1
|
Kounatidis D, Vallianou NG, Karampela I, Grivakou E, Dalamaga M. The intricate role of adipokines in cancer-related signaling and the tumor microenvironment: Insights for future research. Semin Cancer Biol 2025; 113:130-150. [PMID: 40412490 DOI: 10.1016/j.semcancer.2025.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 05/05/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025]
Abstract
Obesity represents a global health challenge, with adipose tissue acting as a highly active endocrine organ that synthesizes and secretes a diverse array of bioactive proteins, known as adipokines. These cell signaling molecules regulate metabolic equilibrium, inflammatory cascades, and immune surveillance, exerting substantial systemic effects. A growing body of evidence has also highlighted their key role in cancer biology, through their intricate impact on oncogenic signaling networks and the tumor microenvironment (TME). The TME, a highly dynamic and heterotypic network composed of malignant cells, infiltrating immune cells, stromal constituents, and extracellular matrix elements, facilitates tumor evolution and immune evasion. Among adipokines, adiponectin and leptin have been extensively studied. Research has shown that adiponectin exhibits tumor-suppressive properties, whereas leptin enhances proliferative, angiogenic, and inflammatory pathways that promote malignancy. However, these effects are context-dependent and, at times, contradictory across different studies. Furthermore, the functional landscape of adipokines in cancer extends beyond these paradigms, with emerging research identifying a broader spectrum of novel adipokines involved in cancer reprogramming. This review delineates the molecular interplay between adipokines and oncogenic pathways, elucidating their mechanistic contributions to TME crosstalk and immune modulation. Additionally, we examine their potential as diagnostic and prognostic biomarkers and assess their viability as therapeutic targets for precision oncology. By integrating current evidence and identifying unresolved questions, this review aims to refine our understanding of adipokine-driven tumor biology and establish a platform for future research.
Collapse
Affiliation(s)
- Dimitris Kounatidis
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens 11527, Greece.
| | - Natalia G Vallianou
- First Department of Internal Medicine, Sismanogleio General Hospital, Athens 15126, Greece.
| | - Irene Karampela
- Second Department of Critical Care, Medical School, Attikon General University Hospital, University of Athens, Athens 12461, Greece.
| | - Evgenia Grivakou
- Emergency Department, Limassol General Hospital, Limassol 4131, Cyprus.
| | - Maria Dalamaga
- Department of Biological Chemistry, National and Kapodistrian University of Athens, Athens 11527, Greece.
| |
Collapse
|
2
|
Sun P, Liu F, Huo K, Wang J, Cheng Y, Shang S, Ma W, Yu J, Han J. Adiponectin facilitates the cell cycle, inhibits cell apoptosis and induces temozolomide resistance in glioblastoma via the Akt/mTOR pathway. Oncol Lett 2025; 29:127. [PMID: 39807099 PMCID: PMC11726000 DOI: 10.3892/ol.2025.14875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/22/2024] [Indexed: 01/16/2025] Open
Abstract
Adiponectin (ADN) regulates DNA synthesis, cell apoptosis and cell cycle to participate in the pathology and progression of glioblastoma. The present study aimed to further explore the effect of ADN on temozolomide (TMZ) resistance in glioblastoma and the underlying mechanism of action. Glioblastoma cell lines (U251 and U87-MG cells) were treated with ADN and TMZ at different concentrations; subsequently, 3.0 µg/ml ADN and 1.0 mM TMZ were selected as the optimal concentrations for the experimental conditions. LY294002 (a PI3K inhibitor) was added to ADN or ADN + TMZ-treated glioblastoma cell lines. Cell growth rate was determined using the Cell Counting Kit-8 assay, the apoptotic rate and cell cycle were evaluated using Annexin V/propidium iodide and cell cycle assays, and p-Akt (Thr308), p-Akt (Ser473), Akt, p-mTOR, c-caspase 3, caspase 3, Bax, cyclin B1 and cyclin D1 expression was determined by western blotting. Adiponectin receptor (ADIPOR) 1 and ADIPOR2 were expressed in glioblastoma cell lines. The glioblastoma cell line growth rate was increased by ADN in a concentration- and time-dependent manner. ADN inhibited glioblastoma cell line apoptosis and facilitated cell cycle. Of note, ADN activated the Akt/mTOR pathway and the addition of LY294002 reversed the effect of ADN, indicating that ADN activated the Akt/mTOR pathway to suppress apoptosis and promote cell cycle in glioblastoma cell lines. Notably, TMZ inhibited glioblastoma cell line growth, promoted apoptosis and increased G2 phase cell cycle arrest. However, the addition of ADN reversed the effect of TMZ in glioblastoma cell lines, disclosing that ADN induced TMZ resistance. Markedly, ADN-mediated TMZ resistance was further attenuated by LY294002, suggesting that ADN activated the Akt/mTOR pathway to induce TMZ resistance in glioblastoma cell lines. In conclusion, ADN activated the Akt/mTOR pathway to facilitate cell cycle, inhibit cell apoptosis and induce TMZ resistance in glioblastoma.
Collapse
Affiliation(s)
- Peng Sun
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Fude Liu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Kang Huo
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jianyi Wang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yawen Cheng
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Suhang Shang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wenlong Ma
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jia Yu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jianfeng Han
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
3
|
Abdulla A, Sadida HQ, Jerobin J, Elfaki I, Mir R, Mirza S, Singh M, Macha MA, Uddin S, Fakhro K, Bhat AA, Akil ASAS. Unraveling molecular interconnections and identifying potential therapeutic targets of significance in obesity-cancer link. JOURNAL OF THE NATIONAL CANCER CENTER 2025; 5:8-27. [PMID: 40040878 PMCID: PMC11873641 DOI: 10.1016/j.jncc.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/16/2024] [Accepted: 11/11/2024] [Indexed: 03/06/2025] Open
Abstract
Obesity, a global health concern, is associated with severe health issues like type 2 diabetes, heart disease, and respiratory complications. It also increases the risk of various cancers, including melanoma, endometrial, prostate, pancreatic, esophageal adenocarcinoma, colorectal carcinoma, renal adenocarcinoma, and pre-and post-menopausal breast cancer. Obesity-induced cellular changes, such as impaired CD8+ T cell function, dyslipidemia, hypercholesterolemia, insulin resistance, mild hyperglycemia, and fluctuating levels of leptin, resistin, adiponectin, and IL-6, contribute to cancer development by promoting inflammation and creating a tumor-promoting microenvironment rich in adipocytes. Adipocytes release leptin, a pro-inflammatory substance that stimulates cancer cell proliferation, inflammation, and invasion, altering the tumor cell metabolic pathway. Adiponectin, an insulin-sensitizing adipokine, is typically downregulated in obese individuals. It has antiproliferative, proapoptotic, and antiangiogenic properties, making it a potential cancer treatment. This narrative review offers a comprehensive examination of the molecular interconnections between obesity and cancer, drawing on an extensive, though non-systematic, survey of the recent literature. This approach allows us to integrate and synthesize findings from various studies, offering a cohesive perspective on emerging themes and potential therapeutic targets. The review explores the metabolic disturbances, cellular alterations, inflammatory responses, and shifts in the tumor microenvironment that contribute to the obesity-cancer link. Finally, it discusses potential therapeutic strategies aimed at disrupting these connections, offering valuable insights into future research directions and the development of targeted interventions.
Collapse
Affiliation(s)
- Alanoud Abdulla
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Hana Q. Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Jayakumar Jerobin
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Rashid Mir
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Sameer Mirza
- Department of Chemistry, College of Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Mayank Singh
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Muzafar A. Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Pulwama, Jammu and Kashmir, India
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Laboratory of Animal Research Center, Qatar University, Doha, Qatar
| | - Khalid Fakhro
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine, Doha, Qatar
| | - Ajaz A. Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Ammira S. Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| |
Collapse
|
4
|
Mi X, Yao H, Lu Y, Yang M, Yang Y, Fang D, He S. Leptin increases chemosensitivity by inhibiting CPT1B in colorectal cancer cells. J Gastrointest Oncol 2024; 15:2507-2520. [PMID: 39816028 PMCID: PMC11732356 DOI: 10.21037/jgo-2024-950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/03/2024] [Indexed: 01/18/2025] Open
Abstract
Background Chemoresistance is a major cause of treatment failure in advanced colorectal cancer (CRC), severely impacting patient survival and quality of life. While conventional chemotherapy regimens can somewhat control tumor progression, their effectiveness is frequently compromised by the development of drug resistance in cancer cells. The aim of this study is to verify and elucidate the specific mechanisms by which leptin enhances chemosensitivity in CRC, providing valuable insights for the development of new combination chemotherapy options. Methods We examined the link between CRC chemoresistance and fatty-acid metabolism driven by the high expression of carnitine palmitoyltransferase-1b (CPT1B) through an integrated approach combining bioinformatics and clinical sample analysis. In vitro and in vivo experiments were conducted to evaluate the effect of leptin, an adipocyte-derived cytokine, on CRC cells' response to cisplatin. Results Leptin significantly enhanced CRC cells' chemosensitivity to cisplatin by downregulating CPT1B expression, thereby disrupting the fatty-acid oxidation pathways that support drug resistance. In mouse models, the coadministration of leptin and cisplatin resulted in notable reductions in tumor size and weight compared to cisplatin alone, underscoring leptin's potential to enhance chemotherapy efficacy. Conclusions These findings indicate that leptin, through modulation of CPT1B, may serve as a promising adjunct to chemotherapy for CRC, addressing the challenge of chemoresistance and improving therapeutic outcomes. The leptin-CPT1B axis may be potential therapeutic target, providing new avenues for CRC treatment strategies aimed at overcoming drug resistance.
