1
|
Eissa MM, Salem AE, El Skhawy N. Parasites revive hope for cancer therapy. Eur J Med Res 2024; 29:489. [PMID: 39367471 PMCID: PMC11453045 DOI: 10.1186/s40001-024-02057-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/10/2024] [Indexed: 10/06/2024] Open
Abstract
Parasites have attained a life-long stigma of being detrimental organisms with deleterious outcomes. Yet, recently, a creditable twist was verified that can dramatically change our perception of those parasites from being a source of misery to millions of people to a useful anti-cancerous tool. Various parasites have shown promise to combat cancer in different experimental models, including colorectal, lung, and breast cancers, among others. Helminths and protozoan parasites, as well as their derivatives such as Echinococcus granulosus protein KI-1, Toxoplasma gondii GRA15II, and Trypanosoma cruzi calreticulin, have demonstrated the ability to inhibit tumor growth, angiogenesis, and metastasis. This article provides an overview of the literature on various cancer types that have shown promising responses to parasite therapy in both in vitro and in vivo animal studies. Parasites have shown anti-neoplastic activity through a variety of mechanisms that collectively contribute to their anti-cancer properties. These include immunomodulation, inhibition of angiogenesis, and molecular mimicry with cancer cells. This review article sheds light on this intriguing emerging field and emphasizes the value of collaborative multidisciplinary research projects with funding agencies and pharmaceutical companies. Thus, these strategies would secure continuous exploration of this new avenue and accelerate the advancement of cancer therapy research. Although experimental studies are heavily conducted by leaps and bounds, further steps are definitely lagging. Upgrading research from the experimental level to the clinical trial would be a wise progression toward efficient exploitation of the anti-neoplastic capabilities of parasites, ultimately saving countless lives.
Collapse
Affiliation(s)
- Maha M Eissa
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Ahmed Ebada Salem
- Department of Radiology and Nuclear Medicine, School of Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 48123, USA
| | - Nahla El Skhawy
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
2
|
Walter NS, Bhattacharyya S. Mining parasites for their potential as novel therapeutic agents against cancer. Med Oncol 2024; 41:211. [PMID: 39073638 DOI: 10.1007/s12032-024-02458-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Despite recent advances in the management and therapeutic of cancer, the treatment of the disease is limited by its high cost and severe side effects. In this scenario, there is an unmet need to identify novel treatment alternatives for this dreaded disease. Recently there is growing evidence that parasites may cause anticancer effects because of a negative correlation between parasitic infections and tumour growth despite some parasites that are known to exhibit pro-carcinogenic effects. It has been observed that parasites exert an anticancer effect either by activating the host's immune response or by secreting certain molecules that exhibit anticancer potential. The activation of the immune response by these parasitic organisms results in the inhibition of some of the hallmarks of cancer such as tumour proliferation, angiogenesis, and metastasis. This review summarizes the current advances as well as the mechanisms underlying the possible implications of this diverse group of organisms as anticancer agents.
Collapse
Affiliation(s)
- Neha Sylvia Walter
- Department of Biophysics, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Shalmoli Bhattacharyya
- Department of Biophysics, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India.
| |
Collapse
|
3
|
Mendoza-Rodríguez MG, Medina-Reyes D, Sánchez-Barrera CA, Fernández-Muñoz KV, García-Castillo V, Ledesma-Torres JL, González-González MI, Reyes JL, Pérez-Plascencia C, Rodríguez-Sosa M, Vaca-Paniagua F, Meraz MA, Terrazas LI. Helminth-derived molecules improve 5-fluorouracil treatment on experimental colon tumorigenesis. Biomed Pharmacother 2024; 175:116628. [PMID: 38663106 DOI: 10.1016/j.biopha.2024.116628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 06/03/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent fatal neoplasias worldwide. Despite efforts to improve the early diagnosis of CRC, the mortality rate of patients is still nearly 50%. The primary treatment strategy for CRC is surgery, which may be accompanied by chemotherapy and radiotherapy. The conventional and first-line chemotherapeutic agent utilized is 5-fluorouracil (5FU). However, it has low efficiency. Combination treatment with leucovorin and oxaliplatin or irinotecan improves the effectiveness of 5FU therapy. Unfortunately, most patients develop drug resistance, leading to disease progression. Here, we evaluated the effect of a potential alternative adjuvant treatment for 5FU, helminth-derived Taenia crassiceps (TcES) molecules, on treating advanced colitis-associated colon cancer. The use of TcES enhanced the effects of 5FU on established colonic tumors by downregulating the expression of the immunoregulatory cytokines, Il-10 and Tgf-β, and proinflammatory cytokines, Tnf-α and Il-17a, and reducing the levels of molecular markers associated with malignancy, cyclin D1, and Ki67, both involved in apoptosis inhibition and the signaling pathway of β-catenin. TcES+5FU therapy promoted NK cell recruitment and the release of Granzyme B1 at the tumor site, consequently inducing tumor cell death. Additionally, it restored P53 activity which relates to decreased Mdm2 expression. In vitro assays with human colon cancer cell lines showed that therapy with TcES+5FU significantly reduced cell proliferation and migration by modulating the P53 and P21 signaling pathways. Our findings demonstrate, for the first time in vivo, that helminth-derived excreted/secreted products may potentiate the effect of 5FU on established colon tumors.
Collapse
Affiliation(s)
- Mónica G Mendoza-Rodríguez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico.
| | - Daniela Medina-Reyes
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico
| | - Cuauhtémoc A Sánchez-Barrera
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico
| | - Karen V Fernández-Muñoz
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico; Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Avenida Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico
| | - Verónica García-Castillo
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico
| | - Jorge L Ledesma-Torres
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico
| | - Marisol I González-González
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico
| | - José L Reyes
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico
| | - Carlos Pérez-Plascencia
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico; Laboratorio de Genómica, Instituto Nacional de Cancerología, Tlalpan, Mexico
| | - Miriam Rodríguez-Sosa
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico
| | - Felipe Vaca-Paniagua
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico; Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico
| | - Marco A Meraz
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Avenida Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico
| | - Luis I Terrazas
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico; Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico.
| |
Collapse
|
4
|
Schreiber M, Vajs V, Horák P. How tapeworms interact with cancers: a mini-review. PeerJ 2024; 12:e17196. [PMID: 38563013 PMCID: PMC10984186 DOI: 10.7717/peerj.17196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer is one of the leading causes of death, with an estimated 19.3 million new cases and 10 million deaths worldwide in 2020 alone. Approximately 2.2 million cancer cases are attributed to infectious diseases, according to the World Health Organization (WHO). Despite the apparent involvement of some parasitic helminths (especially trematodes) in cancer induction, there are also records of the potential suppressive effects of helminth infections on cancer. Tapeworms such as Echinococcus granulosus, Taenia crassiceps, and more seem to have the potential to suppress malignant cell development, although in a few cases the evidence might be contradictory. Our review aims to summarize known epidemiological data on the cancer-helminth co-occurrence in the human population and the interactions of tapeworms with cancers, i.e., proven or hypothetical effects of tapeworms and their products on cancer cells in vivo (i.e., in experimental animals) or in vitro. The prospect of bioactive tapeworm molecules helping reduce the growth and metastasis of cancer is within the realm of future possibility, although extensive research is yet required due to certain concerns.
