1
|
Saha N, Lee SG, Brockmann EC, de la Cruz MJ, Goldgur Y, Mendoza RP, Stanchina ED, Love TM, Marvald J, Xu Y, Xu K, Himanen JP, Lamminmäki U, Veach D, Nikolov DB. Fully human monoclonal antibody targeting the cysteine-rich substrate-interacting region of ADAM17 on cancer cells. Biomed Pharmacother 2024; 180:117605. [PMID: 39461016 DOI: 10.1016/j.biopha.2024.117605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/05/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024] Open
Abstract
ADAM17 sheds EGFR/erbB ligands and triggers oncogenic pathways that lead to the progression of solid tumors. We targeted the ADAM17 disintegrin and cysteine rich domain region (D+C) to generate a panel of single-chain antibody fragments (scFvs) that selectively bind to the D or C domains of ADAM17, but not of ADAM10 or ADAM19. From the panel, we selected one scFv, referred to as C12, based on its high binding affinity towards the target, and re-formatted it to a full IgG for further studies. High-resolution cryo-electron microscopy studies documented that the mAb binds to the ADAM17 C-domain that in ADAM proteases, notably ADAM10 and ADAM17, is known to impart substrate-specificity. The C12 mAb significantly inhibited EGFR phosphorylation in cancer cell lines by hindering the cleavage of EGFR ligands tethered to the cell surface. This inhibition provides a mechanism for potential anti-tumor effects, and indeed C12 diminished the viability of a variety of EGFR-expressing cancer cell lines. Cell-based ELISA studies revealed that C12 preferentially bound to activated ADAM17 present on tumor cells, as compared to the autoinhibited ADAM17 that is the predominant form on HEK293 and other non-tumor cells. C12 also exhibited tumor growth inhibition in an ovarian cancer xenograft mouse model. Consistent with its selective tumor cell binding in vitro, radioimmuno PET (positron emission tomography) imaging with 89Zr-DFO-C12 in mouse xenograft models confirmed tumoral accumulation of the C12 mAb.
Collapse
Affiliation(s)
- Nayanendu Saha
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States.
| | - Sang Gyu Lee
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | | | - M Jason de la Cruz
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Yehuda Goldgur
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Rachelle P Mendoza
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Elisa de Stanchina
- Antitumor Assessment Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Tanzy M Love
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - Josh Marvald
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - Yan Xu
- Texas Therapeutic Institute, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, United States
| | - Kai Xu
- Texas Therapeutic Institute, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, United States
| | - Juha P Himanen
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Urpo Lamminmäki
- Department of Life Technologies, University of Turku, Turku, Finland
| | - Darren Veach
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Dimitar B Nikolov
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States.
| |
Collapse
|
2
|
Sokol DK, Lahiri DK. APPlications of amyloid-β precursor protein metabolites in macrocephaly and autism spectrum disorder. Front Mol Neurosci 2023; 16:1201744. [PMID: 37799731 PMCID: PMC10548831 DOI: 10.3389/fnmol.2023.1201744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/17/2023] [Indexed: 10/07/2023] Open
Abstract
Metabolites of the Amyloid-β precursor protein (APP) proteolysis may underlie brain overgrowth in Autism Spectrum Disorder (ASD). We have found elevated APP metabolites (total APP, secreted (s) APPα, and α-secretase adamalysins in the plasma and brain tissue of children with ASD). In this review, we highlight several lines of evidence supporting APP metabolites' potential contribution to macrocephaly in ASD. First, APP appears early in corticogenesis, placing APP in a prime position to accelerate growth in neurons and glia. APP metabolites are upregulated in neuroinflammation, another potential contributor to excessive brain growth in ASD. APP metabolites appear to directly affect translational signaling pathways, which have been linked to single gene forms of syndromic ASD (Fragile X Syndrome, PTEN, Tuberous Sclerosis Complex). Finally, APP metabolites, and microRNA, which regulates APP expression, may contribute to ASD brain overgrowth, particularly increased white matter, through ERK receptor activation on the PI3K/Akt/mTOR/Rho GTPase pathway, favoring myelination.
Collapse
Affiliation(s)
- Deborah K. Sokol
- Department of Neurology, Section of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Debomoy K. Lahiri
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
- Indiana Alzheimer Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
3
|
Saha N, Baek DS, Mendoza RP, Robev D, Xu Y, Goldgur Y, De La Cruz MJ, de Stanchina E, Janes PW, Xu K, Dimitrov DS, Nikolov DB. Fully human monoclonal antibody targeting activated ADAM10 on colorectal cancer cells. Biomed Pharmacother 2023; 161:114494. [PMID: 36917886 PMCID: PMC10499537 DOI: 10.1016/j.biopha.2023.114494] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Metastasis and chemoresistance in colorectal cancer are mediated by certain poorly differentiated cancer cells, known as cancer stem cells, that are maintained by Notch downstream signaling initiated upon Notch cleavage by the metalloprotease ADAM10. It has been shown that ADAM10 overexpression correlates with aberrant signaling from Notch, erbBs, and other receptors, as well as a more aggressive metastatic phenotype, in a range of cancers including colon, gastric, prostate, breast, ovarian, uterine, and leukemia. ADAM10 inhibition, therefore, stands out as an important and new approach to deter the progression of advanced CRC. For targeting the ADAM10 substrate-binding region, which is located outside of the catalytic domain of the protease, we generated a human anti-ADAM10 monoclonal antibody named 1H5. Structural and functional characterization of 1H5 reveals that it binds to the substrate-binding cysteine-rich domain and recognizes an activated ADAM10 conformation present on tumor cells. The mAb inhibits Notch cleavage and proliferation of colon cancer cell lines in vitro and in mouse models. Consistent with its binding to activated ADAM10, the mAb augments the catalytic activity of ADAM10 towards small peptide substrates in vitro. Most importantly, in a mouse model of colon cancer, when administered in combination with the therapeutic agent Irinotecan, 1H5 causes highly effective tumor growth inhibition without any discernible toxicity effects. Our singular approach to target the ADAM10 substrate-binding region with therapeutic antibodies could overcome the shortcomings of previous intervention strategies of targeting the protease active site with small molecule inhibitors that exhibit musculoskeletal toxicity.
Collapse
Affiliation(s)
- Nayanendu Saha
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States.
| | - Du-San Baek
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Rachelle P Mendoza
- Department of Pathology, University of Chicago, Chicago, IL 60637, United States
| | - Dorothea Robev
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Yan Xu
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH 43210, United States
| | - Yehuda Goldgur
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - M Jason De La Cruz
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Elisa de Stanchina
- Antitumor Assessment Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Peter W Janes
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, Victoria 3084, Australia
| | - Kai Xu
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH 43210, United States; Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH 43210, United States
| | - Dimiter S Dimitrov
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Dimitar B Nikolov
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States.
| |
Collapse
|
4
|
Kahveci-Türköz S, Bläsius K, Wozniak J, Rinkens C, Seifert A, Kasparek P, Ohm H, Oltzen S, Nieszporek M, Schwarz N, Babendreyer A, Preisinger C, Sedlacek R, Ludwig A, Düsterhöft S. A structural model of the iRhom-ADAM17 sheddase complex reveals functional insights into its trafficking and activity. Cell Mol Life Sci 2023; 80:135. [PMID: 37119365 PMCID: PMC10148629 DOI: 10.1007/s00018-023-04783-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 05/01/2023]
Abstract
Several membrane-anchored signal mediators such as cytokines (e.g. TNFα) and growth factors are proteolytically shed from the cell surface by the metalloproteinase ADAM17, which, thus, has an essential role in inflammatory and developmental processes. The membrane proteins iRhom1 and iRhom2 are instrumental for the transport of ADAM17 to the cell surface and its regulation. However, the structure-function determinants of the iRhom-ADAM17 complex are poorly understood. We used AI-based modelling to gain insights into the structure-function relationship of this complex. We identified different regions in the iRhom homology domain (IRHD) that are differentially responsible for iRhom functions. We have supported the validity of the predicted structure-function determinants with several in vitro, ex vivo and in vivo approaches and demonstrated the regulatory role of the IRHD for iRhom-ADAM17 complex cohesion and forward trafficking. Overall, we provide mechanistic insights into the iRhom-ADAM17-mediated shedding event, which is at the centre of several important cytokine and growth factor pathways.
Collapse
Affiliation(s)
- Selcan Kahveci-Türköz
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Katharina Bläsius
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Justyna Wozniak
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Cindy Rinkens
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Anke Seifert
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Petr Kasparek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Henrike Ohm
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Shixin Oltzen
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Martin Nieszporek
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Nicole Schwarz
- Institute of Molecular and Cellular Anatomy, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Aaron Babendreyer
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | | | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andreas Ludwig
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Stefan Düsterhöft
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.
| |
Collapse
|
5
|
Ma B, Yu R. Pan-cancer analysis of ADAMs: A promising biomarker for prognosis and response to chemotherapy and immunotherapy. Front Genet 2023; 14:1105900. [PMID: 37082201 PMCID: PMC10110990 DOI: 10.3389/fgene.2023.1105900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
Background: Members of a disintegrin and metalloproteinase (ADAM) family play a vital role in cancer development. However, a comprehensive analysis of the landscape of the ADAM family in pan-cancer remains to be performed.Methods: The correlation of the expression level and prognostic value with ADAMs in a pan-cancer cohort and the relationship between ADAMs and the stemness score, tumour microenvironment (TME), chemotherapy-related drug sensitivity, immune subtype, and immunotherapy outcome were investigated.Results: ADAMs were differentially expressed between tumour and para-carcinoma tissues in the pan-cancer cohort, and the expression of ADAMs was significantly correlated with patient prognosis. Furthermore, ADAMs were significantly correlated with the stromal score and immune score based on the TME analysis. Additionally, ADAMs were also correlated with DNAss and RNAss in the pan-cancer cohort. On investigating the CellMiner database, ADAMs were revealed to be significantly correlated with the sensitivity of various drugs, including raloxifene and tamoxifen. Moreover, in the IMvigor210 and GSE78220 cohorts, ADAMs were correlated with immunotherapy response and immune activation genes. Furthermore, quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC) were utilised to determine the differential level of ADAM9 in cancer and para-carcinoma tissues in patients’ samples.Conclusion: This study elucidates the importance of ADAMs in cancer progression and lays a foundation for further exploration of ADAMs as potential pan-cancer targets.