Collapse
Affiliation(s)
- Xiuwei Mi
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Huihui Yao
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yang Lu
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Mei Yang
- The Joint Cancer Research Institute of Soochow University and SANO Medical Laboratories, Suzhou, China
| | - Yi Yang
- Department of Oncological Surgery, Kunshan Traditional Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan, China
| | - Dong Fang
- Department of Anorectal Surgery, Kunshan Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Songbing He
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China
- Cancer Institute, Suzhou Medical College, Soochow University, Suzhou, China
- China Suzhou Biomedical Industry Innovation Center & National Center of Technology Innovation for Biopharmaceuticals, Suzhou, China
| |
Collapse
|
5
|
Diao B, Fan Z, Zhou B, Zhan H. Crosstalk between pancreatic cancer and adipose tissue: Molecular mechanisms and therapeutic implications. Biochem Biophys Res Commun 2024; 740:151012. [PMID: 39561650 DOI: 10.1016/j.bbrc.2024.151012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/02/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
The incidence rate of pancreatic cancer, a fatal illness with a meager 5-year survival rate, has been on the rise in recent times. When individuals accumulate excessive amounts of adipose tissue, the adipose organ becomes dysfunctional due to alterations in the adipose tissue microenvironment associated with inflammation and metabolism. This phenomenon may potentially contribute to the aberrant accumulation of fat that initiates pancreatic carcinogenesis, thereby influencing the disease's progression, resistance to treatment, and metastasis. This review presents a summary of the impact of pancreatic steatosis, visceral fat, cancer-associated adipocytes and lipid diets on the advancement of pancreatic cancer, as well as the reciprocal effects of pancreatic cancer on adipose tissue. Understanding the molecular mechanisms underlying the relationship between dysfunctional adipose tissue and pancreatic cancer better may lead to the discovery of new therapeutic targets for the disease's prevention and individualized treatment. This is especially important given the rising global incidence of obesity, which will improve the pancreatic cancer treatment options that are currently insufficient.
Collapse
Affiliation(s)
- Boyu Diao
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Zhiyao Fan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Bin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Department of Retroperitoneal Tumor Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Hanxiang Zhan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
6
|
Shi X, Jiang A, Qiu Z, Lin A, Liu Z, Zhu L, Mou W, Cheng Q, Zhang J, Miao K, Luo P. Novel perspectives on the link between obesity and cancer risk: from mechanisms to clinical implications. Front Med 2024; 18:945-968. [PMID: 39542988 DOI: 10.1007/s11684-024-1094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 06/07/2024] [Indexed: 11/17/2024]
Abstract
Existing epidemiologic and clinical studies have demonstrated that obesity is associated with the risk of a variety of cancers. In recent years, an increasing number of experimental and clinical studies have unraveled the complex relationship between obesity and cancer risk and the underlying mechanisms. Obesity-induced abnormalities in immunity and biochemical metabolism, including chronic inflammation, hormonal disorders, dysregulation of adipokines, and microbial dysbiosis, may be important contributors to cancer development and progression. These contributors play different roles in cancer development and progression at different sites. Lifestyle changes, weight loss medications, and bariatric surgery are key approaches for weight-centered, obesity-related cancer prevention. Treatment of obesity-related inflammation and hormonal or metabolic dysregulation with medications has also shown promise in preventing obesity-related cancers. In this review, we summarize the mechanisms through which obesity affects the risk of cancer at different sites and explore intervention strategies for the prevention of obesity-associated cancers, concluding with unresolved questions and future directions regarding the link between obesity and cancer. The aim is to provide valuable theoretical foundations and insights for the in-depth exploration of the complex relationship between obesity and cancer risk and its clinical applications.
Collapse
Affiliation(s)
- Xiaoye Shi
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Zhengang Qiu
- Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Zaoqu Liu
- Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China
| | - Lingxuan Zhu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Weiming Mou
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Kai Miao
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macao SAR, 999078, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macao SAR, 999078, China.
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
7
|
Wu X, Tian Y, Zhang N, Ren Y, Zhang Z, Zhao Y, Guo Y, Gong Y, Zhang Y, Li D, Li H, Jiang R, Li G, Liu X, Kang X, Tian Y. The role of AdipoQ on proliferation, apoptosis, and hormone Secretion in chicken primary adenohypophysis cells. Poult Sci 2024; 103:104137. [PMID: 39142032 PMCID: PMC11379664 DOI: 10.1016/j.psj.2024.104137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024] Open
Abstract
Adiponectin (AdipoQ), an adipokine secreted by adipocytes, has been reported to exist widely in various cell types and tissues, including the adenohypophysis of chickens. However, the molecular mechanism by which AdipoQ regulates the function of chicken adenohypophysis remains elusive. In this study, we investigated the effects of AdipoQ on proliferation, apoptosis, secretion of related hormones (FSH, LH, TSH, GH, PRL and ACTH) and expression of related genes (FSHβ, LHβ, GnRHR, TSHβ, GH, PRL and ACTH) in primary adenohypophysis cells of chickens by using real-time fluorescent quantitative PCR (RT-qPCR), cell counting kit-8 (CCK-8), flow cytometry, enzyme-linked immunosorbent assay (ELISA) and Western blot (WB) assays. Our results showed that AdipoQ promoted the proliferation of chicken primary adenohypophysis cells, up-regulated the mRNA expression of proliferation-related genes CDK1, PCNA, CCND1 and P21 (P < 0.05), as well as the increased protein expression of CDK1 and PCNA (P < 0.05). Furthermore, AdipoQ inhibited apoptosis of chicken primary adenohypophysis cells, resulting in down-regulation of pro-apoptotic genes Caspase3, Fas, and FasL mRNA expression, and decreased Caspase3 protein expression (P < 0.05). Moreover, there was an up-regulation of anti-apoptotic gene Bcl2 mRNA and protein expression (P < 0.05). Additionally, AdipoQ suppressed the secretion of FSH, LH, TSH, GH, PRL, and ACTH (P < 0.05), as well as the mRNA expression levels of related genes (P < 0.05). Treatment with AdipoRon (a synthetic substitute for AdipoQ) and co-treatment with RNA interference targeting AdipoQ receptors 1/2 (AdipoR1/2) had no effect on the secretion of FSH, LH, TSH, GH, PRL, and ACTH, as well as the mRNA expression levels of the related genes. This suggests that AdipoQ's regulation of hormone secretion and related gene expression is mediated by the AdipoR1/2 signaling axis. Importantly, we further demonstrated that the mechanism of AdipoQ on FSH, LH, TSH and GH secretion is realized through AMPK signaling pathway. In conclusion, we have revealed, for the first time the molecular mechanism by which AdipoQ regulates hormone secretion in chicken primary adenohypophysis cells.
Collapse
Affiliation(s)
- Xing Wu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yixiang Tian
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Na Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yangguang Ren
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Zihao Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yudian Zhao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yulong Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yujie Gong
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yanhua Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China.
| |
Collapse
|
8
|
Sapoor S, Nageh M, Shalma NM, Sharaf R, Haroun N, Salama E, Pratama Umar T, Sharma S, Sayad R. Bidirectional relationship between pancreatic cancer and diabetes mellitus: a comprehensive literature review. Ann Med Surg (Lond) 2024; 86:3522-3529. [PMID: 38846873 PMCID: PMC11152885 DOI: 10.1097/ms9.0000000000002036] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/30/2024] [Indexed: 06/09/2024] Open
Abstract
Pancreatic cancer (PC) is a fatal malignant disease. It is well known that the relationship between PC and type 2 diabetes mellitus (T2DM) is a complicated bidirectional relationship. The most important factors causing increased risks of pancreatic cancer are hyperglycaemia, hyperinsulinemia, pancreatitis, and dyslipidemia. Genetics and the immune system also play an important role in the relationship between diabetes mellitus and pancreatic cancer. The primary contributors to this association involve insulin resistance and inflammatory processes within the tumour microenvironment. The combination of diabetes and obesity can contribute to PC by inducing hyperinsulinemia and influencing leptin and adiponectin levels. Given the heightened incidence of pancreatic cancer in diabetes patients compared to the general population, early screening for pancreatic cancer is recommended. Diabetes negatively impacts the survival of pancreatic cancer patients. Among patients receiving chemotherapy, it reduced their survival. The implementation of a healthy lifestyle, including weight management, serves as an initial preventive measure to mitigate the risk of disease development. The role of anti-diabetic drugs on survival is controversial; however, metformin may have a positive impact, especially in the early stages of cancer, while insulin therapy increases the risk of PC.
Collapse
Affiliation(s)
| | | | | | - Rana Sharaf
- Faculty of Medicine, Alexandria University, Alexandria
| | - Nooran Haroun
- Faculty of Medicine, Alexandria University, Alexandria
| | - Esraa Salama
- Faculty of Medicine, Alexandria University, Alexandria
| | | | | | - Reem Sayad
- Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
9
|
Laurindo LF, Sosin AF, Lamas CB, de Alvares Goulart R, Dos Santos Haber JF, Detregiachi CRP, Barbalho SM. Exploring the logic and conducting a comprehensive evaluation of AdipoRon-based adiponectin replacement therapy against hormone-related cancers-a systematic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2067-2082. [PMID: 37864589 DOI: 10.1007/s00210-023-02792-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023]
Abstract
The potential benefits of adiponectin replacement therapy extend to numerous human diseases, with current research showing particular interest in its effectiveness against specific cancer forms, especially hormone-related. However, limitations in the pharmacological use of the intact protein have led to a focus on alternative options. AdipoRon is an extensively studied non-peptidic drug candidate for adiponectin replacement therapy. While researchers have explored the efficacy and therapeutic applications of AdipoRon in various disease conditions, their effects against cancer models advanced more, with no review regarding AdipoRon's efficacy against hormone-related cancers being published. The present systematic review aims to fill this gap. Preclinical evidence was compiled from PubMed, EMBASE, COCHRANE, and Google Scholar following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and the manuscript's quality assessment was conducted using the Joanna Briggs Institute (JBI) Checklist Critical Appraisal Tool for Systematic Reviews' Quality. The included nine studies incorporated various cell and animal models of the pancreas, gynaecological system, and osteosarcoma cancers. AdipoRon demonstrated effectiveness against pancreatic cancer by activating p44/42 MAPK, mitochondrial dysfunction, and AMPK-mediated inhibition of ACC1. In gynaecological cancers, it exhibited promising anticancer effects through the activation of AMPK, potential inhibition of mTOR, and modulation of the SET1B/BOD1/AdipoR1 signaling cascade. Against osteosarcoma, AdipoRon worked by perturbing ERK1/2 signaling and reducing p70S6K phosphorylation. AdipoRon shows promise in preclinical studies, but human trials are crucial for clinical safety and effectiveness. Caution is needed due to potential off-target effects, especially in cancer therapy with multi-target approaches. Structural biology and computational methods can help predict these effects.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, 17519-030, Brazil.