Collapse
Affiliation(s)
- Manfred Schreiber
- Department of Parasitology, Faculty of Science, Charles University Prague, Prague, Czech Republic
| | - Vojtěch Vajs
- Department of Parasitology, Faculty of Science, Charles University Prague, Prague, Czech Republic
| | - Petr Horák
- Department of Parasitology, Faculty of Science, Charles University Prague, Prague, Czech Republic
| |
Collapse
|
5
|
Schreiber M, Macháček T, Vajs V, Šmídová B, Majer M, Hrdý J, Tolde O, Brábek J, Rösel D, Horák P. Suppression of the growth and metastasis of mouse melanoma by Taenia crassiceps and Mesocestoides corti tapeworms. Front Immunol 2024; 15:1376907. [PMID: 38571957 PMCID: PMC10987685 DOI: 10.3389/fimmu.2024.1376907] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/27/2024] [Indexed: 04/05/2024] Open
Abstract
Cancer is still one of the leading causes of death, with an estimated 19.3 million new cases every year. Our paper presents the tumor-suppressing effect of Taenia crassiceps and Mesocestoides corti on B16F10 melanoma, the intraperitoneal application of which followed the experimental infection with these tapeworms, resulting in varying degrees of effectiveness in two strains of mice. In the case of M. corti-infected ICR mice, a strong tumor growth suppression occurred, which was accompanied by a significant reduction in the formation of distant metastases in the liver and lung. Tapeworm-infected C57BL/6J mice also showed a suppression of tumor growth and, in addition, the overall survival of infected C57BL/6J mice was significantly improved. Experiments with potential cross-reaction of melanoma and tapeworm antigens with respective specific antibodies, restimulation of spleen T cells, or the direct effect of tapeworm excretory-secretory products on melanoma cells in vitro could not explain the phenomenon. However, infections with T. crassiceps and M. corti increased the number of leukocytes possibly involved in anti-tumor immunity in the peritoneal cavity of both ICR and C57BL/6J mice. This study unveils the complex interplay between tapeworm infections, immune responses, and melanoma progression, emphasizing the need for further exploration of the mechanisms driving observed tumor-suppressive effects.
Collapse
Affiliation(s)
- Manfred Schreiber
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Tomáš Macháček
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Vojtěch Vajs
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Barbora Šmídová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Martin Majer
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Jiří Hrdý
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Ondřej Tolde
- Department of Cell Biology, and Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), Charles University, Prague, Czechia
| | - Jan Brábek
- Department of Cell Biology, and Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), Charles University, Prague, Czechia
| | - Daniel Rösel
- Department of Cell Biology, and Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), Charles University, Prague, Czechia
| | - Petr Horák
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
6
|
Esperante D, Gutiérrez MIM, Issa ME, Schcolnik-Cabrera A, Mendlovic F. Similarities and divergences in the metabolism of immune cells in cancer and helminthic infections. Front Oncol 2023; 13:1251355. [PMID: 38044996 PMCID: PMC10690632 DOI: 10.3389/fonc.2023.1251355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/16/2023] [Indexed: 12/05/2023] Open
Abstract
Energetic and nutritional requirements play a crucial role in shaping the immune cells that infiltrate tumor and parasite infection sites. The dynamic interaction between immune cells and the microenvironment, whether in the context of tumor or helminth infection, is essential for understanding the mechanisms of immunological polarization and developing strategies to manipulate them in order to promote a functional and efficient immune response that could aid in the treatment of these conditions. In this review, we present an overview of the immune response triggered during tumorigenesis and establishment of helminth infections, highlighting the transition to chronicity in both cases. We discuss the energetic demands of immune cells under normal conditions and in the presence of tumors and helminths. Additionally, we compare the metabolic changes that occur in the tumor microenvironment and the infection site, emphasizing the alterations that are induced to redirect the immune response, thereby promoting the survival of cancer cells or helminths. This emerging discipline provides valuable insights into disease pathogenesis. We also provide examples of novel strategies to enhance immune activity by targeting metabolic pathways that shape immune phenotypes, with the aim of achieving positive outcomes in cancer and helminth infections.
Collapse
Affiliation(s)
- Diego Esperante
- Plan de Estudios Combinados en Medicina (PECEM), Facultad de Medicina, Universidad Nacional Autonóma de México (UNAM), Mexico City, Mexico
| | - Mónica Itzel Martínez Gutiérrez
- Plan de Estudios Combinados en Medicina (PECEM), Facultad de Medicina, Universidad Nacional Autonóma de México (UNAM), Mexico City, Mexico
| | - Mark E. Issa
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, United States
| | - Alejandro Schcolnik-Cabrera
- Département de Biochimie et Médicine Moléculaire, Université de Montréal, Succursale Centre-Ville, Montréal, QC, Canada
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada
| | - Fela Mendlovic
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, Huixquilucan, Mexico
| |
Collapse
|
7
|
Garcia-Bonete MJ, Rajan A, Suriano F, Layunta E. The Underrated Gut Microbiota Helminths, Bacteriophages, Fungi, and Archaea. Life (Basel) 2023; 13:1765. [PMID: 37629622 PMCID: PMC10455619 DOI: 10.3390/life13081765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/12/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
The microbiota inhabits the gastrointestinal tract, providing essential capacities to the host. The microbiota is a crucial factor in intestinal health and regulates intestinal physiology. However, microbiota disturbances, named dysbiosis, can disrupt intestinal homeostasis, leading to the development of diseases. Classically, the microbiota has been referred to as bacteria, though other organisms form this complex group, including viruses, archaea, and eukaryotes such as fungi and protozoa. This review aims to clarify the role of helminths, bacteriophages, fungi, and archaea in intestinal homeostasis and diseases, their interaction with bacteria, and their use as therapeutic targets in intestinal maladies.
