or biomarker in lung adenocarcinoma.
Collapse
Affiliation(s)
- Sieun Lee
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea; Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea
| | - Ji Hyung Hong
- Division of Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Jeong Seon Kim
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea; Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea
| | - Jung Sook Yoon
- Division of Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Sang Hoon Chun
- Division of Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Soon Auck Hong
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul, 06974, South Korea
| | - Eun Ju Kim
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea; Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea
| | - Keunsoo Kang
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, 31116, South Korea
| | - Jihee Lee Kang
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea; Department of Physiology, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea
| | - Yoon Ho Ko
- Division of Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea; Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea.
| | - Young-Ho Ahn
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea; Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea.
| |
Collapse
|
11
|
Li LJ, Chang WM, Hsiao M. Aberrant Expression of microRNA Clusters in Head and Neck Cancer Development and Progression: Current and Future Translational Impacts. Pharmaceuticals (Basel) 2021; 14:ph14030194. [PMID: 33673471 PMCID: PMC7997248 DOI: 10.3390/ph14030194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/14/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs are small non-coding RNAs known to negative regulate endogenous genes. Some microRNAs have high sequence conservation and localize as clusters in the genome. Their coordination is regulated by simple genetic and epigenetic events mechanism. In cells, single microRNAs can regulate multiple genes and microRNA clusters contain multiple microRNAs. MicroRNAs can be differentially expressed and act as oncogenic or tumor suppressor microRNAs, which are based on the roles of microRNA-regulated genes. It is vital to understand their effects, regulation, and various biological functions under both normal and disease conditions. Head and neck squamous cell carcinomas are some of the leading causes of cancer-related deaths worldwide and are regulated by many factors, including the dysregulation of microRNAs and their clusters. In disease stages, microRNA clusters can potentially control every field of oncogenic function, including growth, proliferation, apoptosis, migration, and intercellular commutation. Furthermore, microRNA clusters are regulated by genetic mutations or translocations, transcription factors, and epigenetic modifications. Additionally, microRNA clusters harbor the potential to act therapeutically against cancer in the future. Here, we review recent advances in microRNA cluster research, especially relative to head and neck cancers, and discuss their regulation and biological functions under pathological conditions as well as translational applications.
Collapse
Affiliation(s)
- Li-Jie Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
| | - Wei-Min Chang
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-2-2789–8752
| |
Collapse
|
12
|
Wang Z, Yang Q, Tan Y, Tang Y, Ye J, Yuan B, Yu W. Cancer-Associated Fibroblasts Suppress Cancer Development: The Other Side of the Coin. Front Cell Dev Biol 2021; 9:613534. [PMID: 33614646 PMCID: PMC7890026 DOI: 10.3389/fcell.2021.613534] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/15/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are the main stromal components of cancer, representing a group of heterogeneous cells. Many studies indicate that CAFs promote tumor development. Besides, evidence of the tumor suppression effects of CAFs keeps on merging. In the tumor microenvironment, multiple stimuli can activate fibroblasts. Notably, this does not necessarily mean the activated CAFs become strong tumor promoters immediately. The varying degree of CAFs activation makes quiescent CAFs, tumor-restraining CAFs, and tumor-promoting CAFs. Quiescent CAFs and tumor-restraining CAFs are more present in early-stage cancer, while comparatively, more tumor-promoting CAFs present in advanced-stage cancer. The underlying mechanism that balances tumor promotion or tumor inhibition effects of CAFs is mostly unknown. This review focus on the inhibitory effects of CAFs on cancer development. We describe the heterogeneous origin, markers, and metabolism in the CAFs population. Transgenetic mouse models that deplete CAFs or deplete CAFs activation signaling in the tumor stroma present direct evidence of CAFs protective effects against cancer. Moreover, we outline CAFs subpopulation and CAFs derived soluble factors that act as a tumor suppressor. Single-cell RNA-sequencing on CAFs population provides us new insight to classify CAFs subsets. Understanding the full picture of CAFs will help translate CAFs biology from bench to bedside and develop new strategies to improve precision cancer therapy.
Collapse
Affiliation(s)
- Zhanhuai Wang
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Yang
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yinuo Tan
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Tang
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Ye
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Yuan
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Wei Yu
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Virga F, Quirico L, Cucinelli S, Mazzone M, Taverna D, Orso F. MicroRNA-Mediated Metabolic Shaping of the Tumor Microenvironment. Cancers (Basel) 2021; 13:E127. [PMID: 33401522 PMCID: PMC7795884 DOI: 10.3390/cancers13010127] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/24/2022] Open
Abstract
The metabolism of cancer cells is generally very different from what is found in normal counterparts. However, in a tumor mass, the continuous crosstalk and competition for nutrients and oxygen among different cells lead to metabolic alterations, not only in cancer cells, but also in the different stromal and immune cells of the tumor microenvironment (TME), which are highly relevant for tumor progression. MicroRNAs (miRs) are small non-coding RNAs that silence their mRNA targets post-transcriptionally and are involved in numerous physiological cell functions as well as in the adaptation to stress situations. Importantly, miRs can also be released via extracellular vesicles (EVs) and, consequently, take part in the bidirectional communication between tumor and surrounding cells under stress conditions. Certain miRs are abundantly expressed in stromal and immune cells where they can regulate various metabolic pathways by directly suppressing enzymes or transporters as well as by controlling important regulators (such as transcription factors) of metabolic processes. In this review, we discuss how miRs can induce metabolic reprogramming in stromal (fibroblasts and adipocytes) and immune (macrophages and T cells) cells and, in turn, how the biology of the different cells present in the TME is able to change. Finally, we debate the rebound of miR-dependent metabolic alterations on tumor progression and their implications for cancer management.