Collapse
Affiliation(s)
- Bo Ma
- *Correspondence: Bo Ma, ; Riyue Yu,
| | - Riyue Yu
- *Correspondence: Bo Ma, ; Riyue Yu,
| |
Collapse
|
6
|
Li J, Chen P, Wu Q, Guo L, Leong KW, Chan KI, Kwok HF. A novel combination treatment of antiADAM17 antibody and erlotinib to overcome acquired drug resistance in non-small cell lung cancer through the FOXO3a/FOXM1 axis. Cell Mol Life Sci 2022; 79:614. [PMID: 36456730 DOI: 10.1007/s00018-022-04647-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/07/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022]
Abstract
After the identification of specific epidermal growth factor receptor (EGFR)-activating mutations as one of the most common oncogenic driver mutations in non-small cell lung cancer (NSCLC), several EGFR-tyrosine kinase inhibitors (EGFR-TKIs) with different clinical efficacies have been approved by various health authorities in the last two decades in targeting NSCLC harboring specific EGFR-activating mutations. However, most patients whose tumor initially responded to the first-generation EGFR-TKI developed acquired resistance. In this study, we developed a novel combination strategy, "antiADAM17 antibody A9(B8) + EGFR-TKIs", to enhance the efficacy of EGFR-TKIs. The addition of A9(B8) was shown to restore the effectiveness of erlotinib and overcome acquired resistance. We found that when A9(B8) antibody was treated with erlotinib or gefitinib, the combination treatment synergistically increased apoptosis in an NSCLC cell line and inhibited tumor growth in vivo. Interestingly, the addition of A9(B8) could only reduce the survival of the erlotinib-resistant NSCLC cell line and inhibit the growth of erlotinib-resistant tumors in vivo but not gefitinib-resistant cells. Furthermore, we revealed that A9(B8) overcame erlotinib resistance through the FOXO3a/FOXM1 axis and arrested the cell cycle at the G1/S phase, resulting in the apoptosis of cancer cells. Hence, this study establishes a novel, promising strategy for overcoming acquired resistance to erlotinib through the FOXO3a/FOXM1 axis by arresting the cell cycle at the G1/S phase.
Collapse
Affiliation(s)
- Junnan Li
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR
| | - Pengchen Chen
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR
| | - Qiushuang Wu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR
| | - Libin Guo
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR
| | - Ka Weng Leong
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR
| | - Kin Iong Chan
- Department of Pathology, Kiang Wu Hospital, Macau, Macau SAR
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR. .,MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau SAR. .,Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR.
| |
Collapse
|
7
|
Wang K, Xuan Z, Liu X, Zheng M, Yang C, Wang H. Immunomodulatory role of metalloproteinase ADAM17 in tumor development. Front Immunol 2022; 13:1059376. [PMID: 36466812 PMCID: PMC9715963 DOI: 10.3389/fimmu.2022.1059376] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/03/2022] [Indexed: 12/25/2023] Open
Abstract
ADAM17 is a member of the a disintegrin and metalloproteinase (ADAM) family of transmembrane proteases involved in the shedding of some cell membrane proteins and regulating various signaling pathways. More than 90 substrates are regulated by ADAM17, some of which are closely relevant to tumor formation and development. Besides, ADAM17 is also responsible for immune regulation and its substrate-mediated signal transduction. Recently, ADAM17 has been considered as a major target for the treatment of tumors and yet its immunomodulatory roles and mechanisms remain unclear. In this paper, we summarized the recent understanding of structure and several regulatory roles of ADAM17. Importantly, we highlighted the immunomodulatory roles of ADAM17 in tumor development, as well as small molecule inhibitors and monoclonal antibodies targeting ADAM17.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Zixue Xuan
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiaoyan Liu
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Meiling Zheng
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Chao Yang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, China
| | - Haiyong Wang
- Department of Internal Medicine Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
8
|
An overview of kinin mediated events in cancer progression and therapeutic applications. Biochim Biophys Acta Rev Cancer 2022; 1877:188807. [PMID: 36167271 DOI: 10.1016/j.bbcan.2022.188807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/12/2022] [Accepted: 09/21/2022] [Indexed: 11/22/2022]
Abstract
Kinins are bioactive peptides generated in the inflammatory milieu of the tissue microenvironment, which is involved in cancer progression and inflammatory response. Kinins signals through activation of two G-protein coupled receptors; inducible Bradykinin Receptor B1 (B1R) and constitutive receptor B2 (B2R). Activation of kinin receptors and its cross-talk with receptor tyrosine kinases activates multiple signaling pathways, including ERK/MAPK, PI3K, PKC, and p38 pathways regulating cancer hallmarks. Perturbations of the kinin-mediated events are implicated in various aspects of cancer invasion, matrix remodeling, and metastasis. In the tumor microenvironment, kinins initiate fibroblast activation, mesenchymal stem cell interactions, and recruitment of immune cells. Albeit the precise nature of kinin function in the metastasis and tumor microenvironment are not completely clear yet, several kinin receptor antagonists show anti-metastatic potential. Here, we showcase an overview of the complex biology of kinins and their role in cancer pathogenesis and therapeutic aspects.
Collapse
|
9
|
Huang R, Sun H, Lin R, Zhang J, Yin H, Xian S, Li M, Wang S, Li Z, Qiao Y, Jiang M, Yan P, Meng T, Huang Z. The Role of Tetraspaninsin Pan-Cancer. iScience 2022; 25:104777. [PMID: 35992081 PMCID: PMC9385710 DOI: 10.1016/j.isci.2022.104777] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 03/10/2022] [Accepted: 07/13/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Runzhi Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052, China
- Division of Spine Surgery, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, 200065, China
- Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, China
| | - Hanlin Sun
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052, China
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052, China
| | - Ruoyi Lin
- Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, China
| | - Jie Zhang
- Division of Spine Surgery, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, 200065, China
- Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, China
| | - Huabin Yin
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, 100 Haining Road, Shanghai, China
| | - Shuyuan Xian
- Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, China
| | - Man Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052, China
| | - Siqiao Wang
- Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, China
| | - Zhenyu Li
- Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, China
| | - Yannan Qiao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052, China
| | - Meiyun Jiang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052, China
| | - Penghui Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052, China
- Corresponding author
| | - Tong Meng
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, 100 Haining Road, Shanghai, China
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
- Corresponding author
| | - Zongqiang Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052, China
- Corresponding author
| |
Collapse
|
10
|
Verhulst E, Garnier D, De Meester I, Bauvois B. Validating Cell Surface Proteases as Drug Targets for Cancer Therapy: What Do We Know, and Where Do We Go? Cancers (Basel) 2022; 14:624. [PMID: 35158891 PMCID: PMC8833564 DOI: 10.3390/cancers14030624] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Cell surface proteases (also known as ectoproteases) are transmembrane and membrane-bound enzymes involved in various physiological and pathological processes. Several members, most notably dipeptidyl peptidase 4 (DPP4/CD26) and its related family member fibroblast activation protein (FAP), aminopeptidase N (APN/CD13), a disintegrin and metalloprotease 17 (ADAM17/TACE), and matrix metalloproteinases (MMPs) MMP2 and MMP9, are often overexpressed in cancers and have been associated with tumour dysfunction. With multifaceted actions, these ectoproteases have been validated as therapeutic targets for cancer. Numerous inhibitors have been developed to target these enzymes, attempting to control their enzymatic activity. Even though clinical trials with these compounds did not show the expected results in most cases, the field of ectoprotease inhibitors is growing. This review summarizes the current knowledge on this subject and highlights the recent development of more effective and selective drugs targeting ectoproteases among which small molecular weight inhibitors, peptide conjugates, prodrugs, or monoclonal antibodies (mAbs) and derivatives. These promising avenues have the potential to deliver novel therapeutic strategies in the treatment of cancers.
Collapse
Affiliation(s)
- Emile Verhulst
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (E.V.); (I.D.M.)
| | - Delphine Garnier
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France;
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (E.V.); (I.D.M.)
| | - Brigitte Bauvois
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France;
| |
Collapse
|
11
|
Reed SG, Ager A. Immune Responses to IAV Infection and the Roles of L-Selectin and ADAM17 in Lymphocyte Homing. Pathogens 2022; 11:pathogens11020150. [PMID: 35215094 PMCID: PMC8878872 DOI: 10.3390/pathogens11020150] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Influenza A virus (IAV) infection is a global public health burden causing up to 650,000 deaths per year. Yearly vaccination programmes and anti-viral drugs currently have limited benefits; therefore, research into IAV is fundamental. Leukocyte trafficking is a crucial process which orchestrates the immune response to infection to protect the host. It involves several homing molecules and receptors on both blood vessels and leukocytes. A key mediator of this process is the transmembrane glycoprotein L-selectin, which binds to vascular addressins on blood vessel endothelial cells. L-selectin classically mediates homing of naïve and central memory lymphocytes to lymph nodes via high endothelial venules (HEVs). Recent studies have found that L-selectin is essential for homing of activated CD8+ T cells to influenza-infected lungs and reduction in virus load. A disintegrin and metalloproteinase 17 (ADAM17) is the primary regulator of cell surface levels of L-selectin. Understanding the mechanisms that regulate these two proteins are central to comprehending recruitment of T cells to sites of IAV infection. This review summarises the immune response to IAV infection in humans and mice and discusses the roles of L-selectin and ADAM17 in T lymphocyte homing during IAV infection.