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil.
| | - Andreline Franchi Sosin
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, 17519-030, Brazil
| | - Caroline Barbalho Lamas
- Department of Gerontology, School of Gerontology, Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, 13565-905, Brazil
| | - Ricardo de Alvares Goulart
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | | | - Claudia Rucco Penteado Detregiachi
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, São Paulo, 17500-000, Brazil
| |
Collapse
|
10
|
Sato S. Adipo-oncology: adipocyte-derived factors govern engraftment, survival, and progression of metastatic cancers. Cell Commun Signal 2024; 22:52. [PMID: 38238841 PMCID: PMC10797898 DOI: 10.1186/s12964-024-01474-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024] Open
Abstract
Conventional therapies for metastatic cancers have limited efficacy. Recently, cancer therapies targeting noncancerous cells in tumor microenvironments have shown improved clinical outcomes in patients. However, further advances in our understanding of the metastatic tumor microenvironment are required to improve treatment outcomes. Adipocytes are distributed throughout the body, and as a part of the metastatic tumor microenvironment, they interact with cancer cells in almost all organs. Adipocytes secrete various factors that are reported to exert clinical effects on cancer progression, including engraftment, survival, and expansion at the metastatic sites. However, only a few studies have comprehensively examined their impact on cancer cells. In this review, we examined the impact of adipocytes on cancer by describing the adipocyte-secreted factors that are involved in controlling metastatic cancer, focusing on adipokines, such as adiponectin, leptin, visfatin, chemerin, resistin, apelin, and omentin. Adipocyte-secreted factors promote cancer metastasis and contribute to various biological functions of cancer cells, including migration, invasion, proliferation, immune evasion, and drug resistance at the metastatic sites. We propose the establishment and expansion of "adipo-oncology" as a research field to enhance the comprehensive understanding of the role of adipocytes in metastatic cancers and the development of more robust metastatic cancer treatments.
Collapse
Affiliation(s)
- Shinya Sato
- Morphological Analysis Laboratory, Kanagawa Cancer Center Research Institute, 2-3-2, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan.
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan.
- Department of Pathology, Kanagawa Cancer Center Hospital, 2-3-2, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan.
| |
Collapse
|
11
|
Srilatha M, Malla R, Adem MP, Foote JB, Nagaraju GP. Obesity associated pancreatic ductal adenocarcinoma: Therapeutic challenges. Semin Cancer Biol 2023; 97:12-20. [PMID: 37926347 DOI: 10.1016/j.semcancer.2023.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
Obesity is a prominent health issue worldwide and directly impacts pancreatic health, with obese individuals exhibiting a significant risk for increasing pancreatic ductal adenocarcinoma (PDAC). Several factors potentially explain the increased risk for the development of PDAC, including obesity-induced chronic inflammation within and outside of the pancreas, development of insulin resistance and metabolic dysfunction, promotion of immune suppression within the pancreas during inflammation, pre- and malignant stages, variations in hormones levels (adiponectin, ghrelin, and leptin) produced from the adipose tissue, and acquisition of somatic mutations in tumor once- and suppressor proteins critical for pancreatic tumorigenesis. In this manuscript, we will explore the broad impact of these obesity-induced risk factors on the development and progression of PDAC, focusing on changes within the tumor microenvironment (TME) as they pertain to prevention, current therapeutic strategies, and future directions for targeting obesity management as they relate to the prevention of pancreatic tumorigenesis.
Collapse
Affiliation(s)
- Mundla Srilatha
- Department of Biotechnology, Sri Venkateswara University, Tirupati, Andhra Pradesh 517502, India
| | - Ramarao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh 530045, India
| | - Megha Priya Adem
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalayam (Women's University), Tirupati, Andhra Pradesh 517502, India
| | - Jeremy B Foote
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | |
Collapse
|
12
|
Xu D, Feng H, Ren Z, Li X, Jiang C, Chen Y, Liu L, Chen W, Cui Z, Cang S. SNHG3/WISP2 Axis Promotes Hela Cell Migration and Invasion via Activating Wnt/β-Catenin Signaling. Cancer Genomics Proteomics 2023; 20:744-753. [PMID: 38035707 PMCID: PMC10687733 DOI: 10.21873/cgp.20421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND/AIM Cervical cancer (CC) poses a significant threat to women's health and has a relatively poor prognosis due to local invasion and metastasis. It is, therefore, crucial to elucidate the molecular mechanisms of CC metastasis. SNHG3 has been implicated in various tumor metastasis processes, but its involvement in CC has not been thoroughly studied. Our study aimed to investigate the role of SNHG3 in metastasis and elucidate its underlying mechanisms in CC. MATERIALS AND METHODS LncRNA SNHG3 expression in CC tissues was analyzed using TCGA and GSE27469 databases. Normal cervical epithelial cells and CC cell lines were used to detect mRNA expression of SNHG3 via quantitative reverse transcription polymerase chain reaction (qRT-PCR). With RNA interference (RNAi) technology, antisense oligonucleotides (ASO) can act on HeLa cells to knockdown target gene expression. The influence of SNHG3 on cell migration and invasion were determined by wound healing and transwell assays. Transcriptome sequencing (RNA-seq) was used to seek abnormally expressed genes between SNHG3 knockdown cells and control cells. The expressions of epithelial-mesenchymal transition (EMT) and Wnt/β-catenin signaling related proteins were detected using western blot. RESULTS SNHG3 was obviously up-regulated in CC tissues and cell lines, and ectopic expression of SNHG3 was associated with lymph node metastasis of CC. Knockdown of SNHG3 significantly inhibited cell migration and invasion in CC. Further molecular mechanism studies showed that SNHG3 knockdown could down-regulate the expression of WNT1 Inducible Signaling Pathway Protein 2 (WISP2) so as to inhibit the activation of the Wnt/β-catenin signaling pathway, and regulated the expression of EMT-related markers, that promoted the protein expression of E-cadherin, as well as decreased the expression of N-cadherin and vimentin. CONCLUSION SNHG3 appears to exert a pro-metastatic effect in CC, as evidenced by inhibition of cell migration and invasion upon SNHG3 knockdown. EMT also appears to be attenuated. Of interest is the down-regulation of WISP2 following SNHG3 knockdown leads to the inactivation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Dengfei Xu
- Department of Oncology, Henan Key Laboratory for Precision Medicine in Cancer, Zheng Zhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, P.R. China
| | - Hao Feng
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, P.R. China
| | - Zirui Ren
- Department of Oncology, Henan Key Laboratory for Precision Medicine in Cancer, Zheng Zhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, P.R. China
| | - Xiang Li
- Department of Oncology, Henan Key Laboratory for Precision Medicine in Cancer, Zheng Zhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, P.R. China
| | - Chenyang Jiang
- Department of Oncology, Henan Key Laboratory for Precision Medicine in Cancer, Zheng Zhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, P.R. China
| | - Yuming Chen
- Department of Oncology, Henan Key Laboratory for Precision Medicine in Cancer, Zheng Zhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, P.R. China
| | - Lina Liu
- Department of Oncology, Henan Key Laboratory for Precision Medicine in Cancer, Zheng Zhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, P.R. China
| | - Wenchao Chen
- Department of Gastrointestinal Surgery, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, P.R. China
| | - Zhilei Cui
- Department of Respiratory Medicine, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Shundong Cang
- Department of Oncology, Henan Key Laboratory for Precision Medicine in Cancer, Zheng Zhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, P.R. China;
| |
Collapse
|
13
|
Capuozzo M, Celotto V, Landi L, Ferrara F, Sabbatino F, Perri F, Cascella M, Granata V, Santorsola M, Ottaiano A. Beyond Body Size: Adiponectin as a Key Player in Obesity-Driven Cancers. Nutr Cancer 2023; 75:1848-1862. [PMID: 37873648 DOI: 10.1080/01635581.2023.2272343] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 10/25/2023]
Abstract
Obesity, a complex and multifactorial disease influenced by genetic, environmental, and psychological factors, has reached epidemic proportions globally, posing a significant health challenge. In addition to its established association with cardiovascular disease and type II diabetes, obesity has been implicated as a risk factor for various cancers. However, the precise biological mechanisms linking obesity and cancer remain largely understood. Adipose tissue, an active endocrine organ, produces numerous hormones and bioactive molecules known as adipokines, which play a crucial role in metabolism, immune responses, and systemic inflammation. Notably, adiponectin (APN), the principal adipocyte secretory protein, exhibits reduced expression levels in obesity. In this scoping review, we explore and discuss the role of APN in influencing cancer in common malignancies, including lung, breast, colorectal, prostate, gastric, and endometrial cancers. Our review aims to emphasize the critical significance of investigating this field, as it holds great potential for the development of innovative treatment strategies that specifically target obesity-related malignancies. Furthermore, the implementation of more rigorous and comprehensive prevention and treatment policies for obesity is imperative in order to effectively mitigate the risk of associated diseases, such as cancer.
Collapse
Affiliation(s)
| | | | | | | | - Francesco Sabbatino
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Salerno, Italy
| | - Francesco Perri
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Naples, Italy
| | - Marco Cascella
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Naples, Italy
| | - Vincenza Granata
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Naples, Italy
| | | | | |
Collapse
|
14
|
Bocian-Jastrzębska A, Malczewska-Herman A, Rosiek V, Kos-Kudła B. Assessment of the Role of Leptin and Adiponectinas Biomarkers in Pancreatic Neuroendocrine Neoplasms. Cancers (Basel) 2023; 15:3517. [PMID: 37444627 DOI: 10.3390/cancers15133517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Data on the possible connection between circulating adipokines and PanNENs are limited. This novel study aimed to assess the serum levels of leptin and adiponectin and their ratio in patients with PanNENs and to evaluate the possible relationship between them and PanNEN's grade or stage, including the presence of metastases. The study group consisted of PanNENs (n = 83), and healthy controls (n = 39). Leptin and adiponectin measurement by an ELISA assay was undertaken in the entire cohort. The serum concentration of adiponectin was significantly higher in the control group compared to the study group (p < 0.001). The concentration of leptin and adiponectin was significantly higher in females than in males (p < 0.01). Anincreased leptin-adiponectin ratio was observed in well-differentiated PanNENs (G1) vs. moderatelydifferentiated PanNENs (G2) (p < 0.05). An increased leptin-adiponectin ratio was found in PanNENs with Ki-67 < 3% vs. Ki-67 ≥ 3% (p < 0.05). PanNENs with distal disease presented lower leptin levels (p < 0.001) and a decreased leptin-adiponectin ratio (p < 0.01) compared with the localized disease group. Leptin, adiponectin, and the leptin-adiponectin ratio may serve as potential diagnostic, prognostic, and predictive biomarkers for PanNENs. Leptin levels and the leptin-adiponectin ratio may play an important role as predictors of malignancy and metastasis in PanNENs.