Collapse
Affiliation(s)
- Federico Virga
- Molecular Biotechnology Center (MBC), University of Torino, 10126 Torino, Italy; (F.V.); (L.Q.); (S.C.); (M.M.); (D.T.)
- Department Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
- VIB Center for Cancer Biology (CCB), Department of Oncology, University of Leuven, B-3000 Leuven, Belgium
| | - Lorena Quirico
- Molecular Biotechnology Center (MBC), University of Torino, 10126 Torino, Italy; (F.V.); (L.Q.); (S.C.); (M.M.); (D.T.)
- Department Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Stefania Cucinelli
- Molecular Biotechnology Center (MBC), University of Torino, 10126 Torino, Italy; (F.V.); (L.Q.); (S.C.); (M.M.); (D.T.)
- Department Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Massimiliano Mazzone
- Molecular Biotechnology Center (MBC), University of Torino, 10126 Torino, Italy; (F.V.); (L.Q.); (S.C.); (M.M.); (D.T.)
- Department Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
- VIB Center for Cancer Biology (CCB), Department of Oncology, University of Leuven, B-3000 Leuven, Belgium
| | - Daniela Taverna
- Molecular Biotechnology Center (MBC), University of Torino, 10126 Torino, Italy; (F.V.); (L.Q.); (S.C.); (M.M.); (D.T.)
- Department Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Francesca Orso
- Molecular Biotechnology Center (MBC), University of Torino, 10126 Torino, Italy; (F.V.); (L.Q.); (S.C.); (M.M.); (D.T.)
- Department Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| |
Collapse
|
14
|
Wang Y, Yin Z, Zhang N, Song H, Zhang Q, Hao X, Wang Z. MiR-125a-3p inhibits cell proliferation and inflammation responses in fibroblast-like synovial cells in rheumatoid arthritis by mediating the Wnt/β-catenin and NF-κB pathways via targeting MAST3. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2021; 21:560-567. [PMID: 34854396 PMCID: PMC8672414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVES To explore the role and mechanism of miR-125a-3p in rheumatoid arthritis (RA) progression. METHODS The RA-tissues and fibroblast-like synovial cells in rheumatoid arthritis (RA-FLS) were used in this study. qRT-PCR, western blot and ELISA assay were performed to detect the expression levels of IL-6, IL-β and ΤΝF-α. Dual-luciferase reporter gene assay was used to observe the binding effect of miR-125a-3p and MAST3, and CCK-8 was used to observe the effect of miR-125a-3p on the proliferation of RA-FLS. RESULTS miR-125a-3p was significantly downregulated in the RA-tissues and RA-FLS, and miR-125a-3p could inhibit the proliferation and reduce the inflammation response of RA-FLS. Besides, MAST3 was found as a target of miR-125a-3p, and increased MAST3 could reverse the effects of miR-125a-3p on RA-FLS including decreased proliferation, reduced inflammation level and the inactivation of Wnt/β-catenin and NF-κB pathways. CONCLUSIONS This study suggests that miR-125a-3p could inactivate the Wnt/β-catenin and NF-κB pathways to reduce the proliferation and inflammation response of RA-FLS via targeting MAST3.
