1
|
Wang C, Fan S, Li M, Ye Y, Li Z, Long W, Li Y, Huang Z, Jiang Q, Yang W, Yang R, Tang D. A 7-year feed study on the long-term effects of genetically modified maize containing cry1Ab/cry2Aj and EPSPS genes on gut microbiota and metabolite profiles across two generations of cynomolgus macaques. Food Chem Toxicol 2025; 200:115419. [PMID: 40157594 DOI: 10.1016/j.fct.2025.115419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/26/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
The health implications of genetically modified (GM) crops remain controversial relative to their non-GM counterparts, particularly regarding long-term dietary exposure. Although the gut microbiome is a key health indicator, studies investigating the impact of GM crop consumption on intestinal microbiota remain limited. This study presents a comprehensive 7-year evaluation of GM maize expressing cry1Ab/cry2Aj and G10evo-EPSPS proteins through metagenomic and metabolomic analyses. We assessed the effects of GM maize consumption on gut microbiota diversity and metabolite profiles in cynomolgus macaques (Macaca fascicularis) compared with non-GM maize. Three diet regimens were implemented: a conventional compound feed (CK group), diet formulation containing 70 % non-GM maize (Corn group), and diet formulation containing 70 % GM maize (Tg group). The results demonstrated that feeding GM maize to the first (F0) and second (F1) generations of monkeys did not substantially affect the composition, community structure, or function of the intestinal microbiome, as indicated by species composition and diversity analyses. Minor differences in intestinal metabolites were observed but were not directly linked to transgenic maize consumption. Collectively, long-term intake of maize with cry1Ab/cry2Aj and g10evo-epsps genes had no adverse effects on macaques or their offspring.
Collapse
Affiliation(s)
- Chenyun Wang
- Medical Primate Research Center, Drug Safety Evaluation Center, Institute of Medical Biology, Chinese Academy of Medical Sciences/Peking Union Medical College, Kunming, 650118, China
| | - Shengtao Fan
- Medical Primate Research Center, Drug Safety Evaluation Center, Institute of Medical Biology, Chinese Academy of Medical Sciences/Peking Union Medical College, Kunming, 650118, China
| | - Minghao Li
- Medical Primate Research Center, Drug Safety Evaluation Center, Institute of Medical Biology, Chinese Academy of Medical Sciences/Peking Union Medical College, Kunming, 650118, China
| | - Yousong Ye
- Medical Primate Research Center, Drug Safety Evaluation Center, Institute of Medical Biology, Chinese Academy of Medical Sciences/Peking Union Medical College, Kunming, 650118, China
| | - Zheli Li
- Medical Primate Research Center, Drug Safety Evaluation Center, Institute of Medical Biology, Chinese Academy of Medical Sciences/Peking Union Medical College, Kunming, 650118, China
| | - Weihu Long
- Medical Primate Research Center, Drug Safety Evaluation Center, Institute of Medical Biology, Chinese Academy of Medical Sciences/Peking Union Medical College, Kunming, 650118, China
| | - Yongjie Li
- Medical Primate Research Center, Drug Safety Evaluation Center, Institute of Medical Biology, Chinese Academy of Medical Sciences/Peking Union Medical College, Kunming, 650118, China
| | - Zhangqiong Huang
- Medical Primate Research Center, Drug Safety Evaluation Center, Institute of Medical Biology, Chinese Academy of Medical Sciences/Peking Union Medical College, Kunming, 650118, China
| | - Qinfang Jiang
- Medical Primate Research Center, Drug Safety Evaluation Center, Institute of Medical Biology, Chinese Academy of Medical Sciences/Peking Union Medical College, Kunming, 650118, China
| | - Wanjing Yang
- Medical Primate Research Center, Drug Safety Evaluation Center, Institute of Medical Biology, Chinese Academy of Medical Sciences/Peking Union Medical College, Kunming, 650118, China
| | - Rujia Yang
- Medical Primate Research Center, Drug Safety Evaluation Center, Institute of Medical Biology, Chinese Academy of Medical Sciences/Peking Union Medical College, Kunming, 650118, China
| | - Donghong Tang
- Medical Primate Research Center, Drug Safety Evaluation Center, Institute of Medical Biology, Chinese Academy of Medical Sciences/Peking Union Medical College, Kunming, 650118, China.
| |
Collapse
|
2
|
Liaqat A, Salisu IB, Bakhsh A, Ali Q, Imran A, Ali MA, Farooq AM, Rao AQ, Shahid AA. A sub-chronic feeding study of dual toxin insect-resistant transgenic maize (CEMB-413) on Wistar rats. PLoS One 2023; 18:e0285090. [PMID: 37556453 PMCID: PMC10411795 DOI: 10.1371/journal.pone.0285090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/14/2023] [Indexed: 08/11/2023] Open
Abstract
Genetically modified (GM) crops expressing insecticidal crystal proteins are widely accepted worldwide, but their commercial utilization demands comprehensive risk assessment studies. A 90-day risk assessment study was conducted on Wistar rats fed with GM maize (CEMB-413) expressing binary insect-resistant genes (cry1Ac and cry2Ab) at low (30%) and high (50%) dose along with a control diet group. The study used fifty Wistar rats randomly distributed in five treatment groups. Our study revealed that compared to controls, GM diet had no adverse effects on animal's health, including body weight, food consumption, clinical pathological parameters, serum hormone levels and histological parameters of testes and ovaries of rats. Differences were observed in transcripts levels of fertility related genes, but these were independent of treatment with GM diet.
Collapse
Affiliation(s)
- Ayesha Liaqat
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Ibrahim Bala Salisu
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
- Department of Animal Science, Faculty of Agriculture, Federal University Dutse, Dutse, Jigawa State, Nigeria
| | - Allah Bakhsh
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Qasim Ali
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Ayesha Imran
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Azam Ali
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
- Department of Molecular Biology, Virtual University of Pakistan, Lahore, Pakistan
| | - Abdul Munim Farooq
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Abdul Qayyum Rao
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Ahmad Ali Shahid
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
3
|
Quemada H. Lessons learned from the introduction of genetically engineered crops: relevance to gene drive deployment in Africa. Transgenic Res 2022; 31:285-311. [PMID: 35545692 PMCID: PMC9135826 DOI: 10.1007/s11248-022-00300-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 02/04/2022] [Indexed: 11/10/2022]
Abstract
The application of gene drives to achieve public health goals, such as the suppression of Anopheles gambiae populations, or altering their ability to sustain Plasmodium spp. infections, has received much attention from researchers. If successful, this genetic tool can contribute greatly to the wellbeing of people in regions severely affected by malaria. However, engineered gene drives are a product of genetic engineering, and the experience to date, gained through the deployment of genetically engineered (GE) crops, is that GE technology has had difficulty receiving public acceptance in Africa, a key region for the deployment of gene drives. The history of GE crop deployment in this region provides good lessons for the deployment of gene drives as well. GE crops have been in commercial production for 24 years, since the planting of the first GE soybean crop in 1996. During this time, regulatory approvals and farmer adoption of these crops has grown rapidly in the Americas, and to a lesser extent in Asia. Their safety has been recognized by numerous scientific organizations. Economic and health benefits have been well documented in the countries that have grown them. However, only one transgenic crop event is being grown in Europe, and only in two countries in that region. Europe has been extremely opposed to GE crops, due in large part to the public view of agriculture that opposes "industrial" farming. This attitude is reflected in a highly precautionary regulatory and policy environment, which has highly influenced how African countries have dealt with GE technology and are likely to be applied to future genetic technologies, including gene drives. Furthermore, a mistrust of government regulatory agencies, the publication of scientific reports claiming adverse effects of GE crops, the involvement of corporations as the first GE crop developers, the lack of identifiable consumer benefit, and low public understanding of the technology further contributed to the lack of acceptance. Coupled with more emotionally impactful messaging to the public by opposition groups and the general tendency of negative messages to be more credible than positive ones, GE crops failed to gain a place in European agriculture, thus influencing African acceptance and government policy. From this experience, the following lessons have been learned that would apply to the deployment of gene drives, in Africa:It will be important to establish trust in those who are developing the technology, as well as in those who are making regulatory decisions. Engagement of the community, where those who are involved are able to make genuine contributions to the decision-making process, are necessary to achieve that trust. The use of tools to facilitate participatory modeling could be considered in order to enhance current community engagement efforts.Trusted, accurate information on gene drives should be made available to the general public, journalists, and scientists who are not connected with the field. Those sources of information should also be able to summarize and analyze important scientific results and emerging issues in the field in order to place those developments in the proper context. Engagement should involve more opportunities for participation of stakeholders in conceptualizing, planning, and decision-making.Diversifying the source of funding for gene drive research and development, particularly by participation of countries and regional bodies, would show that country or regional interests are represented.Efforts by developers and neutral groups to provide the public and decisionmakers with a more thorough understanding of the benefits and risks of this technology, especially to local communities, would help them reach more informed decisions.A better understanding of gene drive technology can be fostered by governments, as part of established biosafety policy in several African countries. Developers and neutral groups could also be helpful in increasing public understanding of the technology of genetic engineering, including gene drives.Effective messaging to balance the messaging of groups opposed to gene drives is needed. These messages should be not only factual but also have emotional and intuitive appeal.
