1
|
Hizo GH, Rampelotto PH. The Impact of Probiotic Bifidobacterium on Liver Diseases and the Microbiota. Life (Basel) 2024; 14:239. [PMID: 38398748 PMCID: PMC10890151 DOI: 10.3390/life14020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Recent studies have shown the promising potential of probiotics, especially the bacterial genus Bifidobacterium, in the treatment of liver diseases. In this work, a systematic review was conducted, with a focus on studies that employed advanced Next Generation Sequencing (NGS) technologies to explore the potential of Bifidobacterium as a probiotic for treating liver pathologies such as Non-Alcoholic Fatty Liver Disease (NAFLD), Non-Alcoholic Steatohepatitis (NASH), Alcoholic Liver Disease (ALD), Cirrhosis, and Hepatocelullar Carcinoma (HCC) and its impact on the microbiota. Our results indicate that Bifidobacterium is a safe and effective probiotic for treating liver lesions. It successfully restored balance to the intestinal microbiota and improved biochemical and clinical parameters in NAFLD, ALD, and Cirrhosis. No significant adverse effects were identified. While more research is needed to establish its efficacy in treating NASH and HCC, the evidence suggests that Bifidobacterium is a promising probiotic for managing liver lesions.
Collapse
Affiliation(s)
- Gabriel Henrique Hizo
- Graduate Program in Gastroenterology and Hepatology Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| | - Pabulo Henrique Rampelotto
- Bioinformatics and Biostatistics Core Facility, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-907, Brazil
| |
Collapse
|
2
|
Serna E, Mauricio MD, San-Miguel T, Guerra-Ojeda S, Verdú D, Valls A, Arc-Chagnaud C, De la Rosa A, Viña J. Glucose 6-P Dehydrogenase Overexpression Improves Aging-Induced Endothelial Dysfunction in Aorta from Mice: Role of Arginase II. Int J Mol Sci 2023; 24:ijms24043622. [PMID: 36835034 PMCID: PMC9961129 DOI: 10.3390/ijms24043622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
The increase of vascular arginase activity during aging causes endothelial dysfunction. This enzyme competes with the endothelial nitric oxide synthase (eNOS) for L-arginine substrate. Our hypothesis is that glucose 6-P dehydrogenase (G6PD) overexpression could improve the endothelial function modulating the arginase pathway in aorta from mice. For this study, three groups of male mice were used: young wild type (WT) (6-9 months), old WT (21-22 months) and old G6PD-Tg (21-22 months) mice. Vascular reactivity results showed a reduced acetylcholine-dependent relaxation in the old WT but not old G6PD-Tg group. Endothelial dysfunction was reverted by nor-NOHA, an arginase inhibitor. Mice overexpressing G6PD underexpressed arginase II and also displayed a lower activity of this enzyme. Moreover, histological analyses demonstrated that age causes a thickness of aortic walls, but this did not occur in G6PD-Tg mice. We conclude that the overexpressing G6PD mouse is a model to improve vascular health via the arginase pathway.
Collapse
Affiliation(s)
- Eva Serna
- Department of Physiology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
- Correspondence:
| | - Maria D Mauricio
- Department of Physiology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Teresa San-Miguel
- Department of Pathology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Sol Guerra-Ojeda
- Department of Physiology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| | - David Verdú
- Department of Physiology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Alicia Valls
- Department of Physiology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Coralie Arc-Chagnaud
- Department of Physiology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Adrián De la Rosa
- Department of Physiology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| | - José Viña
- Department of Physiology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
3
|
Bucheli JEV, Todorov SD, Holzapfel WH. Role of gastrointestinal microbial populations, a terra incognita of the human body in the management of intestinal bowel disease and metabolic disorders. Benef Microbes 2022; 13:295-318. [PMID: 35866598 DOI: 10.3920/bm2022.0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intestinal bowel disease (IBD) is a chronic immune-mediated clinical condition that affects the gastrointestinal tract and is mediated by an inflammatory response. Although it has been extensively studied, the multifactorial aetiology of this disorder makes it difficult to fully understand all the involved mechanisms in its development and therefore its treatment. In recent years, the fundamental role played by the human microbiota in the pathogenesis of IBD has been emphasised. Microbial imbalances in the gut bacterial communities and a lower species diversity in patients suffering from inflammatory gastrointestinal disorders compared to healthy individuals have been reported as principal factors in the development of IBD. These served to support scientific arguments for the use of probiotic microorganisms in alternative approaches for the prevention and treatment of IBD. In a homeostatic environment, the presence of bacteria (including probiotics) on the intestinal epithelial surface activates a cascade of processes by which immune responses inhibited and thereby commensal organisms maintained. At the same time these processes may support activities against specific pathogenic bacteria. In dysbiosis, these underlying mechanisms will serve to provoke a proinflammatory response, that, in combination with the use of antibiotics and the genetic predisposition of the host, will culminate in the development of IBD. In this review, we summarised the main causes of IBD, the physiological mechanisms involved and the related bacterial groups most frequently associated with these processes. The intention was to enable a better understanding of the interaction between the intestinal microbiota and the host, and to suggest possibilities by which this knowledge can be useful for the development of new therapeutic treatments.