Collapse
Affiliation(s)
- Yingxue Wang
- Department of Rheumatology, The Second Hospital of Shandong University, Shandong Province, China
| | - Zhe Yin
- Department of Rheumatology, The Second Hospital of Shandong University, Shandong Province, China
| | - Ni Zhang
- Department of Rheumatology, The Second Hospital of Shandong University, Shandong Province, China
| | - Huishu Song
- Department of Rheumatology, The Second Hospital of Shandong University, Shandong Province, China
| | - Qiuting Zhang
- Department of Rheumatology, The Second Hospital of Shandong University, Shandong Province, China
| | - Xuexi Hao
- Department of Rheumatology, The Second Hospital of Shandong University, Shandong Province, China
| | - Zhilun Wang
- Department of Rheumatology, The Second Hospital of Shandong University, Shandong Province, China,Corresponding author: Zhilun Wang, Department of Rheumatology, The Second Hospital of Shandong University, No. 247 Beiyuan Street, Tianqiao District, Jinan 250033, Shandong Province, China E-mail:
| |
Collapse
|
15
|
Reprogramming of Mesothelial-Mesenchymal Transition in Chronic Peritoneal Diseases by Estrogen Receptor Modulation and TGF-β1 Inhibition. Int J Mol Sci 2020; 21:ijms21114158. [PMID: 32532126 PMCID: PMC7312018 DOI: 10.3390/ijms21114158] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/31/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
In chronic peritoneal diseases, mesothelial-mesenchymal transition is determined by cues from the extracellular environment rather than just the cellular genome. The transformation of peritoneal mesothelial cells and other host cells into myofibroblasts is mediated by cell membrane receptors, Transforming Growth Factor β1 (TGF-β1), Src and Hypoxia-inducible factor (HIF). This article provides a narrative review of the reprogramming of mesothelial mesenchymal transition in chronic peritoneal diseases, drawing on the similarities in pathophysiology between encapsulating peritoneal sclerosis and peritoneal metastasis, with a particular focus on TGF-β1 signaling and estrogen receptor modulators. Estrogen receptors act at the cell membrane/cytosol as tyrosine kinases that can phosphorylate Src, in a similar way to other receptor tyrosine kinases; or can activate the estrogen response element via nuclear translocation. Tamoxifen can modulate estrogen membrane receptors, and has been shown to be a potent inhibitor of mesothelial-mesenchymal transition (MMT), peritoneal mesothelial cell migration, stromal fibrosis, and neoangiogenesis in the treatment of encapsulating peritoneal sclerosis, with a known side effect and safety profile. The ability of tamoxifen to inhibit the transduction pathways of TGF-β1 and HIF and achieve a quiescent peritoneal stroma makes it a potential candidate for use in cancer treatments. This is relevant to tumors that spread to the peritoneum, particularly those with mesenchymal phenotypes, such as colorectal CMS4 and MSS/EMT gastric cancers, and pancreatic cancer with its desmoplastic stroma. Morphological changes observed during mesothelial mesenchymal transition can be treated with estrogen receptor modulation and TGF-β1 inhibition, which may enable the regression of encapsulating peritoneal sclerosis and peritoneal metastasis.
Collapse
|
16
|
Egeland NG, Jonsdottir K, Aure MR, Sahlberg K, Kristensen VN, Cronin-Fenton D, Skaland I, Gudlaugsson E, Baak JPA, Janssen EAM. MiR-18a and miR-18b are expressed in the stroma of oestrogen receptor alpha negative breast cancers. BMC Cancer 2020; 20:377. [PMID: 32370743 PMCID: PMC7201801 DOI: 10.1186/s12885-020-06857-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/13/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Previously, we have shown that miR-18a and miR-18b gene expression strongly correlates with high proliferation, oestrogen receptor -negativity (ER-), cytokeratin 5/6 positivity and basal-like features of breast cancer. METHODS We investigated the expression and localization of miR-18a and -18b in formalin fixed paraffin embedded (FFPE) tissue from lymph node negative breast cancers (n = 40), by chromogenic in situ hybridization (CISH). The expression level and in situ localization of miR-18a and -18b was assessed with respect to the presence of tumour infiltrating lymphocytes (TILs) and immunohistochemical markers for ER, CD4, CD8, CD20, CD68, CD138, PAX5 and actin. Furthermore, in two independent breast cancer cohorts (94 and 377 patients) the correlation between miR-18a and -18b expression and the relative quantification of 22 immune cell types obtained from the CIBERSORT tool was assessed. RESULTS CISH demonstrated distinct and specific cytoplasmic staining for both miR-18a and miR-18b, particularly in the intratumoural stroma and the stroma surrounding the tumour margin. Staining by immunohistochemistry revealed some degree of overlap of miR-18a and -18b with CD68 (monocytes/macrophages), CD138 (plasma cells) and the presence of high percentages of TILs. CIBERSORT analysis showed a strong correlation between M1-macrophages and CD4+ memory activated T-cells with mir-18a and -18b. CONCLUSIONS Our study demonstrates that miR-18a and miR-18b expression is associated with ER- breast tumours that display a high degree of inflammation. This expression is potentially associated specifically with macrophages. These results suggest that miR-18a and miR-18b may play a role in the systemic immunological response in ER- tumours.
Collapse
Affiliation(s)
- Nina Gran Egeland
- Department of Pathology, Stavanger University Hospital, Box 8100, 4068, Stavanger, Norway.,Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Kristin Jonsdottir
- Department of Pathology, Stavanger University Hospital, Box 8100, 4068, Stavanger, Norway.