Collapse
Affiliation(s)
| | - Ann Ager
- Correspondence: (S.G.R.); (A.A.)
| |
Collapse
|
12
|
ADAM17 Mediates Hypoxia-Induced Keratinocyte Migration via the p38/MAPK Pathway. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8328216. [PMID: 34746310 PMCID: PMC8568513 DOI: 10.1155/2021/8328216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/03/2021] [Accepted: 09/18/2021] [Indexed: 11/17/2022]
Abstract
Although hypoxia has been shown to promote keratinocyte migration and reepithelialization, the underlying molecular mechanisms remain largely unknown. ADAM17, a member of the metalloproteinase superfamily, has been implicated in a variety of cellular behaviors such as proliferation, adhesion, and migration. ADAM17 is known to promote cancer cell migration under hypoxia, and whether or how ADAM17 plays a role in hypoxia-induced keratinocyte migration has not been identified. Here, we found that ADAM17 expression and activity were significantly promoted in keratinocytes under hypoxic condition, inhibition of ADAM17 by TAPI-2, or silencing of ADAM17 using small interfering RNA which suppressed the hypoxia-induced migration of keratinocytes significantly, indicating a pivotal role for ADAM17 in keratinocyte migration. Further, we showed that p38/MAPK was activated by hypoxia. SB203580, an inhibitor of p38/MAPK, significantly attenuated the upregulation of ADAM17 as well as the migration of keratinocytes induced by hypoxia. Activation of p38/MAPK by MKK6 (Glu) overexpression, however, had adverse effects. Taken together, our study demonstrated that hypoxia-induced keratinocyte migration requires the p38/MAPK-ADAM17 signal axis, which sheds new light on the regulatory mechanisms of keratinocyte migration. Our study might also help in developing therapeutic strategies to facilitate wound healing in vivo, where cells are migrated in a hypoxic microenvironment.
Collapse
|
13
|
Saha N, Xu K, Zhu Z, Robev D, Kalidindi T, Xu Y, Himanen J, de Stanchina E, Pillarsetty NVK, Dimitrov DS, Nikolov DB. Inhibitory monoclonal antibody targeting ADAM17 expressed on cancer cells. Transl Oncol 2021; 15:101265. [PMID: 34768098 PMCID: PMC8592942 DOI: 10.1016/j.tranon.2021.101265] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 11/26/2022] Open
Abstract
A novel anti-ADAM17 monoclonal antibody, D8P1C1, has been developed. D8P1C1 inhibits the proteolysis of peptide substrates by ADAM17. D8P1C1 inhibits the proliferation of cancer cells and tumor growth inhibition in vivo. D8P1C1 preferentially recognizes ADAM17 on cancer cells. Negative stain EM analysis reveals that D8P1C1 binds to the ADAM17 protease domain.
ADAM17 is upregulated in many cancers and in turn activates signaling pathways, including EGFR/ErbB, as well as those underlying resistance to targeted anti-EGFR therapies. Due to its central role in oncogenic pathways and drug resistance mechanisms, specific and efficacious monoclonal antibodies against ADAM17 could be useful for a broad patient population with solid tumors. Hence, we describe here an inhibitory anti-ADAM17 monoclonal antibody, named D8P1C1, that preferentially recognizes ADAM17 on cancer cells. D8P1C1 inhibits the catalytic activity of ADAM17 in a fluorescence-based peptide cleavage assay, as well as the proliferation of a range of cancer cell lines, including breast, ovarian, glioma, colon and the lung adenocarcinoma. In mouse models of triple-negative breast cancer and ovarian cancer, treatment with the mAb results in 78% and 45% tumor growth inhibition, respectively. Negative staining electron microscopy analysis of the ADAM17 ectodomain in complex with D8P1C1 reveals that the mAb binds the ADAM17 protease domain, consistent with its ability to inhibit the ADAM17 catalytic activity. Collectively, our results demonstrate the therapeutic potential of the D8P1C1 mAb to treat solid tumors.
Collapse
Affiliation(s)
- Nayanendu Saha
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Kai Xu
- Department of Veterinary Bioscience, Ohio State University, Columbus, OH 43210, United States
| | - Zhongyu Zhu
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, United States
| | - Dorothea Robev
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Teja Kalidindi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Yan Xu
- Department of Veterinary Bioscience, Ohio State University, Columbus, OH 43210, United States
| | - Juha Himanen
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Elisa de Stanchina
- Antitumor Assessment Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | | | - Dimiter S Dimitrov
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Dimitar B Nikolov
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| |
Collapse
|
14
|
Waller V, Pruschy M. Combined Radiochemotherapy: Metalloproteinases Revisited. Front Oncol 2021; 11:676583. [PMID: 34055644 PMCID: PMC8155607 DOI: 10.3389/fonc.2021.676583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/21/2021] [Indexed: 12/25/2022] Open
Abstract
Besides cytotoxic DNA damage irradiation of tumor cells triggers multiple intra- and intercellular signaling processes, that are part of a multilayered, treatment-induced stress response at the unicellular and tumor pathophysiological level. These processes are intertwined with intrinsic and acquired resistance mechanisms to the toxic effects of ionizing radiation and thereby co-determine the tumor response to radiotherapy. Proteolysis of structural elements and bioactive signaling moieties represents a major class of posttranslational modifications regulating intra- and intercellular communication. Plasma membrane-located and secreted metalloproteinases comprise a family of metal-, usually zinc-, dependent endopeptidases and sheddases with a broad variety of substrates including components of the extracellular matrix, cyto- and chemokines, growth and pro-angiogenic factors. Thereby, metalloproteinases play an important role in matrix remodeling and auto- and paracrine intercellular communication regulating tumor growth, angiogenesis, immune cell infiltration, tumor cell dissemination, and subsequently the response to cancer treatment. While metalloproteinases have long been identified as promising target structures for anti-cancer agents, previous pharmaceutical approaches mostly failed due to unwanted side effects related to the structural similarities among the multiple family members. Nevertheless, targeting of metalloproteinases still represents an interesting rationale alone and in combination with other treatment modalities. Here, we will give an overview on the role of metalloproteinases in the irradiated tumor microenvironment and discuss the therapeutic potential of using more specific metalloproteinase inhibitors in combination with radiotherapy.
Collapse
Affiliation(s)
- Verena Waller
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Martin Pruschy
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Verma R, Sattar RSA, Nimisha, Apurva, Kumar A, Sharma AK, Sumi MP, Ahmad E, Ali A, Mahajan B, Saluja SS. Cross-talk between next generation sequencing methodologies to identify genomic signatures of esophageal cancer. Crit Rev Oncol Hematol 2021; 162:103348. [PMID: 33961993 DOI: 10.1016/j.critrevonc.2021.103348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/22/2021] [Accepted: 05/01/2021] [Indexed: 02/07/2023] Open
Abstract
The asymptomatic behaviour of esophageal cancerous cells at early stages develops advanced clinical presentation of the disease, resulting in poor prognosis and curbed intervention of therapeutic modalities. The endeavours to detect diagnostic and prognostic markers have been proven futile at the clinical platform. While several biomarkers have been investigated, including CYFRA 21-1, carcinoembryonic antigen and squamous cell carcinoma antigen, their sensitivity has not proved consistently satisfactory across the various stages of esophageal cancer. Hence, there is an impending requirement of biomarkers for early diagnosis and better prognosis. In the recent past, next generation sequencing (NGS) tool has emerged as an important tool to highlight the hallmarks of esophageal cancer (EC). This review summarizes the changes/mutations occurred in tumor cells during carcinogenesis and addresses the contribution of NGS techniques, viz. whole genome sequencing (WGS), RNA-Sequencing and Exome sequencing (ES), in EC. Additionally, this review highlights the connection between the findings from these techniques. An effort has been made to emphasize the genes affected and involved signaling pathway in EC. Further, investigations of these mutated genes would not only shed light on the relevant genes to be studied but also help in the better management and cure through personalized therapy.
Collapse
Affiliation(s)
- Renu Verma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Real Sumayya Abdul Sattar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Nimisha
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Apurva
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Arun Kumar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Abhay Kumar Sharma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Mamta Parveen Sumi
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Ejaj Ahmad
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Asgar Ali
- Department of Biochemistry, All India Institute of Medical Science (AIIMS), Patna, Bihar, India
| | - Bhawna Mahajan
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India.
| |
Collapse
|
16
|
Frolova AS, Petushkova AI, Makarov VA, Soond SM, Zamyatnin AA. Unravelling the Network of Nuclear Matrix Metalloproteinases for Targeted Drug Design. BIOLOGY 2020; 9:E480. [PMID: 33352765 PMCID: PMC7765953 DOI: 10.3390/biology9120480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that are responsible for the degradation of a wide range of extracellular matrix proteins, which are involved in many cellular processes to ensure the normal development of tissues and organs. Overexpression of MMPs has been observed to facilitate cellular growth, migration, and metastasis of tumor cells during cancer progression. A growing number of these proteins are being found to exist in the nuclei of both healthy and tumor cells, thus highlighting their localization as having a genuine purpose in cellular homeostasis. The mechanism underlying nuclear transport and the effects of MMP nuclear translocation have not yet been fully elucidated. To date, nuclear MMPs appear to have a unique impact on cellular apoptosis and gene regulation, which can have effects on immune response and tumor progression, and thus present themselves as potential therapeutic targets in certain types of cancer or disease. Herein, we highlight and evaluate what progress has been made in this area of research, which clearly has some value as a specific and unique way of targeting the activity of nuclear matrix metalloproteinases within various cell types.
Collapse
Affiliation(s)
- Anastasia S. Frolova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.F.); (A.I.P.); (V.A.M.); (S.M.S.)
| | - Anastasiia I. Petushkova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.F.); (A.I.P.); (V.A.M.); (S.M.S.)
| | - Vladimir A. Makarov
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.F.); (A.I.P.); (V.A.M.); (S.M.S.)
| | - Surinder M. Soond
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.F.); (A.I.P.); (V.A.M.); (S.M.S.)