Collapse
Affiliation(s)
- Maria Jose Garcia-Bonete
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Anandi Rajan
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Francesco Suriano
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Elena Layunta
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
| |
Collapse
|
8
|
Andrade-Meza A, Arias-Romero LE, Armas-López L, Ávila-Moreno F, Chirino YI, Delgado-Buenrostro NL, García-Castillo V, Gutiérrez-Cirlos EB, Juárez-Avelar I, Leon-Cabrera S, Mendoza-Rodríguez MG, Olguín JE, Perez-Lopez A, Pérez-Plasencia C, Reyes JL, Sánchez-Pérez Y, Terrazas LI, Vaca-Paniagua F, Villamar-Cruz O, Rodríguez-Sosa M. Mexican Colorectal Cancer Research Consortium (MEX-CCRC): Etiology, Diagnosis/Prognosis, and Innovative Therapies. Int J Mol Sci 2023; 24:ijms24032115. [PMID: 36768437 PMCID: PMC9917340 DOI: 10.3390/ijms24032115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 01/25/2023] Open
Abstract
In 2013, recognizing that Colorectal Cancer (CRC) is the second leading cause of death by cancer worldwide and that it was a neglected disease increasing rapidly in Mexico, the community of researchers at the Biomedicine Research Unit of the Facultad de Estudios Superiores Iztacala from the Universidad Nacional Autónoma de México (UNAM) established an intramural consortium that involves a multidisciplinary group of researchers, technicians, and postgraduate students to contribute to the understanding of this pathology in Mexico. This article is about the work developed by the Mexican Colorectal Cancer Research Consortium (MEX-CCRC): how the Consortium was created, its members, and its short- and long-term goals. Moreover, it is a narrative of the accomplishments of this project. Finally, we reflect on possible strategies against CRC in Mexico and contrast all the data presented with another international strategy to prevent and treat CRC. We believe that the Consortium's characteristics must be maintained to initiate a national strategy, and the reported data could be useful to establish future collaborations with other countries in Latin America and the world.
Collapse
Affiliation(s)
- Antonio Andrade-Meza
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - Luis E. Arias-Romero
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Leonel Armas-López
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Federico Ávila-Moreno
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Yolanda I. Chirino
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Norma L. Delgado-Buenrostro
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Verónica García-Castillo
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Emma B. Gutiérrez-Cirlos
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Imelda Juárez-Avelar
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
- Programa de Doctorado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - Sonia Leon-Cabrera
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
- Carrera de Médico Cirujano, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Mónica G. Mendoza-Rodríguez
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Jonadab E. Olguín
- Laboratorio Nacional en Salud: Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Araceli Perez-Lopez
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Carlos Pérez-Plasencia
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México 14080, Mexico
| | - José L. Reyes
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México 14080, Mexico
| | - Luis I. Terrazas
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
- Laboratorio Nacional en Salud: Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Felipe Vaca-Paniagua
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
- Laboratorio Nacional en Salud: Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México 14080, Mexico
| | - Olga Villamar-Cruz
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Miriam Rodríguez-Sosa
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
- Correspondence: ; Tel.: +52-55-5623-1333
| |
Collapse
|
9
|
Excretory-secretory product of Trichinella spiralis inhibits tumor cell growth by regulating the immune response and inducing apoptosis. Acta Trop 2022; 225:106172. [PMID: 34627760 DOI: 10.1016/j.actatropica.2021.106172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/24/2021] [Accepted: 09/27/2021] [Indexed: 12/30/2022]
Abstract
The excretory-secretory product (ESP) of Trichinella spiralis (T. spiralis) has been reported to inhibit the growth of various tumor cells, but the mechanism is not yet clear. To explore the effect and mechanism of ESP on liver cancer cells, tumor models were established with H22 cells and then infected with T. spiralis. The results showed that the growth of tumors in mice infected with T. spiralis was significantly inhibited. ESP from adult worms or muscle larvae were then incubated with H22 cells in vitro, and it was found that the ESP could inhibit cell proliferation and promote apoptosis. Subsequently, apoptosis-related proteins in stimulated H22 cells were evaluated, and ESP was found to induce cell apoptosis through the mitochondrial pathway. Additionally, Th-related cytokines were investigated in vivo, and the results showed that the levels of Th1 cytokines were significantly increased in the early stage of T. spiralis infection, while Th2 cytokines increased later than Th1 cytokines, implying that Th1 cytokines with antitumor effects may play a role in inhibiting tumor growth at early stage. In short, ESP can directly induce tumor cell apoptosis and indirectly inhibit tumor cell growth through the host immune system, which may be the antitumor mechanism of T. spiralis infection.
Collapse
|
10
|
Sauer S, Beinart D, Finn SMB, Kumar SL, Cheng Q, Hwang SE, Parker W, Devi GR. Hymenolepis diminuta-based helminth therapy in C3(1)-TAg mice does not alter breast tumor onset or progression. Evol Med Public Health 2021; 9:131-138. [PMID: 33738103 PMCID: PMC7953836 DOI: 10.1093/emph/eoab007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 02/07/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND OBJECTIVES An individual's risk of breast cancer is profoundly affected by evolutionary mismatch. Mismatches in Western society known to increase the risk of breast cancer include a sedentary lifestyle and reproductive factors. Biota alteration, characterized by a loss of biodiversity from the ecosystem of the human body as a result of Western society, is a mismatch known to increase the risk of a variety of inflammation-related diseases, including colitis-associated colon cancer. However, the effect of biota alteration on breast cancer has not been evaluated. METHODOLOGY In this study, we utilized the C3(1)-TAg mouse model of breast cancer to evaluate the role of biota alteration in the development of breast cancer. This model has been used to recapitulate the role of exercise and pregnancy in reducing the risk of breast cancer. C3(1)-TAg mice were treated with Hymenolepis diminuta, a benign helminth that has been shown to reverse the effects of biota alteration in animal models. RESULTS No effect of the helminth H. diminuta was observed. Neither the latency nor tumor growth was affected by the therapy, and no significant effects on tumor transcriptome were observed based on RNAseq analysis. CONCLUSIONS AND IMPLICATIONS These findings suggest that biota alteration, although known to affect a variety of Western-associated diseases, might not be a significant factor in the high rate of breast cancer observed in Western societies. LAY SUMMARY An almost complete loss of intestinal worms in high-income countries has led to increases in allergic disorders, autoimmune conditions, and perhaps colon cancer. However, in this study, results using laboratory mice suggest that loss of intestinal worms might not be associated with breast cancer.