Collapse
Affiliation(s)
- J E Vazquez Bucheli
- Human Effective Microbes, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk 37554, Republic of Korea
| | - S D Todorov
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk 37554, Republic of Korea
| | - W H Holzapfel
- Human Effective Microbes, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk 37554, Republic of Korea
| |
Collapse
|
4
|
Tian B, Yao JH, Lin X, Lv WQ, Jiang LD, Wang ZQ, Shen J, Xiao HM, Xu H, Xu LL, Cheng X, Shen H, Qiu C, Luo Z, Zhao LJ, Yan Q, Deng HW, Zhang LS. Metagenomic study of the gut microbiota associated with cow milk consumption in Chinese peri-/postmenopausal women. Front Microbiol 2022; 13:957885. [PMID: 36051762 PMCID: PMC9425034 DOI: 10.3389/fmicb.2022.957885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Cow milk consumption (CMC) and alterations of gut bacterial composition are proposed to be closely related to human health and disease. Our research aims to investigate the changes in human gut microbial composition in Chinese peri-/postmenopausal women with different CMC habits. A total of 517 subjects were recruited and questionnaires about their CMC status were collected; 394 subjects were included in the final analyses. Fecal samples were used for studying gut bacterial composition. All the subjects were divided into a control group (n = 248) and a CMC group (n = 146) according to their CMC status. Non-parametric tests and LEfSe at different taxonomic levels were used to reveal differentially abundant taxa and functional categories across different CMC groups. Relative abundance (RA) of one phylum (p_Actinobacteria), three genera (g_Bifidobacterium, g_Anaerostipes, and g_Bacteroides), and 28 species diversified significantly across groups. Specifically, taxa g_Anaerostipes (p < 0.01), g_Bacteroides (p < 0.05), s_Anaerostipes_hadrus (p < 0.01), and s_Bifidobacterium_pseudocatenulatum (p < 0.01) were positively correlated with CMC levels, but p_Actinobacteria (p < 0.01) and g_Bifidobacterium (p < 0.01) were negatively associated with CMC levels. KEGG module analysis revealed 48 gut microbiome functional modules significantly (p < 0.05) associated with CMC, including Vibrio cholerae pathogenicity signature, cholera toxins (p = 9.52e-04), and cephamycin C biosynthesis module (p = 0.0057), among others. In conclusion, CMC was associated with changes in gut microbiome patterns including beta diversity and richness of some gut microbiota. The alterations of certain bacteria including g_Anaerostipes and s_Bifidobacterium_pseudocatenulatum in the CMC group should be important for human health. This study further supports the biological value of habitual cow milk consumption.