Collapse
Affiliation(s)
- Agnes Bocian-Jastrzębska
- Department of Endocrinology and Neuroendocrine Tumors, Department of Pathophysiology and Endocrinogy, Medical University of Silesia, 40-514 Katowice, Poland
| | - Anna Malczewska-Herman
- Department of Endocrinology and Neuroendocrine Tumors, Department of Pathophysiology and Endocrinogy, Medical University of Silesia, 40-514 Katowice, Poland
| | - Violetta Rosiek
- Department of Endocrinology and Neuroendocrine Tumors, Department of Pathophysiology and Endocrinogy, Medical University of Silesia, 40-514 Katowice, Poland
| | - Beata Kos-Kudła
- Department of Endocrinology and Neuroendocrine Tumors, Department of Pathophysiology and Endocrinogy, Medical University of Silesia, 40-514 Katowice, Poland
| |
Collapse
|
15
|
Lin YC, Hou YC, Wang HC, Shan YS. New insights into the role of adipocytes in pancreatic cancer progression: paving the way towards novel therapeutic targets. Theranostics 2023; 13:3925-3942. [PMID: 37554282 PMCID: PMC10405844 DOI: 10.7150/thno.82911] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/21/2023] [Indexed: 08/10/2023] Open
Abstract
Pancreatic cancer (PC) remains one of the most lethal malignancies across the world, which is due to delayed diagnosis and resistance to current therapies. The interactions between pancreatic tumor cells and their tumor microenvironment (TME) allow cancer cells to escape from anti-cancer therapies, leading to difficulties in treating PC. With endocrine function and lipid storage capacity, adipose tissue can maintain energy homeostasis. Direct or indirect interaction between adipocytes and PC cells leads to adipocyte dysfunction characterized by morphological change, fat loss, abnormal adipokine secretion, and fibroblast-like transformation. Various adipokines released from dysfunctional adipocytes have been reported to promote proliferation, invasion, metastasis, stemness, and chemoresistance of PC cells via different mechanisms. Additional lipid outflow from adipocytes can be taken into the TME and thus alter the metabolism in PC cells and surrounding stromal cells. Besides, the trans-differentiation potential enables adipocytes to turn into various cell types, which may give rise to an inflammatory response as well as extracellular matrix reorganization to modulate tumor burden. Understanding the molecular basis behind the protumor functions of adipocytes in PC may offer new therapeutic targets.
Collapse
Affiliation(s)
- Yu-Chun Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Ya-Chin Hou
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Department of Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Hao-Chen Wang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Medical Imaging Center, Innovation Headquarter, National Cheng Kung University; Tainan 704, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| |
Collapse
|
16
|
Soh S, Han S, Ka HI, Mun SH, Kim W, Oh G, Yang Y. Adiponectin affects the migration ability of bone marrow-derived mesenchymal stem cells via the regulation of hypoxia inducible factor 1α. Cell Commun Signal 2023; 21:158. [PMID: 37370133 PMCID: PMC10294307 DOI: 10.1186/s12964-023-01143-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/22/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Bone marrow (BM) is progressively filled with adipocytes during aging process. Thus, BM adipocytes-derived adiponectin (APN) affects the function of bone marrow-derived mesenchymal stem cells (BMSCs). However, little is known about the effect of APN on migration ability of BMSCs cultured under hypoxic conditions, which is similar to the BM microenvironment. RESULTS We found that the population and migration ability of BMSCs from APN KO mice was higher than that of WT mice due to increased stability of hypoxia inducible factor 1α (HIF1α). Stem cell factor (SCF)-activated STAT3 stimulated the induction of HIF1α which further stimulated SCF production, indicating that the SCF/STAT3/HIF1α positive loop was highly activated in the absence of APN. It implies that APN negatively regulated this positive loop by stimulating HIF1α degradation via the inactivation of GSK3β. Furthermore, APN KO BMSCs were highly migratory toward EL-4 lymphoma, and the interaction between CD44 in BMSCs and hyaluronic acid (HA) from EL-4 enhanced the migration of BMSCs. On the other hand, the migrated BMSCs recruited CD8+ T cells into the EL-4 tumor tissue, resulting in the retardation of tumor growth. Additionally, gradually increased APN in BM on the aging process affects migration and related functions of BMSCs, thus aged APN KO mice showed more significant suppression of EL-4 growth than young APN KO mice due to higher migration and recruitment of CD8+ T cells. CONCLUSION APN deficiency enhances CD44-mediated migration ability of BMSCs in the hypoxic conditions by the SCF/STAT3/HIF1α positive loop and influences the migration ability of BMSCs for a longer time depending on the aging process. Video Abstract.
Collapse
Affiliation(s)
- Sujung Soh
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Sora Han
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Hye In Ka
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Se Hwan Mun
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Woojung Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Gaeun Oh
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Young Yang
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| |
Collapse
|
17
|
Bezerra DP, Ni J, Chen M. Editorial: Reviews in molecular and cellular oncology. Front Oncol 2023; 13:1224902. [PMID: 37361588 PMCID: PMC10285653 DOI: 10.3389/fonc.2023.1224902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Affiliation(s)
- Daniel P. Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, Brazil
| | - Jie Ni
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW, Sydney, NSW, Australia
| | - Maoshan Chen
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Centre, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
18
|
Ruze R, Song J, Yin X, Chen Y, Xu R, Wang C, Zhao Y. Mechanisms of obesity- and diabetes mellitus-related pancreatic carcinogenesis: a comprehensive and systematic review. Signal Transduct Target Ther 2023; 8:139. [PMID: 36964133 PMCID: PMC10039087 DOI: 10.1038/s41392-023-01376-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 03/26/2023] Open
Abstract
Research on obesity- and diabetes mellitus (DM)-related carcinogenesis has expanded exponentially since these two diseases were recognized as important risk factors for cancers. The growing interest in this area is prominently actuated by the increasing obesity and DM prevalence, which is partially responsible for the slight but constant increase in pancreatic cancer (PC) occurrence. PC is a highly lethal malignancy characterized by its insidious symptoms, delayed diagnosis, and devastating prognosis. The intricate process of obesity and DM promoting pancreatic carcinogenesis involves their local impact on the pancreas and concurrent whole-body systemic changes that are suitable for cancer initiation. The main mechanisms involved in this process include the excessive accumulation of various nutrients and metabolites promoting carcinogenesis directly while also aggravating mutagenic and carcinogenic metabolic disorders by affecting multiple pathways. Detrimental alterations in gastrointestinal and sex hormone levels and microbiome dysfunction further compromise immunometabolic regulation and contribute to the establishment of an immunosuppressive tumor microenvironment (TME) for carcinogenesis, which can be exacerbated by several crucial pathophysiological processes and TME components, such as autophagy, endoplasmic reticulum stress, oxidative stress, epithelial-mesenchymal transition, and exosome secretion. This review provides a comprehensive and critical analysis of the immunometabolic mechanisms of obesity- and DM-related pancreatic carcinogenesis and dissects how metabolic disorders impair anticancer immunity and influence pathophysiological processes to favor cancer initiation.
Collapse
Affiliation(s)
- Rexiati Ruze
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Jianlu Song
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Xinpeng Yin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Chengcheng Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China.
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China.
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China.
| |
Collapse
|
19
|
Zhong W, Wang X, Wang Y, Sun G, Zhang J, Li Z. Obesity and endocrine-related cancer: The important role of IGF-1. Front Endocrinol (Lausanne) 2023; 14:1093257. [PMID: 36755926 PMCID: PMC9899991 DOI: 10.3389/fendo.2023.1093257] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023] Open
Abstract
Obesity is increasingly becoming a global epidemic of concern and is considered a risk factor for several endocrine-related cancers. Moreover, obesity is associated with cancer development and poor prognosis. As a metabolic abnormality, obesity leads to a series of changes in insulin, IGF-1, sex hormones, IGFBPs, and adipokines. Among these factors, IGF-1 plays an important role in obesity-related endocrine cancers. This review describes the role of obesity in endocrine-related cancers, such as prostate cancer, breast cancer and pancreatic cancer, focusing on the mechanism of IGF-1 and the crosstalk with estrogen and adipokines. In addition, this review briefly introduces the current status of IGF-1R inhibitors in clinical practice and shows the prospect of IGF-1R inhibitors in combination with other anticancer drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhuo Li
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
20
|
Mukherjee AG, Wanjari UR, Gopalakrishnan AV, Bradu P, Sukumar A, Patil M, Renu K, Dey A, Vellingiri B, George A, Ganesan R. Implications of cancer stem cells in diabetes and pancreatic cancer. Life Sci 2022; 312:121211. [PMID: 36414089 DOI: 10.1016/j.lfs.2022.121211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
This review provides a detailed study of pancreatic cancer (PC) and the implication of different types of cancers concerning diabetes. The combination of anti-diabetic drugs with other anti-cancer drugs and phytochemicals can help prevent and treat this disease. PC cancer stem cells (CSCs) and how they migrate and develop into malignant tumors are discussed. A detailed explanation of the different mechanisms of diabetes development, which can enhance the pancreatic CSCs' proliferation by increasing the IGF factor levels, epigenetic modifications, DNA damage, and the influence of lifestyle factors like obesity, and inflammation, has been discussed. It also explains how cancer due to diabetes is associated with high mortality rates. One of the well-known diabetic drugs, metformin, can be combined with other anti-cancer drugs and prevent the development of PC and has been taken as one of the prime focus in this review. Overall, this paper provides insight into the relationship between diabetes and PC and the methods that can be employed to diagnose this disease at an earlier stage successfully.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| | - Pragya Bradu
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Aarthi Sukumar
- Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Megha Patil
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, 700073, India
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda - 151401, Punjab, India
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, 680005, Kerala, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, 24252, Republic of Korea
| |
Collapse
|
21
|
Wang R, Wen ZY, Liu FH, Wei YF, Xu HL, Sun ML, Zhao YH, Gong TT, Wang HH, Wu QJ. Association between dietary acid load and cancer risk and prognosis: An updated systematic review and meta-analysis of observational studies. Front Nutr 2022; 9:891936. [PMID: 35967803 PMCID: PMC9365077 DOI: 10.3389/fnut.2022.891936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Epidemiological studies have suggested that dietary acid load (DAL) might be related to the risk and prognosis of cancer, whereas the evidence is contentious. Several high-quality observational studies have been published following a prior systematic review with only one study included. Consequently, we conducted an updated systematic review and meta-analysis to comprehensively investigate the relationship between DAL and cancer risk and prognosis. A systematic literature search was conducted in the PubMed, Embase, and Web of Science databases from inception to 26 October 2021. Summary relative risks (RRs) with 95% CIs were calculated using a random-effects model. Publication bias, subgroup, meta-regression, and sensitivity analyses were also conducted. Ten observational studies (six cohorts and four case–control studies) with 227,253 participants were included in this systematic review and meta-analysis. The summary RRs revealed a statistically significant associations between DAL and cancer risk (RR = 1.58, 95% CI = 1.23–2.05, I2 = 71.9%, n = 7) and prognosis (RR = 1.53, 95% CI = 1.10–2.13, I2 = 77.1%, n = 3). No evidence of publication bias was observed in the current analysis. Positive associations were observed in most subgroup analyses stratified by predefined factors, including region, study design, study quality, study population, participants’ gender, age of participants, cancer type, DAL assessment indicator, and adjustment of potential confounding parameters. No evidence of heterogeneity between subgroups was indicated by meta-regression analyses. The high DAL might be associated with an increased risk of cancer, as well as a poor prognosis of cancer. More high-quality prospective studies are warranted to further determine the associations between DAL and risk and prognosis for specific cancers.