Collapse
Affiliation(s)
- Scott Sauer
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Dylan Beinart
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Sade M B Finn
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Sereena L Kumar
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Qing Cheng
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Shelley E Hwang
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - William Parker
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Gayathri R Devi
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
11
|
Parker W, Sarafian JT, Broverman SA, Laman JD. Between a hygiene rock and a hygienic hard place: Avoiding SARS-CoV-2 while needing environmental exposures for immunity. Evol Med Public Health 2021; 9:120-130. [PMID: 33732461 PMCID: PMC7928958 DOI: 10.1093/emph/eoab006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/01/2020] [Indexed: 12/13/2022] Open
Abstract
Suboptimal understanding of concepts related to hygiene by the general public, clinicians and researchers is a persistent problem in health and medicine. Although hygiene is necessary to slow or prevent deadly pandemics of infectious disease such as coronavirus disease 2019 (COVID-19), hygiene can have unwanted effects. In particular, some aspects of hygiene cause a loss of biodiversity from the human body, characterized by the almost complete removal of intestinal worms (helminths) and protists. Research spanning more than half a century documents that this loss of biodiversity results in an increased propensity for autoimmune disease, allergic disorders, probably neuropsychiatric problems and adverse reactions to infectious agents. The differences in immune function between communities with and communities without helminths have become so pronounced that the reduced lethality of severe acute respiratory syndrome coronavirus 2 in low-income countries compared to high-income countries was predicted early in the COVID-19 pandemic. This prediction, based on the maladaptive immune responses observed in many cases of COVID-19 in high-income countries, is now supported by emerging data from low-income countries. Herein, hygiene is subdivided into components involving personal choice versus components instituted by community wide systems such as sewage treatment facilities and water treatment plants. The different effects of personal hygiene and systems hygiene are described, and appropriate measures to alleviate the adverse effects of hygiene without losing the benefits of hygiene are discussed. Finally, text boxes are provided to function as stand-alone, public-domain handouts with the goal of informing the public about hygiene and suggesting solutions for biomedical researchers and policy makers. Lay Summary: Hygiene related to sewer systems and other technology can have adverse effects on immune function, and is distinct from personal hygiene practices such as hand washing and social distancing. Dealing with the drawbacks of hygiene must be undertaken without compromising the protection from infectious disease imposed by hygiene.
Collapse
Affiliation(s)
- William Parker
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Joshua T Sarafian
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Sherryl A Broverman
- Department of Biology and the Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Jon D Laman
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
12
|
Zhang B, Gems D. Gross ways to live long: Parasitic worms as an anti-inflammaging therapy? eLife 2021; 10:65180. [PMID: 33526169 PMCID: PMC7853715 DOI: 10.7554/elife.65180] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022] Open
Abstract
Evolutionary medicine argues that disease can arise because modern conditions do not match those in which we evolved. For example, a decline in exposure to commensal microbes and gastrointestinal helminths in developed countries has been linked to increased prevalence of allergic and autoimmune inflammatory disorders (the hygiene hypothesis). Accordingly, probiotic therapies that restore ‘old friend’ microbes and helminths have been explored as Darwinian treatments for these disorders. A further possibility is that loss of old friend commensals also increases the sterile, aging-associated inflammation known as inflammaging, which contributes to a range of age-related diseases, including cardiovascular disease, dementia, and cancer. Interestingly, Crowe et al., 2020 recently reported that treatment with a secreted glycoprotein from a parasitic nematode can protect against murine aging by induction of anti-inflammatory mechanisms. Here, we explore the hypothesis that restorative helminth therapy would have anti-inflammaging effects. Could worm infections provide broad-spectrum protection against age-related disease?
Collapse
Affiliation(s)
- Bruce Zhang
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - David Gems
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
13
|
Jacobs BA, Prince S, Smith KA. Gastrointestinal Nematode-Derived Antigens Alter Colorectal Cancer Cell Proliferation and Migration through Regulation of Cell Cycle and Epithelial-Mesenchymal Transition Proteins. Int J Mol Sci 2020; 21:ijms21217845. [PMID: 33105843 PMCID: PMC7660063 DOI: 10.3390/ijms21217845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/02/2022] Open
Abstract
As the global incidences of colorectal cancer rises, there is a growing importance in understanding the interaction between external factors, such as common infections, on the initiation and progression of this disease. While certain helminth infections have been shown to alter the severity and risk of developing colitis-associated colorectal cancer, whether these parasites can directly affect colorectal cancer progression is unknown. Here, we made use of murine and human colorectal cancer cell lines to demonstrate that exposure to antigens derived from the gastrointestinal nematode Heligmosomoides polygyrus significantly reduced colorectal cancer cell proliferation in vitro. Using a range of approaches, we demonstrate that antigen-dependent reductions in cancer cell proliferation and viability are associated with increased expression of the critical cell cycle regulators p53 and p21. Interestingly, H. polygyrus-derived antigens significantly increased murine colorectal cancer cell migration, which was associated with an increased expression of the adherens junction protein β-catenin, whereas the opposite was true for human colorectal cancer cells. Together, these findings demonstrate that antigens derived from a gastrointestinal nematode can significantly alter colorectal cancer cell behavior. Further in-depth analysis may reveal novel candidates for targeting and treating late-stage cancer.