Collapse
Affiliation(s)
- Bo Tian
- School of Physical Science and Engineering, College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Jia-Heng Yao
- School of Physical Science and Engineering, College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Xu Lin
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Wan-Qiang Lv
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, China
| | - Lin-Dong Jiang
- Tulane Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Zhuo-Qi Wang
- School of Physical Science and Engineering, College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Jie Shen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China,Shunde Hospital of Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| | - Hong-Mei Xiao
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, China
| | - Hanli Xu
- School of Physical Science and Engineering, College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Lu-Lu Xu
- School of Physical Science and Engineering, College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Xiyu Cheng
- School of Physical Science and Engineering, College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Hui Shen
- Tulane Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Chuan Qiu
- Tulane Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Zhe Luo
- Tulane Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Lan-Juan Zhao
- Tulane Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Qiong Yan
- School of Physical Science and Engineering, College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Hong-Wen Deng
- Tulane Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States,*Correspondence: Li-Shu Zhang,
| | - Li-Shu Zhang
- School of Physical Science and Engineering, College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China,Hong-Wen Deng,
| |
Collapse
|
5
|
Chen J, Chen X, Ho CL. Recent Development of Probiotic Bifidobacteria for Treating Human Diseases. Front Bioeng Biotechnol 2022; 9:770248. [PMID: 35004640 PMCID: PMC8727868 DOI: 10.3389/fbioe.2021.770248] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Bifidobacterium is a non-spore-forming, Gram-positive, anaerobic probiotic actinobacterium and commonly found in the gut of infants and the uterine region of pregnant mothers. Like all probiotics, Bifidobacteria confer health benefits on the host when administered in adequate amounts, showing multifaceted probiotic effects. Examples include B. bifidum, B. breve, and B. longum, common Bifidobacterium strains employed to prevent and treat gastrointestinal disorders, including intestinal infections and cancers. Herein, we review the latest development in probiotic Bifidobacteria research, including studies on the therapeutic impact of Bifidobacterial species on human health and recent efforts in engineering Bifidobacterium. This review article would provide readers with a wholesome understanding of Bifidobacteria and its potentials to improve human health.
Collapse
Affiliation(s)
- Jun Chen
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Xinyi Chen
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Chun Loong Ho
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| |
Collapse
|
6
|
Zhang Z, Gu M, You X, Sela DA, Xiao H, McClements DJ. Encapsulation of bifidobacterium in alginate microgels improves viability and targeted gut release. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106634] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Valent D, Arroyo L, Fàbrega E, Font-i-Furnols M, Rodríguez-Palmero M, Moreno-Muñoz J, Tibau J, Bassols A. Effects of a high-fat-diet supplemented with probiotics and ω3-fatty acids on appetite regulatory neuropeptides and neurotransmitters in a pig model. Benef Microbes 2020; 11:347-359. [DOI: 10.3920/bm2019.0197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The pig is a valuable animal model to study obesity in humans due to the physiological similarity between humans and pigs in terms of digestive and associated metabolic processes. The dietary use of vegetal protein, probiotics and omega-3 fatty acids is recommended to control weight gain and to fight obesity-associated metabolic disorders. Likewise, there are recent reports on their beneficial effects on brain functions. The hypothalamus is the central part of the brain that regulates food intake by means of the production of food intake-regulatory hypothalamic neuropeptides, as neuropeptide Y (NPY), orexin A and pro-opiomelanocortin (POMC), and neurotransmitters, such as dopamine and serotonin. Other mesolimbic areas, such as the hippocampus, are also involved in the control of food intake. In this study, the effect of a high fat diet (HFD) alone or supplemented with these additives on brain neuropeptides and neurotransmitters was assessed in forty-three young pigs fed for 10 weeks with a control diet (T1), a high fat diet (HFD, T2), and HFD with vegetal protein supplemented with Bifidobacterium breve CECT8242 alone (T3) or in combination with omega-3 fatty acids (T4). A HFD provoked changes in regulatory neuropeptides and 3,4-dihydroxyphenylacetic acid (DOPAC) in the hypothalamus and alterations mostly in the dopaminergic system in the ventral hippocampus. Supplementation of the HFD with B. breve CECT8242, especially in combination with omega-3 fatty acids, was able to partially reverse the effects of HFD. Correlations between productive and neurochemical parameters supported these findings. These results confirm that pigs are an appropriate animal model alternative to rodents for the study of the effects of HFD on weight gain and obesity. Furthermore, they indicate the potential benefits of probiotics and omega-3 fatty acids on brain function.