Collapse
Affiliation(s)
- Ran Wang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhao-Yan Wen
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fang-Hua Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Fan Wei
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - He-Li Xu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ming-Li Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Hong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ting-Ting Gong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hui-Han Wang
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China.,Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
22
|
Wang Q, Wang H, Ding Y, Wan M, Xu M. The Role of Adipokines in Pancreatic Cancer. Front Oncol 2022; 12:926230. [PMID: 35875143 PMCID: PMC9305334 DOI: 10.3389/fonc.2022.926230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/13/2022] [Indexed: 12/24/2022] Open
Abstract
In modern society, inappropriate diets and other lifestyle habits have made obesity an increasingly prominent health problem. Pancreatic cancer (PC), a kind of highly aggressive malignant tumor, is known as a silent assassin and is the seventh leading cause of cancer death worldwide, pushing modern medicine beyond help. Adipokines are coming into notice because of the role of the intermediate regulatory junctions between obesity and malignancy. This review summarizes the current evidence for the relationship between highly concerning adipokines and the pathogenesis of PC. Not only are classical adipokines such as leptin and adiponectin included, but they also cover the recognized chemerin and osteopontin. Through a summary of the biological functions of these adipokines as well as their receptors, it was discovered that in addition to their basic function of stimulating the biological activity of tumors, more studies confirm that adipokines intervene in the progression of PC from the viewpoint of tumor metabolism, immune escape, and reprogramming of the tumor microenvironment (TME). Besides endocrine function, the impact of white adipose tissue (WAT)-induced chronic inflammation on PC is briefly discussed. Furthermore, the potential implication of the acknowledged endocrine behavior of brown adipose tissue (BAT) in relation to carcinogenesis is also explored. No matter the broad spectrum of obesity and the poor prognosis of PC, supplemental research is needed to unravel the detailed network of adipokines associated with PC. Exploiting profound therapeutic strategies that target adipokines and their receptors may go some way to improving the current worrying prognosis of PC patients.
Collapse
|
23
|
Sapio L, Ragone A, Spina A, Salzillo A, Naviglio S. AdipoRon and Pancreatic Ductal Adenocarcinoma: a future perspective in overcoming chemotherapy-induced resistance? CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:625-636. [PMID: 36176754 PMCID: PMC9511794 DOI: 10.20517/cdr.2022.34] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/19/2022] [Accepted: 05/25/2022] [Indexed: 11/12/2022]
Abstract
The latest scientific knowledge has provided additional insights accountable for the worst prognosis for pancreatic ductal adenocarcinoma (PDAC). Among the causative factors, the aptitude to develop resistance towards approved medications denotes the master key for understanding the lack of improvement in PDAC survival over the years. Even though several compounds have achieved encouraging results at preclinical stage, no new adjuvant agents have reached the bedside of PDAC patients lately. The adiponectin receptor agonist AdipoRon is emerging as a promising anticancer drug in different cancer models, particularly in PDAC. Building on the existing findings, we recently reinforced its candidacy in PDAC cells, proposing AdipoRon either as a suitable partner in gemcitabine-based treatment or as an effective drug in resistant cells. Crossing the current state-of-the-art, herein we provide a critical perspective on AdipoRon to figure out whether this receptor agonist can potentially be considered a future therapeutic choice in overcoming chemotherapy-induced resistance, expressly in PDAC.
Collapse
Affiliation(s)
| | | | | | | | - Silvio Naviglio
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples 80138, Italy
| |
Collapse
|
24
|
Shinoda S, Nakamura N, Roach B, Bernlohr DA, Ikramuddin S, Yamamoto M. Obesity and Pancreatic Cancer: Recent Progress in Epidemiology, Mechanisms and Bariatric Surgery. Biomedicines 2022; 10:1284. [PMID: 35740306 PMCID: PMC9220099 DOI: 10.3390/biomedicines10061284] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/26/2022] [Accepted: 05/29/2022] [Indexed: 12/24/2022] Open
Abstract
More than 30% of people in the United States (US) are classified as obese, and over 50% are considered significantly overweight. Importantly, obesity is a risk factor not only for the development of metabolic syndrome but also for many cancers, including pancreatic ductal adenocarcinoma (PDAC). PDAC is the third leading cause of cancer-related death, and 5-year survival of PDAC remains around 9% in the U.S. Obesity is a known risk factor for PDAC. Metabolic control and bariatric surgery, which is an effective treatment for severe obesity and allows massive weight loss, have been shown to reduce the risk of PDAC. It is therefore clear that elucidating the connection between obesity and PDAC is important for the identification of a novel marker and/or intervention point for obesity-related PDAC risk. In this review, we discussed recent progress in obesity-related PDAC in epidemiology, mechanisms, and potential cancer prevention effects of interventions, including bariatric surgery with preclinical and clinical studies.
Collapse
Affiliation(s)
- Shuhei Shinoda
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA; (S.S.); (N.N.); (B.R.); (S.I.)
| | - Naohiko Nakamura
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA; (S.S.); (N.N.); (B.R.); (S.I.)
| | - Brett Roach
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA; (S.S.); (N.N.); (B.R.); (S.I.)
| | - David A. Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Sayeed Ikramuddin
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA; (S.S.); (N.N.); (B.R.); (S.I.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Masato Yamamoto
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA; (S.S.); (N.N.); (B.R.); (S.I.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
25
|
Peng X, Yang R, Song J, Wang X, Dong W. Calpain2 Upregulation Regulates EMT-Mediated Pancreatic Cancer Metastasis via the Wnt/β-Catenin Signaling Pathway. Front Med (Lausanne) 2022; 9:783592. [PMID: 35707527 PMCID: PMC9189366 DOI: 10.3389/fmed.2022.783592] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 04/25/2022] [Indexed: 12/24/2022] Open
Abstract
Calpains2 (CAPN2) is a calcium-dependent, non-lysosomal cysteine protease that plays critical roles in normal cellular functions and pathological processes, including tumorigenesis, cancer progression, and metastasis. However, the role and underlying regulatory mechanisms of CAPN2 in pancreatic cancer (PC) are still unknown. We found that CAPN2 is highly expressed in PC tissues and associated with poor PC prognosis by using The Cancer Genome Atlas (TCGA) datasets, Gene Expression Omnibus (GEO) datasets, and PC tissue arrays. CAPN2 downregulation significantly inhibited cell proliferation, migration, and invasion and regulated Wnt/β-catenin signaling pathway-mediated epithelial-mesenchymal transition (EMT) in PC cells. Our findings highlight the significance of CAPN2 in tumor regression and, thus, indicate that CAPN2 could be a promising target for PC treatment.
Collapse
Affiliation(s)
- Xiulan Peng
- Department of Oncology, The Second Affiliated Hospital of Jianghan University, Wuhan, China
- *Correspondence: Xiulan Peng
| | - Rui Yang
- Department of Vascular Surgery, The Second Affiliated Hospital of Jianghan University, Wuhan, China
| | - Jia Song
- Departments of Institute, The Third Affiliated Teaching Hospital of Xinjiang Medical University, Affiliated Cancer Hospital, Ürümqi, China
| | - Xia Wang
- Department of Pharmacy, The Second Affiliated Hospital of Jianghan University, Wuhan, China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Weiguo Dong
| |
Collapse
|
26
|
Jiang H, Hu D, Wang J, Zhang B, He C, Ning J. Adiponectin and the risk of gastrointestinal cancers in East Asians: Mendelian randomization analysis. Cancer Med 2022; 11:2397-2404. [PMID: 35384390 PMCID: PMC9189470 DOI: 10.1002/cam4.4735] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/12/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022] Open
Abstract
Background Adiponectin is an important adipocytokine and has been associated with the risks of gastrointestinal cancers (GICs). Mendelian randomization (MR) analysis is needed to assess the causal relationships between adiponectin and GICs. Methods We retrieved the summary data of genome‐wide association studies for adiponectin and six types of GICs in East Asians. A series of quality control steps were performed to select the eligible genetic instrumental tools. Horizontal pleiotropy and between‐SNP heterogeneity were tested to choose the primary MR method. We also conducted sensitivity analyses to test the robustness of the main findings. Results We detected neither heterogeneity nor horizontal pleiotropy for the eligible SNPs in all of the MR analyses. Inverse variance weighted (IVW) was therefore used as the primary method, and suggested that per 10% increase in log‐transformed adiponectin level was significantly associated with a decreased risk of gastric cancer (odds ratio [OR] = 0.88, 95% CI 0.81, 0.96), whereas with an increased risk of hepatocellular carcinoma (OR = 1.26, 95% CI 1.09, 1.44) and of biliary tract cancer (OR = 1.54, 95% CI 1.12, 2.12). However, only the association between adiponectin and HCC risk was statistically significant after correction for multiple testing. No statistically significant association was detected between adiponectin and esophageal (OR = 1.05, 95% CI 0.89, 1.23), pancreatic (OR = 1.04, 95% CI 0.78, 1.37), and colorectal cancers (OR = 1.00, 95% CI 0.93, 1.07). Sensitivity analyses did not find contradictory results. Conclusion High level of adiponectin may have a causal effect on and can serve as a biomarker for the carcinogenesis of gastric cancer, hepatocellular carcinoma, and biliary tract cancer.