| | - Miriam Ragle Aure
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Kristine Sahlberg
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Department of Research and Innovation, Vestre Viken Hospital Trust, Drammen, Norway
| | - Vessela N Kristensen
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Department of Clinical Molecular Biology (EpiGen), Division of Medicine, Akershus University Hospital, Lørenskog, Norway
| | | | - Ivar Skaland
- Department of Pathology, Stavanger University Hospital, Box 8100, 4068, Stavanger, Norway
| | - Einar Gudlaugsson
- Department of Pathology, Stavanger University Hospital, Box 8100, 4068, Stavanger, Norway
| | - Jan P A Baak
- Department of Pathology, Stavanger University Hospital, Box 8100, 4068, Stavanger, Norway.,Dr. Med. Jan Baak AS, Tananger, Norway
| | - Emiel A M Janssen
- Department of Pathology, Stavanger University Hospital, Box 8100, 4068, Stavanger, Norway.,Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| |
Collapse
|
17
|
Exosomes in Prostate Cancer Diagnosis, Prognosis and Therapy. Int J Mol Sci 2020; 21:ijms21062118. [PMID: 32204455 PMCID: PMC7139716 DOI: 10.3390/ijms21062118] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is the second most common cause of cancer-related mortality among men in the developed world. Conventional anti-PCa therapies are not effective for patients with advanced and/or metastatic disease. In most cases, cancer therapies fail due to an incomplete depletion of tumor cells, resulting in tumor relapse. Exosomes are involved in tumor progression, promoting the angiogenesis and migration of tumor cells during metastasis. These structures contribute to the dissemination of pathogenic agents through interaction with recipient cells. Exosomes may deliver molecules that are able to induce the transdifferentiation process, known as “epithelial to mesenchymal transition”. The composition of exosomes and the associated possibilities of interacting with cells make exosomes multifaceted regulators of cancer development. Extracellular vesicles have biophysical properties, such as stability, biocompatibility, permeability, low toxicity and low immunogenicity, which are key for the successful development of an innovative drug delivery system. They have an enhanced circulation stability and bio-barrier permeation ability, and they can therefore be used as effective chemotherapeutic carriers to improve the regulation of target tissues and organs. Exosomes have the capacity to deliver different types of cargo and to target specific cells. Chemotherapeutics, natural products and RNA have been encapsulated for the treatment of prostate cancers.
Collapse
|
18
|
Wang M, Su Z, Amoah Barnie P. Crosstalk among colon cancer-derived exosomes, fibroblast-derived exosomes, and macrophage phenotypes in colon cancer metastasis. Int Immunopharmacol 2020; 81:106298. [PMID: 32058925 DOI: 10.1016/j.intimp.2020.106298] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/13/2022]
Abstract
Cellular crosstalk is an important mechanism in the pathogenesis of inflammatory disorders and cancers. One significant means by which cells communicate with each other is through the release of exosomes. Exosomes are extracellular vesicles formed by the outward budding of plasma membranes, which are then released from cells into the extracellular space. Many studies have suggested that microvesicles released by colon cancer cells initiate crosstalk and modulate the fibroblast activities and macrophage phenotypes. Interestingly, crosstalk among colon cancer cells, macrophages and cancer-associated fibroblasts maximizes the mechanical composition of the stromal extracellular matrix (ECM). Exosomes contribute to cancer cell migration and invasion, which are critical for colon cancer progression to metastasis. The majority of the studies on colorectal cancers (CRCs) have focused on developing exosomal biomarkers for the early detection and prediction of CRC prognosis. This study highlights the crosstalk among colon cancer-derived exosomes, macrophage phenotypes and fibroblasts during colon cancer metastasis.
Collapse
Affiliation(s)
- Meiyun Wang
- Department of Nephrology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu Province, PR China.
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, Zhenjiang 212013, Jiangsu Province, PR China.
| | - Prince Amoah Barnie
- International Genome Center, Jiangsu University, Zhenjiang 212013, Jiangsu Province, PR China; Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana.
| |
Collapse
|
19
|
Liao Z, Tan ZW, Zhu P, Tan NS. Cancer-associated fibroblasts in tumor microenvironment – Accomplices in tumor malignancy. Cell Immunol 2019; 343:103729. [DOI: https:/doi.org/10.1016/j.cellimm.2017.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
20
|
Irani S. Emerging insights into the biology of metastasis: A review article. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:833-847. [PMID: 31579438 PMCID: PMC6760483 DOI: 10.22038/ijbms.2019.32786.7839] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 02/16/2019] [Indexed: 12/12/2022]
Abstract
Metastasis means the dissemination of the cancer cells from one organ to another which is not directly connected to the primary site. Metastasis has a crucial role in the prognosis of cancer patients. A few theories, different types of cell and several molecular pathways have been proposed to explain the mechanism of metastasis. In this work, the related articles in the limited period of time, 2000-mid -2018 were reviewed, through search in PubMed, Google Scholar and Scopus database. The articles published in the last two decades related to the biology of cancer metastasis were selected and the most important factors were discussed. Metastasis is critical factor to predict survival in patients with advanced cancer and prognosis determines the treatment plan. Many different cell types and various signaling pathways control the metastatic process. Metastasis is a multistep process. Many signaling pathways and molecules are involved in metastasis. Increasing knowledge about the mechanism of metastasis can help in finding the promising targets of cancer therapy.