Collapse
Affiliation(s)
- Brittany-Amber Jacobs
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa;
| | - Sharon Prince
- Department of Human Biology, University of Cape Town, Cape Town 7925, South Africa;
| | - Katherine Ann Smith
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa;
- School of Medicine, Cardiff University, Cardiff CF14 3XN, UK
- Correspondence: ; Tel.: +44-2920-874-303
| |
Collapse
|
14
|
Callejas BE, Mendoza-Rodríguez MG, Villamar-Cruz O, Reyes-Martínez S, Sánchez-Barrera CA, Rodríguez-Sosa M, Delgado-Buenrostro NL, Martínez-Saucedo D, Chirino YI, León-Cabrera SA, Pérez-Plasencia C, Vaca-Paniagua F, Arias-Romero LE, Terrazas LI. Helminth-derived molecules inhibit colitis-associated colon cancer development through NF-κB and STAT3 regulation. Int J Cancer 2019; 145:3126-3139. [PMID: 31407335 DOI: 10.1002/ijc.32626] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/30/2019] [Indexed: 12/28/2022]
Abstract
Inflammation is currently considered a hallmark of cancer and plays a decisive role in different stages of tumorigenesis, including initiation, promotion, progression, metastasis and resistance to antitumor therapies. Colorectal cancer is a disease widely associated with local chronic inflammation. Additionally, extrinsic factors such as infection may beneficially or detrimentally alter cancer progression. Several reports have noted the ability of various parasitic infections to modulate cancer development, favoring tumor progression in many cases and inhibiting tumorigenesis in others. The aim of our study was to determine the effects of excreted/secreted products of the helminth Taenia crassiceps (TcES) as a treatment in a murine model of colitis-associated colon cancer (CAC). Here, we found that after inducing CAC, treatment with TcES was able to reduce inflammatory cytokines such as IL-1β, TNF-α, IL-33 and IL-17 and significantly attenuate colon tumorigenesis. This effect was associated with the inhibition of signal transducer and activator of transcription 3 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) phosphorylation. Furthermore, we determined that TcES interfered with LPS-induced NF-κB p65 activation in human colonic epithelial cell lines in a Raf-1 proto-oncogene-dependent manner. Moreover, in three-dimensional cultures, TcES promoted reorganization of the actin cytoskeleton, altering cell morphology and forming colonospheres, features associated with a low grade of aggressiveness. Our study demonstrates a remarkable effect of helminth-derived molecules on suppressing ongoing colorectal cancer by downregulating proinflammatory and protumorigenic signaling pathways.
Collapse
Affiliation(s)
- Blanca E Callejas
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | - Mónica G Mendoza-Rodríguez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | - Olga Villamar-Cruz
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | - Sandy Reyes-Martínez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | - Cuauhtémoc Angel Sánchez-Barrera
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | - Miriam Rodríguez-Sosa
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | - Norma L Delgado-Buenrostro
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | - Diana Martínez-Saucedo
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | - Yolanda I Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | - Sonia A León-Cabrera
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | - Carlos Pérez-Plasencia
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico.,Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | - Felipe Vaca-Paniagua
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico.,Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, Mexico.,Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | - Luis E Arias-Romero
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | - Luis I Terrazas
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico.,Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| |
Collapse
|
15
|
Taenia crassiceps-Excreted/Secreted Products Induce a Defined MicroRNA Profile that Modulates Inflammatory Properties of Macrophages. J Immunol Res 2019; 2019:2946713. [PMID: 31218234 PMCID: PMC6536978 DOI: 10.1155/2019/2946713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/26/2019] [Indexed: 12/20/2022] Open
Abstract
Helminth parasites modulate immune responses in their host to prevent their elimination and to establish chronic infections. Our previous studies indicate that Taenia crassiceps-excreted/secreted antigens (TcES) downregulate inflammatory responses in rodent models of autoimmune diseases, by promoting the generation of alternatively activated-like macrophages (M2) in vivo. However, the molecular mechanisms triggered by TcES that modulate macrophage polarization and inflammatory response remain unclear. Here, we found that, while TcES reduced the production of inflammatory cytokines (IL-6, IL-12, and TNFα), they increased the release of IL-10 in LPS-induced bone marrow-derived macrophages (BMDM). However, TcES alone or in combination with LPS or IL-4 failed to increase the production of the canonical M1 or M2 markers in BMDM. To further define the anti-inflammatory effect of TcES in the response of LPS-stimulated macrophages, we performed transcriptomic array analyses of mRNA and microRNA to evaluate their levels. Although the addition of TcES to LPS-stimulated BMDM induced modest changes in the inflammatory mRNA profile, it induced the production of mRNAs associated with the activation of different receptors, phagocytosis, and M2-like phenotype. Moreover, we found that TcES induced upregulation of specific microRNAs, including miR-125a-5p, miR-762, and miR-484, which are predicted to target canonical inflammatory molecules and pathways in LPS-induced BMDM. These results suggest that TcES can modulate proinflammatory responses in macrophages by inducing regulatory posttranscriptional mechanisms and hence reduce detrimental outcomes in hosts running with inflammatory diseases.
Collapse
|
16
|
Callejas BE, Martínez-Saucedo D, Terrazas LI. Parasites as negative regulators of cancer. Biosci Rep 2018; 38:BSR20180935. [PMID: 30266743 PMCID: PMC6200699 DOI: 10.1042/bsr20180935] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 12/16/2022] Open
Abstract
Several environmental factors (chemical, physical, and biological) can cause the initiation, promotion, and progression of cancer. Regarding the biological factors, several studies have found that infections caused by some bacteria, viruses and protozoan, and helminth parasites are related to carcinogenesis. However, in recent years a different approach has been implemented on the antitumor impact of parasitic diseases caused by some protozoan and helminths, mainly because such infections may affect several hallmarks of cancer, but the involved mechanisms still remain unknown. The beneficial effects reported for some parasitic diseases on tumorigenesis range from the induction of apoptosis, activation of the immune response, avoiding metastasis and angiogenesis, inhibition of proliferative signals, to the regulation of inflammatory responses that promote cancer. In this work, we reviewed the available information regarding how parasitic infections may modulate cancer progression. Despite the fact that specific mechanisms of action on tumors are not yet totally clear, we consider that detailed studies of the antitumor action of these organisms and their products could lead to the discovery and use of new molecules from these biological agents that may work as adjuvant therapy in the treatment of various types of cancer.
Collapse
Affiliation(s)
- Blanca E Callejas
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Estado de México, 54090, México
| | - Diana Martínez-Saucedo
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Estado de México, 54090, México
| | - Luis I Terrazas
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Estado de México, 54090, México
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Estado de México, 54090, México
| |
Collapse
|
17
|
Salazar-Castañón VH, Juárez-Avelar I, Legorreta-Herrera M, Govezensky T, Rodriguez-Sosa M. Co-infection: the outcome of Plasmodium infection differs according to the time of pre-existing helminth infection. Parasitol Res 2018; 117:2767-2784. [PMID: 29938323 DOI: 10.1007/s00436-018-5965-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 06/07/2018] [Indexed: 01/28/2023]
Abstract
Although helminth-Plasmodium coinfections are common in tropical regions, the implications of this co-existence for the host immune response are poorly understood. In order to understand the effect of helminth infection at different times of coinfection on the immune response against Plasmodium infection, BALB/c mice were intraperitoneally infected with Taenia crassiceps (Tc). At 2 (Tc2) or 8 (Tc8) weeks post-infection, mice were intravenously infected with 1 × 103 Plasmodium yoelii (Py) 17XL-parasitized red blood cells. Py 17XL-single-infected mice developed cachexia, splenomegaly, and anemia, and died at 11 days post-infection. Importantly, Tc2 + Py-coinfected mice showed increased survival of 58% on day 11, but developed pathology (cachexia and splenomegaly) and succumbed on day 18 post-coinfection, this latter associated with high levels of IL-1β and IL-12, and reduced IFN-γ in serum compared with Py 17XL-single-infected mice. Interestingly, Tc8 + Py-coinfected mice showed increased survival up to 80% on day 11 and succumbed on day 30 post-coinfection. This increased survival rate conferred by chronic helminth infection was associated with a decreased pathology and mixed inflammatory-type 1/anti-inflammatory-type 2 immune profile as evidenced by the production of high levels of IL-12 and IL-10, and reduced TNF-α from macrophages, high levels of IL-4 and IL-10, and low levels of IFN-γ from spleen cells. Also high serum levels of IL-1β, TNF-α, IL-12, IL-4, and IL-10, but a significant reduction of IFN-γ were observed. Together, these data indicate that polarization of the cell-mediated response modulated by a pre-existing helminth infection differentially impacts on the host immune response to Py 17XL in a time-dependent manner.