Collapse
Affiliation(s)
- D. Valent
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària. Universitat Autònoma de Barcelona, Barcelona, Spain
| | - L. Arroyo
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària. Universitat Autònoma de Barcelona, Barcelona, Spain
| | - E. Fàbrega
- Food Science – Institut de Recerca i Tecnologia Agroalimentàries, IRTA, Monells, Girona, Spain
| | - M. Font-i-Furnols
- Animal Science – Institut de Recerca i Tecnologia Agroalimentàries, IRTA, Monells, Girona, Spain
| | | | | | - J. Tibau
- Animal Science – Institut de Recerca i Tecnologia Agroalimentàries, IRTA, Monells, Girona, Spain
| | - A. Bassols
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària. Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Oliveira PWC, Couto MR, de Sousa GJ, Peixoto P, Moraes FSA, de Andrade TU, Bissoli NS. Effects of Drugs, Phytoestrogens, Nutrients and Probiotics on Endothelial Dysfunction in the Estrogen-Deficient State. Curr Pharm Des 2020; 26:3711-3722. [PMID: 32228420 DOI: 10.2174/1381612826666200331084338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/22/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Endothelial dysfunction is commonly present in estrogen-deficient states, e.g., after menopause. In the search for alternatives to hormone replacement therapy (HRT), treatments based on phytoestrogens or in non-hormonal mechanisms have been under evaluation. OBJECTIVE Here we aim to present an overview of innovative potential treatments for endothelial dysfunction in estrogen-deficient states, introducing our own preliminary data about the probiotic kefir. METHODS We conducted a review based on a PubMed database search for keywords of interest (Menopause, Ovariectomy, Vascular dysfunction, Hot flashes, Metformin, Statins, Phytoestrogens, Omega-3, Vitamin D, Probiotics). RESULTS Vascular parameters were found to be improved by both metformin and statins through pleiotropic effects, being related to a decrease in oxidative stress and restoration of the nitric oxide pathway. Phytoestrogens such as genistein and resveratrol have also been shown to improve vascular dysfunction, which seems to involve their estrogenic-like actions. Omega-3, vitamin D and its analogues, as well as probiotics, have shown similar vascular beneficial effects in both postmenopausal women and an animal model of ovariectomy (OVX), which could be related to antioxidant and/or anti-inflammatory effects. Moreover, our preliminary data on the probiotic kefir treatment in OVX rats suggested a vascular antioxidant effect. In particular, some evidence points to statins and vitamin D having anti-atherogenic effects. CONCLUSION Pleiotropic effects of common medications and natural compounds could have therapeutic potential for endothelial dysfunction in estrogen-deficient states. They could, therefore, work as future complementary or alternative treatments to HRT.
Collapse
Affiliation(s)
- Phablo Wendell C Oliveira
- Department of Physiological Sciences, Universidade Federal do Espirito Santo, Vitoria, Espirito Santo, Brazil
| | - Mariana R Couto
- Department of Physiological Sciences, Universidade Federal do Espirito Santo, Vitoria, Espirito Santo, Brazil
| | - Glauciene J de Sousa
- Department of Physiological Sciences, Universidade Federal do Espirito Santo, Vitoria, Espirito Santo, Brazil
| | - Pollyana Peixoto
- Department of Physiological Sciences, Universidade Federal do Espirito Santo, Vitoria, Espirito Santo, Brazil
| | - Flávia S A Moraes
- Department of Pharmacy, University Vila Velha, Vila Velha, ES, Brazil
| | | | - Nazaré S Bissoli
- Department of Physiological Sciences, Universidade Federal do Espirito Santo, Vitoria, Espirito Santo, Brazil
| |
Collapse
|
9
|
Bifidobacterium animalis subsp. lactis 420 for Metabolic Health: Review of the Research. Nutrients 2020; 12:nu12040892. [PMID: 32218248 PMCID: PMC7230722 DOI: 10.3390/nu12040892] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