Collapse
Affiliation(s)
- Hua Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Wannan Medical College, Wuhu City, Anhui Province, China
| | - Daojun Hu
- Department of Clinical Laboratory, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Wang
- Department of Clinical Laboratory, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Zhang
- Department of Clinical Laboratory, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chiyi He
- Department of Gastroenterology, The First Affiliated Hospital of Wannan Medical College, Wuhu City, Anhui Province, China
| | - Jiyu Ning
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, China
| |
Collapse
|
27
|
Wang L, Li J, Di LJ. Glycogen synthesis and beyond, a comprehensive review of GSK3 as a key regulator of metabolic pathways and a therapeutic target for treating metabolic diseases. Med Res Rev 2021; 42:946-982. [PMID: 34729791 PMCID: PMC9298385 DOI: 10.1002/med.21867] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/01/2021] [Accepted: 10/24/2021] [Indexed: 12/19/2022]
Abstract
Glycogen synthase kinase‐3 (GSK3) is a highly evolutionarily conserved serine/threonine protein kinase first identified as an enzyme that regulates glycogen synthase (GS) in response to insulin stimulation, which involves GSK3 regulation of glucose metabolism and energy homeostasis. Both isoforms of GSK3, GSK3α, and GSK3β, have been implicated in many biological and pathophysiological processes. The various functions of GSK3 are indicated by its widespread distribution in multiple cell types and tissues. The studies of GSK3 activity using animal models and the observed effects of GSK3‐specific inhibitors provide more insights into the roles of GSK3 in regulating energy metabolism and homeostasis. The cross‐talk between GSK3 and some important energy regulators and sensors and the regulation of GSK3 in mitochondrial activity and component function further highlight the molecular mechanisms in which GSK3 is involved to regulate the metabolic activity, beyond its classical regulatory effect on GS. In this review, we summarize the specific roles of GSK3 in energy metabolism regulation in tissues that are tightly associated with energy metabolism and the functions of GSK3 in the development of metabolic disorders. We also address the impacts of GSK3 on the regulation of mitochondrial function, activity and associated metabolic regulation. The application of GSK3 inhibitors in clinical tests will be highlighted too. Interactions between GSK3 and important energy regulators and GSK3‐mediated responses to different stresses that are related to metabolism are described to provide a brief overview of previously less‐appreciated biological functions of GSK3 in energy metabolism and associated diseases through its regulation of GS and other functions.
Collapse
Affiliation(s)
- Li Wang
- Proteomics, Metabolomics, and Drug Development Core, Faculty of Health Sciences, University of Macau, Macau, China.,Department of Biomedical Sciences, Faculty of Health Sciences, Macau, China.,Cancer Center of the Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translational Medicine, University of Macau, Macau, China.,Ministry of Education, Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Jiajia Li
- Department of Biomedical Sciences, Faculty of Health Sciences, Macau, China.,Cancer Center of the Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translational Medicine, University of Macau, Macau, China.,Ministry of Education, Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Li-Jun Di
- Department of Biomedical Sciences, Faculty of Health Sciences, Macau, China.,Cancer Center of the Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translational Medicine, University of Macau, Macau, China.,Ministry of Education, Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| |
Collapse
|
28
|
Abstract
Rates of obesity and diabetes have increased significantly over the past decades and the prevalence is expected to continue to rise further in the coming years. Many observations suggest that obesity and diabetes are associated with an increased risk of developing several types of cancers, including liver, pancreatic, endometrial, colorectal, and post-menopausal breast cancer. The path towards developing obesity and diabetes is affected by multiple factors, including adipokines, inflammatory cytokines, growth hormones, insulin resistance, and hyperlipidemia. The metabolic abnormalities associated with changes in the levels of these factors in obesity and diabetes have the potential to significantly contribute to the development and progression of cancer through the regulation of distinct signaling pathways. Here, we highlight the cellular and molecular pathways that constitute the links between obesity, diabetes, cancer risk and mortality. This includes a description of the existing evidence supporting the obesity-driven morphological and functional alternations of cancer cells and adipocytes through complex interactions within the tumor microenvironment.
Collapse
Affiliation(s)
- Dae-Seok Kim
- Touchstone Diabetes Center, Department of Internal Medicine, Dallas, TX, USA
| | - Philipp E. Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, Dallas, TX, USA
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Corresponding author: Philipp E. Scherer https://orcid.org/0000-0003-0680-3392 Touchstone Diabetes Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, USA E-mail:
| |
Collapse
|
29
|
Obesity and Pancreatic Cancer: Insight into Mechanisms. Cancers (Basel) 2021; 13:cancers13205067. [PMID: 34680216 PMCID: PMC8534007 DOI: 10.3390/cancers13205067] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Obesity is recognized as a chronic progressive disease and risk factor for many human diseases. The high and increasing number of obese people may underlie the expected increase in pancreatic cancer cases in the United States. There are several pathways discussed that link obesity with pancreatic cancer. Adipose tissue and adipose tissue-released factors may thereby play an important role. This review discusses selected mechanisms that may accelerate pancreatic cancer development in obesity. Abstract The prevalence of obesity in adults and children has dramatically increased over the past decades. Obesity has been declared a chronic progressive disease and is a risk factor for a number of metabolic, inflammatory, and neoplastic diseases. There is clear epidemiologic and preclinical evidence that obesity is a risk factor for pancreatic cancer. Among various potential mechanisms linking obesity with pancreatic cancer, the adipose tissue and obesity-associated adipose tissue inflammation play a central role. The current review discusses selected topics and mechanisms that attracted recent interest and that may underlie the promoting effects of obesity in pancreatic cancer. These topics include the impact of obesity on KRAS activity, the role of visceral adipose tissue, intrapancreatic fat, adipose tissue inflammation, and adipokines on pancreatic cancer development. Current research on lipocalin-2, fibroblast growth factor 21, and Wnt5a is discussed. Furthermore, the significance of obesity-associated insulin resistance with hyperinsulinemia and obesity-induced gut dysbiosis with metabolic endotoxemia is reviewed. Given the central role that is occupied by the adipose tissue in obesity-promoted pancreatic cancer development, preventive and interceptive strategies should be aimed at attenuating obesity-associated adipose tissue inflammation and/or at targeting specific molecules that mechanistically link adipose tissue with pancreatic cancer in obese patients.
Collapse
|
30
|
Yu DW, Li QJ, Cheng L, Yang PF, Sun WP, Peng Y, Hu JJ, Wu JJ, Gong JP, Zhong GC. Dietary Vitamin K Intake and the Risk of Pancreatic Cancer: A Prospective Study of 101,695 American Adults. Am J Epidemiol 2021; 190:2029-2041. [PMID: 33949658 DOI: 10.1093/aje/kwab131] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022] Open
Abstract
No epidemiologic studies have been conducted to assess the association of intake of dietary vitamin K with the risk of pancreatic cancer. We used prospective data from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial between 1993 and 2009 to fill this gap. A total of 101,695 subjects were identified. Dietary intakes of phylloquinone (vitamin K1), menaquinones (vitamin K2), and dihydrophylloquinone (dihydrovitamin K1) were assessed using a food frequency questionnaire. Cox regression was applied to calculate hazard ratios and 95% confidence intervals. During a mean follow-up of 8.86 years (900,744.57 person-years), 361 cases of pancreatic cancer were documented. In the fully adjusted model, dietary intakes of phylloquinone (for quartile 4 vs. quartile 1, hazard ratio (HR) = 0.57, 95% confidence interval (CI): 0.39, 0.83; P for trend = 0.002) and dihydrophylloquinone (for quartile 4 vs. quartile 1, HR = 0.59; 95% CI: 0.41, 0.85; P for trend = 0.006), but not menaquinones (for quartile 4 vs. quartile 1, HR = 0.93; 95% CI: 0.65, 1.33; P for trend = 0.816), were found to be inversely associated with the risk of pancreatic cancer in a nonlinear dose-response manner (all P values for nonlinearity < 0.05), and this was not modified by predefined stratification factors and remained in sensitivity analyses. In conclusion, dietary intakes of phylloquinone and dihydrophylloquinone, but not menaquinones, confer a lower risk of pancreatic cancer. Future studies should confirm our findings.
Collapse
|
31
|
Pu X, Chen D. Targeting Adipokines in Obesity-Related Tumors. Front Oncol 2021; 11:685923. [PMID: 34485124 PMCID: PMC8415167 DOI: 10.3389/fonc.2021.685923] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/22/2021] [Indexed: 12/18/2022] Open
Abstract
Obesity, a global epidemic, is an independent risk factor for the occurrence and development of a variety of tumors, such as breast cancer, pancreatic cancer, ovarian cancer and colorectal cancer. Adipocytes are important endocrine cells in the tumor microenvironment of obesity-related tumors, which can secrete a variety of adipokines (such as leptin, adiponectin, estrogen, resistin, MIF and MCP-1, etc.), among which leptin, adiponectin and estrogen are the most in-depth and valuable ones. These adipokines are closely related to tumorigenesis and the progression of tumors. In recent years, more and more studies have shown that under chronic inflammatory conditions such as obesity, adipocytes secrete more adipokines to promote the tumorigenesis and development of tumors. However, it is worth noting that although adiponectin is also secreted by adipocytes, it has an anti-tumor effect, and can cross-talk with other adipokines (such as leptin and estrogen) and insulin to play an anti-tumor effect together. In addition, obesity is the main cause of insulin resistance, which can lead to the increase of the expression levels of insulin and insulin-like growth factor (IGF). As important regulators of blood glucose and lipid metabolism, insulin and IGF also play an important role in the progress of obesity related tumors. In view of the important role of adipokines secreted by adipocytes and insulin/IGF in tumors, this article not only elaborates leptin, adiponectin and estrogen secreted by adipocytes and their mechanism of action in the development of obesity- related tumors, but also introduces the relationship between insulin/IGF, a regulator of lipid metabolism, and obesity related tumors. At the same time, it briefly describes the cancer-promoting mechanism of resistin, MIF and MCP-1 in obesity-related tumors, and finally summarizes the specific treatment opinions and measures for various adipokines and insulin/insulin-like growth factors in recent years.