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.F.); (A.I.P.); (V.A.M.); (S.M.S.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia
| |
Collapse
|
17
|
Liu X, Chen J, Lu W, Zeng Z, Li J, Jiang X, Gao Y, Gong Y, Wu Q, Xie C. Systematic Profiling of Immune Risk Model to Predict Survival and Immunotherapy Response in Head and Neck Squamous Cell Carcinoma. Front Genet 2020; 11:576566. [PMID: 33193693 PMCID: PMC7596453 DOI: 10.3389/fgene.2020.576566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/21/2020] [Indexed: 12/31/2022] Open
Abstract
Background and Purpose Head and neck squamous carcinoma (HNSCC), characterized by immunosuppression, is a group of highly heterogeneous cancers. Although immunotherapy exerts a promising influence on HNSCC, the response rate remains low and varies in assorted primary sites. Immunological mechanisms underlying HNSCC pathogenesis and treatment response are not fully understood. This study aimed to develop a differentially expressed genes (DEGs)–based risk model to predict immunotherapy efficacy and stratify prognosis of HNSCC patients. Materials and Methods The expression profiles of HNSCC patients were downloaded from The Cancer Genome Atlas (TCGA) database. The tumor microenvironment and immune response were estimated by cell type identification via estimating relative subset of known RNA transcripts (CIBERSORT) and immunophenoscore (IPS). The differential expression pattern based on human papillomavirus status was identified. A DEGs-based prognostic risk model was developed and validated. All statistical analyses were performed with R software (version 3.6.3). Results By using the TCGA database, we identified DKK1, HBEGF, RNASE7, TNFRSF12A, INHBA, and IPIK3R3 as DEGs that were associated with patients’ overall survival (OS). Patients were stratified into the high- and low-risk subgroups according to a DEGs-based prognostic risk model. Significant difference in OS was found between the high- and low-risk patients (1.64 vs. 2.18 years, P = 0.0017). In multivariate Cox analysis, the risk model was an independent prognostic factor for OS (hazard radio = 1.06, 95% confidence interval [1.02–1.10], P = 0.004). More CD8+ T cells and regulatory T cells were observed in the low-risk group and associated with a favorable prognosis. The IPS analysis suggested that the low-risk patients possessed a higher IPS score and a higher immunoreactivity phenotype, which were correlated with better immunotherapy response. Conclusion Collectively, we established a reliable DEGs-based risk model with potential prognostic value and capacity to predict the immunophenotype of HNSCC patients.
Collapse
Affiliation(s)
- Xingyu Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiarui Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Lu
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zihang Zeng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiali Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xueping Jiang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yanping Gao
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiuji Wu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
18
|
Hafeez U, Parslow AC, Gan HK, Scott AM. New insights into ErbB3 function and therapeutic targeting in cancer. Expert Rev Anticancer Ther 2020; 20:1057-1074. [PMID: 32981377 DOI: 10.1080/14737140.2020.1829485] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION The importance of ErbB3 receptor tyrosine kinase in cancer progression, primary and acquired drug resistance, has become steadily evident since its discovery in 1989. ErbB3 overexpression in various solid organ malignancies is associated with shorter survival of patients. However, initial strategies to therapeutically target ErbB3 have not been rewarding. AREAS COVERED Here, we provide an overview of ErbB3 biology in carcinogenesis. We outline the role of ErbB3 as a critical pathway for resistance to other anti-cancer drugs. We focus on emerging clinical data, which will steer the potential future development of ErbB3 directed therapies. EXPERT OPINION Initial approaches to ErbB3 targeting have been challenging. However, the lack of success of anti-ErbB3 therapies in ongoing clinical trials may relate more to the complex biology of the receptor and challenges with the biomarkers used to date. Furthermore, it seems certain that the expression of the receptor per se is necessary but not sufficient for the response to ErbB3 therapies. Emerging data suggest that more sophisticated biomarkers are needed. Nonetheless, it is also likely that ErbB3 therapies may have the most efficacy in combination therapy, and their favorable toxicity profile makes this feasible.
Collapse
Affiliation(s)
- Umbreen Hafeez
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute , Melbourne, Australia.,Department of Medical Oncology, Olivia Newton-John Cancer and Wellness Centre, Austin Health , Melbourne, Australia.,School of Cancer Medicine, La Trobe University , Melbourne, Australia
| | - Adam C Parslow
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute , Melbourne, Australia.,School of Cancer Medicine, La Trobe University , Melbourne, Australia
| | - Hui K Gan
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute , Melbourne, Australia.,Department of Medical Oncology, Olivia Newton-John Cancer and Wellness Centre, Austin Health , Melbourne, Australia.,School of Cancer Medicine, La Trobe University , Melbourne, Australia.,Department of Medicine, University of Melbourne , Melbourne, Australia
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute , Melbourne, Australia.,School of Cancer Medicine, La Trobe University , Melbourne, Australia.,Department of Medicine, University of Melbourne , Melbourne, Australia.,Department of Molecular Imaging and Therapy, Austin Health , Melbourne, Australia
| |
Collapse
|
19
|
Schumacher N, Rose-John S, Schmidt-Arras D. ADAM-Mediated Signalling Pathways in Gastrointestinal Cancer Formation. Int J Mol Sci 2020; 21:ijms21145133. [PMID: 32698506 PMCID: PMC7404302 DOI: 10.3390/ijms21145133] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
Tumour growth is not solely driven by tumour cell-intrinsic mechanisms, but also depends on paracrine signals provided by the tumour micro-environment. These signals comprise cytokines and growth factors that are synthesized as trans-membrane proteins and need to be liberated by limited proteolysis also termed ectodomain shedding. Members of the family of A disintegrin and metalloproteases (ADAM) are major mediators of ectodomain shedding and therefore initiators of paracrine signal transduction. In this review, we summarize the current knowledge on how ADAM proteases on tumour cells but also on cells of the tumour micro-environment contribute to the formation of gastrointestinal tumours, and discuss how these processes can be exploited pharmacologically.
Collapse
|
20
|
A Bispecific Inhibitor of the EGFR/ADAM17 Axis Decreases Cell Proliferation and Migration of EGFR-Dependent Cancer Cells. Cancers (Basel) 2020; 12:cancers12020411. [PMID: 32050662 PMCID: PMC7072247 DOI: 10.3390/cancers12020411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/22/2020] [Accepted: 02/07/2020] [Indexed: 01/05/2023] Open
Abstract
Dysregulated epidermal growth factor receptor (EGFR) is an oncogenic driver of many human cancers, promoting aberrant cell proliferation, migration, and survival. Pharmacological targeting of EGFR is often challenged by acquired mechanisms of resistance. Ligand-dependent mechanisms in EGFR wild-type cells rely on ligand or receptor overexpression, allowing cells to outcompete inhibitors and perpetuate signaling in an autocrine manner. Importantly, EGFR ligands are synthesized as membrane-bound precursors that must be solubilized to enable receptor-ligand interactions. The A disintegrin and metalloproteinase 17 (ADAM17) is considered the main sheddase of several EGFR ligands, and a potential pharmacological target. However, its broad substrate range and ubiquitous expression complicate its therapeutic targeting. Here, we present a novel bispecific fusion protein construct consisting of the inhibitory prodomain of ADAM17 (TPD), fused to an EGFR-targeting designed ankyrin repeat protein (DARPin). TPD is a natural inhibitor of ADAM17, maintaining the protease in a zymogen-like form. Meanwhile, the high affinity anti-EGFR DARPin E01 binds to EGFR and inhibits ligand binding. The resulting fusion protein E01-GS-TPD retained binding ability to both molecular targets EGFR and ADAM17. The large difference in affinity for each target resulted in enrichment of the fusion protein in EGFR-positive cells compared to EGFR-negative cells, suggesting a possible application in autocrine signaling inhibition. Accordingly, E01-GS-TPD decreased migration and proliferation of EGFR-dependent cell lines with no significant increase in apoptotic cell death. Finally, inhibition of proliferation was observed through EGFR ligand-dependent mechanisms as growth inhibition was not observed in EGFR mutant or KRAS mutant cell lines. The use of bispecific proteins targeting the EGFR/ADAM17 axis could be an innovative strategy for the treatment of EGFR-dependent cancers.
Collapse
|
21
|
Yang Z, Chan KI, Kwok HF, Tam KY. Novel Therapeutic Anti-ADAM17 Antibody A9(B8) Enhances EGFR-TKI-Mediated Anticancer Activity in NSCLC. Transl Oncol 2019; 12:1516-1524. [PMID: 31450127 PMCID: PMC6717059 DOI: 10.1016/j.tranon.2019.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/29/2019] [Accepted: 08/02/2019] [Indexed: 12/19/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) mutations were found in 30%-40% of non-small cell lung cancer (NSCLC) patients, who often responded well to EGFR tyrosine kinase inhibitors (EGFR-TKIs) as exemplified by erlotinib and gefitinib in the past decades. However, EGFR mutation-led drug resistance usually occurred upon prolonged treatment with EGFR-TKI. Herein, we study the anticancer effects of EGFR-TKI in combination with a newly developed antibody, A9(B8), to target a disintegrin and metalloprotease (ADAM) 17 that was overexpressed in NSCLC patients. NSCLC cell lines with different EGFR mutations were used to evaluate the drug combination. We have found that the EGFR-TKI-A9(B8) combination exhibited enhanced anticancer effects in NCI-H1975 cells harboring L858R and T790M mutations, which were due to simultaneous suppression of extracellular signal-regulated kinases phosphorylation. Our results suggested that targeting ADAM17 could potentiate the anticancer effects of EGFR-TKI against NSCLC and overcome drug resistance due to EGFR mutations.
Collapse
Affiliation(s)
- Zheng Yang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR, PR China
| | - Kin Iong Chan
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR, PR China; Department of Pathology, Kiang Wu Hospital, Macau SAR, PR China
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR, PR China; Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR, PR China.
| | - Kin Yip Tam
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR, PR China.
| |
Collapse
|
22
|
Saha N, Robev D, Himanen JP, Nikolov DB. ADAM proteases: Emerging role and targeting of the non-catalytic domains. Cancer Lett 2019; 467:50-57. [PMID: 31593799 DOI: 10.1016/j.canlet.2019.10.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022]
Abstract
ADAM proteases are multi domain transmembrane metalloproteases that cleave a range of cell surface proteins and activate signaling pathways implicated in tumor progression, including those mediated by Notch, EFGR, and the Eph receptors. Consequently, they have emerged as key therapeutic targets in the efforts to inhibit tumor initiation and progression. To that end, two main approaches have been taken to develop ADAM antagonists: (i) small molecule inhibitors, and (ii) monoclonal antibodies. In this mini-review we describe the distinct features of ADAM proteases, particularly of ADAM10 and ADAM17, their domain organization, conformational rearrangements, regulation, as well as their emerging importance as therapeutic targets in cancer. Further, we highlight an anti-ADAM10 monoclonal antibody that we have recently developed, which has shown significant promise in inhibiting Notch signaling and deterring growth of solid tumors in pre-clinical settings.