The growing worldwide epidemic of obesity and associated metabolic health comorbidities has resulted in an urgent need for safe and efficient nutritional solutions. The research linking obesity with gut microbiota dysbiosis has led to a hypothesis that certain bacterial strains could serve as probiotics helping in weight management and metabolic health. In the search for such strains, the effect of Bifidobacterium animalis subsp. lactis 420 (B420) on gut microbiota and metabolic health, and the mechanisms of actions, has been investigated in a variety of in vitro, pre-clinical, and clinical studies. In this review, we aim to highlight the research on B420 related to obesity, metabolic health, and the microbiota. Current research supports the hypothesis that gut dysbiosis leads to an imbalance in the inflammatory processes and loss of epithelial integrity. Bacterial components, like endotoxins, that leak out of the gut can invoke low-grade, chronic, and systemic inflammation. This imbalanced state is often referred to as metabolic endotoxemia. Scientific evidence indicates that B420 can slow down many of these detrimental processes via multiple signaling pathways, as supported by mechanistic in vitro and in vivo studies. We discuss the connection of these mechanisms to clinical evidence on the effect of B420 in controlling weight gain in overweight and obese subjects. The research further indicates that B420 may improve the epithelial integrity by rebalancing a dysbiotic state induced by an obesogenic diet, for example by increasing the prevalence of lean phenotype microbes such as Akkermansia muciniphila. We further discuss, in the context of delivering the health benefits of B420: the safety and technological aspects of the strain including genomic characterization, antibiotic resistance profiling, stability in the product, and survival of the live probiotic in the intestine. In summary, we conclude that the clinical and preclinical studies on metabolic health suggest that B420 may be a potential candidate in combating obesity; however, further clinical studies are needed.
Collapse
|
10
|
Gu M, Zhang Z, Pan C, Goulette TR, Zhang R, Hendricks G, McClements DJ, Xiao H. Encapsulation of Bifidobacterium pseudocatenulatum G7 in gastroprotective microgels: Improvement of the bacterial viability under simulated gastrointestinal conditions. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.01.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
11
|
Sanchis-Chordà J, Del Pulgar EMG, Carrasco-Luna J, Benítez-Páez A, Sanz Y, Codoñer-Franch P. Bifidobacterium pseudocatenulatum CECT 7765 supplementation improves inflammatory status in insulin-resistant obese children. Eur J Nutr 2018; 58:2789-2800. [PMID: 30251018 DOI: 10.1007/s00394-018-1828-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 09/18/2018] [Indexed: 01/28/2023]
Abstract
PURPOSE The relationships between gut microbiota and obesity-related co-morbidities have been increasingly recognized. Low-grade inflammation may be the main factor in the pathogenesis of such disorders. We investigated the effect of the potential probiotic Bifidobacterium pseudocatenulatum CECT 7765 on cardiometabolic risk factors, inflammatory cytokines and gut microbiota composition in obese children with insulin resistance. METHODS The study included 48 obese children (10-15 years old) with insulin resistance. They received dietary advice and were assigned to take the capsules with or without probiotic (109-10 CFU) daily for 13 weeks. Clinical, biochemical and gut microbiome measurements were made at baseline and at the end of the intervention. RESULTS There was a significant improvement in body mass index in all children after the intervention, suggesting that weight changes are related to the dietary advice. A significant decrease in circulating high-sensitive C-reactive protein (P = 0.026) and monocyte chemoattractant protein-1 (P = 0.032) and an increase in high-density lipoprotein cholesterol (P = 0.035) and omentin-1 (P = 0.023) in children receiving probiotic supplementation were observed compared to the control group. Regarding gut microbiota, probiotic administration significantly increased the proportion of the Rikenellaceae family members, particularly of the Alistipes genus. CONCLUSIONS The beneficial effects of the intervention on inflammatory markers and lipid profile suggest that B. pseudocatenulatum CECT 7765 intake together with dietary recommendations can improve inflammatory status in children with obesity and insulin resistance. These effects are parallel to increases in bacterial groups associated with a lean phenotype. The modulation of gut microbiota with probiotic supplementation can be considered an effective tool to ameliorate some obesity-related disorders in children.