Collapse
Affiliation(s)
- Hector Quemada
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA.
| |
Collapse
|
4
|
Herbivorous Juvenile Grass Carp (Ctenopharyngodon idella) Fed with Genetically Modified MON 810 and DAS-59122 Maize Varieties Containing Cry Toxins: Intestinal Histological, Developmental, and Immunological Investigations. Toxins (Basel) 2022; 14:toxins14020153. [PMID: 35202180 PMCID: PMC8875443 DOI: 10.3390/toxins14020153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/04/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
Feeding experiments with juvenile grass carp (Ctenopharyngodon idella) fed with genetically modified maize MON 810 or DAS-59122 dried leaf biomass were carried out with 1-, 3- and 6-month exposures. Dosages of 3–7 μg/fish/day Cry1Ab or 18-55 μg/fish/day Cry34Ab1 toxin did not cause mortality. No difference occurred in body or abdominal sac weights. No differences appeared in levels of inorganic phosphate, calcium, fructosamine, bile acids, triglycerides, cholesterol, and alanine and aspartame aminotransferases. DAS-59122 did not alter blood parameters tested after 3 months of feeding. MON 810 slightly decreased serum albumin levels compared to the control, only in one group. Tapeworm (Bothriocephalus acheilognathi) infection changed the levels of inorganic phosphate and calcium. Cry34Ab1 toxin appeared in blood (12.6 ± 1.9 ng/mL), but not in the muscle. It was detected in B. acheilognathi. Cry1Ab was hardly detectable in certain samples near the limit of detection. Degradation of Cry toxins was extremely quick in the fish gastrointestinal tract. After 6 months of feeding, only mild indications in certain serum parameters were observed: MON 810 slightly increased the level of apoptotic cells in the blood and reduced the number of thrombocytes in one group; DAS-59122 mildly increased the number of granulocytes compared to the near-isogenic line.
Collapse
|
5
|
Elias R, Talyn B, Melchiorre E. Dietary Behavior of Drosophila melanogaster Fed with Genetically-Modified Corn or Roundup ®. J Xenobiot 2021; 11:215-227. [PMID: 34940514 PMCID: PMC8703958 DOI: 10.3390/jox11040014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/03/2022] Open
Abstract
With the rise in concern about GMOs and pesticides on human health, we have utilized Drosophila melanogaster as a model organism for understanding the effects of Roundup-Ready® GMO diets on health. We recorded dietary behavior during and after exposure to a medium containing GMO or non-GMO corn, Roundup® in organic corn medium, and sucrose with or without one of the two Roundup® formulations. No differences in behavior were observed when Drosophila were exposed to a medium containing Roundup-Ready® GMO or non-GMO corn. Drosophila can detect and refrain from eating sucrose containing one Roundup® formulation, Ready-to-Use, which contains pelargonic acid in addition to glyphosate as an active ingredient. Drosophila exhibited dose-dependent increased consumption of sucrose alone after exposure to a medium containing either Roundup® formulation. This may indicate that flies eating a medium with Roundup® eat less and were thus hungrier when then given sucrose solution; that a medium with Roundup® is more difficult to digest; or that a medium with Roundup® is less nutritious, as would be the case if nutritionally important microbes grew on control medium, but not one containing Roundup®.
Collapse
Affiliation(s)
- Raquel Elias
- Department of Biology, California State University, San Bernardino, CA 92407, USA;
| | - Becky Talyn
- College of Natural Sciences, California State University, San Bernardino, CA 92407, USA
- Correspondence: ; Tel.: +1-909-537-5303
| | - Erik Melchiorre
- Department of Geology, California State University, San Bernardino, CA 92407, USA;
| |
Collapse
|
6
|
Hajimohammadi B, Eslami G, Loni E, Ehrampoush MH, Moshtaghioun SM, Fallahzadeh H, Ardakani SAY, Hosseini SS, Askari V. Relationship between Serum Tumor-Related Markers and Genetically Modified Rice Expressing Cry1Ab Protein in Sprague-Dawley Rats. Nutr Cancer 2021; 74:2581-2590. [PMID: 34875945 DOI: 10.1080/01635581.2021.2012210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Genetically Modified (GM) foods are among the most important achievements of biotechnology. Given the safety importance of transgenic rice, this study was conducted to investigate the effect of GM rice consumption on serum concentrations of tumor markers in rats. In this experimental intervention, we used the blood serum samples from the Biobank taken from 60 males and 60 female Sprague-Dawley (SD) rats fed on three different diets, including rat's standard food, non-GM rice, and GM rice after 90 day. Tumor markers including Carcinogenic embryonic antigen (CEA), Alpha-Fito protein (AFP), Cancer Antigen 19-9 (CA19-9), Cancer Antigen 125 (CA125), and Cancer Antigen15-3 (CA15-3) were assessed by enzyme-linked immune sorbent assay (ELISA) method. Statistical analysis was conducted via SPSS software. The results show that the concentrations of tumor markers were within the normal range in the SD rats treated with diet, and since the concentration of tumor markers was lower than the acceptable index determined, according to the kit standard in both groups, no obvious carcinogenic effect was found. However, these findings are not enough to make a final decision regarding the safety assessment of GM rice consumption.
Collapse
Affiliation(s)
- Bahador Hajimohammadi
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Gilda Eslami
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Parasitology and Mycology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Elahe Loni
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Hassan Ehrampoush
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Hossein Fallahzadeh
- Center for Healthcare Data Modeling, Departments of biostatistics and Epidemiology, School of public health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Ali Yasini Ardakani
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Saeedeh Sadat Hosseini
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Vahideh Askari
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
7
|
Niraula PM, Fondong VN. Development and Adoption of Genetically Engineered Plants for Virus Resistance: Advances, Opportunities and Challenges. PLANTS 2021; 10:plants10112339. [PMID: 34834702 PMCID: PMC8623320 DOI: 10.3390/plants10112339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/24/2021] [Accepted: 10/27/2021] [Indexed: 11/20/2022]
Abstract
Plant viruses cause yield losses to crops of agronomic and economic significance and are a challenge to the achievement of global food security. Although conventional plant breeding has played an important role in managing plant viral diseases, it will unlikely meet the challenges posed by the frequent emergence of novel and more virulent viral species or viral strains. Hence there is an urgent need to seek alternative strategies of virus control that can be more readily deployed to contain viral diseases. The discovery in the late 1980s that viral genes can be introduced into plants to engineer resistance to the cognate virus provided a new avenue for virus disease control. Subsequent advances in genomics and biotechnology have led to the refinement and expansion of genetic engineering (GE) strategies in crop improvement. Importantly, many of the drawbacks of conventional breeding, such as long lead times, inability or difficulty to cross fertilize, loss of desirable plant traits, are overcome by GE. Unfortunately, public skepticism towards genetically modified (GM) crops and other factors have dampened the early promise of GE efforts. These concerns are principally about the possible negative effects of transgenes to humans and animals, as well as to the environment. However, with regards to engineering for virus resistance, these risks are overstated given that most virus resistance engineering strategies involve transfer of viral genes or genomic segments to plants. These viral genomes are found in infected plant cells and have not been associated with any adverse effects in humans or animals. Thus, integrating antiviral genes of virus origin into plant genomes is hardly unnatural as suggested by GM crop skeptics. Moreover, advances in deep sequencing have resulted in the sequencing of large numbers of plant genomes and the revelation of widespread endogenization of viral genomes into plant genomes. This has raised the possibility that viral genome endogenization is part of an antiviral defense mechanism deployed by the plant during its evolutionary past. Thus, GM crops engineered for viral resistance would likely be acceptable to the public if regulatory policies were product-based (the North America regulatory model), as opposed to process-based. This review discusses some of the benefits to be gained from adopting GE for virus resistance, as well as the challenges that must be overcome to leverage this technology. Furthermore, regulatory policies impacting virus-resistant GM crops and some success cases of virus-resistant GM crops approved so far for cultivation are discussed.
Collapse
|
8
|
Faheem A, Qin Y, Nan W, Hu Y. Advances in the Immunoassays for Detection of Bacillus thuringiensis Crystalline Toxins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10407-10418. [PMID: 34319733 DOI: 10.1021/acs.jafc.1c02195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Insect-resistant genetically modified organisms have been globally commercialized for the last 2 decades. Among them, transgenic crops based on Bacillus thuringiensis crystalline (Cry) toxins are extensively used for commercial agricultural applications. However, less emphasis is laid on quantifying Cry toxins because there might be unforeseen health and environmental concerns. Immunoassays, being the preferred method for detection of Cry toxins, are reviewed in this study. Owing to limitations of traditional colorimetric enzyme-linked immunosorbent assay, the trend of detection strategies shifts to modified immunoassays based on nanomaterials, which provide ultrasensitive detection capacity. This review assessed and compared the properties of the recent advances in immunoassays, including colorimetric, fluorescence, chemiluminescence, surface-enhanced Raman scattering, surface plasmon resonance, and electrochemical approaches. Thus, the ultimate aim of this study is to identify research gaps and infer future prospects of current approaches for the development of novel immunosensors to monitor Cry toxins in food and the environment.
Collapse
Affiliation(s)
- Aroosha Faheem
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Yuqing Qin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Wenrui Nan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Yonggang Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| |
Collapse
|
9
|
Hasim NA, Amin L, Mahadi Z, Yusof NAM, Ngah AC, Yaacob M, Olesen AP, Aziz AA. The Integration and Harmonisation of Secular and Islamic Ethical Principles in Formulating Acceptable Ethical Guidelines for Modern Biotechnology in Malaysia. SCIENCE AND ENGINEERING ETHICS 2020; 26:1797-1825. [PMID: 32266581 DOI: 10.1007/s11948-020-00214-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
The Malaysian government recognises the potential contribution of biotechnology to the national economy. However, ongoing controversy persists regarding its ethical status and no specific ethical guidelines have been published relating to its use. In developing such guidelines, it is important to identify the underlying principles that are acceptable to Malaysian society. This paper discusses the process of determining relevant secular and Islamic ethical principles and establishing their similarities before harmonising them. To achieve this, a series of focus group discussions were conducted with 23 knowledge experts representing various stakeholders in the biotechnology community. Notably, several principles between the secular and Islamic perspectives are indirectly or directly similar. All the experts agreed with the predominant six ethical principles of secular and Islamic philosophy and their importance and relevance in modern biotechnology. These are beneficence and non-maleficence as the main or overarching principles, the preservation of religious and moral values, the preservation of the intellect and the mind, the protection of human safety, the protection of future generations, and protection of the environment and biological diversity. Several adjustments were made to the terminologies and definitions of these six principles to formulate acceptable guiding principles for the ethics of modern biotechnology in Malaysia. These can then be adopted as core values to underpin future national guidelines on modern biotechnology ethics. These principles will be particularly important in guiding the policy makers, enforcers, industries and researchers to streamline their activities. In so doing, modern biotechnology and its products can be properly managed without jeopardising the interests of the Muslim community as well as the general public. Importantly, they are expansive and inclusive enough to embrace the religious sensitivity of diverse quarters of Malaysia.