Collapse
Affiliation(s)
- Nayanendu Saha
- Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY, 10065, USA.
| | - Dorothea Robev
- Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY, 10065, USA
| | - Juha P Himanen
- Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY, 10065, USA
| | - Dimitar B Nikolov
- Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY, 10065, USA
| |
Collapse
|
23
|
Saad MI, Rose-John S, Jenkins BJ. ADAM17: An Emerging Therapeutic Target for Lung Cancer. Cancers (Basel) 2019; 11:E1218. [PMID: 31438559 PMCID: PMC6769596 DOI: 10.3390/cancers11091218] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/07/2019] [Accepted: 08/17/2019] [Indexed: 12/23/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality, which histologically is classified into small-cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). NSCLC accounts for approximately 85% of all lung cancer diagnoses, with the majority of patients presenting with lung adenocarcinoma (LAC). KRAS mutations are a major driver of LAC, and are closely related to cigarette smoking, unlike mutations in the epidermal growth factor receptor (EGFR) which arise in never-smokers. Although the past two decades have seen fundamental progress in the treatment and diagnosis of NSCLC, NSCLC still is predominantly diagnosed at an advanced stage when therapeutic interventions are mostly palliative. A disintegrin and metalloproteinase 17 (ADAM17), also known as tumour necrosis factor-α (TNFα)-converting enzyme (TACE), is responsible for the protease-driven shedding of more than 70 membrane-tethered cytokines, growth factors and cell surface receptors. Among these, the soluble interleukin-6 receptor (sIL-6R), which drives pro-inflammatory and pro-tumourigenic IL-6 trans-signaling, along with several EGFR family ligands, are the best characterised. This large repertoire of substrates processed by ADAM17 places it as a pivotal orchestrator of a myriad of physiological and pathological processes associated with the initiation and/or progression of cancer, such as cell proliferation, survival, regeneration, differentiation and inflammation. In this review, we discuss recent research implicating ADAM17 as a key player in the development of LAC, and highlight the potential of ADAM17 inhibition as a promising therapeutic strategy to tackle this deadly malignancy.
Collapse
Affiliation(s)
- Mohamed I Saad
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3168, Australia
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-University, D-24098 Kiel, Germany
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3168, Australia.
| |
Collapse
|
24
|
Etemad-Moghadam S, Alaeddini M. Upregulation of ADAM10 in oral squamous cell carcinoma and its correlation with EGFR, neoangiogenesis and clinicopathologic factors. J Craniomaxillofac Surg 2019; 47:1583-1588. [PMID: 31395417 DOI: 10.1016/j.jcms.2019.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/25/2019] [Accepted: 07/14/2019] [Indexed: 11/25/2022] Open
Abstract
ADAM10 (a disintegrin and metalloproteinase-10) is a known sheddase for EGFR (epidermal growth factor receptor) ligands and has been suggested to modulate angiogenesis. We aimed to evaluate the expression of ADAM10 in patients with oral squamous cell carcinoma (OSCC) and to determine its correlation with EGFR, CD105 and clinicopathologic parameters. Fifty primary OSCCs with clinical data were graded according to the histologic risk assessment (HRA) model and subjected to immunohistochemical staining using antibodies against ADAM10, EGFR1 and CD105. ADAM10 was assessed in both epithelial and stromal components. The associations among all three proteins and clinicopathologic factors including tumor size, lymph node status and distant metastasis (TNM) were statistically analyzed (P < 0.05). Epithelial-ADAM10, stromal-ADAM10 and EGFR were overexpressed in 92%, 40% and 56% of the OSCCs, respectively. EGFR expression occurred in peripheral and diffuse patterns, which were also separately considered in our analyses. A significant correlation was found between ADAM10 and CD105 (r = -0.455; P < 0.001). Lymphocytic infiltration scores (P = 0.04) and tumor size (P = 0.001) showed significant differences between EGFR+ and EGFR- tumors, but none of the other variables had any relationships with either clinicopathologic factors or each other (P > 0.05). ADAM10 was upregulated in OSCC but had no correlation with survival-associated factors such as TNM or the HRA model. At the protein level, epithelial ADAM10 negatively regulated neoangiogenesis, but its interaction with EGFR was minimal. Reduction in host immunologic responses was associated with a decrease in EGFR. These findings, if corroborated, could be interesting in combination therapies used for cancer treatment.
Collapse
Affiliation(s)
- Shahroo Etemad-Moghadam
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Alaeddini
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Sokol DK, Maloney B, Westmark CJ, Lahiri DK. Novel Contribution of Secreted Amyloid-β Precursor Protein to White Matter Brain Enlargement in Autism Spectrum Disorder. Front Psychiatry 2019; 10:165. [PMID: 31024350 PMCID: PMC6469489 DOI: 10.3389/fpsyt.2019.00165] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/06/2019] [Indexed: 12/27/2022] Open
Abstract
The most replicated neuroanatomical finding in autism is the tendency toward brain overgrowth, especially in younger children. Research shows that both gray and white matter are enlarged. Proposed mechanisms underlying brain enlargement include abnormal inflammatory and neurotrophic signals that lead to excessive, aberrant dendritic connectivity via disrupted pruning and cell adhesion, and enlargement of white matter due to excessive gliogenesis and increased myelination. Amyloid-β protein precursor (βAPP) and its metabolites, more commonly associated with Alzheimer's disease (AD), are also dysregulated in autism plasma and brain tissue samples. This review highlights findings that demonstrate how one βAPP metabolite, secreted APPα, and the ADAM family α-secretases, may lead to increased brain matter, with emphasis on increased white matter as seen in autism. sAPPα and the ADAM family α-secretases contribute to the anabolic, non-amyloidogenic pathway, which is in contrast to the amyloid (catabolic) pathway known to contribute to Alzheimer disease. The non-amyloidogenic pathway could produce brain enlargement via genetic mechanisms affecting mRNA translation and polygenic factors that converge on molecular pathways (mitogen-activated protein kinase/MAPK and mechanistic target of rapamycin/mTOR), promoting neuroinflammation. A novel mechanism linking the non-amyloidogenic pathway to white matter enlargement is proposed: α-secretase and/or sAPPα, activated by ERK receptor signaling activates P13K/AKt/mTOR and then Rho GTPases favoring myelination via oligodendrocyte progenitor cell (OPC) activation of cofilin. Applying known pathways in AD to autism should allow further understanding and provide options for new drug targets.
Collapse
Affiliation(s)
- Deborah K. Sokol
- Pediatrics Section, Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Bryan Maloney
- Indiana Alzheimers Disease Center, Department of Psychiatry, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Cara J. Westmark
- Department of Neurology, University of Wisconsin, Madison, WI, United States
| | - Debomoy K. Lahiri
- Indiana Alzheimers Disease Center, Department of Psychiatry, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
26
|
Nayak A, Das S, Nayak D, Sethy C, Narayan S, Kundu CN. Nanoquinacrine sensitizes 5-FU-resistant cervical cancer stem-like cells by down-regulating Nectin-4 via ADAM-17 mediated NOTCH deregulation. Cell Oncol (Dordr) 2019; 42:157-171. [PMID: 30603978 DOI: 10.1007/s13402-018-0417-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2018] [Indexed: 01/03/2023] Open
Abstract
PURPOSE Cervical cancer is a major cause of cancer-related death in women world-wide. Although the anti-metabolite 5-FU is widely used for its treatment, its clinical utility is limited due to the frequent occurrence of drug resistance during metastasis. Cancer stem-like cells (CSCs), present in the heterogeneous population of CC cells, are thought to contribute to this resistance. Nectin-4, a CSC marker, is known to play an important role in the cellular aggressiveness associated with metastatic CC. This study was designed to assess the role of Nectin-4 in the acquisition of 5-FU resistance by metastatic CC cells, including its relation to the NOTCH signalling pathway. METHODS 5FU-resistant CC cell lines were deduced from ME-180 and SiHA cells by continuous exposure to a single concentration of 5-FU. Thymidylate synthase (TS) positive cells were isolated from the 5-FU resistant cells, after which a metastatic model was developed. The role of Nectin-4 in the sensitization of 5-FU resistant metastatic CC cells upon incubation with Nano-formulated Quinacrine (NQC) was investigated using multiple bioassays including MTT, FACS, ELISA, immunoflurescence, Western blotting, comet and in vivo plasmid-based short patch and long patch base excision repair assays. RESULTS We found that the expression level of Nectin-4, as well as that of other CSC markers (Oct-4, β-catenin, SOX2) and representative NOTCH signalling components (NOTCH-1, Jagged-1, γ-secretase, ADAM-17) were elevated in the 5-FU resistant metastatic cells compared to those in control cells. Increased nuclear translocation of Nectin-4 and increased proliferation and invasion rates were observed after culturing the metastatic cells under hypoxic conditions. Treatment with NQC inhibited the nuclear translocation of Nectin-4 and decreased the proliferation and invasion rates of the cells by inhibiting the induction of base excision repair (BER) pathway components and ADAM-17 expression levels. After combination treatment of Nectin-4 overexpressing metastatic CC cells with a specific ADAM-17 inhibitor (GW280264) and NQC, a decreased Nectin-4 expression, without alterations in BER and/or other NOTCH pathway components, was noted. CONCLUSION Our data indicate that Nectin-4 may play a prominent role in 5-FU resistance of metastatic CC cells and that NQC sensitizes these cells by Nectin-4 deregulation through ADAM-17 inhibition, a major component of the NOTCH signalling pathway.