Collapse
Affiliation(s)
- Jesús Sanchis-Chordà
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Avenida de Blasco Ibañez, no 15, 46010, Valencia, Spain
| | - Eva M Gómez Del Pulgar
- Microbial Ecology, Nutrition and Health Research Group, Institute of Agrochemistry and Food Technology (IATA), National Research Council (CSIC), C/Médico Agustín Escardino, no 7, Paterna, 46980, Valencia, Spain
| | - Joaquín Carrasco-Luna
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Avenida de Blasco Ibañez, no 15, 46010, Valencia, Spain.,Department of Experimental Sciences, Universidad Católica de Valencia, C/Quevedo, no 2, 46001, Valencia, Spain
| | - Alfonso Benítez-Páez
- Microbial Ecology, Nutrition and Health Research Group, Institute of Agrochemistry and Food Technology (IATA), National Research Council (CSIC), C/Médico Agustín Escardino, no 7, Paterna, 46980, Valencia, Spain
| | - Yolanda Sanz
- Microbial Ecology, Nutrition and Health Research Group, Institute of Agrochemistry and Food Technology (IATA), National Research Council (CSIC), C/Médico Agustín Escardino, no 7, Paterna, 46980, Valencia, Spain
| | - Pilar Codoñer-Franch
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Avenida de Blasco Ibañez, no 15, 46010, Valencia, Spain. .,Department of Pediatrics, Dr. Peset University Hospital, Avenida Gaspar Aguilar, no 90, 46017, Valencia, Spain.
| |
Collapse
|
12
|
Bober JR, Beisel CL, Nair NU. Synthetic Biology Approaches to Engineer Probiotics and Members of the Human Microbiota for Biomedical Applications. Annu Rev Biomed Eng 2018. [PMID: 29528686 DOI: 10.1146/annurev-bioeng-062117-121019] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An increasing number of studies have strongly correlated the composition of the human microbiota with many human health conditions and, in several cases, have shown that manipulating the microbiota directly affects health. These insights have generated significant interest in engineering indigenous microbiota community members and nonresident probiotic bacteria as biotic diagnostics and therapeutics that can probe and improve human health. In this review, we discuss recent advances in synthetic biology to engineer commensal and probiotic lactic acid bacteria, bifidobacteria, and Bacteroides for these purposes, and we provide our perspective on the future potential of these technologies.
Collapse
Affiliation(s)
- Josef R Bober
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, USA;
| | - Chase L Beisel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA;
| | - Nikhil U Nair
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, USA;
| |
Collapse
|
13
|
Fabbiano S, Suárez-Zamorano N, Trajkovski M. Host-Microbiota Mutualism in Metabolic Diseases. Front Endocrinol (Lausanne) 2017; 8:267. [PMID: 29056925 PMCID: PMC5635267 DOI: 10.3389/fendo.2017.00267] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/21/2017] [Indexed: 12/23/2022] Open
Abstract
The intestinal microbiota is a plastic ecosystem that is shaped by environmental and genetic factors, interacting with virtually all tissues of the host. Many signals result from the interplay between the microbiota with its mammalian symbiont that can lead to altered metabolism. Disruptions in the microbial composition are associated with a number of comorbidities linked to the metabolic syndrome. Promoting the niche expansion of beneficial bacteria through diet and supplements can improve metabolic disorders. Reintroducing bacteria through probiotic treatment or fecal transplant is a strategy under active investigation for multiple pathological conditions. Here, we review the recent knowledge of microbiota's contribution to host pathology, the modulation of the microbiota by dietary habits, and the potential therapeutic benefits of reshaping the gut bacterial landscape in context of metabolic disorders such as obesity.
Collapse
Affiliation(s)
- Salvatore Fabbiano
- Faculty of Medicine, Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
- Faculty of Medicine, University of Geneva, Diabetes Center, Geneva, Switzerland
| | - Nicolas Suárez-Zamorano
- Faculty of Medicine, Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
- Faculty of Medicine, University of Geneva, Diabetes Center, Geneva, Switzerland
| | - Mirko Trajkovski
- Faculty of Medicine, Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
- Faculty of Medicine, University of Geneva, Diabetes Center, Geneva, Switzerland
- Institute for Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
- *Correspondence: Mirko Trajkovski,
| |
Collapse
|