Collapse
Affiliation(s)
- Soussan Irani
- Dental Research Centre, Oral Pathology Department, Dental Faculty, Hamadan University of Medical Sciences, Hamadan,Iran, Lecturer at Griffith University, Gold Coast, Australia
| |
Collapse
|
21
|
LINC00460 promotes hepatocellular carcinoma development through sponging miR-485-5p to up-regulate PAK1. Biomed Pharmacother 2019; 118:109213. [PMID: 31376654 DOI: 10.1016/j.biopha.2019.109213] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022] Open
Abstract
LncRNAs can function as significant regulators of tumor development. However, their roles in hepatocellular carcinoma (HCC) remain poorly investigated. LINC00460 has been identified in several cancers, which can act as an oncogene. In this study, we observed that LINC00460 was significantly up-regulated in HCC cells, which implied that LINC00460 was involved in HCC development. Then, LINC00460 was silenced in Hep3B and Huh-7 cells and we found that knockdown of LINC00460 greatly inhibited HCC cell proliferation. In addition, HCC cell apoptosis was induced and meanwhile, cell cycle progression was blocked by down-regulation of LINC00460 in vitro. Furthermore, we proved that Hep3B and Huh-7 cell migration and invasion capacity was repressed by decrease of LINC00460. Recently, a growing number of studies have indicated the correlation between lncRNAs and microRNAs. Currently, we displayed that miR-485-5p was greatly decreased in HCC cells and LINC00460 could sponge miR-485-5p to regulate HCC progression. The binding association between LINC00460 and miR-485-5p was confirmed using dual-luciferase reporter assay, RNA pulled down and RIP assay in our research. Subsequently, PAK1 was predicted as a downstream target of miR-485-5p and we demonstrated that miR-485-5p suppressed PAK1 levels in vitro. Finally, in vivo experiments were conducted to validate that knockdown of LINC00460 repressed HCC development through modulating miR-485-5p to increase PAK1. Taken these together, we indicated that LINC00460 promoted HCC progression through sponging miR-485-5p and up-regulating PAK1.
Collapse
|
22
|
Guo S, Deng CX. Effect of Stromal Cells in Tumor Microenvironment on Metastasis Initiation. Int J Biol Sci 2018; 14:2083-2093. [PMID: 30585271 PMCID: PMC6299363 DOI: 10.7150/ijbs.25720] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 06/02/2018] [Indexed: 12/11/2022] Open
Abstract
The cellular environment where tumor cells reside is called the tumor microenvironment (TME), which consists of borders, blood vessels, lymph vessels, extracellular matrix (ECM), stromal cells, immune/inflammatory cells, secreted proteins, RNAs and small organelles. By dynamically interacting with tumor cells, stromal cells participate in all stages of tumor initiation, progression, metastasis, recurrence and drug response, and consequently, affect the fate of patients. During the processes of tumor evolution and metastasis initiation, stromal cells in TME also experience some changes and play roles in both the suppression and promotion of metastasis, while the overall function of stromal cells is beneficial for cancer cell survival and movement. In this review, we examine the effects of stromal cells in TME on metastasis initiation, including angiogenesis, epithelial-mesenchymal transition (EMT) and invasion. We also highlight functions of proteins, RNAs and small organelles secreted by stromal cells in their influences on multiple stages of tumor metastasis.
Collapse
Affiliation(s)
| | - Chu-Xia Deng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
23
|
Chen G, Hu M, Qu X, Wang K, Qu Y. MicroRNA‑584 directly targets CCND1 and inhibits cell proliferation and invasion in pancreatic cancer. Mol Med Rep 2018; 19:719-726. [PMID: 30431107 DOI: 10.3892/mmr.2018.9651] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 10/16/2018] [Indexed: 11/06/2022] Open
Abstract
Multiple previous studies have demonstrated that the dysregulation of microRNAs (miRNAs) is implicated in the occurrence and development of pancreatic cancer. Therefore, a further characterisation of deregulated miRNAs in pancreatic cancer may provide novel insight into the oncogenesis and progression of pancreatic cancer, which may facilitate the identification of effective therapeutic targets for treating patients with this disease. In the present study, reverse transcription‑quantitative polymerase chain reaction analysis demonstrated that the expression level of miRNA‑584‑5p (miR‑584) was significantly decreased in pancreatic cancer tissues and cell lines. It was demonstrated that restoration of miR‑584 expression significantly suppressed the proliferative and invasive ability of pancreatic cancer cells. Bioinformatics analysis predicted that cyclin D1 (CCND1) was a putative target of miR‑584. Subsequent experiments demonstrated that CCND1 was a direct target gene of miR‑584 in pancreatic cancer cells. Furthermore, the inhibition of CCND1 mimicked the suppressive effect of miR‑584 overexpression in pancreatic cancer cells. The restoration of CCND1 expression significantly abolished the inhibitory effects of miR‑584 overexpression on pancreatic cancer cells. Collectively, the present results demonstrated that miR‑584 inhibited the development of pancreatic cancer by directly targeting CCND1, suggesting that this miRNA may represent a potential therapeutic target for this fatal disease.