Collapse
Affiliation(s)
- Anmada Nayak
- Cancer Biology Division, KIIT School of Biotechnology, KIIT University, Campus-11, Patia, Bhubanesar, Odisha, 751024, India
| | - Sarita Das
- Cancer Biology Division, KIIT School of Biotechnology, KIIT University, Campus-11, Patia, Bhubanesar, Odisha, 751024, India
| | - Deepika Nayak
- Cancer Biology Division, KIIT School of Biotechnology, KIIT University, Campus-11, Patia, Bhubanesar, Odisha, 751024, India
| | - Chinmayee Sethy
- Cancer Biology Division, KIIT School of Biotechnology, KIIT University, Campus-11, Patia, Bhubanesar, Odisha, 751024, India
| | - Satya Narayan
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Chanakya Nath Kundu
- Cancer Biology Division, KIIT School of Biotechnology, KIIT University, Campus-11, Patia, Bhubanesar, Odisha, 751024, India.
| |
Collapse
|
27
|
Liu J, Zhu G, Jia N, Wang W, Wang Y, Yin M, Jiang X, Huang Y, Zhang J. CD9 regulates keratinocyte migration by negatively modulating the sheddase activity of ADAM17. Int J Biol Sci 2019; 15:493-506. [PMID: 30745837 PMCID: PMC6367546 DOI: 10.7150/ijbs.29404] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/13/2018] [Indexed: 12/17/2022] Open
Abstract
CD9 is a trans-membrane protein, and has recently been implicated in different physiological and cellular processes, such as cell migration and adhesion. According to previous study, down-regulation of CD9 contributes to keratinocyte migration, critical for wound re-epithelialization. Nevertheless, it is widely believed that tetraspanin CD9 does not have ligands or function as the cell surface receptor, rather it is thought to associate with other transmembrane molecules, thereby mediate keratinocyte migration. Little is known about how CD9 associates with transmembrane molecules in migratory keratinocytes. Here, using confocal microscopy, we observed that tetraspanin CD9 and ADAM17 co-localized on the surface of keratinocytes in the course of wound repair in vivo and in vitro. Co-immunoprecipitation experiments demonstrated a direct association between CD9 and ADAM17 in HaCaT cells and C57-MKs. Functional studies revealed that down-regulation or over-expression of CD9 exerted negative regulatory effects on ADAM17 sheddase activity. This activity is involved in CD9-regulated cell motility and migration. Further studies found that ADAM17 inhibitor-TAPI-2 or siADAM17 significantly abolished the enhanced effect of keratinocyte migration induced by CD9 down-regulation. Meanwhile, the sheddase activity of ADAM17 was inhibited by TAPI-2, which decreased this release of AREG and HB-EGF in CD9-silenced HaCat cells and C57-MKs. Importantly, neutralizing antibody against HB-EGF significant weakened keratinocyte migration and motility in CD9-silenced keratinocytes, and the inhibition of CD9-regulated keratinocyte migration by siADAM17 was rescued by addition of recombinant HB-EGF, activating EGFR/ERK pathway. Collectively, our results suggest that ADAM17 sheddase activity is activated by down-regulation of CD9, thereby mediating shedding of HB-EGF and activation of EGFR/ERK signaling, which crucially affects the keratinocyte migration and wound healing.
Collapse
Affiliation(s)
- Jie Liu
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University(Army Medical University), Chongqing, China
| | - Guoqin Zhu
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University(Army Medical University), Chongqing, China
| | - Naixin Jia
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University(Army Medical University), Chongqing, China
| | - Weiyi Wang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University(Army Medical University), Chongqing, China
| | - Yuan Wang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University(Army Medical University), Chongqing, China
| | - Meifang Yin
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University(Army Medical University), Chongqing, China
| | - Xuping Jiang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University(Army Medical University), Chongqing, China
| | - Yuesheng Huang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University(Army Medical University), Chongqing, China
| | - Jiaping Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University(Army Medical University), Chongqing, China
- Department of plastic Surgery, Southwest Hospital, Third Military Medical University(Army Medical University), Chongqing, China
| |
Collapse
|
28
|
O'Brien SL, Johnstone EKM, Devost D, Conroy J, Reichelt ME, Purdue BW, Ayoub MA, Kawai T, Inoue A, Eguchi S, Hébert TE, Pfleger KDG, Thomas WG. BRET-based assay to monitor EGFR transactivation by the AT 1R reveals G q/11 protein-independent activation and AT 1R-EGFR complexes. Biochem Pharmacol 2018; 158:232-242. [PMID: 30347205 DOI: 10.1016/j.bcp.2018.10.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/17/2018] [Indexed: 01/09/2023]
Abstract
The type 1 angiotensin II (AngII) receptor (AT1R) transactivates the epidermal growth factor receptor (EGFR), which leads to pathological remodeling of heart, blood vessels and kidney. End-point assays are used as surrogates of EGFR activation, however these downstream readouts are not applicable to live cells, in real-time. Herein, we report the use of a bioluminescence resonance energy transfer (BRET)-based assay to assess recruitment of the EGFR adaptor protein, growth factor receptor-bound protein 2 (Grb2), to the EGFR. In a variety of cell lines, both epidermal growth factor (EGF) and AngII stimulated Grb2 recruitment to EGFR. The BRET assay was used to screen a panel of 9 G protein-coupled receptors (GPCRs) and further developed for other EGFR family members (HER2 and HER3); the AT1R was able to transactivate HER2, but not HER3. Mechanistically, AT1R-mediated ERK1/2 activation was dependent on Gq/11 and EGFR tyrosine kinase activity, whereas the recruitment of Grb2 to the EGFR was independent of Gq/11 and only partially dependent on EGFR tyrosine kinase activity. This Gq/11 independence of EGFR transactivation was confirmed using AT1R mutants and in CRISPR cell lines lacking Gq/11. EGFR transactivation was also apparently independent of β-arrestins. Finally, we used additional BRET-based assays and confocal microscopy to provide evidence that both AngII- and EGF-stimulation promoted AT1R-EGFR heteromerization. In summary, we report an alternative approach to monitoring AT1R-EGFR transactivation in live cells, which provides a more direct and proximal view of this process, including the potential for complexes between the AT1R and EGFR.
Collapse
Affiliation(s)
- Shannon L O'Brien
- Receptor Biology Group, The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Elizabeth K M Johnstone
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Dominic Devost
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Jacinta Conroy
- Receptor Biology Group, The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Melissa E Reichelt
- Receptor Biology Group, The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Brooke W Purdue
- Receptor Biology Group, The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Mohammed A Ayoub
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Tatsuo Kawai
- Cardiovascular Research Centre, Department of Physiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Satoru Eguchi
- Cardiovascular Research Centre, Department of Physiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Kevin D G Pfleger
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia; Dimerix Limited, Nedlands, Western Australia 6009, Australia
| | - Walter G Thomas
- Receptor Biology Group, The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia 4072, Queensland, Australia; Centre for Cardiac and Vasculature Biology, The University of Queensland, St Lucia 4072, Queensland, Australia.
| |
Collapse
|
29
|
Santamaria S, de Groot R. Monoclonal antibodies against metzincin targets. Br J Pharmacol 2018; 176:52-66. [PMID: 29488211 DOI: 10.1111/bph.14186] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/13/2018] [Accepted: 02/16/2018] [Indexed: 12/12/2022] Open
Abstract
The metzincin clan of metalloproteinases includes the MMP, disintegrin and metalloproteinase (ADAM) and ADAM with thrombospondin motifs families, which cleave extracellular targets in a wide range of (patho)physiological processes. Antibodies constitute a powerful tool to modulate the activity of these enzymes for both therapeutic and research purposes. In this review, we give an overview of monoclonal antibodies (mAbs) that have been tested in preclinical disease models, human trials and important studies of metzincin structure and function. Initial attempts to develop therapeutic small molecule inhibitors against MMPs were hampered by structural similarities between metzincin active sites and, consequently, off-target effects. Therefore, more recently, mAbs have been developed that do not bind to the active site but bind to surface-exposed loops that are poorly conserved in closely related family members. Inhibition of protease activity by these mAbs occurs through a variety of mechanisms, including (i) barring access to the active site, (ii) disruption of exosite binding, and (iii) prevention of protease activation. These different modes of inhibition are discussed in the context of the antibodies' potency, selectivity and, importantly, the effects in models of disease and clinical trials. In addition, various innovative strategies that were used to generate anti-metzincin mAbs are discussed. LINKED ARTICLES: This article is part of a themed section on Translating the Matrix. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.1/issuetoc.
Collapse
Affiliation(s)
| | - Rens de Groot
- Imperial College London, Centre for Haematology, London, UK
| |
Collapse
|
30
|
Recent Advances in ADAM17 Research: A Promising Target for Cancer and Inflammation. Mediators Inflamm 2017; 2017:9673537. [PMID: 29230082 PMCID: PMC5688260 DOI: 10.1155/2017/9673537] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/15/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023] Open
Abstract
Since its discovery, ADAM17, also known as TNFα converting enzyme or TACE, is now known to process over 80 different substrates. Many of these substrates are mediators of cancer and inflammation. The field of ADAM metalloproteinases is at a crossroad with many of the new potential therapeutic agents for ADAM17 advancing into the clinic. Researchers have now developed potential drugs for ADAM17 that are selective and do not have the side effects which were seen in earlier chemical entities that targeted this enzyme. ADAM17 inhibitors have broad therapeutic potential, with properties ranging from tumor immunosurveillance and overcoming drug and radiation resistance in cancer, as treatments for cardiac hypertrophy and inflammatory conditions such as inflammatory bowel disease and rheumatoid arthritis. This review focuses on substrates and inhibitors identified more recently for ADAM17 and their role in cancer and inflammation.
Collapse
|
31
|
Mota JM, Collier KA, Barros Costa RL, Taxter T, Kalyan A, Leite CA, Chae YK, Giles FJ, Carneiro BA. A comprehensive review of heregulins, HER3, and HER4 as potential therapeutic targets in cancer. Oncotarget 2017; 8:89284-89306. [PMID: 29179520 PMCID: PMC5687690 DOI: 10.18632/oncotarget.18467] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 04/17/2017] [Indexed: 12/30/2022] Open
Abstract
Heregulins (HRGs) bind to the receptors HER3 or HER4, induce receptor dimerization, and trigger downstream signaling that leads to tumor progression and resistance to targeted therapies. Increased expression of HRGs has been associated with worse clinical prognosis; therefore, attempts to block HRG-dependent tumor growth have been pursued. This manuscript summarizes the function and signaling of HRGs and review the preclinical evidence of its involvement in carcinogenesis, prognosis, and treatment resistance in several malignancies such as colorectal cancer, non-small cell lung cancer, ovarian cancer, and breast cancer. Agents in preclinical development and clinical trials of novel therapeutics targeting HRG-dependent signaling are also discussed, including anti-HER3 and -HER4 antibodies, anti-metalloproteinase agents, and HRG fusion proteins. Although several trials have indicated an acceptable safety profile, translating preclinical findings into clinical practice remains a challenge in this field, possibly due to the complexity of downstream signaling and patterns of HRG, HER3 and HER4 expression in different cancer subtypes. Improving patient selection through biomarkers and understanding the resistance mechanisms may translate into significant clinical benefits in the near future.