Collapse
Affiliation(s)
- Nur Asmadayana Hasim
- The Institute of Islam Hadhari, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
- Pusat Citra Universiti, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Latifah Amin
- The Institute of Islam Hadhari, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
- Pusat Citra Universiti, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Zurina Mahadi
- Pusat Citra Universiti, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Nor Ashikin Mohamed Yusof
- Perdana School of Science, Technology and Innovation Policy (PERDANA School), Universiti Teknologi Malaysia, 54100, Kuala Lumpur, Malaysia
| | - Anisah Che Ngah
- Taylor's Law School, Taylor's University Lakeside Campus, 47500, Subang, Selangor, Malaysia
| | - Mashitoh Yaacob
- The Institute of Islam Hadhari, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
- Pusat Citra Universiti, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Angelina Patrick Olesen
- Pusat Citra Universiti, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Azwira Abdul Aziz
- Pusat Citra Universiti, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| |
Collapse
|
10
|
Coumoul X, Servien R, Juricek L, Kaddouch-Amar Y, Lippi Y, Berthelot L, Naylies C, Morvan ML, Antignac JP, Desdoits-Lethimonier C, Jegou B, Tremblay-Franco M, Canlet C, Debrauwer L, Le Gall C, Laurent J, Gouraud PA, Cravedi JP, Jeunesse E, Savy N, Dandere-Abdoulkarim K, Arnich N, Fourès F, Cotton J, Broudin S, Corman B, Moing A, Laporte B, Richard-Forget F, Barouki R, Rogowsky P, Salles B. The GMO90+ Project: Absence of Evidence for Biologically Meaningful Effects of Genetically Modified Maize-based Diets on Wistar Rats After 6-Months Feeding Comparative Trial. Toxicol Sci 2020; 168:315-338. [PMID: 30535037 PMCID: PMC6432862 DOI: 10.1093/toxsci/kfy298] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The GMO90+ project was designed to identify biomarkers of exposure or health effects in Wistar Han RCC rats exposed in their diet to 2 genetically modified plants (GMP) and assess additional information with the use of metabolomic and transcriptomic techniques. Rats were fed for 6-months with 8 maize-based diets at 33% that comprised either MON810 (11% and 33%) or NK603 grains (11% and 33% with or without glyphosate treatment) or their corresponding near-isogenic controls. Extensive chemical and targeted analyses undertaken to assess each diet demonstrated that they could be used for the feeding trial. Rats were necropsied after 3 and 6 months. Based on the Organization for Economic Cooperation and Development test guideline 408, the parameters tested showed a limited number of significant differences in pairwise comparisons, very few concerning GMP versus non-GMP. In such cases, no biological relevance could be established owing to the absence of difference in biologically linked variables, dose-response effects, or clinical disorders. No alteration of the reproduction function and kidney physiology was found. Metabolomics analyses on fluids (blood, urine) were performed after 3, 4.5, and 6 months. Transcriptomics analyses on organs (liver, kidney) were performed after 3 and 6 months. Again, among the significant differences in pairwise comparisons, no GMP effect was observed in contrast to that of maize variety and culture site. Indeed, based on transcriptomic and metabolomic data, we could differentiate MON- to NK-based diets. In conclusion, using this experimental design, no biomarkers of adverse health effect could be attributed to the consumption of GMP diets in comparison with the consumption of their near-isogenic non-GMP controls.
Collapse
Affiliation(s)
- Xavier Coumoul
- INSERM UMR-S1124, Toxicologie Pharmacologie et Signalisation Cellulaire, Université Paris Descartes, USPC, Paris, France
| | - Rémi Servien
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Ludmila Juricek
- INSERM UMR-S1124, Toxicologie Pharmacologie et Signalisation Cellulaire, Université Paris Descartes, USPC, Paris, France
| | - Yael Kaddouch-Amar
- INSERM UMR-S1124, Toxicologie Pharmacologie et Signalisation Cellulaire, Université Paris Descartes, USPC, Paris, France
| | - Yannick Lippi
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Laureline Berthelot
- Centre de Recherche sur l'Inflammation (CRI), INSERM UMRS 1149, Paris, France
| | - Claire Naylies
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | | | | | | | - Bernard Jegou
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), Université de Rennes, Rennes, France
| | - Marie Tremblay-Franco
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Cécile Canlet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Laurent Debrauwer
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | | | | | | | - Jean-Pierre Cravedi
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Elisabeth Jeunesse
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Nicolas Savy
- Institut de Mathématiques de Toulouse, UMR5219-Université de Toulouse, CNRS-UPS IMT, Toulouse, France
| | | | | | | | | | | | | | - Annick Moing
- UMR1332 Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, Villenave d'Ornon, France
| | - Bérengère Laporte
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | | | - Robert Barouki
- INSERM UMR-S1124, Toxicologie Pharmacologie et Signalisation Cellulaire, Université Paris Descartes, USPC, Paris, France
| | - Peter Rogowsky
- Laboratoire Reproduction et Développement des Plantes, CNRS, INRA, University Lyon, Lyon, France
| | - Bernard Salles
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
11
|
Stein T, Ran G, Bohmer M, Sharbati S, Einspanier R. Expression profiling of key pathways in rat liver after a one-year feeding trial with transgenic maize MON810. Sci Rep 2019; 9:18915. [PMID: 31831783 PMCID: PMC6908735 DOI: 10.1038/s41598-019-55375-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022] Open
Abstract
In a recent one-year feeding study, we observed no adverse effects on tissue level in organs of rats fed with the genetically-modified maize MON810. Here, we assessed RNA expression levels of 86 key genes of the apoptosis-, NF-кB-, DNA-damage response (DDR)-, and unfolded-protein response (UPR) pathways by RT-qPCR in the rat liver. Male and female rats were fed either with 33% MON810 (GMO), isogenic- (ISO), or conventional maize (CONV) and RNAs were quantified from eight rats from each of the six feeding groups. Only Birc2 transcript showed a significant (p ≤ 0.05) consistent difference of ≥1.5-fold between the GMO and ISO groups in both sexes. Unsupervised cluster analysis showed a strong separation of male and female rats, but no clustering of the feeding groups. Individual analysis of the pathways did not show any clustering of the male or female feeding groups either, though transcript levels of UPR pathway-associated genes caused some clustering of the male GMO and CONV feeding group samples. These differences were not seen between the GMO and ISO control or within the female cohort. Our data therefore does not support an adverse effect on rat liver RNA expression through the long-term feeding of MON810 compared to isogenic control maize.
Collapse
Affiliation(s)
- Torsten Stein
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany
| | - Guangyao Ran
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany
- Department of Liquor Making Engineering, Moutai Institute, Luban Avenue, 564507, Renhuai, China
| | - Marc Bohmer
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany
- SGS Institute Fresenius GmbH, Life Sciences Services, Tegeler Weg 33, 10589, Berlin, Germany
| | - Soroush Sharbati
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany
| | - Ralf Einspanier
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany.
| |
Collapse
|
12
|
Relationship between faecal microbiota and plasma metabolome in rats fed NK603 and MON810 GM maize from the GMO90+ study. Food Chem Toxicol 2019; 131:110547. [DOI: 10.1016/j.fct.2019.05.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/14/2019] [Accepted: 05/29/2019] [Indexed: 12/19/2022]
|
13
|
Talyn B, Lemon R, Badoella M, Melchiorre D, Villalobos M, Elias R, Muller K, Santos M, Melchiorre E. Roundup ®, but Not Roundup-Ready ® Corn, Increases Mortality of Drosophila melanogaster. TOXICS 2019; 7:E38. [PMID: 31370250 PMCID: PMC6789507 DOI: 10.3390/toxics7030038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023]
Abstract
Genetically modified foods have become pervasive in diets of people living in the US. By far the most common genetically modified foods either tolerate herbicide application (HT) or produce endogenous insecticide (Bt). To determine whether these toxicological effects result from genetic modification per se, or from the increase in herbicide or insecticide residues present on the food, we exposed fruit flies, Drosophila melanogaster, to food containing HT corn that had been sprayed with the glyphosate-based herbicide Roundup®, HT corn that had not been sprayed with Roundup®, or Roundup® in a variety of known glyphosate concentrations and formulations. While neither lifespan nor reproductive behaviors were affected by HT corn, addition of Roundup® increased mortality with an LC50 of 7.1 g/L for males and 11.4 g/L for females after 2 days of exposure. Given the many genetic tools available, Drosophila are an excellent model system for future studies about genetic and biochemical mechanisms of glyphosate toxicity.
Collapse
Affiliation(s)
- Becky Talyn
- College of Natural Science, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA.
| | - Rachael Lemon
- Biology Department, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA
| | - Maryam Badoella
- Biology Department, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA
| | | | - Maryori Villalobos
- Biology Department, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA
| | - Raquel Elias
- Biology Department, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA
| | - Kelly Muller
- Chemistry and Biochemistry Department, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA
| | - Maggie Santos
- Biology Department, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA
| | - Erik Melchiorre
- Geology Department, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA
| |
Collapse
|
14
|
Ogwu MC. Lifelong Consumption of Plant-Based GM Foods. ENVIRONMENTAL EXPOSURES AND HUMAN HEALTH CHALLENGES 2019. [DOI: 10.4018/978-1-5225-7635-8.ch008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genetically modified (GM) crops are cultivated in over 30 countries with their products and by-products imported by over 60 countries. This chapter seeks to highlight general concerns and potential lifelong effects of consuming GM plant-based food. The consumption of GM plant-based food is as risky as consuming conventional plant-based food. However, the alien genes in these products may be unstable leading to antinutritional and unintended short-term consequences. Due to the paucity of research, no long-term effects have been attributed to the lifelong consumption of these products. Nonetheless, possible lifelong health and socioeconomic effects may result from outcrossing of genes, increasing antibiotic resistance, development of new diseases, as well as potential effects on the environment and biodiversity. Biotechnology companies need to invest more in interdisciplinary research addressing the potential lifelong effects of these products. Although GM foods are safe for consumption, clarification of current risks and lifelong effects are required.