Collapse
Affiliation(s)
- Gang Chen
- Department of Gastroenterology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Ming Hu
- Department of General Surgery, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Xiusheng Qu
- Department of Radiochemotherapy, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Kaifeng Wang
- Department of Vascular Surgery, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Yikun Qu
- Department of General Surgery, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| |
Collapse
|
24
|
Abstract
PURPOSE This study investigated miRNA-181c expression in control patients (healthy gastric mucosa), patients with gastritis, and patients with gastric cancer. The presence of Helicobacter pylori was determined, and the associations between H. pylori infection, levels of miRNA-181c expression, and gastric disease were also analyzed. METHODS A total of 158 subjects were included in the study, and the three groups were respectively composed of 53 controls, 86 patients with gastritis, and 19 patients with gastric cancer. miRNA-181c expression and H. pylori infection were determined by quantitative real-time PCR and PCR, respectively. The subsequent target gene analysis was performed using the bioinformatics approach to understand the possible mechanisms of gastric cancer. RESULTS We determined significantly lower miRNA-181c expression in the gastric cancer group when compared to the control and gastritis groups, regardless of the presence of H. pylori. There was no difference in miRNA-181c expression between the control group and gastritis group, whether the presence of H. pylori was considered or not. The bioinformatics approach identified several genes as possible targets for miRNA-181c, including the X-linked inhibitor of apoptosis (XIAP) gene (which encodes a protein that belongs to a family of apoptotic suppressor proteins), the caspase 9 gene, and the caspase 3 gene. All target genes identified may be involved in gastric cancer and apoptosis pathways. CONCLUSION The results suggest that the presence of H. pylori has no influence on microRNA expression and that the downregulation of miR-181c may play an important role in gastric cancer progression by controlling important genes associated with apoptosis. Therefore, miRNA-181c may be a potential marker of gastric cancer.
Collapse
|
25
|
Sun Z, Wang L, Dong L, Wang X. Emerging role of exosome signalling in maintaining cancer stem cell dynamic equilibrium. J Cell Mol Med 2018; 22:3719-3728. [PMID: 29799161 PMCID: PMC6050499 DOI: 10.1111/jcmm.13676] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 04/06/2018] [Indexed: 02/05/2023] Open
Abstract
Cancer stem cells (CSCs) are a small subset of heterogeneous cells existed in tumour tissues or cancer cell lines with self-renewal and differentiation potentials. CSCs were considered to be responsible for the failure of conventional therapy and tumour recurrence. However, CSCs are not a static cell population, CSCs and non-CSCs are maintained in dynamic interconversion state by their self-differentiation and dedifferentiation. Therefore, targeting CSCs for cancer therapy is still not enough,exploring the mechanism of dynamic interconversion between CSCs and non-CSCs and blocking the interconversion seems to be imperative. Exosomes are 30-100 nm size in diameter extracellular vesicles (EVs) secreted by multiple living cells into the extracellular space. They contain cell-state-specific bioactive materials, including DNA, mRNA, ncRNA, proteins, lipids, etc. with their specific surface markers, such as, CD63, CD81, Alix, Tsg101, etc. Exosomes have been considered as information carriers in cell communication between cancer cells and non-cancer cells, which affect gene expressions and cellular signalling pathways of recipient cells by delivering their contents. Now that exosomes acted as information carriers, whether they played role in maintaining dynamic equilibrium state between CSCs and non-CSCs and their mechanism of activity are unknown. This review summarized the current research advance of exosomes' role in maintaining CSC dynamic interconversion state and their possible mechanism of action, which will provide a better understanding the contribution of exosomes to dedifferentiation and stemness acquisition of non-CSCs, and highlight that exosomes might be taken as the attractive target approaches for cancer therapeutics.
Collapse
Affiliation(s)
- Zhen Sun
- Laboratory of Experimental OncologyState Key Laboratory of Biotherapy/Collaborative Innovation Center for BiotherapyWest China HospitalWest China Clinical Medical SchoolSichuan UniversityChengduChina
| | - Li Wang
- Laboratory of Lung Cancer, Lung Cancer Center West China HospitalWest China Clinical Medical SchoolSichuan UniversityChengduChina
| | - Lihua Dong
- Human Anatomy DepartmentSchool of Preclinical and Forensic MedcineSichuan UniversityChengduChina
| | - Xiujie Wang
- Laboratory of Experimental OncologyState Key Laboratory of Biotherapy/Collaborative Innovation Center for BiotherapyWest China HospitalWest China Clinical Medical SchoolSichuan UniversityChengduChina
| |
Collapse
|
26
|
Cancer-associated fibroblasts in tumor microenvironment - Accomplices in tumor malignancy. Cell Immunol 2018; 343:103729. [PMID: 29397066 DOI: 10.1016/j.cellimm.2017.12.003] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/15/2017] [Accepted: 12/04/2017] [Indexed: 12/12/2022]
Abstract
There is much cellular heterogeneity in the tumor microenvironment. The tumor epithelia and stromal cells co-evolve, and this reciprocal relationship dictates almost every step of cancer development and progression. Despite this, many anticancer therapies are designed around druggable features of tumor epithelia, ignoring the supportive role of stromal cells. Cancer-associated fibroblasts (CAFs) are the dominant cell type within the reactive stroma of many tumor types. Numerous previous studies have highlighted a pro-tumorigenic role for CAFs via secretion of various growth factors, cytokines, chemokines, and the degradation of extracellular matrix. Recent works showed that CAFs secrete H2O2 to effect stromal-mediated field cancerization, transform primary epithelial cells, and aggravate cancer cell aggressiveness, in addition to inflammatory and mitogenic factors. Molecular characterization of CAFs also underscores the importance of Notch and specific nuclear receptor signaling in the activation of CAFs. This review consolidates recent findings of CAFs and highlights areas for future investigations.