Collapse
Affiliation(s)
- Jose Mauricio Mota
- Instituto do Câncer do Estado de São Paulo, Division of Oncology, Universidade de São Paulo, São Paulo, Brazil
| | - Katharine Ann Collier
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ricardo Lima Barros Costa
- Developmental Therapeutics Program, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Timothy Taxter
- Developmental Therapeutics Program, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Aparna Kalyan
- Developmental Therapeutics Program, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Caio A. Leite
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Young Kwang Chae
- Developmental Therapeutics Program, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Francis J. Giles
- Developmental Therapeutics Program, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Benedito A. Carneiro
- Developmental Therapeutics Program, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
32
|
Amar S, Minond D, Fields GB. Clinical Implications of Compounds Designed to Inhibit ECM-Modifying Metalloproteinases. Proteomics 2017; 17. [PMID: 28613012 DOI: 10.1002/pmic.201600389] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/03/2017] [Indexed: 12/19/2022]
Abstract
Remodeling of the extracellular matrix (ECM) is crucial in development and homeostasis, but also has a significant role in disease progression. Two metalloproteinase families, the matrix metalloproteinases (MMPs) and a disintegrin and metalloproteases (ADAMs), participate in the remodeling of the ECM, either directly or through the liberation of growth factors and cell surface receptors. The correlation of MMP and ADAM activity to a variety of diseases has instigated numerous drug development programs. However, broad-based and Zn2+ -chelating MMP and ADAM inhibitors have fared poorly in the clinic. Selective MMP and ADAM inhibitors have been described recently based on (a) antibodies or antibody fragments or (b) small molecules designed to take advantage of protease secondary binding sites (exosites) or allosteric sites. Clinical trials have been undertaken with several of these inhibitors, while others are in advanced pre-clinical stages.
Collapse
Affiliation(s)
- Sabrina Amar
- Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL, USA
| | - Dmitriy Minond
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Gregg B Fields
- Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL, USA.,Department of Chemistry, The Scripps Research Institute/Scripps Florida, Jupiter, FL, USA
| |
Collapse
|
33
|
Abstract
Up to 25% of patients with early-stage HER2+ breast cancer relapse despite adjuvant trastuzumab-based regimens and virtually all patients with metastatic disease eventually die from resistance to existing treatment options. In addition, recent studies indicate that activating HER2 mutations without gene amplification could drive tumor growth in a subset of HER2-negative breast cancer that is not currently eligible for HER2-targeted agents. Neratinib is an irreversible HER kinase inhibitor with activity as extended adjuvant therapy following standard trastuzumab-based adjuvant treatment in a Phase III trial. Phase II trials of neratinib demonstrate promising activity in combination with cytotoxic agents in trastuzumab resistant metastatic HER2+ breast cancer, and either as monotherapy or in combination with fulvestrant for HER2-mutated breast cancers. We anticipate a potential role for neratinib in the therapy of these patient populations.
Collapse
Affiliation(s)
- Mathew A Cherian
- Division of Oncology, Department of Medicine, Washington University in Saint Louis, St Louis, MO 63110, USA
| | - Cynthia X Ma
- Division of Oncology, Department of Medicine, Washington University in Saint Louis, St Louis, MO 63110, USA
| |
Collapse
|
34
|
Overmiller AM, Pierluissi JA, Wermuth PJ, Sauma S, Martinez-Outschoorn U, Tuluc M, Luginbuhl A, Curry J, Harshyne LA, Wahl JK, South AP, Mahoney MG. Desmoglein 2 modulates extracellular vesicle release from squamous cell carcinoma keratinocytes. FASEB J 2017; 31:3412-3424. [PMID: 28438789 DOI: 10.1096/fj.201601138rr] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 04/11/2017] [Indexed: 12/21/2022]
Abstract
Extracellular vesicles (EVs) are nanoscale membrane-derived vesicles that serve as intercellular messengers carrying lipids, proteins, and genetic material. Substantial evidence has shown that cancer-derived EVs, secreted by tumor cells into the blood and other bodily fluids, play a critical role in modulating the tumor microenvironment and affecting the pathogenesis of cancer. Here we demonstrate for the first time that squamous cell carcinoma (SCC) EVs were enriched with the C-terminal fragment of desmoglein 2 (Dsg2), a desmosomal cadherin often overexpressed in malignancies. Overexpression of Dsg2 increased EV release and mitogenic content including epidermal growth factor receptor and c-Src. Inhibiting ectodomain shedding of Dsg2 with the matrix metalloproteinase inhibitor GM6001 resulted in accumulation of full-length Dsg2 in EVs and reduced EV release. When cocultured with Dsg2/green fluorescence protein-expressing SCC cells, green fluorescence protein signal was detected by fluorescence-activated cell sorting analysis in the CD90+ fibroblasts. Furthermore, SCC EVs activated Erk1/2 and Akt signaling and enhanced fibroblast cell proliferation. In vivo, Dsg2 was highly up-regulated in the head and neck SCCs, and EVs isolated from sera of patients with SCC were enriched in Dsg2 C-terminal fragment and epidermal growth factor receptor. This study defines a mechanism by which Dsg2 expression in cancer cells can modulate the tumor microenvironment, a step critical for tumor progression.-Overmiller, A. M., Pierluissi, J. A., Wermuth, P. J., Sauma, S., Martinez-Outschoorn, U., Tuluc, M., Luginbuhl, A., Curry, J., Harshyne, L. A., Wahl, J. K. III, South, A. P., Mahoney, M. G. Desmoglein 2 modulates extracellular vesicle release from squamous cell carcinoma keratinocytes.
Collapse
Affiliation(s)
- Andrew M Overmiller
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jennifer A Pierluissi
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Peter J Wermuth
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Sami Sauma
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Madalina Tuluc
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Adam Luginbuhl
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Joseph Curry
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Larry A Harshyne
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - James K Wahl
- Department of Oral Biology, University of Nebraska, Lincoln, Nebraska, USA
| | - Andrew P South
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mỹ G Mahoney
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA;
| |
Collapse
|
35
|
Abstract
A compelling long-term goal of cancer biology is to understand the crucial players during tumorigenesis in order to develop new interventions. Here, we review how the four non-redundant tissue inhibitors of metalloproteinases (TIMPs) regulate the pericellular proteolysis of a vast range of matrix and cell surface proteins, generating simultaneous effects on tumour architecture and cell signalling. Experimental studies demonstrate the contribution of TIMPs to the majority of cancer hallmarks, and human cancers invariably show TIMP deregulation in the tumour or stroma. Of the four TIMPs, TIMP1 overexpression or TIMP3 silencing is consistently associated with cancer progression or poor patient prognosis. Future efforts will align mouse model systems with changes in TIMPs in patients, will delineate protease-independent TIMP function, will pinpoint therapeutic targets within the TIMP-metalloproteinase-substrate network and will use TIMPs in liquid biopsy samples as biomarkers for cancer prognosis.
Collapse
Affiliation(s)
- Hartland W Jackson
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre, TMDT 301-13, 101 College Street, Toronto, Ontario, M5G IL7 Canada
- Bodenmiller Laboratory, University of Zürich, Institute for Molecular Life Sciences, Winterthurstrasse 190, 8057 Zürich, Switzerland
| | - Virginie Defamie
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre, TMDT 301-13, 101 College Street, Toronto, Ontario, M5G IL7 Canada
| | - Paul Waterhouse
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre, TMDT 301-13, 101 College Street, Toronto, Ontario, M5G IL7 Canada
| | - Rama Khokha
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre, TMDT 301-13, 101 College Street, Toronto, Ontario, M5G IL7 Canada
| |
Collapse
|
36
|
Kawahara R, Granato DC, Yokoo S, Domingues RR, Trindade DM, Paes Leme AF. Mass spectrometry-based proteomics revealed Glypican-1 as a novel ADAM17 substrate. J Proteomics 2016; 151:53-65. [PMID: 27576135 DOI: 10.1016/j.jprot.2016.08.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 08/02/2016] [Accepted: 08/25/2016] [Indexed: 12/16/2022]
Abstract
ADAM17 (a disintegrin and metalloproteinase 17) is a plasma membrane metalloprotease involved in proteolytic release of the extracellular domain of many cell surface molecules, a process known as ectodomain shedding. Through this process, ADAM17 is implicated in several aspects of tumor growth and metastasis in a broad range of tumors, including head and neck squamous cell carcinomas (HNSCC). In this study, mass spectrometry-based proteomics approaches revealed glypican-1 (GPC1) as a new substrate for ADAM17, and its shedding was confirmed to be metalloprotease-dependent, induced by a pleiotropic agent (PMA) and physiologic ligand (EGF), and inhibited by marimastat. In addition, immunoblotting analysis of GPC1 in the extracellular media from control and ADAM17shRNA pointed to a direct involvement of ADAM17 in the cleavage of GPC1. Moreover, mass spectrometry-based interactome analysis of GPC1 revealed biological functions and pathways related mainly to cellular movement, adhesion and proliferation, which were events also modulated by up regulation of full length and cleavage GPC1. Altogether, we showed that GPC1 is a novel ADAM17 substrate, thus the function of GPC1 may be modulated by proteolysis signaling. BIOLOGICAL SIGNIFICANCE Inhibition of metalloproteases as a therapeutic approach has failed because there is limited knowledge of the degradome of individual proteases as well as the cellular function of cleaved substrates. Using different proteomic techniques, this study uncovered novel substrates that can be modulated by ADAM17 in oral squamous cell carcinoma cell line. Glypican-1 was validated as a novel substrate for ADAM17, with important function in adhesion, proliferation and migration of carcinoma cells. Therefore, this study opens new avenues regarding the proteolysis-mediated function of GPC1 by ADAM17.