Collapse
|
15
|
Results of a 16-week Safety Assurance Study with Rats Fed Genetically Modified Bt Maize: Effect on Growth and Health Parameters. J Vet Res 2018; 62:555-561. [PMID: 30729216 PMCID: PMC6364163 DOI: 10.2478/jvetres-2018-0060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 10/25/2018] [Indexed: 01/27/2023] Open
Abstract
Introduction The influence of feeding genetically modified MON 810 hybrid maize on the growth and haematological and biochemical indices of rats was tested. Material and Methods Two conventional (non-GM) and two test (MON 810) lines of maize were used in semi-purified diets at the level of 40% w/w. The non-GM I, MON 810 I, non-GM II, and MON 810 II maize lines were near-isogenic. A total of 40 male 6-week-old Wistar-derived rats were assigned to four equal feeding groups corresponding to the four maize lines for 16 weeks. Overall, health, body weight gain, clinical pathology parameters, gross changes, and appearance of tissues were compared between groups. Results There were no statistically significant differences in the weight gain or relative organ weights of rats, but there were some non diet-related histopathological changes in the liver, kidneys, and spleen. Except for creatinine level, no diet-related effects were observed in haematology or most of the biochemical indices. Transgenic DNA of MON 810 maize was not detected in the tissues or faeces nor in the DNA of E. coli isolated from the rectum digesta of rats given transgenic feeds. In our experiment, various metabolic indices of rats fed non-GM diets or genetically modified (MON 810) maize for 16 weeks were similar. No adverse nutrition-related health effects were detected. Conclusion MON 810 maize seems to be as safe as the conventional maize lines.
Collapse
|
16
|
Liu Q, Wu S, Li M, Yang W, Wang Y, Wu Y, Gao H, Han Y, Feng S, Zeng S. Effects of long-term feeding with genetically modified Bt rice on the growth and reproductive performance in highly inbred Wuzhishan pigs. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.03.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
17
|
A label survey to identify ingredients potentially containing GM organisms to estimate intake exposure in Brazil. Public Health Nutr 2018; 21:2698-2713. [PMID: 29970209 DOI: 10.1017/s1368980018001350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To identify ingredients from products and by-products derived from GM crops in packaged food products and to analyse the presence of these ingredients in the foods most commonly consumed by the Brazilian population. DESIGN Cross-sectional study. SETTING A search of the scientific literature to identify the use of products and by-products derived from GM crops in foods in Brazil and a study of food labels in a supermarket belonging to one of the ten largest supermarket chains in Brazil. SUBJECTS To identify the ingredients present in packaged food products and their nomenclatures, the labels of all packaged food products available for sale in a supermarket were analysed. Subsequently, the presence of potential GM ingredients in the foods most commonly consumed by the Brazilian population was analysed. RESULTS A total of twenty-eight GM crops' by-products with applications in the food industry (from soyabeans, corn, cotton and a yeast) were identified. Such by-products are presented as food ingredients or additives on food labels with 101 distinct nomenclatures. Most of the variety (63·8 %) and the quantity (64·5 %) of the foods most commonly consumed by Brazilians may contain a least one GM ingredient. CONCLUSIONS The presence of at least one potential GM ingredient was observed in more than half of the variety of foods most commonly consumed by the Brazilian population. Such ingredients were identified with distinct nomenclatures and incomplete descriptions, which may make it difficult to identify potential GM foods and confuse consumers when making food choices.
Collapse
|
18
|
Wei Y, Huang L, Cao J, Wang C, Yan J. Dietary Safety Assessment of Flk1-Transgenic Fish. Front Physiol 2018; 9:8. [PMID: 29422865 PMCID: PMC5788912 DOI: 10.3389/fphys.2018.00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/04/2018] [Indexed: 11/29/2022] Open
Abstract
Genetic engineering, also called genetic modification, is facing with growing demands of aquaculture and aquatic products. Although various genetically modified (GM) aquatics have been generated, it is important to evaluate biosafety of GM organisms on the human health before entering into our food chain. For this purpose, we establish a zebrafish wild adult feeding Flk1-transgenic larvae model to examine the predatory fish's histology in multiple tissues, and the global gene expression profile in the liver. 180 days of feeding trial show that there are no significantly morphological changes in intestine, liver, kidney, and sex gonads between fish fed with Flk1 transgenic fish diet (TFD) and fish fed with regular food meal (RFM). However, a characteristic skin spot and autofluorescence increase in the theca of follicle are observed in F1 generation of TFD fish. Liver RNA-sequencing analyses demonstrate that 53 out of 56712 genes or isoforms are differentially transcribed, and mostly involved in proteolysis in extracellular region. According to GO enrichment terms these deregulated genes function in catalytic activity, steroid storing, lipid metabolic process and N-Glycan biosynthesis. These results suggest that a long term of Flk1-transgenic fish diet could alter certain metabolic pathways and possibly cause related tissue deformation. Compared to the previous reports, our feasible transgenic dietary assess system could evaluate subchronic and potential health impact of transgenic fish diet by combining multi-tissue histology and liver transcriptome analyses.
Collapse
|
19
|
|
20
|
Bleotu C, Matei L, Dragu LD, Grigorescu L, Diaconu CC, Anton G. Methods for Plant Genetic Modification. GENETICALLY ENGINEERED FOODS 2018:385-401. [DOI: 10.1016/b978-0-12-811519-0.00015-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
|
21
|
Liu Q, Yang W, Li M, Wu Y, Wang Y, Wu S, Gao H, Han Y, Yang F, Feng S, Zeng S. Effects of 60-Week Feeding Diet Containing Bt Rice Expressing the Cry1Ab Protein on the Offspring of Inbred Wuzhishan Pigs Fed the Same Diet. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10300-10309. [PMID: 29113431 DOI: 10.1021/acs.jafc.7b04067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We evaluated the chronic effects of Bt rice carrying the Cry1Ab protein (1.64 mg/kg) on offspring of highly inbred WZSP, fed with Bt rice for 360 days, in a 60-week feeding study. The WZSP offspring (n = 27) were assigned to two groups (Minghui86 group, female n = 6, male n = 5; Bt group, female n = 11, male n = 5). The average obtained Cry1Ab protein dosage for female and male pigs was 1.003 and 1.234 mg/kg body weight after 10 weeks of feeding, respectively. The experimental feed in the study was nutritionally matched in both groups. The average daily gain and feed conversion ratio of the females in week 3 and males from weeks 1 to 10 were different between the Bt and Minghui86 groups (P < 0.05), and the body weight of the male pigs in week 2 was greater in the Minghui86 group than that of the Bt group (P < 0.05). No other differences were observed, and there were no significant differences in the serum sex steroid level, hematology parameters, relative organ weights, or histopathology. Although differences in some serum chemistry parameters (alanine aminotransferase of female pigs and alkaline phosphatase of male pigs) were observed, they were not considered treatment-related. On the basis of these results, long-term intake of transgenic rice carrying Cry1Ab protein exerts no unintended adverse effects on WZSP offspring.
Collapse
Affiliation(s)
- Qiang Liu
- Laboratory of Animal Embryonic Biotechnology, National Engineering Laboratory for Animal Breeding,l Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University , Beijing 100094, China
| | - Weigang Yang
- Laboratory of Animal Embryonic Biotechnology, National Engineering Laboratory for Animal Breeding,l Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University , Beijing 100094, China
| | - Mingjie Li
- Laboratory of Animal Embryonic Biotechnology, National Engineering Laboratory for Animal Breeding,l Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University , Beijing 100094, China
| | - Yi Wu
- Laboratory of Animal Embryonic Biotechnology, National Engineering Laboratory for Animal Breeding,l Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University , Beijing 100094, China
| | - Yingzheng Wang
- Laboratory of Animal Embryonic Biotechnology, National Engineering Laboratory for Animal Breeding,l Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University , Beijing 100094, China
| | - Shuaishuai Wu
- Laboratory of Animal Embryonic Biotechnology, National Engineering Laboratory for Animal Breeding,l Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University , Beijing 100094, China
| | - Hui Gao
- Laboratory of Animal Embryonic Biotechnology, National Engineering Laboratory for Animal Breeding,l Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University , Beijing 100094, China
| | - Ying Han
- Laboratory of Animal Embryonic Biotechnology, National Engineering Laboratory for Animal Breeding,l Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University , Beijing 100094, China
| | - Feng Yang
- Laboratory of Animal Embryonic Biotechnology, National Engineering Laboratory for Animal Breeding,l Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University , Beijing 100094, China
| | - Shutang Feng
- Institute of Animal Sciences, China Academy of Agricultural Sciences , Beijing 100293, China
| | - Shenming Zeng
- Laboratory of Animal Embryonic Biotechnology, National Engineering Laboratory for Animal Breeding,l Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University , Beijing 100094, China
- College of Animal Science and Technology, Yangzhou University , Yangzhou 225009, China
| |
Collapse
|
22
|
Sánchez MA, Parrott WA. Characterization of scientific studies usually cited as evidence of adverse effects of GM food/feed. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1227-1234. [PMID: 28710840 PMCID: PMC5595713 DOI: 10.1111/pbi.12798] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/30/2017] [Accepted: 07/11/2017] [Indexed: 05/10/2023]
Abstract
GM crops are the most studied crops in history. Approximately 5% of the safety studies on them show adverse effects that are a cause for concern and tend to be featured in media reports. Although these reports are based on just a handful of GM events, they are used to cast doubt on all GM crops. Furthermore, they tend to come from just a few laboratories and are published in less important journals. Importantly, a close examination of these reports invariably shows methodological flaws that invalidate any conclusions of adverse effects. Twenty years after commercial cultivation of GM crops began, a bona fide report of an adverse health effect due to a commercialized modification in a crop has yet to be reported.