Collapse
|
27
|
Chu C, Liu X, Bai X, Zhao T, Wang M, Xu R, Li M, Hu Y, Li W, Yang L, Qin Y, Yang M, Yan C, Zhang Y. MiR-519d suppresses breast cancer tumorigenesis and metastasis via targeting MMP3. Int J Biol Sci 2018; 14:228-236. [PMID: 29483840 PMCID: PMC5821043 DOI: 10.7150/ijbs.22849] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 12/28/2017] [Indexed: 01/10/2023] Open
Abstract
Breast cancer (BC) is the most common cause of death in women throughout the world. Although microRNAs (miRNAs) have been identified as novel regulators in carcinogenesis, there are still abundant hidden treasure needed to be excavated. In the present study, we found that miR-519d expression was remarkably decreased in both human BC tissues and MCF-7 cells. CCK8 and 5-Ethynyl-2'-deoxyuridine (EdU) assays were used to evaluate cell proliferation. Wound-healing and transwell assays were performed for detection of cell migration and invasion. The results demonstrated miR-519d overexpression dramatically suppressed MCF-7 cells proliferation, migration and invasion. While downregulation of miR-519d by miR-519d inhibitor substantially increased MCF-7 cell carcinogenesis. Further analysis identified Matrix Metalloproteinase-3 (MMP3) as a direct target of miR-519d. QRT-PCR and western blot results indicated the correlative expression of miR-519d and MMP3 in BC tissues and MCF-7 cells. In summary, our data uncovered the novel molecular interaction between miR-519d and MMP3, indicating a therapeutic strategy of miR-519d for BC.
Collapse
Affiliation(s)
- Chengling Chu
- Department of Oncology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xin Liu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Xue Bai
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Tong Zhao
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Mengxue Wang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Ranchen Xu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Mingqi Li
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yingying Hu
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Weihua Li
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Lida Yang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Youyou Qin
- Department of Breast Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Meng Yang
- Department of Oncology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Chaoqi Yan
- Department of Breast Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Yong Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China.,Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin 150086, China
| |
Collapse
|
28
|
Utaijaratrasmi P, Vaeteewoottacharn K, Tsunematsu T, Jamjantra P, Wongkham S, Pairojkul C, Khuntikeo N, Ishimaru N, Sirivatanauksorn Y, Pongpaibul A, Thuwajit P, Thuwajit C, Kudo Y. The microRNA-15a-PAI-2 axis in cholangiocarcinoma-associated fibroblasts promotes migration of cancer cells. Mol Cancer 2018; 17:10. [PMID: 29347950 PMCID: PMC5773154 DOI: 10.1186/s12943-018-0760-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 01/04/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) has an abundance of tumor stroma which plays an important role in cancer progression via tumor-promoting signals. This study aims to explore the microRNA (miRNA) profile of CCA-associated fibroblasts (CCFs) and the roles of any identified miRNAs in CCA progression. METHODS miRNA expression profiles of CCFs and normal skin fibroblasts were compared by microarray. Identified downregulated miRNAs and their target genes were confirmed by real-time PCR. Their binding was confirmed by a luciferase reporter assay. The effects of conditioned-media (CM) of miRNA mimic- and antagonist-transfected CCFs were tested in CCA migration in wound healing assays. Finally, the levels of miRNA and their target genes were examined by real-time PCR and immunohistochemistry in clinical CCA samples. RESULTS miR-15a was identified as a downregulated miRNA in CCFs. Moreover, PAI-2 was identified as a novel target gene of miR-15a. Recombinant PAI-2 promoted migration of CCA cells. Moreover, CM from miR-15a mimic-transfected CCFs suppressed migration of CCA cells. Lower expression of miR-15a and higher expression of PAI-2 were observed in human CCA samples compared with normal liver tissues. Importantly, PAI-2 expression correlated with poor prognosis in CCA patients. CONCLUSIONS These findings highlight the miR-15a/PAI-2 axis as a potential therapeutic target in CCA patients.
Collapse
Affiliation(s)
- Penkhae Utaijaratrasmi
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kulthida Vaeteewoottacharn
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Takaaki Tsunematsu
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Pranisa Jamjantra
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Chawalit Pairojkul
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Narong Khuntikeo
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yongyut Sirivatanauksorn
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ananya Pongpaibul
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Yasusei Kudo
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan.