Collapse
Affiliation(s)
- Xi Pu
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Deyu Chen
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
32
|
Shi LW, Wu YL, Hu JJ, Yang PF, Sun WP, Gao J, Wang K, Peng Y, Wu JJ, Zhong GC. Dietary Acid Load and the Risk of Pancreatic Cancer: A Prospective Cohort Study. Cancer Epidemiol Biomarkers Prev 2021; 30:1009-1019. [PMID: 33619018 DOI: 10.1158/1055-9965.epi-20-1293] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/16/2020] [Accepted: 02/18/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Modern Western diets are rich in acidogenic foods. Human and in vitro studies suggest a potential link between dietary acid load and cancer risk. However, no epidemiologic studies have investigated the association of dietary acid load with the risk of pancreatic cancer. Therefore, we conducted a prospective cohort study to fill this gap. METHODS A population-based cohort of 95,708 American adults was identified. Potential renal acid load (PRAL) and net endogenous acid production (NEAP) were used to assess dietary acid load of each subject, with greater values indicating greater dietary acid load. Cox regression was used to estimate risk estimates for pancreatic cancer incidence. Predefined subgroup analysis was used to identify the potential effect modifiers. RESULTS A total of 337 pancreatic cancer cases were observed during 848,534.0 person-years of follow-up. PRAL score was found to be positively associated with the risk of pancreatic cancer [fully adjusted HRquartile 4 vs. 1: 1.73; 95% confidence interval (95% CI), 1.21-2.48; P trend = 0.001] in a nonlinear dose-response pattern (P nonlinearity = 0.012). Subgroup analysis found that the positive association of PRAL score with the risk of pancreatic cancer was more pronounced in subjects aged <65 years than in those ≥65 years (P interaction = 0.018). Similar results were obtained for NEAP score. CONCLUSIONS Higher dietary acid load is associated with a higher risk of pancreatic cancer. Future studies should validate our findings in other populations and settings. IMPACTS This is the first epidemiologic study suggesting that reducing dietary acid load may be useful in primary prevention of pancreatic cancer.
Collapse
Affiliation(s)
- Li-Wei Shi
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi-Lin Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie-Jun Hu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng-Fei Yang
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei-Ping Sun
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian Gao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kang Wang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Peng
- Department of Geriatrics, The Fifth People's Hospital of Chengdu, Chengdu, China
| | - Jing-Jing Wu
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Guo-Chao Zhong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Hyperadiposity, as present in obesity, is a substantial threat to cancer risk and prognosis. Studies that have investigated the link between obesity and tumor progression have proposed several mechanistic frameworks, yet, these mechanisms are not fully defined. Further, a comprehensive understanding of how these various mechanisms may interact to create a dynamic disease state is lacking in the current literature. RECENT FINDINGS Recent work has begun to explore not only discrete mechanisms by which obesity may promote tumor growth (for instance, metabolic and growth factor functions of insulin; inflammatory cytokines; adipokines; and others), but also how these putative tumor-promoting factors may interact. SUMMARY This review will highlight the present understanding of obesity, as it relates to tumor development and progression. First, we will introduce the impact of obesity in cancer within the dynamic tumor microenvironment, which will serve as a theme to frame this review. The core of this review will discuss recently proposed mechanisms that implicate obesity in tumor progression, including chronic inflammation and the role of pro-inflammatory cytokines, adipokines, hormones, and genetic approaches. Furthermore, we intend to offer current insight in targeting adipose tissue during the development of cancer prevention and treatment strategies.
Collapse
Affiliation(s)
- Andin Fosam
- Department of Internal Medicine
- Department of Cellular & Molecular Physiology, School of Medicine Yale University, TAC, New Haven, Connecticut, USA
| | - Rachel J Perry
- Department of Internal Medicine
- Department of Cellular & Molecular Physiology, School of Medicine Yale University, TAC, New Haven, Connecticut, USA
| |
Collapse
|
34
|
Nguyen TMD. Adiponectin: Role in Physiology and Pathophysiology. Int J Prev Med 2020; 11:136. [PMID: 33088464 PMCID: PMC7554603 DOI: 10.4103/ijpvm.ijpvm_193_20] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/18/2020] [Indexed: 01/20/2023] Open
Abstract
Adiponectin, an adipokine secreted by adipocytes, is a well-known homeostatic factor for regulating glucose levels, lipid metabolism, and insulin sensitivity through its anti-inflammatory, anti-fibrotic, and antioxidant effects. All these metabolic processes are mediated via two adiponectin receptors, AdipoR1 and AdipoR2. In addition, adiponectin is one of the hormones with the highest plasma concentrations. Weight loss or caloric restriction leads to increasing adiponectin levels, and this increase is associated with increased insulin sensitivity. Therefore, the adiponectin pathway can play a crucial role in the development of drugs to treat type 2 diabetes mellitus and other obesity-related diseases affected by insulin resistance like cancers or cardiovascular diseases. Adiponectin appears to increase insulin sensitivity by improving glucose and lipid metabolisms. The objective of this review is to analyze current knowledge concerning adiponectin and, in particular, its role in physiology and pathophysiology.
Collapse
Affiliation(s)
- Thi Mong Diep Nguyen
- Department of Applied Biology and Agriculture, Faculty of Natural Science, Quy Nhon University, 170 An Duong Vuong Street, Quy Nhon City, Binh Dinh Province, Vietnam
| |
Collapse
|
35
|
Ferreri C, Sansone A, Ferreri R, Amézaga J, Tueros I. Fatty Acids and Membrane Lipidomics in Oncology: A Cross-Road of Nutritional, Signaling and Metabolic Pathways. Metabolites 2020; 10:metabo10090345. [PMID: 32854444 PMCID: PMC7570129 DOI: 10.3390/metabo10090345] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 12/11/2022] Open
Abstract
Fatty acids are closely involved in lipid synthesis and metabolism in cancer. Their amount and composition are dependent on dietary supply and tumor microenviroment. Research in this subject highlighted the crucial event of membrane formation, which is regulated by the fatty acids' molecular properties. The growing understanding of the pathways that create the fatty acid pool needed for cell replication is the result of lipidomics studies, also envisaging novel fatty acid biosynthesis and fatty acid-mediated signaling. Fatty acid-driven mechanisms and biological effects in cancer onset, growth and metastasis have been elucidated, recognizing the importance of polyunsaturated molecules and the balance between omega-6 and omega-3 families. Saturated and monounsaturated fatty acids are biomarkers in several types of cancer, and their characterization in cell membranes and exosomes is under development for diagnostic purposes. Desaturase enzymatic activity with unprecedented de novo polyunsaturated fatty acid (PUFA) synthesis is considered the recent breakthrough in this scenario. Together with the link between obesity and cancer, fatty acids open interesting perspectives for biomarker discovery and nutritional strategies to control cancer, also in combination with therapies. All these subjects are described using an integrated approach taking into account biochemical, biological and analytical aspects, delineating innovations in cancer prevention, diagnostics and treatments.
Collapse
Affiliation(s)
- Carla Ferreri
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via Piero Gobetti 101, 40129 Bologna, Italy;
- Correspondence:
| | - Anna Sansone
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via Piero Gobetti 101, 40129 Bologna, Italy;
| | - Rosaria Ferreri
- Department of Integrated Medicine, Tuscany Reference Centre for Integrated Medicine in the hospital pathway, Pitigliano Hospital, Via Nicola Ciacci, 340, 58017 Pitigliano, Italy;
| | - Javier Amézaga
- AZTI, Food and Health, Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Spain; (J.A.); (I.T.)
| | - Itziar Tueros
- AZTI, Food and Health, Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Spain; (J.A.); (I.T.)
| |
Collapse
|
36
|
The Role of Dysfunctional Adipose Tissue in Pancreatic Cancer: A Molecular Perspective. Cancers (Basel) 2020; 12:cancers12071849. [PMID: 32659999 PMCID: PMC7408631 DOI: 10.3390/cancers12071849] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer (PC) is a lethal malignancy with rising incidence and limited therapeutic options. Obesity is a well-established risk factor for PC development. Moreover, it negatively affects outcome in PC patients. Excessive fat accumulation in obese, over- and normal-weight individuals induces metabolic and inflammatory changes of adipose tissue microenvironment leading to a dysfunctional adipose “organ”. This may drive the association between abnormal fat accumulation and pancreatic cancer. In this review, we describe several molecular mechanisms that underpin this association at both local and systemic levels. We focus on the role of adipose tissue-derived circulating factors including adipokines, hormones and pro-inflammatory cytokines, as well as on the impact of the local adipose tissue in promoting PC. A discussion on potential therapeutic interventions, interfering with pro-tumorigenic effects of dysfunctional adipose tissue in PC, is included. Considering the raise of global obesity, research efforts to uncover the molecular basis of the relationship between pancreatic cancer and adipose tissue dysfunction may provide novel insights for the prevention of this deadly disease. In addition, these efforts may uncover novel targets for personalized interventional strategies aimed at improving the currently unsatisfactory PC therapeutic options.