Collapse
Affiliation(s)
| | - Wayne A. Parrott
- Department of Crop and Soil SciencesUniversity of GeorgiaAthensGAUSA
| |
Collapse
|
23
|
Mesnage R, Arno M, Séralini GE, Antoniou MN. Transcriptome and metabolome analysis of liver and kidneys of rats chronically fed NK603 Roundup-tolerant genetically modified maize. ENVIRONMENTAL SCIENCES EUROPE 2017; 29:6. [PMID: 28239534 PMCID: PMC5306156 DOI: 10.1186/s12302-017-0105-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/27/2017] [Indexed: 05/08/2023]
Abstract
BACKGROUND A previous 2-year rat feeding trial assessing potential toxicity of NK603 Roundup-tolerant genetically modified maize revealed blood and urine biochemical changes indicative of liver and kidney pathology. In an effort to obtain deeper insight into these findings, molecular profiling of the liver and kidneys from the same animals was undertaken. RESULTS Transcriptomics showed no segregation of NK603 maize and control feed groups with false discovery rates ranging from 43 to 83% at a cut-off p value of 1%. Changes in gene expression were not reflective of liver and kidney toxic effects. Metabolomics identified 692 and 673 metabolites in kidney and liver, respectively. None of the statistically significant disturbances detected (12-56 for different test groups) survived a false discovery rate analysis. Differences in these metabolites between individual animals within a group were greater than the effect of test diets, which prevents a definitive conclusion on either pathology or safety. CONCLUSIONS Even if the biological relevance of the statistical differences presented in this study is unclear, our results are made available for scrutiny by the scientific community and for comparison in future studies investigating potential toxicological properties of the NK603 corn.
Collapse
Affiliation(s)
- Robin Mesnage
- Department of Medical and Molecular Genetics, Gene Expression and Therapy Group, Faculty of Life Sciences & Medicine, King’s College London, 8th Floor, Tower Wing, Guy’s Hospital, Great Maze Pond, London, SE1 9RT UK
| | - Matthew Arno
- Genomics Centre, King’s College London, Waterloo Campus, 150 Stamford Street, London, SE1 9NH UK
| | - Gilles-Eric Séralini
- Institute of Biology, EA 2608 and Risk Pole, MRSH-CNRS, University of Caen, Esplanade de la Paix, 14032 Caen Cedex, France
| | - Michael N. Antoniou
- Department of Medical and Molecular Genetics, Gene Expression and Therapy Group, Faculty of Life Sciences & Medicine, King’s College London, 8th Floor, Tower Wing, Guy’s Hospital, Great Maze Pond, London, SE1 9RT UK
| |
Collapse
|
24
|
Koch MS, DeSesso JM, Williams AL, Michalek S, Hammond B. Adaptation of the ToxRTool to Assess the Reliability of Toxicology Studies Conducted with Genetically Modified Crops and Implications for Future Safety Testing. Crit Rev Food Sci Nutr 2016; 56:512-26. [PMID: 25208336 DOI: 10.1080/10408398.2013.788994] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
To determine the reliability of food safety studies carried out in rodents with genetically modified (GM) crops, a Food Safety Study Reliability Tool (FSSRTool) was adapted from the European Centre for the Validation of Alternative Methods' (ECVAM) ToxRTool. Reliability was defined as the inherent quality of the study with regard to use of standardized testing methodology, full documentation of experimental procedures and results, and the plausibility of the findings. Codex guidelines for GM crop safety evaluations indicate toxicology studies are not needed when comparability of the GM crop to its conventional counterpart has been demonstrated. This guidance notwithstanding, animal feeding studies have routinely been conducted with GM crops, but their conclusions on safety are not always consistent. To accurately evaluate potential risks from GM crops, risk assessors need clearly interpretable results from reliable studies. The development of the FSSRTool, which provides the user with a means of assessing the reliability of a toxicology study to inform risk assessment, is discussed. Its application to the body of literature on GM crop food safety studies demonstrates that reliable studies report no toxicologically relevant differences between rodents fed GM crops or their non-GM comparators.
Collapse
Affiliation(s)
- Michael S Koch
- a Monsanto Company, Product Safety Center , St. Louis , Missouri , USA
| | | | | | - Suzanne Michalek
- c Department of Microbiology, University of Alabama at Birmingham , Birmingham , Alabama , USA
| | - Bruce Hammond
- a Monsanto Company, Product Safety Center , St. Louis , Missouri , USA
| |
Collapse
|
25
|
Effect of genetically modified corn on the jejunal mucosa of adult male albino rat. ACTA ACUST UNITED AC 2016; 68:579-588. [DOI: 10.1016/j.etp.2016.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 09/03/2016] [Accepted: 10/06/2016] [Indexed: 12/29/2022]
|
26
|
Zhang H, Li Q, Zhang Y, Xia Y, Yun L, Zhang Q, Zhang T, Chen X, Chen H, Li W. A nanogel with passive targeting function and adjustable polyplex surface properties for efficient anti-tumor gene therapy. RSC Adv 2016. [DOI: 10.1039/c6ra13707e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A dual responsive nanogel with tuneable polyplex properties was finely prepared. Its highin vivo/vitrogene transfection ability and passive cellular targeting function strongly promoted intratumor accumulation and tumor inhibition.
Collapse
Affiliation(s)
- Haizhou Zhang
- Department of Cardiac Surgery
- Shandong Provincial Hospital Affiliated to Shandong University
- Jinan 250021
- China
| | - Qingbao Li
- Department of Cardiac Surgery
- Shandong Provincial Hospital Affiliated to Shandong University
- Jinan 250021
- China
| | - Yingying Zhang
- International Joint Cancer Institute
- The Second Military Medical University
- Shanghai 200433
- PR China
| | - Yu Xia
- International Joint Cancer Institute
- The Second Military Medical University
- Shanghai 200433
- PR China
| | - Liang Yun
- Dalian Institute for Drug Control
- City of Dalian
- China
| | - Qian Zhang
- Department of Cardiac Surgery
- Shandong Provincial Hospital Affiliated to Shandong University
- Jinan 250021
- China
| | - Tao Zhang
- Department of Cardiac Surgery
- Shandong Provincial Hospital Affiliated to Shandong University
- Jinan 250021
- China
| | - Xia Chen
- International Joint Cancer Institute
- The Second Military Medical University
- Shanghai 200433
- PR China
| | - Huaiwen Chen
- International Joint Cancer Institute
- The Second Military Medical University
- Shanghai 200433
- PR China
| | - Wei Li
- International Joint Cancer Institute
- The Second Military Medical University
- Shanghai 200433
- PR China
| |
Collapse
|
27
|
Rubio-Infante N, Moreno-Fierros L. An overview of the safety and biological effects of Bacillus thuringiensis Cry toxins in mammals. J Appl Toxicol 2015; 36:630-48. [PMID: 26537666 DOI: 10.1002/jat.3252] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 09/08/2015] [Accepted: 09/09/2015] [Indexed: 12/12/2022]
Abstract
Crystal proteins (Cry) produced during the growth and sporulation phases of Bacillus thuringiensis (Bt) bacterium are known as delta endotoxins. These toxins are being used worldwide as bioinsecticides to control pests in agriculture, and some Cry toxins are used against mosquitoes to control vector transmission. This review summarizes the relevant information currently available regarding the biosafety and biological effects that Bt and its insecticidal Cry proteins elicit in mammals. This work was performed because of concerns regarding the possible health impact of Cry toxins on vertebrates, particularly because Bt toxins might be associated with immune-activating or allergic responses. The controversial data published to date are discussed in this review considering earlier toxicological studies of B. thuringiensis, spores, toxins and Bt crops. We discussed the experimental studies performed in humans, mice, rats and sheep as well as in diverse mammalian cell lines. Although the term 'toxic' is not appropriate for defining the effects these toxins have on mammals, they cannot be considered innocuous, as they have some physiological effects that may become pathological; thus, trials that are more comprehensive are necessary to determine their effects on mammals because knowledge in this field remains limited.
Collapse
Affiliation(s)
- Néstor Rubio-Infante
- Laboratorio de Inmunidad en Mucosas, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México
| | - Leticia Moreno-Fierros
- Laboratorio de Inmunidad en Mucosas, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México
| |
Collapse
|
28
|
Koch MS, Ward JM, Levine SL, Baum JA, Vicini JL, Hammond BG. The food and environmental safety of Bt crops. FRONTIERS IN PLANT SCIENCE 2015; 6:283. [PMID: 25972882 PMCID: PMC4413729 DOI: 10.3389/fpls.2015.00283] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/08/2015] [Indexed: 05/28/2023]
Abstract
Bacillus thuringiensis (Bt) microbial pesticides have a 50-year history of safety in agriculture. Cry proteins are among the active insecticidal ingredients in these pesticides, and genes coding for Cry proteins have been introduced into agricultural crops using modern biotechnology. The Cry gene sequences are often modified to enable effective expression in planta and several Cry proteins have been modified to increase biological activity against the target pest(s). Additionally, the domains of different but structurally conserved Cry proteins can be combined to produce chimeric proteins with enhanced insecticidal properties. Environmental studies are performed and include invertebrates, mammals, and avian species. Mammalian studies used to support the food and feed safety assessment are also used to support the wild mammal assessment. In addition to the NTO assessment, the environmental assessment includes a comparative assessment between the Bt crop and the appropriate conventional control that is genetically similar but lacks the introduced trait to address unintended effects. Specific phenotypic, agronomic, and ecological characteristics are measured in the Bt crop and the conventional control to evaluate whether the introduction of the insect resistance has resulted in any changes that might cause ecological harm in terms of altered weed characteristics, susceptibility to pests, or adverse environmental impact. Additionally, environmental interaction data are collected in field experiments for Bt crop to evaluate potential adverse effects. Further to the agronomic and phenotypic evaluation, potential movement of transgenes from a genetically modified crop plants into wild relatives is assessed for a new pest resistance gene in a new crop. This review summarizes the evidence for safety of crops containing Cry proteins for humans, livestock, and other non-target organisms.