Collapse
Affiliation(s)
- Víctor H Salazar-Castañón
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - Imelda Juárez-Avelar
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - Martha Legorreta-Herrera
- Laboratorio de Inmunología Molecular, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Batalla 5 de mayo s/n, Col. Ejército de Oriente, Iztapalapa, C.P. 09230, Ciudad de México, Mexico
| | - Tzipe Govezensky
- Departamento de Biología Molecular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autònoma de México (UNAM), Ciudad de México, Mexico
| | - Miriam Rodriguez-Sosa
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico.
| |
Collapse
|
18
|
Smyth K, Morton C, Mathew A, Karuturi S, Haley C, Zhang M, Holzknecht ZE, Swanson C, Lin SS, Parker W. Production and Use of Hymenolepis diminuta Cysticercoids as Anti-Inflammatory Therapeutics. J Clin Med 2017; 6:jcm6100098. [PMID: 29064448 PMCID: PMC5664013 DOI: 10.3390/jcm6100098] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/04/2017] [Accepted: 10/17/2017] [Indexed: 12/22/2022] Open
Abstract
Helminthic therapy has shown considerable promise as a means of alleviating some inflammatory diseases that have proven resistant to pharmaceutical intervention. However, research in the field has been limited by a lack of availability to clinician scientists of a helminth that is relatively benign, non-communicable, affordable, and effectively treats disease. Previous socio-medical studies have found that some individuals self-treating with helminths to alleviate various diseases are using the rat tapeworm (cysticercoid developmental stage of Hymenolepis diminuta; HDC). In this study, we describe the production and use of HDCs in a manner that is based on reports from individuals self-treating with helminths, individuals producing helminths for self-treatment, and physicians monitoring patients that are self-treating. The helminth may fit the criteria needed by clinical scientists for clinical trials, and the methodology is apparently feasible for any medical center to reproduce. It is hoped that future clinical trials using this organism may shed light on the potential for helminthic therapy to alleviate inflammatory diseases. Further, it is hoped that studies with HDCs may provide a stepping stone toward population-wide restoration of the biota of the human body, potentially reversing the inflammatory consequences of biota depletion that currently affect Western society.
Collapse
Affiliation(s)
- Kendra Smyth
- University Program in Ecology, Duke University, Durham, NC 27708, USA.
| | - Claire Morton
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA.
| | - Amanda Mathew
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA.
| | - Sahil Karuturi
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA.
| | - Cliff Haley
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA.
| | - Min Zhang
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA.
| | - Zoie E Holzknecht
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA.
| | - Chelsea Swanson
- The Duke Brain Imaging & Analysis Center, Duke University Medical Center, Durham, NC 27710, USA.
- Mental Illness Research Education and Clinical Center for Post Deployment Mental Health, Durham VA Medical Center, Durham, NC 27710, USA.
| | - Shu S Lin
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA.
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA.
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA.
| | - William Parker
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
19
|
Helminth Products Potently Modulate Experimental Autoimmune Encephalomyelitis by Downregulating Neuroinflammation and Promoting a Suppressive Microenvironment. Mediators Inflamm 2017; 2017:8494572. [PMID: 28744067 PMCID: PMC5506484 DOI: 10.1155/2017/8494572] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/15/2017] [Accepted: 03/23/2017] [Indexed: 02/08/2023] Open
Abstract
A negative correlation between the geographical distribution of autoimmune diseases and helminth infections has been largely associated in the last few years with a possible role for such type of parasites in the regulation of inflammatory diseases, suggesting new pathways for drug development. However, few helminth-derived immunomodulators have been tested in experimental autoimmune encephalomyelitis (EAE), an animal model of the human disease multiple sclerosis (MS). The immunomodulatory activities of Taenia crassiceps excreted/secreted products (TcES) that may suppress EAE development were sought for. Interestingly, it was discovered that TcES was able to suppress EAE development with more potency than dexamethasone; moreover, TcES treatment was still effective even when inoculated at later stages after the onset of EAE. Importantly, the TcES treatment was able to induce a range of Th2-type cytokines, while suppressing Th1 and Th17 responses. Both the polyclonal and the antigen-specific proliferative responses of lymphocytes were also inhibited in EAE-ill mice receiving TcES in association with a potent recruitment of suppressor cell populations. Peritoneal inoculation of TcES was able to direct the normal inflammatory cell traffic to the site of injection, thus modulating CNS infiltration, which may work along with Th2 immune polarization and lymphocyte activation impairment to downregulate EAE development.