Collapse
Affiliation(s)
- Rebeca Kawahara
- Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, Brazil
| | | | - Sami Yokoo
- Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, Brazil
| | | | | | | |
Collapse
|
37
|
Proteolysis in the Interstitium. Protein Sci 2016. [DOI: 10.1201/9781315374307-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Dreymueller D, Ludwig A. Considerations on inhibition approaches for proinflammatory functions of ADAM proteases. Platelets 2016; 28:354-361. [PMID: 27460023 DOI: 10.1080/09537104.2016.1203396] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Proteases of the disintegrin and metalloproteinase (ADAM) family mediate the proteolytic shedding of various surface molecules including cytokine precursors, adhesion molecules, growth factors, and receptors. Within the vasculature ADAM10 and ADAM17 regulate endothelial permeability, transendothelial leukocyte migration, and the adhesion of leukocytes and platelets. In vivo studies show that both proteases are implicated in several inflammatory pathologies, for example, edema formation, leukocyte infiltration, and thrombosis. However, both proteases also contribute to developmental and regenerative processes. Thus, although ADAMs can be regarded as valuable drug targets in many aspects, the danger of severe side effects is clearly visible. To circumvent these side effects, traditional inhibition approaches have to be improved to target ADAMs at the right time in the right place. Moreover, the inhibitors need to be more selective for the target protease and if possible also for the substrate. Antibodies recognizing the active conformation of ADAMs or small molecules blocking exosites of ADAM proteases may represent inhibitors with the desired selectivities.
Collapse
Affiliation(s)
- Daniela Dreymueller
- a Institute of Pharmacology and Toxicology , RWTH Aachen University , Aachen , Germany
| | - Andreas Ludwig
- a Institute of Pharmacology and Toxicology , RWTH Aachen University , Aachen , Germany
| |
Collapse
|
39
|
Wang H, Hu L, Zang M, Zhang B, Duan Y, Fan Z, Li J, Su L, Yan M, Zhu Z, Liu B, Yang Q. REG4 promotes peritoneal metastasis of gastric cancer through GPR37. Oncotarget 2016; 7:27874-88. [PMID: 27036049 PMCID: PMC5053694 DOI: 10.18632/oncotarget.8442] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/14/2016] [Indexed: 12/15/2022] Open
Abstract
Being the major reason of recurrence and death after surgery, peritoneal metastasis of gastric cancer dooms the prognosis of advanced gastric cancer patients. Regenerating islet-derived family, member 4 (REG4) is believed to promote peritoneal metastasis, however, its mechanism is still a moot point at present. In the present study, we show that high expression of REG4 correlates with advanced stage and poor survival prognosis for gastric cancer patients. REG4 overexpression significantly enhances peritoneal metastasis by increasing adhesion ability. Moreover, SP1 is proved to be a transcription factor of REG4 and induce REG4 expression upon TGF-alpha stimulation. Also, G protein-coupled receptor 37 (GPR37) is identified to be in the same complex of REG4, which mediates REG4's signal transduction and promotes peritoneal metastasis of gastric cancer cell. Interestingly, we also discover a positive feedback loop triggered by REG4, amplifying itself through EGFR transactivation, consisting of GPR37, ADAM17, TGF-alpha, EGFR, SP1 and REG4. In conclusion, REG4 promotes peritoneal metastasis of gastric cancer through GPR37 and triggers a positive feedback loop.
Collapse
Affiliation(s)
- Hexiao Wang
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Lei Hu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Mingde Zang
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Baogui Zhang
- Affiliated Hospital of Jining Medical University, Department of Surgery, Jining 272000, People's Republic of China
| | - Yantao Duan
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Zhiyuan Fan
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Jianfang Li
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Liping Su
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Min Yan
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Zhenggang Zhu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Bingya Liu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Qiumeng Yang
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| |
Collapse
|
40
|
Mullooly M, McGowan PM, Crown J, Duffy MJ. The ADAMs family of proteases as targets for the treatment of cancer. Cancer Biol Ther 2016; 17:870-80. [PMID: 27115328 DOI: 10.1080/15384047.2016.1177684] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The ADAMs (a disintegrin and metalloproteases) are transmembrane multidomain proteins implicated in multiple biological processes including proteolysis, cell adhesion, cell fusion, cell proliferation and cell migration. Of these varied activities, the best studied is their role in proteolysis. However, of the 22 ADAMs believed to be functional in humans, only approximately a half possess matrix metalloproteinase (MMP)-like protease activity. In contrast to MMPs which are mostly implicated in the degradation of extracellular matrix proteins, the main ADAM substrates are the ectodomains of type I and type II transmembrane proteins. These include growth factor/cytokine precursors, growth factor/cytokine receptors and adhesion proteins. Recently, several different ADAMs, especially ADAM17, have been shown to play a role in the development and progression of multiple cancer types. Consistent with this role in cancer, targeting ADAM17 with either low molecular weight inhibitors or monoclonal antibodies was shown to have anti-cancer activity in multiple preclinical systems. Although early phase clinical trials have shown no serious side effects with a dual ADAM10/17 low molecular weight inhibitor, the consequences of long-term treatment with these agents is unknown. Furthermore, efficacy in clinical trials remains to be shown.
Collapse
Affiliation(s)
- Maeve Mullooly
- a National Institutes of Health , Bethesda , MD , USA.,b UCD School of Medicine and Medical Science , Conway Institute of Biomolecular and Biomedical Research, University College Dublin , Ireland
| | - Patricia M McGowan
- b UCD School of Medicine and Medical Science , Conway Institute of Biomolecular and Biomedical Research, University College Dublin , Ireland.,c Education and Research Center , St. Vincent's University Hospital , Dublin , Ireland
| | - John Crown
- d Department of Medical Oncology , St. Vincent's University Hospital , Dublin , Ireland
| | - Michael J Duffy
- b UCD School of Medicine and Medical Science , Conway Institute of Biomolecular and Biomedical Research, University College Dublin , Ireland.,e UCD Clinical Research Center , St. Vincent's University Hospital , Dublin , Ireland
| |
Collapse
|
41
|
Sasaki Y, Tamura M, Koyama R, Nakagaki T, Adachi Y, Tokino T. Genomic characterization of esophageal squamous cell carcinoma: Insights from next-generation sequencing. World J Gastroenterol 2016; 22:2284-2293. [PMID: 26900290 PMCID: PMC4735002 DOI: 10.3748/wjg.v22.i7.2284] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/29/2015] [Accepted: 12/21/2015] [Indexed: 02/06/2023] Open
Abstract
Two major types of cancer occur in the esophagus: squamous cell carcinoma, which is associated with chronic smoking and alcohol consumption, and adenocarcinoma, which typically arises in gastric reflux-associated Barrett’s esophagus. Although there is increasing incidence of esophageal adenocarcinoma in Western counties, esophageal squamous cell carcinoma (ESCC) accounts for most esophageal malignancies in East Asia, including China and Japan. Technological advances allowing for massively parallel, high-throughput next-generation sequencing (NGS) of DNA have enabled comprehensive characterization of somatic mutations in large numbers of tumor samples. Recently, several studies were published in which whole exome or whole genome sequencing was performed in ESCC tumors and compared with matched normal DNA. Mutations were validated in several genes, including in TP53, CDKN2A, FAT1, NOTCH1, PIK3CA, KMT2D and NFE2L2, which had been previously implicated in ESCC. Several new recurrent alterations have also been identified in ESCC. Combining the clinicopathological characteristics of patients with information obtained from NGS studies may lead to the development of effective diagnostic and therapeutic approaches for ESCC. As this research becomes more prominent, it is important that gastroenterologist become familiar with the various NGS technologies and the results generated using these methods. In the present study, we describe recent research approaches using NGS in ESCC.
Collapse
|
42
|
Wang R, Ye X, Bhattacharya R, Boulbes DR, Fan F, Xia L, Ellis LM. A Disintegrin and Metalloproteinase Domain 17 Regulates Colorectal Cancer Stem Cells and Chemosensitivity Via Notch1 Signaling. Stem Cells Transl Med 2016; 5:331-8. [PMID: 26744411 PMCID: PMC4807666 DOI: 10.5966/sctm.2015-0168] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/19/2015] [Indexed: 11/30/2022] Open
Abstract
The objective was to determine whether A disintegrin and metalloproteinase domain 17 (ADAM17) regulates the cancer stem cell (CSC) phenotype in colorectal cancer (CRC) and elucidate the downstream signaling mechanism mediating cancer stem-ness. The results showed that ADAM17 has a role in regulating the CSC phenotype and chemoresistance in CRC cells. Drugs that inhibit ADAM17 activity might increase the therapeutic benefit to metastatic CRC and, potentially, other solid malignancies. Evidence is accumulating for the role of cancer stem cells (CSCs) in mediating chemoresistance in patients with metastatic colorectal cancer (mCRC). A disintegrin and metalloproteinase domain 17 (ADAM17; also known as tumor necrosis factor-α-converting enzyme [TACE]) was shown to be overexpressed and to mediate cell proliferation and chemoresistance in CRC cells. However, its role in mediating the CSC phenotype in CRC has not been well-characterized. The objective of the present study was to determine whether ADAM17 regulates the CSC phenotype in CRC and to elucidate the downstream signaling mechanism that mediates cancer stemness. We treated established CRC cell lines and a newly established human CRC cell line HCP-1 with ADAM17-specific small interfering RNA (siRNA) or the synthetic peptide inhibitor TAPI-2. The effects of ADAM17 inhibition on the CSC phenotype and chemosensitivity to 5-fluorouracil (5-FU) in CRC cells were examined. siRNA knockdown and TAPI-2 decreased the protein levels of cleaved Notch1 (Notch1 intracellular domain) and HES-1 in CRC cells. A decrease in the CSC phenotype was determined by sphere formation and ALDEFLUOR assays. Moreover, TAPI-2 sensitized CRC cells to 5-FU by decreasing cell viability and the median lethal dose of 5-FU and increasing apoptosis. We also showed the cleavage and release of soluble Jagged-1 and -2 by ADAM17 in CRC cells. Our studies have elucidated a role of ADAM17 in regulating the CSC phenotype and chemoresistance in CRC cells. The use of drugs that inhibit ADAM17 activity might increase the therapeutic benefit to patients with mCRC and, potentially, those with other solid malignancies. Significance The present study has demonstrated the role of A disintegrin and metalloproteinase domain 17 (ADAM17) in regulating cancer stemness and chemosensitivity in colorectal cancer (CRC) cells. In addition, a previously unknown cleavage of the Notch ligands Jagged-1 and -2 by ADAM17 in CRC cells is reported. These findings will have an impact on future studies of the regulation of cancer stem cells in CRC and, potentially, other cancer types.
Collapse
Affiliation(s)
- Rui Wang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiangcang Ye
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rajat Bhattacharya
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Delphine R Boulbes
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Fan Fan
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ling Xia
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lee M Ellis
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|