Collapse
|
29
|
Koch MS, Ward JM, Levine SL, Baum JA, Vicini JL, Hammond BG. The food and environmental safety of Bt crops. FRONTIERS IN PLANT SCIENCE 2015; 6:283. [PMID: 25972882 DOI: 10.3389/fpls.2015.0028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/08/2015] [Indexed: 05/28/2023]
Abstract
Bacillus thuringiensis (Bt) microbial pesticides have a 50-year history of safety in agriculture. Cry proteins are among the active insecticidal ingredients in these pesticides, and genes coding for Cry proteins have been introduced into agricultural crops using modern biotechnology. The Cry gene sequences are often modified to enable effective expression in planta and several Cry proteins have been modified to increase biological activity against the target pest(s). Additionally, the domains of different but structurally conserved Cry proteins can be combined to produce chimeric proteins with enhanced insecticidal properties. Environmental studies are performed and include invertebrates, mammals, and avian species. Mammalian studies used to support the food and feed safety assessment are also used to support the wild mammal assessment. In addition to the NTO assessment, the environmental assessment includes a comparative assessment between the Bt crop and the appropriate conventional control that is genetically similar but lacks the introduced trait to address unintended effects. Specific phenotypic, agronomic, and ecological characteristics are measured in the Bt crop and the conventional control to evaluate whether the introduction of the insect resistance has resulted in any changes that might cause ecological harm in terms of altered weed characteristics, susceptibility to pests, or adverse environmental impact. Additionally, environmental interaction data are collected in field experiments for Bt crop to evaluate potential adverse effects. Further to the agronomic and phenotypic evaluation, potential movement of transgenes from a genetically modified crop plants into wild relatives is assessed for a new pest resistance gene in a new crop. This review summarizes the evidence for safety of crops containing Cry proteins for humans, livestock, and other non-target organisms.
Collapse
|
30
|
Bøhn T, Cuhra M, Traavik T, Sanden M, Fagan J, Primicerio R. Reply to letter to the editor. Food Chem 2015; 172:924-7. [PMID: 25442639 DOI: 10.1016/j.foodchem.2014.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Thomas Bøhn
- GenØk, Centre for Biosafety, P.O. Box 6418, 9294 Tromsø, Norway; Faculty of Health Sciences, UIT, The Arctic University of Norway, Norway.
| | - Marek Cuhra
- GenØk, Centre for Biosafety, P.O. Box 6418, 9294 Tromsø, Norway; Faculty of Health Sciences, UIT, The Arctic University of Norway, Norway
| | - Terje Traavik
- GenØk, Centre for Biosafety, P.O. Box 6418, 9294 Tromsø, Norway; Faculty of Health Sciences, UIT, The Arctic University of Norway, Norway
| | - Monica Sanden
- National Institute of Nutrition and Seafood Research, NIFES, P.O. Box 2029, 5817 Bergen, Norway
| | - John Fagan
- Earth Open Source, 2nd Floor 145-157, St. John Street, London EC1V 4PY, United Kingdom
| | - Raul Primicerio
- Faculty of Health Sciences, UIT, The Arctic University of Norway, Norway
| |
Collapse
|
31
|
Wiley LF. Deregulation, Distrust, and Democracy: State and Local Action to Ensure Equitable Access to Healthy, Sustainably Produced Food. AMERICAN JOURNAL OF LAW & MEDICINE 2015; 41:284-314. [PMID: 26591820 DOI: 10.1177/0098858815591519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Environmental, public health, alternative food, and food justice advocates are working together to achieve incremental agricultural subsidy and nutrition assistance reforms that increase access to fresh fruits and vegetables. When it comes to targeting food and beverage products for increased regulation and decreased consumption, however, the priorities of various food reform movements diverge. This article argues that foundational legal issues, including preemption of state and local authority to protect the public's health and welfare, increasing First Amendment protection for commercial speech, and eroding judicial deference to legislative policy judgments, present a more promising avenue for collaboration across movements than discrete food reform priorities around issues like sugary drinks, genetic modification, or organics. Using the Vermont Genetically Modified Organism (GMO) Labeling Act litigation, the Kauai GMO Cultivation Ordinance litigation, the New York City Sugary Drinks Portion Rule litigation, and the Cleveland Trans Fat Ban litigation as case studies, I discuss the foundational legal challenges faced by diverse food reformers, even when their discrete reform priorities diverge. I also 'explore the broader implications of cooperation among groups that respond differently to the "irrationalities" (from the public health perspective) or "values" (from the environmental and alternative food perspective) that permeate public risk perception for democratic governance in the face of scientific uncertainty.
Collapse
|
32
|
Zdziarski IM, Edwards JW, Carman JA, Haynes JI. GM crops and the rat digestive tract: a critical review. ENVIRONMENT INTERNATIONAL 2014; 73:423-433. [PMID: 25244705 DOI: 10.1016/j.envint.2014.08.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 08/29/2014] [Accepted: 08/29/2014] [Indexed: 05/28/2023]
Abstract
The aim of this review is to examine the relationship between genetically modified (GM) crops and health, based on histopathological investigations of the digestive tract in rats. We reviewed published long-term feeding studies of crops containing one or more of three specific traits: herbicide tolerance via the EPSPS gene and insect resistance via cry1Ab or cry3Bb1 genes. These genes are commonly found in commercialised GM crops. Our search found 21 studies for nine (19%) out of the 47 crops approved for human and/or animal consumption. We could find no studies on the other 38 (81%) approved crops. Fourteen out of the 21 studies (67%) were general health assessments of the GM crop on rat health. Most of these studies (76%) were performed after the crop had been approved for human and/or animal consumption, with half of these being published at least nine years after approval. Our review also discovered an inconsistency in methodology and a lack of defined criteria for outcomes that would be considered toxicologically or pathologically significant. In addition, there was a lack of transparency in the methods and results, which made comparisons between the studies difficult. The evidence reviewed here demonstrates an incomplete picture regarding the toxicity (and safety) of GM products consumed by humans and animals. Therefore, each GM product should be assessed on merit, with appropriate studies performed to indicate the level of safety associated with them. Detailed guidelines should be developed which will allow for the generation of comparable and reproducible studies. This will establish a foundation for evidence-based guidelines, to better determine if GM food is safe for human and animal consumption.
Collapse
Affiliation(s)
- I M Zdziarski
- Discipline of Anatomy and Pathology, School of Medical Sciences, University of Adelaide, SA 5005, Australia
| | - J W Edwards
- Health and the Environment, School of the Environment, Flinders University, Bedford Park, SA 5042, Australia
| | - J A Carman
- Health and the Environment, School of the Environment, Flinders University, Bedford Park, SA 5042, Australia; Institute of Health and Environmental Research (IHER), P.O. Box 155, Kensington Park, SA 5068, Australia.
| | - J I Haynes
- Discipline of Anatomy and Pathology, School of Medical Sciences, University of Adelaide, SA 5005, Australia
| |
Collapse
|
33
|
Van Eenennaam AL, Young AE. Prevalence and impacts of genetically engineered feedstuffs on livestock populations. J Anim Sci 2014; 92:4255-78. [PMID: 25184846 DOI: 10.2527/jas.2014-8124] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Globally, food-producing animals consume 70 to 90% of genetically engineered (GE) crop biomass. This review briefly summarizes the scientific literature on performance and health of animals consuming feed containing GE ingredients and composition of products derived from them. It also discusses the field experience of feeding GE feed sources to commercial livestock populations and summarizes the suppliers of GE and non-GE animal feed in global trade. Numerous experimental studies have consistently revealed that the performance and health of GE-fed animals are comparable with those fed isogenic non-GE crop lines. United States animal agriculture produces over 9 billion food-producing animals annually, and more than 95% of these animals consume feed containing GE ingredients. Data on livestock productivity and health were collated from publicly available sources from 1983, before the introduction of GE crops in 1996, and subsequently through 2011, a period with high levels of predominately GE animal feed. These field data sets, representing over 100 billion animals following the introduction of GE crops, did not reveal unfavorable or perturbed trends in livestock health and productivity. No study has revealed any differences in the nutritional profile of animal products derived from GE-fed animals. Because DNA and protein are normal components of the diet that are digested, there are no detectable or reliably quantifiable traces of GE components in milk, meat, and eggs following consumption of GE feed. Globally, countries that are cultivating GE corn and soy are the major livestock feed exporters. Asynchronous regulatory approvals (i.e., cultivation approvals of GE varieties in exporting countries occurring before food and feed approvals in importing countries) have resulted in trade disruptions. This is likely to be increasingly problematic in the future as there are a large number of "second generation" GE crops with altered output traits for improved livestock feed in the developmental and regulatory pipelines. Additionally, advanced techniques to affect targeted genome modifications are emerging, and it is not clear whether these will be encompassed by the current GE process-based trigger for regulatory oversight. There is a pressing need for international harmonization of both regulatory frameworks for GE crops and governance of advanced breeding techniques to prevent widespread disruptions in international trade of livestock feedstuffs in the future.
Collapse
Affiliation(s)
| | - A E Young
- Department of Animal Science, University of California, Davis 95616
| |
Collapse
|
34
|
Abstract
Nutrition controversies abound, particularly in an age of vast information and technology. Scientific information is often disseminated so quickly, via news outlets or lay bloggers, that the factual details are left out and in-depth analysis is omitted. Our food supply and our environment are intertwined, yet from a public health standpoint there seems to be a disconnection between what our society wants, and what it may need, in terms of nutrition and disease prevention. We want our food supply to be safe, available, affordable, fresh, and tasty. We also want our environment to be minimally affected, animal rights to be upheld, and less waste to occur. We need to provide adequate nutrition that promotes health to a diverse population at a reasonable cost. This article will address some current nutrition controversies surrounding genetically modified organisms in our food supply, sugars, calories, and high-protein diets; as well as a recommendation for helping your patients choose a healthy diet and adopt healthy dietary behaviors is reviewed.