Collapse
|
37
|
Quoc Lam B, Shrivastava SK, Shrivastava A, Shankar S, Srivastava RK. The Impact of obesity and diabetes mellitus on pancreatic cancer: Molecular mechanisms and clinical perspectives. J Cell Mol Med 2020; 24:7706-7716. [PMID: 32458441 PMCID: PMC7348166 DOI: 10.1111/jcmm.15413] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/24/2020] [Indexed: 01/18/2023] Open
Abstract
The incidence of obesity and type 2 diabetes (T2DM) in the Western world has increased dramatically during the recent decades. According to the American Cancer Society, pancreatic cancer (PC) is the fourth leading cause of cancer‐related death in the United States. The relationship among obesity, T2DM and PC is complex. Due to increase in obesity, diabetes, alcohol consumption and sedentary lifestyle, the mortality due to PC is expected to rise significantly by year 2040. The underlying mechanisms by which diabetes and obesity contribute to pancreatic tumorigenesis are not well understood. Furthermore, metabolism and microenvironment within the pancreas can also modulate pancreatic carcinogenesis. The risk of PC on a population level may be reduced by modifiable lifestyle risk factors. In this review, the interactions of diabetes and obesity to PC development were summarized, and novel strategies for the prevention and treatment of diabetes and PC were discussed.
Collapse
Affiliation(s)
- Bao Quoc Lam
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Sushant K Shrivastava
- Department of Pharmaceutics, Indian Institute of Technology, Banaras Hindu University, Varanasi, UP, India
| | - Anju Shrivastava
- Department of Oncology, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Sharmila Shankar
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
| | - Rakesh K Srivastava
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
38
|
Xu D, Yuan H, Meng Z, Yang C, Li Z, Li M, Zhang Z, Gan Y, Tu H. Cadherin 13 Inhibits Pancreatic Cancer Progression and Epithelial-mesenchymal Transition by Wnt/β-Catenin Signaling. J Cancer 2020; 11:2101-2112. [PMID: 32127937 PMCID: PMC7052920 DOI: 10.7150/jca.37762] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/21/2019] [Indexed: 12/16/2022] Open
Abstract
Cadherin 13 (CDH13) is an atypical cadherin that exerts tumor-suppressive effects on cancers derived from epithelial cells. Although the CDH13 promoter is frequently hypermethylated in pancreatic cancer (PC), the direct impact of CDH13 on PC is unknown. Accordingly, the expression of CDH13 in PC cell lines and paired PC tissues was examined by immunohistochemistry, quantitative real-time PCR and western blotting. Our findings showed that CDH13 was downregulated in PC tissues and cell lines. Moreover, cell proliferation, migration and invasion were detected by CCK-8 assay, transwell migration assay and transwell invasion assay, respectively. Xenograft tumor experiments were used to determine the biological function of CDH13 in vivo. As revealed by our data, CDH13 overexpression significantly inhibited the proliferation, migration and invasion of human PC cells in vitro. The inhibitory effect of CDH13 on PC was further confirmed in animal models. Mice subcutaneously or orthotopically transplanted with CDH13-overexpressing CFPAC-1 cells developed significantly smaller tumors with less liver metastases and mesenteric metastases than those of the control group. Next, transcriptomics and western blot analysis were used to identify the underlying mechanisms. Further molecular mechanism studies showed that CDH13 overexpression inhibited the activation of the Wnt/β-catenin signaling pathway and regulated the expression of epithelial-mesenchymal transition (EMT)-related markers. Our results indicated that CDH13 displayed an inhibitory effect on PC and suggested that CDH13 might be a potential biomarker and a new therapeutic target for PC.
Collapse
Affiliation(s)
- Dengfei Xu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Hui Yuan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
- Department of Thoracic Surgery, Cancer Research Center, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Zihong Meng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Chunmei Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Zefang Li
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Mengge Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Zhigang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Yu Gan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Hong Tu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| |
Collapse
|
39
|
Duvillié B, Kourdoughli R, Druillennec S, Eychène A, Pouponnot C. Interplay Between Diabetes and Pancreatic Ductal Adenocarcinoma and Insulinoma: The Role of Aging, Genetic Factors, and Obesity. Front Endocrinol (Lausanne) 2020; 11:563267. [PMID: 33101198 PMCID: PMC7556217 DOI: 10.3389/fendo.2020.563267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
Epidemiologic analyses have shed light on an association between type 2 diabetes (T2D) and pancreatic ductal adenocarcinoma (PDAC). Recent data also suggest a potential relationship between T2D and insulinoma. Under rare circumstances, type 1 diabetes (T1D) can also be implicated in tumorigenesis. The biological mechanisms underlying such relationships are extremely complex. Some genetic factors contributing to the development of T2D are shared with pancreatic exocrine and endocrine tumors. Obesity and overweight can also contribute to the initiation and severity of T2D, while aging may influence both endocrine and exocrine tumors. Finally, pharmacological treatments of T2D may have an impact on PDAC. On the other hand, some treatments for insulinoma can trigger diabetes. In the present minireview, we discuss the cellular and molecular mechanisms that could explain these interactions. This analysis may help to define new potential therapeutic strategies.
Collapse
Affiliation(s)
- Bertrand Duvillié
- Department of Signaling, Radiobiology and Cancer, Institut Curie, Orsay, France
- INSERM U1021, Centre Universitaire, Orsay, France
- CNRS UMR 3347, Centre Universitaire, Orsay, France
- Université Paris-Saclay, Orsay, France
- PSL Research University, Paris, France
- *Correspondence: Bertrand Duvillié,
| | - Rayane Kourdoughli
- Department of Signaling, Radiobiology and Cancer, Institut Curie, Orsay, France
- INSERM U1021, Centre Universitaire, Orsay, France
- CNRS UMR 3347, Centre Universitaire, Orsay, France
- Université Paris-Saclay, Orsay, France
- PSL Research University, Paris, France
| | - Sabine Druillennec
- Department of Signaling, Radiobiology and Cancer, Institut Curie, Orsay, France
- INSERM U1021, Centre Universitaire, Orsay, France
- CNRS UMR 3347, Centre Universitaire, Orsay, France
- Université Paris-Saclay, Orsay, France
- PSL Research University, Paris, France
| | - Alain Eychène
- Department of Signaling, Radiobiology and Cancer, Institut Curie, Orsay, France
- INSERM U1021, Centre Universitaire, Orsay, France
- CNRS UMR 3347, Centre Universitaire, Orsay, France
- Université Paris-Saclay, Orsay, France
- PSL Research University, Paris, France
| | - Celio Pouponnot
- Department of Signaling, Radiobiology and Cancer, Institut Curie, Orsay, France
- INSERM U1021, Centre Universitaire, Orsay, France
- CNRS UMR 3347, Centre Universitaire, Orsay, France
- Université Paris-Saclay, Orsay, France
- PSL Research University, Paris, France
| |
Collapse
|
40
|
Zhou B, Wu D, Liu H, Du LT, Wang YS, Xu JW, Qiu FB, Hu SY, Zhan HX. Obesity and pancreatic cancer: An update of epidemiological evidence and molecular mechanisms. Pancreatology 2019; 19:941-950. [PMID: 31447281 DOI: 10.1016/j.pan.2019.08.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 07/04/2019] [Accepted: 08/16/2019] [Indexed: 12/11/2022]
Abstract
Despite advances in therapy and achievements in translational research, pancreatic cancer (PC) remains an invariably fatal malignancy. Risk factors that affect the incidence of PC include diabetes, smoking, obesity, chronic pancreatitis, and diet. The growing worldwide obesity epidemic is associated with an increased risk of the most common cancers, including PC. Chronic inflammation, hormonal effects, circulating adipokines, and adipocyte-mediated inflammatory and immunosuppressive microenvironment are involved in the association of obesity with PC. Herein, we systematically review the epidemiology of PC and the biological mechanisms that may account for this association. Included in this review is a discussion of adipokine-mediated inflammation, lipid metabolism, and the interactions of adipocytes with cancer cells. We consider the influence of bariatric surgery on the risk of PC risk as well as potential molecular targets of therapy. Our review leads us to conclude that targeting adipose tissue to achieve weight loss may represent a new therapeutic strategy for preventing and treating PC.
Collapse
Affiliation(s)
- Bin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, 266003, China; Department of Retroperitoneal Tumor Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, 266003, China
| | - Dong Wu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Han Liu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Lu-Tao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong Province, 250033, China; Tumor Marker Detection Engineering Laboratory of Shandong Province, Jinan, Shandong Province, 250033, China
| | - Yun-Shan Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong Province, 250033, China; Tumor Marker Detection Engineering Laboratory of Shandong Province, Jinan, Shandong Province, 250033, China
| | - Jian-Wei Xu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Fa-Bo Qiu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, 266003, China; Department of Retroperitoneal Tumor Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, 266003, China
| | - San-Yuan Hu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Han-Xiang Zhan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China.
| |
Collapse
|
41
|
Roles of Adiponectin Signaling Related Proteins in Mammary Tumor Development. SOUTHERN CLINICS OF ISTANBUL EURASIA 2019; 30:290-295. [PMID: 32215366 PMCID: PMC7094815 DOI: 10.14744/less.2019.85688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Objective This study aims to investigate the expression levels of adiponectin signaling related proteins in mammary tissue, liver and breast cancer tissue in mice. Adiponectin, an adipocytokine, is secreted from adipose tissue and has been documented to have roles in diabetes, inflammation, and cancer development. In particular, levels of serum adiponectin are inversely associated with obesity and a decrease in serum adiponectin levels have been reported to be associated with breast cancer. There are two adiponectin receptor subtypes, AdipoR1 and AdipoR2, which have been identified in mammalian tissues, including human cancer cell lines and also in human mammary tumors. However, the role of adiponectin receptors in breast cancer development remains to be established. Methods In this study, MMTV-TGF-α transgenic mice were fed from week 10 up to week 74 of age. Expression levels of adiponectin, AdipoR1 and AdipoR2 proteins were measured in the mammary fat pad (MFP), mammary tumor (MT) and liver tissues from 74 weeks old MMTV-TGF-α transgenic mice with and without MT using Western Blot. Adiponectin levels were measured using ELISA assay. Results Protein expression levels of Adiponectin and AdipoR1 were significantly lower in MTs compared to control tissues. However, AdipoR2 protein expression levels were similar in MT and MFP tissues from MT-positive and MT-negative mice. The expression levels of adiponectin, AdipoR1 and AdipoR2 proteins in liver tissues were also similar in MT-positive and MT-negative mice. Serum adiponectin levels of the MT-positive and MT-negative mice were similar. Conclusion These results indicate that adiponectin and its receptors are differentially regulated depending upon the specific tissue analyzed. AdipoR1 and adiponectin may play important roles in MT development.
Collapse
|