Collapse
|
20
|
Leon-Cabrera SA, Molina-Guzman E, Delgado-Ramirez YG, Vázquez-Sandoval A, Ledesma-Soto Y, Pérez-Plasencia CG, Chirino YI, Delgado-Buenrostro NL, Rodríguez-Sosa M, Vaca-Paniagua F, Ávila-Moreno F, Gutierrez-Cirlos EB, Arias-Romero LE, Terrazas LI. Lack of STAT6 Attenuates Inflammation and Drives Protection against Early Steps of Colitis-Associated Colon Cancer. Cancer Immunol Res 2017; 5:385-396. [PMID: 28385737 DOI: 10.1158/2326-6066.cir-16-0168] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/05/2016] [Accepted: 04/04/2017] [Indexed: 11/16/2022]
Abstract
Colitis-associated colon cancer (CAC) is one of the most common malignant neoplasms and a leading cause of death. The immunologic factors associated with CAC development are not completely understood. Signal transducer and activator of transcription 6 (STAT6) is part of an important signaling pathway for modulating intestinal immune function and homeostasis. However, the role of STAT6 in colon cancer progression is unclear. Following CAC induction in wild-type (WT) and STAT6-deficient mice (STAT6-/-), we found that 70% of STAT6-/- mice were tumor-free after 8 weeks, whereas 100% of WT mice developed tumors. STAT6-/- mice displayed fewer and smaller colorectal tumors than WT mice; this reduced tumorigenicity was associated with decreased proliferation and increased apoptosis in the colonic mucosa in the early steps of tumor progression. STAT6-/- mice also exhibited reduced inflammation, diminished concentrations COX2 and nuclear β-catenin protein in the colon, and decreased mRNA expression of IL17A and TNFα, but increased IL10 expression when compared with WT mice. Impaired mucosal expression of CCL9, CCL25, and CXCR2 was also observed. In addition, the number of circulating CD11b+Ly6ChiCCR2+ monocytes and CD11b+Ly6ClowLy6G+ granulocytes was both decreased in a STAT6-dependent manner. Finally, WT mice receiving a STAT6 inhibitor in vivo confirmed a significant reduction in tumor load as well as less intense signs of CAC. Our results demonstrate that STAT6 is critical in the early steps of CAC development for modulating inflammatory responses and controlling cell recruitment and proliferation. Thus, STAT6 may represent a promising target for CAC treatment. Cancer Immunol Res; 5(5); 385-96. ©2017 AACR.
Collapse
Affiliation(s)
- Sonia A Leon-Cabrera
- Unidad de Biomedicina, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Edo. De México, Mexico.,Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Edo. De México, Mexico
| | - Emmanuel Molina-Guzman
- Unidad de Biomedicina, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Edo. De México, Mexico
| | - Yael G Delgado-Ramirez
- Unidad de Biomedicina, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Edo. De México, Mexico
| | - Armando Vázquez-Sandoval
- Unidad de Biomedicina, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Edo. De México, Mexico
| | - Yadira Ledesma-Soto
- Unidad de Biomedicina, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Edo. De México, Mexico
| | - Carlos G Pérez-Plasencia
- Unidad de Biomedicina, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Edo. De México, Mexico
| | - Yolanda I Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Edo. De México, Mexico
| | - Norma L Delgado-Buenrostro
- Unidad de Biomedicina, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Edo. De México, Mexico
| | - Miriam Rodríguez-Sosa
- Unidad de Biomedicina, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Edo. De México, Mexico
| | - Felipe Vaca-Paniagua
- Unidad de Biomedicina, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Edo. De México, Mexico.,Laboratorio Nacional en Salud, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Mexico
| | - Federico Ávila-Moreno
- Unidad de Biomedicina, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Edo. De México, Mexico
| | - Emma B Gutierrez-Cirlos
- Unidad de Biomedicina, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Edo. De México, Mexico
| | - Luis E Arias-Romero
- Unidad de Biomedicina, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Edo. De México, Mexico
| | - Luis I Terrazas
- Unidad de Biomedicina, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Edo. De México, Mexico. .,Laboratorio Nacional en Salud, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Mexico
| |
Collapse
|
21
|
Jacqueline C, Biro PA, Beckmann C, Moller AP, Renaud F, Sorci G, Tasiemski A, Ujvari B, Thomas F. Cancer: A disease at the crossroads of trade-offs. Evol Appl 2017; 10:215-225. [PMID: 28250806 PMCID: PMC5322410 DOI: 10.1111/eva.12444] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/01/2016] [Indexed: 12/14/2022] Open
Abstract
Central to evolutionary theory is the idea that living organisms face phenotypic and/or genetic trade-offs when allocating resources to competing life-history demands, such as growth, survival, and reproduction. These trade-offs are increasingly considered to be crucial to further our understanding of cancer. First, evidences suggest that neoplastic cells, as any living entities subject to natural selection, are governed by trade-offs such as between survival and proliferation. Second, selection might also have shaped trade-offs at the organismal level, especially regarding protective mechanisms against cancer. Cancer can also emerge as a consequence of additional trade-offs in organisms (e.g., eco-immunological trade-offs). Here, we review the wide range of trade-offs that occur at different scales and their relevance for understanding cancer dynamics. We also discuss how acknowledging these phenomena, in light of human evolutionary history, may suggest new guidelines for preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Camille Jacqueline
- CREECMontpellier Cedex 5France
- MIVEGECUMR IRD/CNRS/UM 5290Montpellier Cedex 5France
| | - Peter A. Biro
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityWaurn PondsVICAustralia
| | - Christa Beckmann
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityWaurn PondsVICAustralia
| | - Anders Pape Moller
- Ecologie Systématique EvolutionUniversité Paris‐SudCNRSAgroParisTechUniversité Paris‐Saclay, F‐91405 Orsay CedexFrance
| | - François Renaud
- CREECMontpellier Cedex 5France
- MIVEGECUMR IRD/CNRS/UM 5290Montpellier Cedex 5France
| | - Gabriele Sorci
- BiogéoSciencesCNRS UMR 6282Université de BourgogneDijonFrance
| | - Aurélie Tasiemski
- Unité d'EvolutionEcologie et Paléontologie (EEP) Université de Lille 1 CNRS UMR 8198groupe d'Ecoimmunologie des AnnélidesVilleneuve‐d'AscqFrance
| | - Beata Ujvari
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityWaurn PondsVICAustralia
| | - Frédéric Thomas
- CREECMontpellier Cedex 5France
- MIVEGECUMR IRD/CNRS/UM 5290Montpellier Cedex 5France
| |
Collapse
|
22
|
Godkin A, Smith KA. Chronic infections with viruses or parasites: breaking bad to make good. Immunology 2017; 150:389-396. [PMID: 28009488 PMCID: PMC5343343 DOI: 10.1111/imm.12703] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 12/02/2016] [Accepted: 12/16/2016] [Indexed: 12/19/2022] Open
Abstract
Eukaryotic forms of life have been continually invaded by microbes and larger multicellular parasites, such as helminths. Over a billion years ago bacterial endosymbionts permanently colonized eukaryotic cells leading to recognized organelles with a distinct genetic lineage, such as mitochondria and chloroplasts. Colonization of our skin and mucosal surfaces with bacterial commensals is now known to be important for host health. However, the contribution of chronic virus and parasitic infections to immune homeostasis is being increasingly questioned. Persistent infection does not necessarily equate to exhibiting a chronic illness: healthy hosts (e.g. humans) have chronic viral and parasitic infections with no evidence of disease. Indeed, there are now examples of complex interactions between these microbes and hosts that seem to confer an advantage to the host at a particular time, suggesting that the relationship has progressed along an axis from parasitic to commensal to one of a mutualistic symbiosis. This concept is explored using examples from viruses and parasites, considering how the relationships may be not only detrimental but also beneficial to the human host.