Collapse
Affiliation(s)
- Rosanne Rust
- Rust Nutrition Services, Meadville, Pennsylvania
| |
Collapse
|
35
|
Séralini G, Mesnage R, Defarge N, Spiroux de Vendômois J. Conclusiveness of toxicity data and double standards. Food Chem Toxicol 2014; 69:357-9. [DOI: 10.1016/j.fct.2014.04.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Séralini GE, Mesnage R, Defarge N, Spiroux de Vendômois J. Conflicts of interests, confidentiality and censorship in health risk assessment: the example of an herbicide and a GMO. ENVIRONMENTAL SCIENCES EUROPE 2014; 26:13. [PMID: 27752411 PMCID: PMC5044951 DOI: 10.1186/s12302-014-0013-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/16/2014] [Indexed: 05/23/2023]
Abstract
We have studied the long-term toxicity of a Roundup-tolerant GM maize (NK603) and a whole Roundup pesticide formulation at environmentally relevant levels from 0.1 ppb. Our study was first published in Food and Chemical Toxicology (FCT) on 19 September, 2012. The first wave of criticisms arrived within a week, mostly from plant biologists without experience in toxicology. We answered all these criticisms. The debate then encompassed scientific arguments and a wave of ad hominem and potentially libellous comments appeared in different journals by authors having serious yet undisclosed conflicts of interests. At the same time, FCT acquired as its new assistant editor for biotechnology a former employee of Monsanto after he sent a letter to FCT to complain about our study. This is in particular why FCT asked for a post-hoc analysis of our raw data. On 19 November, 2013, the editor-in-chief requested the retraction of our study while recognizing that the data were not incorrect and that there was no misconduct and no fraud or intentional misinterpretation in our complete raw data - an unusual or even unprecedented action in scientific publishing. The editor argued that no conclusions could be drawn because we studied 10 rats per group over 2 years, because they were Sprague Dawley rats, and because the data were inconclusive on cancer. Yet this was known at the time of submission of our study. Our study was however never attended to be a carcinogenicity study. We never used the word 'cancer' in our paper. The present opinion is a summary of the debate resulting in this retraction, as it is a historic example of conflicts of interest in the scientific assessments of products commercialized worldwide. We also show that the decision to retract cannot be rationalized on any discernible scientific or ethical grounds. Censorship of research into health risks undermines the value and the credibility of science; thus, we republish our paper.
Collapse
Affiliation(s)
- Gilles-Eric Séralini
- Institute of Biology, EA2608, Network on Risks, Quality and Sustainable Environment MRSH-CNRS, University of Caen, Esplanade de la Paix, 14032 Caen Cedex, France
- CRIIGEN, 40 rue Monceau, 75008 Paris, France
| | - Robin Mesnage
- Institute of Biology, EA2608, Network on Risks, Quality and Sustainable Environment MRSH-CNRS, University of Caen, Esplanade de la Paix, 14032 Caen Cedex, France
- CRIIGEN, 40 rue Monceau, 75008 Paris, France
| | - Nicolas Defarge
- Institute of Biology, EA2608, Network on Risks, Quality and Sustainable Environment MRSH-CNRS, University of Caen, Esplanade de la Paix, 14032 Caen Cedex, France
- CRIIGEN, 40 rue Monceau, 75008 Paris, France
| | | |
Collapse
|
37
|
Detection of the genetically modified organisms from food products/ Detecţia organismelor modificate genetic din produse alimentare. REV ROMANA MED LAB 2014. [DOI: 10.2478/rrlm-2014-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Séralini GE, Clair E, Mesnage R, Gress S, Defarge N, Malatesta M, Hennequin D, de Vendômois JS. Republished study: long-term toxicity of a Roundup herbicide and a Roundup-tolerant genetically modified maize. ENVIRONMENTAL SCIENCES EUROPE 2014; 26:14. [PMID: 27752412 PMCID: PMC5044955 DOI: 10.1186/s12302-014-0014-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 05/16/2014] [Indexed: 05/19/2023]
Abstract
BACKGROUND The health effects of a Roundup-tolerant NK603 genetically modified (GM) maize (from 11% in the diet), cultivated with or without Roundup application and Roundup alone (from 0.1 ppb of the full pesticide containing glyphosate and adjuvants) in drinking water, were evaluated for 2 years in rats. This study constitutes a follow-up investigation of a 90-day feeding study conducted by Monsanto in order to obtain commercial release of this GMO, employing the same rat strain and analyzing biochemical parameters on the same number of animals per group as our investigation. Our research represents the first chronic study on these substances, in which all observations including tumors are reported chronologically. Thus, it was not designed as a carcinogenicity study. We report the major findings with 34 organs observed and 56 parameters analyzed at 11 time points for most organs. RESULTS Biochemical analyses confirmed very significant chronic kidney deficiencies, for all treatments and both sexes; 76% of the altered parameters were kidney-related. In treated males, liver congestions and necrosis were 2.5 to 5.5 times higher. Marked and severe nephropathies were also generally 1.3 to 2.3 times greater. In females, all treatment groups showed a two- to threefold increase in mortality, and deaths were earlier. This difference was also evident in three male groups fed with GM maize. All results were hormone- and sex-dependent, and the pathological profiles were comparable. Females developed large mammary tumors more frequently and before controls; the pituitary was the second most disabled organ; the sex hormonal balance was modified by consumption of GM maize and Roundup treatments. Males presented up to four times more large palpable tumors starting 600 days earlier than in the control group, in which only one tumor was noted. These results may be explained by not only the non-linear endocrine-disrupting effects of Roundup but also by the overexpression of the EPSPS transgene or other mutational effects in the GM maize and their metabolic consequences. CONCLUSION Our findings imply that long-term (2 year) feeding trials need to be conducted to thoroughly evaluate the safety of GM foods and pesticides in their full commercial formulations.
Collapse
Affiliation(s)
- Gilles-Eric Séralini
- Institute of Biology, EA 2608 and CRIIGEN and Risk Pole, MRSH-CNRS, Esplanade de la Paix, University of Caen, Caen, Cedex 14032 France
| | - Emilie Clair
- Institute of Biology, EA 2608 and CRIIGEN and Risk Pole, MRSH-CNRS, Esplanade de la Paix, University of Caen, Caen, Cedex 14032 France
| | - Robin Mesnage
- Institute of Biology, EA 2608 and CRIIGEN and Risk Pole, MRSH-CNRS, Esplanade de la Paix, University of Caen, Caen, Cedex 14032 France
| | - Steeve Gress
- Institute of Biology, EA 2608 and CRIIGEN and Risk Pole, MRSH-CNRS, Esplanade de la Paix, University of Caen, Caen, Cedex 14032 France
| | - Nicolas Defarge
- Institute of Biology, EA 2608 and CRIIGEN and Risk Pole, MRSH-CNRS, Esplanade de la Paix, University of Caen, Caen, Cedex 14032 France
| | - Manuela Malatesta
- Department of Neurological, Neuropsychological, Morphological and Motor Sciences, University of Verona, Verona, 37134 Italy
| | - Didier Hennequin
- Risk Pole, MRSH-CNRS, Esplanade de la Paix, University of Caen, Caen, Cedex 14032 France
| | - Joël Spiroux de Vendômois
- Institute of Biology, EA 2608 and CRIIGEN and Risk Pole, MRSH-CNRS, Esplanade de la Paix, University of Caen, Caen, Cedex 14032 France
| |
Collapse
|
39
|
Bartholomaeus A, Parrott W, Bondy G, Walker K. The use of whole food animal studies in the safety assessment of genetically modified crops: limitations and recommendations. Crit Rev Toxicol 2013; 43 Suppl 2:1-24. [PMID: 24164514 PMCID: PMC3833814 DOI: 10.3109/10408444.2013.842955] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/26/2013] [Accepted: 09/06/2013] [Indexed: 11/13/2022]
Abstract
There is disagreement internationally across major regulatory jurisdictions on the relevance and utility of whole food (WF) toxicity studies on GM crops, with no harmonization of data or regulatory requirements. The scientific value, and therefore animal ethics, of WF studies on GM crops is a matter addressable from the wealth of data available on commercialized GM crops and WF studies on irradiated foods. We reviewed available GM crop WF studies and considered the extent to which they add to the information from agronomic and compositional analyses. No WF toxicity study was identified that convincingly demonstrated toxicological concern or that called into question the adequacy, sufficiency, and reliability of safety assessments based on crop molecular characterization, transgene source, agronomic characteristics, and/or compositional analysis of the GM crop and its near-isogenic line. Predictions of safety based on crop genetics and compositional analyses have provided complete concordance with the results of well-conducted animal testing. However, this concordance is primarily due to the improbability of de novo generation of toxic substances in crop plants using genetic engineering practices and due to the weakness of WF toxicity studies in general. Thus, based on the comparative robustness and reliability of compositional and agronomic considerations and on the absence of any scientific basis for a significant potential for de novo generation of toxicologically significant compositional alterations as a sole result of transgene insertion, the conclusion of this review is that WF animal toxicity studies are unnecessary and scientifically unjustifiable.
Collapse
Affiliation(s)
- Andrew Bartholomaeus
- Therapeutics Research Centre, School of Medicine, University of QueenslandQueenslandAustralia
- Faculty of Health, School of Pharmacy, Canberra UniversityCanberraAustralia
| | - Wayne Parrott
- Department of Crop and Soil Sciences, University of GeorgiaAthens, GAUSA
| | - Genevieve Bondy
- Bureau of Chemical Safety, Food Directorate, Health CanadaOttawa, OntarioCanada
| | - Kate Walker
- ILSI International Food Biotechnology CommitteeWashington, DCUSA
| |
Collapse
|
40
|
Nicolia A, Manzo A, Veronesi F, Rosellini D. An overview of the last 10 years of genetically engineered crop safety research. Crit Rev Biotechnol 2013; 34:77-88. [DOI: 10.3109/07388551.2013.823595] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
41
|
Bondzio A, Lodemann U, Weise C, Einspanier R. Cry1Ab treatment has no effects on viability of cultured porcine intestinal cells, but triggers Hsp70 expression. PLoS One 2013; 8:e67079. [PMID: 23861753 PMCID: PMC3701575 DOI: 10.1371/journal.pone.0067079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 05/15/2013] [Indexed: 01/08/2023] Open
Abstract
In vitro testing can contribute to reduce the risk that the use of genetically modified (GM) crops and their proteins show unintended toxic effects. Here we introduce a porcine intestinal cell culture (IPEC-J2) as appropriate in vitro model and tested the possible toxic potential of Cry1Ab protein, commonly expressed in GM-maize. For comprehensive risk assessment we used WST-1 conversion and ATP content as metabolic markers for proliferation, lactate dehydrogenase release as indicator for cells with compromised membrane and transepithelial electrical resistance as parameter indicating membrane barrier function. The results were compared to the effects of valinomycin, a potassium ionophore, known to induce cytotoxic effects in most mammalian cell types. Whereas no toxicity was observed after Cry1Ab treatment, valinomycin induced a decrease in IPEC-J2 viability. This was confirmed by dynamic monitoring of cellular responses. Additionally, two dimensional differential in-gel electrophoresis was performed. Only three proteins were differentially expressed. The functions of these proteins were associated with responses to stress. The up-regulation of heat shock protein Hsp70 was verified by Western blotting as well as by enzyme-linked immunosorbent assay and may be related to a protective function. These findings suggest that the combination of in vitro testing and proteomic analysis may serve as a promising tool for mechanism based safety assessment.