| |
Collapse
|
29
|
Chen S, Chen X, Shan T, Ma J, Lin W, Li W, Kang Y. MiR-21-mediated Metabolic Alteration of Cancer-associated Fibroblasts and Its Effect on Pancreatic Cancer Cell Behavior. Int J Biol Sci 2018; 14:100-110. [PMID: 29483829 PMCID: PMC5821053 DOI: 10.7150/ijbs.22555] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 12/23/2017] [Indexed: 12/12/2022] Open
Abstract
In this study, we investigated whether the metabolic alteration of cancer-associated fibroblasts (CAFs) occurs via miR-21 remodeling and the effect of this alteration on pancreatic cancer cells. CAFs and normal fibroblasts (NFs) were isolated and cultured. Glucose consumption and lactic acid production were tested, and lactate dehydrogenase (LDHA), pyruvate kinase m2 (PKM2), and miR-21 expression were examined. The level of glycolysis in CAFs was determined after treatment with a miR-21 inhibitor. Primary miR-21-NC CAFs and miR-21-inhibitor CAFs were indirectly co-cultured with BxPc-3 in vitro, and the invasion capacity of these cells was determined. The aerobic oxidation index of cancer cells and the expression of succinodehydrogenase (SDH) and fumarate hydratase (FH) were assessed. Compared with NFs, CAFs showed enhanced glucose uptake capacity, lactic acid production, and elevated LDHA, PKM2, and miR-21 expression. After miR-21 inhibitor treatment, the extent of glycolysis in CAFs was reduced. After indirect co-culture with CAFs, oxidative phosphorylation and SDH, FH, and MCT expression increased in BxPc-3 cells. After co-culture with miR-21-inhibitor-CAFs, oxidative phosphorylation and invasion ability of the pancreatic cancer cells decreased. MiR-21 was involved in metabolic alteration of CAFs and affected the development of cancer cells. This metabolic alteration may be an important mechanism by which the microenvironment promotes tumor progression in a nonvascular manner.
Collapse
Affiliation(s)
- Shuo Chen
- Department of General Surgery, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004 China
| | - Xi Chen
- Department of General Surgery, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004 China
| | - Tao Shan
- Department of General Surgery, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004 China
| | - Jiancang Ma
- Department of General Surgery, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004 China
| | - Wanrun Lin
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032 China
| | - Wei Li
- Graduate School, Fourth Military Medical University, Xi'an 710033, China
| | - Ya'an Kang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| |
Collapse
|
30
|
Patel H, Nilendu P, Jahagirdar D, Pal JK, Sharma NK. Modulating secreted components of tumor microenvironment: A masterstroke in tumor therapeutics. Cancer Biol Ther 2018; 19:3-12. [PMID: 29219656 PMCID: PMC5790373 DOI: 10.1080/15384047.2017.1394538] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/07/2017] [Accepted: 10/15/2017] [Indexed: 12/13/2022] Open
Abstract
The microenvironment in which cancer resides plays an important role in regulating cancer survival, progression, malignancy and drug resistance. Tumor microenvironment (TME) consists of heterogeneous number and types of cellular and non-cellular components that vary in relation to tumor phenotype and genotype. In recent, non-cellular secreted components of microenvironmental heterogeneity have been suggested to contain various growth factors, cytokines, RNA, DNA, metabolites, structural matrix and matricellular proteins. These non-cellular components have been indicated to orchestrate numerous ways to support cancer survival and progression by providing metabolites, energy, growth signals, evading immune surveillance, drug resistance environment, metastatic and angiogenesis cues. Thus, switching action from pro-cancer to anti-cancer activities of these secreted components of TME has been considered as a new avenue in cancer therapeutics and drug resistance. In this report, we summarize the recent pre-clinical and clinical evidences to emphasize the importance of non-cellular components of TME in achieving precision therapeutics and biomarker study.
Collapse
Affiliation(s)
- Himadri Patel
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Pritish Nilendu
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Devashree Jahagirdar
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Jayanta K. Pal
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| |
Collapse
|
31
|
Hussein HAM, Akula SM. miRNA-36 inhibits KSHV, EBV, HSV-2 infection of cells via stifling expression of interferon induced transmembrane protein 1 (IFITM1). Sci Rep 2017; 7:17972. [PMID: 29269892 PMCID: PMC5740118 DOI: 10.1038/s41598-017-18225-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/07/2017] [Indexed: 02/08/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is etiologically associated with all forms of Kaposi's sarcoma worldwide. Little is currently known about the role of microRNAs (miRNAs) in KSHV entry. We recently demonstrated that KSHV induces a plethora of host cell miRNAs during the early stages of infection. In this study, we show the ability of host cell novel miR-36 to specifically inhibit KSHV-induced expression of interferon induced transmembrane protein 1 (IFITM1) to limit virus infection of cells. Transfecting cells with miR-36 mimic specifically lowered IFITM1 expression and thereby significantly dampening KSHV infection. In contrast, inhibition of miR-36 using miR-36 inhibitor had the direct opposite effect on KSHV infection of cells, allowing enhanced viral infection of cells. The effect of miR-36 on KSHV infection of cells was at a post-binding stage of virus entry. The highlight of this work was in deciphering a common theme in the ability of miR-36 to regulate infection of closely related DNA viruses: KSHV, Epstein-Barr virus (EBV), and herpes simplexvirus-2 (HSV-2). Taken together, we report for the first time the ability of host cell miRNA to regulate internalization of KSHV, EBV, and HSV-2 in hematopoietic and endothelial cells.
Collapse
Affiliation(s)
- Hosni A M Hussein
- Department of Microbiology & Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| | - Shaw M Akula
- Department of Microbiology & Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|