Collapse
Affiliation(s)
- Andrew Godkin
- Division of Infection and Immunity, Cardiff University, Cardiff, Glamorgan, UK
| | - Katherine A Smith
- Division of Infection and Immunity, Cardiff University, Cardiff, Glamorgan, UK
| |
Collapse
|
23
|
Peón AN, Ledesma-Soto Y, Terrazas LI. Regulation of immunity by Taeniids: lessons from animal models and in vitro studies. Parasite Immunol 2016; 38:124-35. [PMID: 26457989 DOI: 10.1111/pim.12289] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 10/01/2015] [Indexed: 02/06/2023]
Abstract
Taeniidae is the largest family of the Cyclophyllidea order of parasites despite being composed of just two genera: Taenia spp and Echinococcus spp. These parasites are flatworms with a terrestrial life cycle, having an immature or larval stage called metacestode, which develops into the mature form within the intestine of the primary host after being consumed in raw or poorly cooked meat. Consumed eggs hatch into oncospheres, penetrate the intestinal walls and are transported via the bloodstream to later develop into metacestodes within the muscles and internal organs of secondary and sometimes primary hosts, thereby initiating the cycle again. Larval stages of both Taenia spp and Echinococcus spp are well known to produce tissue-dwelling, long-lasting infections; in this stage, these parasites can reach centimetres (macroparasites) and both genera may cause life-threatening diseases in humans. Establishing such long-term infections requires an exceptional ability to modulate host immunity for long periods of time. In this review, we analyse the immunoregulatory mechanisms induced by these tapeworms and their products, mainly discussing the importance of taeniid strategies to successfully colonize their hosts, such as antigen-presenting cell phenotype manipulation and the consequent induction of T-cell anergy, among others.
Collapse
Affiliation(s)
- A N Peón
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México
| | - Y Ledesma-Soto
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México
| | - L I Terrazas
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México
| |
Collapse
|
24
|
Role of Macrophages in the Repair Process during the Tissue Migrating and Resident Helminth Infections. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8634603. [PMID: 27648452 PMCID: PMC5014929 DOI: 10.1155/2016/8634603] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/13/2016] [Accepted: 07/19/2016] [Indexed: 12/30/2022]
Abstract
The Th1/Th2/Th17 balance is a fundamental feature in the regulation of the inflammatory microenvironment during helminth infections, and an imbalance in this paradigm greatly contributes to inflammatory disorders. In some cases of helminthiasis, an initial Th1 response could occur during the early phases of infection (acute), followed by a Th2 response that prevails in chronic infections. During the late phase of infection, alternatively activated macrophages (AAMs) are important to counteract the inflammation caused by the Th1/Th17 response and larval migration, limiting damage and repairing the tissue affected. Macrophages are the archetype of phagocytic cells, with the primary role of pathogen destruction and antigen presentation. Nevertheless, other subtypes of macrophages have been described with important roles in tissue repair and immune regulation. These types of macrophages challenge the classical view of macrophages activated by an inflammatory response. The role of these subtypes of macrophages during helminthiasis is a controversial topic in immunoparasitology. Here, we analyze some of the studies regarding the role of AAMs in tissue repair during the tissue migration of helminths.
Collapse
|
25
|
Bono-Lunn D, Villeneuve C, Abdulhay NJ, Harker M, Parker W. Policy and regulations in light of the human body as a ‘superorganism’ containing multiple, intertwined symbiotic relationships. ACTA ACUST UNITED AC 2016. [DOI: 10.1080/10601333.2016.1210159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Pi C, Allott EH, Ren D, Poulton S, Lee SYR, Perkins S, Everett ML, Holzknecht ZE, Lin SS, Parker W. Increased biodiversity in the environment improves the humoral response of rats. PLoS One 2015; 10:e0120255. [PMID: 25853852 PMCID: PMC4390306 DOI: 10.1371/journal.pone.0120255] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/29/2015] [Indexed: 12/05/2022] Open
Abstract
Previous studies have compared the immune systems of wild and of laboratory rodents in an effort to determine how laboratory rodents differ from their naturally occurring relatives. This comparison serves as an indicator of what sorts of changes might exist between modern humans living in Western culture compared to our hunter-gatherer ancestors. However, immunological experiments on wild-caught animals are difficult and potentially confounded by increased levels of stress in the captive animals. In this study, the humoral immune responses of laboratory rats in a traditional laboratory environment and in an environment with enriched biodiversity were examined following immunization with a panel of antigens. Biodiversity enrichment included colonization of the laboratory animals with helminths and co-housing the laboratory animals with wild-caught rats. Increased biodiversity did not apparently affect the IgE response to peanut antigens following immunization with those antigens. However, animals housed in the enriched biodiversity setting demonstrated an increased mean humoral response to T-independent and T-dependent antigens and increased levels of “natural” antibodies directed at a xenogeneic protein and at an autologous tissue extract that were not used as immunogens.
Collapse
Affiliation(s)
- Cinthia Pi
- Department of Surgery, Duke University Medical Center, Durham, NC, United States of America
| | - Emma H. Allott
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Daniel Ren
- Department of Surgery, Duke University Medical Center, Durham, NC, United States of America
| | - Susan Poulton
- Department of Surgery, Duke University Medical Center, Durham, NC, United States of America
| | - S. Y. Ryan Lee
- Department of Surgery, Duke University Medical Center, Durham, NC, United States of America
| | - Sarah Perkins
- Cardiff School of Biosciences, Biomedical Sciences Building, Museum Avenue, Cardiff, United Kingdom
| | - Mary Lou Everett
- Department of Surgery, Duke University Medical Center, Durham, NC, United States of America
| | - Zoie E. Holzknecht
- Department of Surgery, Duke University Medical Center, Durham, NC, United States of America
| | - Shu S. Lin
- Department of Surgery, Duke University Medical Center, Durham, NC, United States of America
| | - William Parker
- Department of Surgery, Duke University Medical Center, Durham, NC, United States of America
- * E-mail:
| |
Collapse
|