Collapse
Affiliation(s)
- Angelika Bondzio
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany.
| | | | | | | |
Collapse
|
42
|
Mesnage R, Clair E, Gress S, Then C, Székács A, Séralini GE. Cytotoxicity on human cells of Cry1Ab and Cry1Ac Bt insecticidal toxins alone or with a glyphosate-based herbicide. J Appl Toxicol 2013; 33:695-9. [PMID: 22337346 DOI: 10.1002/jat.2712] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 11/15/2011] [Accepted: 11/19/2011] [Indexed: 12/16/2023]
Abstract
The study of combined effects of pesticides represents a challenge for toxicology. In the case of the new growing generation of genetically modified (GM) plants with stacked traits, glyphosate-based herbicides (like Roundup) residues are present in the Roundup-tolerant edible plants (especially corns) and mixed with modified Bt insecticidal toxins that are produced by the GM plants themselves. The potential side effects of these combined pesticides on human cells are investigated in this work. Here we have tested for the very first time Cry1Ab and Cry1Ac Bt toxins (10 ppb to 100 ppm) on the human embryonic kidney cell line 293, as well as their combined actions with Roundup, within 24 h, on three biomarkers of cell death: measurements of mitochondrial succinate dehydrogenase, adenylate kinase release by membrane alterations and caspase 3/7 inductions. Cry1Ab caused cell death from 100 ppm. For Cry1Ac, under such conditions, no effects were detected. The Roundup tested alone from 1 to 20 000 ppm is necrotic and apoptotic from 50 ppm, far below agricultural dilutions (50% lethal concentration 57.5 ppm). The only measured significant combined effect was that Cry1Ab and Cry1Ac reduced caspases 3/7 activations induced by Roundup; this could delay the activation of apoptosis. There was the same tendency for the other markers. In these results, we argue that modified Bt toxins are not inert on nontarget human cells, and that they can present combined side-effects with other residues of pesticides specific to GM plants.
Collapse
Affiliation(s)
- R Mesnage
- University of Caen, Risk Pole MRSH-CNRS, Laboratory of Biochemistry EA2608, Esplanade de la Paix, 14032, Caen cedex, France
| | | | | | | | | | | |
Collapse
|
43
|
Gu J, Krogdahl Å, Sissener NH, Kortner TM, Gelencser E, Hemre GI, Bakke AM. Effects of oral Bt-maize (MON810) exposure on growth and health parameters in normal and sensitised Atlantic salmon, Salmo salar L. Br J Nutr 2013; 109:1408-23. [PMID: 23182224 DOI: 10.1017/s000711451200325x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Responses to GM maize Bt-maize, MON810) expressing Cry1Ab protein from the soil bacterium Bacillus thuringiensis (Bt) in diets for both normal and immune-sensitised (with soyabean meal (SBM)-induced enteropathy) post-smolt Atlantic salmon were investigated following 33 and 97 d of exposure. Triplicate tanks of salmon were fed one of four diets, all containing 20% whole-kernel meal maize, either Bt-maize or its near-isogenic maternal line, without or with 15% extracted SBM inclusion. The fish fed Bt-maize utilised the feed less efficiently, as revealed by lower protein and mineral digestibilities and lower lipid and energy retention efficiencies. Higher intestinal weight, as well as increased interferon-γ and decreased sodium-glucose co-transporter mRNA expression, and a transient increase in T-helper cell presence, as measured by cluster of differentiation 4 (CD4) protein in the distal intestine (DI), may partly explain the lower nutrient digestibilities and retentions. The Bt-maize seemed to potentiate oxidative cellular stress in the DI of immune-sensitised fish, as indicated by increases in superoxide dismutase and heat shock protein 70 mRNA expression. The data suggest that Cry1Ab protein or other antigens in Bt-maize have local immunogenic effects in salmon DI. No systemic immune responses could be detected, as indicated by haematology, differential leucocyte counts, plasma clinical chemistry, as well as absence of Cry1Ab-specific antibodies and Cry1Ab protein in plasma. The responses to Bt-maize observed in the present study differed from results from earlier studies in salmon and other animals fed the same event Bt-maize. Longer-term experiments and more in-depth studies on intestinal physiology and immune responses are needed to evaluate health implications.
Collapse
Affiliation(s)
- Jinni Gu
- Department of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, Aquaculture Protein Centre, PO Box 8146 Dep., N-0033, Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
This commentary deconstructs, discredits, and demystifies the paradigm that eating genetically modified foods causes cancer, and appraises the research protocols needed to substantiate claims for cancer therapy. [...]
Collapse
Affiliation(s)
- L Z G Touyz
- Faculty of Dentistry, McGill University, Montreal, QC
| |
Collapse
|
45
|
Robinson C, Holland N, Leloup D, Muilerman H. Conflicts of interest at the European Food Safety Authority erode public confidence. J Epidemiol Community Health 2013; 67:717-20. [DOI: 10.1136/jech-2012-202185] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
46
|
Abstract
Removal of confidentiality claims on biosafety data is necessary to adhere to standard scientific procedures of quality assurance, to increase transparency, to minimize impacts of conflicts of interests, and ultimately to improve public confidence in GMOs.
Collapse
Affiliation(s)
- Kaare M Nielsen
- Department of Pharmacy, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway.
| |
Collapse
|
47
|
|
48
|
Schwartz SA. The Great Experiment: Genetically Modified Organisms, Scientific Integrity, and National Wellness. Explore (NY) 2013; 9:12-6. [DOI: 10.1016/j.explore.2012.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
49
|
Séralini GE, Clair E, Mesnage R, Gress S, Defarge N, Malatesta M, Hennequin D, de Vendômois JS. Long term toxicity of a Roundup herbicide and a Roundup-tolerant genetically modified maize. Food Chem Toxicol 2012; 50:4221-31. [PMID: 22999595 DOI: 10.1016/j.fct.2012.08.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 08/01/2012] [Accepted: 08/02/2012] [Indexed: 01/19/2023]
Abstract
The health effects of a Roundup-tolerant genetically modified maize (from 11% in the diet), cultivated with or without Roundup, and Roundup alone (from 0.1 ppb in water), were studied 2 years in rats. In females, all treated groups died 2-3 times more than controls, and more rapidly. This difference was visible in 3 male groups fed GMOs. All results were hormone and sex dependent, and the pathological profiles were comparable. Females developed large mammary tumors almost always more often than and before controls, the pituitary was the second most disabled organ; the sex hormonal balance was modified by GMO and Roundup treatments. In treated males, liver congestions and necrosis were 2.5-5.5 times higher. This pathology was confirmed by optic and transmission electron microscopy. Marked and severe kidney nephropathies were also generally 1.3-2.3 greater. Males presented 4 times more large palpable tumors than controls which occurred up to 600 days earlier. Biochemistry data confirmed very significant kidney chronic deficiencies; for all treatments and both sexes, 76% of the altered parameters were kidney related. These results can be explained by the non linear endocrine-disrupting effects of Roundup, but also by the overexpression of the transgene in the GMO and its metabolic consequences.
Collapse
Affiliation(s)
- Gilles-Eric Séralini
- University of Caen, Institute of Biology, CRIIGEN and Risk Pole, MRSH-CNRS, EA 2608, Esplanade de la Paix, Caen Cedex 14032, France.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Yong L, Liu YM, Jia XD, Li N, Zhang WZ. Subchronic toxicity study of GH transgenic carp. Food Chem Toxicol 2012; 50:3920-6. [PMID: 22889892 DOI: 10.1016/j.fct.2012.07.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 07/17/2012] [Accepted: 07/27/2012] [Indexed: 10/28/2022]
Abstract
A subchronic toxicity study of GH (growth hormone) transgenic carp was carried out with 60 SD rats aged 4 weeks, weight 115∼125 g. Ten male and 10 female rats were allotted into each group. Animals of the three groups (transgenic carp group (GH-TC), parental carp group (PC) and control group) were fed soy- and alfalfa-free diet (SAFD) with 10% GH transgenic carp powder, 10% parental carp powder or 10% common carp powder for 90 consecutive days, respectively. In the end of study, animals were killed by exsanguination via the carotid artery under diethyl ether anesthesia, then weights of heart, liver, kidneys, spleen, thymus, brain, ovaries and uterus/testis were measured. Pathological examination of organs was determined. Endocrine hormones of triiodothyronine (T3), thyroid hormone (T4), follicle-stimulating hormone (FSH), 17β-estradiol (E2), progesterone (P) and testosterone (T) levels were detected by specific ELISA kit. Parameters of blood routine and blood biochemical were measured. The weights of the body and organs of the rats, food intake, blood routine, blood biochemical test and serum hormones showed no significant differences among the GH transgenic carp-treated, parental carp-treated and control groups (P>0.05). Thus, it was concluded that at the dose level of this study, GH transgenic carp showed no subchronic toxicity and endocrine disruption to SD rats.
Collapse
Affiliation(s)
- Ling Yong
- National Institute for Nutrition and Food Safety, China CDC, Beijing 100021, China
| | | | | | | | | |
Collapse
|