1
|
Hedley KE, Cuskelly A, Callister RJ, Horvat JC, Hodgson DM, Tadros MA. The medulla oblongata shows a sex-specific inflammatory response to systemic neonatal lipopolysaccharide. J Neuroimmunol 2024; 389:578316. [PMID: 38394966 DOI: 10.1016/j.jneuroim.2024.578316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
Early life inflammation has been linked to long-term modulation of behavioural outcomes due to the central nervous system, but it is now becoming apparent it is also linked to dysfunction of visceral physiology. The medulla oblongata contains a number of nuclei critical for homeostasis, therefore we utilised the well-established model of neonatal lipopolysaccharide (LPS) exposure to examine the immediate and long-term impacts of systemic inflammation on the medulla oblongata. Wistar rats were injected with LPS or saline on postnatal days 3 and 5, with tissues collected on postnatal days 7 or 90 in order to assess expression of inflammatory mediators and microglial morphology in autonomic regions of the medulla oblongata. We observed a distinct sex-specific response of all measured inflammatory mediators at both ages, as well as significant neonatal sex differences in inflammatory mediators within saline groups. At both ages, microglial morphology had significant changes in branch length and soma size in a sex-specific manner in response to LPS exposure. This data not only highlights the strong sex-specific response of neonates to LPS administration, but also the significant life-long impact on the medulla oblongata and the potential altered control of visceral organs.
Collapse
Affiliation(s)
- Kateleen E Hedley
- School of Biomedical Sciences & Pharmacy, University of Newcastle, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Annalisa Cuskelly
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; School of Psychological Sciences, University of Newcastle, NSW, Australia; School of Education, University of Newcastle, NSW, Australia
| | - Robert J Callister
- School of Biomedical Sciences & Pharmacy, University of Newcastle, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jay C Horvat
- School of Biomedical Sciences & Pharmacy, University of Newcastle, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Deborah M Hodgson
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; School of Psychological Sciences, University of Newcastle, NSW, Australia
| | - Melissa A Tadros
- School of Biomedical Sciences & Pharmacy, University of Newcastle, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.
| |
Collapse
|
2
|
Song R, Dasgupta C, Mulder C, Zhang L. MicroRNA-210 Controls Mitochondrial Metabolism and Protects Heart Function in Myocardial Infarction. Circulation 2022; 145:1140-1153. [PMID: 35296158 PMCID: PMC9007902 DOI: 10.1161/circulationaha.121.056929] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Ischemic heart disease remains a leading cause of death worldwide. In this study, we test the hypothesis that microRNA-210 protects the heart from myocardial ischemia-reperfusion (IR) injury by controlling mitochondrial bioenergetics and reactive oxygen species (ROS) flux. METHODS Myocardial infarction in an acute setting of IR was examined through comparing loss- versus gain-of-function experiments in microRNA-210-deficient and wild-type mice. Cardiac function was evaluated by echocardiography. Myocardial mitochondria bioenergetics was examined using a Seahorse XF24 Analyzer. RESULTS MicroRNA-210 deficiency significantly exaggerated cardiac dysfunction up to 6 weeks after myocardial IR in male, but not female, mice. Intravenous injection of microRNA-210 mimic blocked the effect and recovered the increased myocardial IR injury and cardiac dysfunction. Analysis of mitochondrial metabolism revealed that microRNA-210 inhibited mitochondrial oxygen consumption, increased glycolytic activity, and reduced mitochondrial ROS flux in the heart during IR injury. Inhibition of mitochondrial ROS with MitoQ consistently reversed the effect of microRNA-210 deficiency. Mechanistically, we showed that mitochondrial glycerol-3-phosphate dehydrogenase is a novel target of microRNA-210 in the heart, and loss-of-function and gain-of-function experiments revealed that glycerol-3-phosphate dehydrogenase played a key role in the microRNA-210-mediated effect on mitochondrial metabolism and ROS flux in the setting of heart IR injury. Knockdown of glycerol-3-phosphate dehydrogenase negated microRNA-210 deficiency-induced increases in mitochondrial ROS production and myocardial infarction and improved left ventricular fractional shortening and ejection fraction after the IR treatment. CONCLUSIONS MicroRNA-210 targeting glycerol-3-phosphate dehydrogenase controls mitochondrial bioenergetics and ROS flux and improves cardiac function in a murine model of myocardial infarction in the setting of IR injury. The findings suggest new insights into the mechanisms and therapeutic targets for treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Rui Song
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Chiranjib Dasgupta
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Cassidy Mulder
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
3
|
Zhang Y, Yang M, Li Y, Liu B, Zhang L, Xiao D. Inhibition of DNA methylation in newborns reprograms ischemia-sensitive biomarkers resulting in development of a heart ischemia-sensitive phenotype late in life. Reprod Toxicol 2021; 105:198-210. [PMID: 34536542 PMCID: PMC8511209 DOI: 10.1016/j.reprotox.2021.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 11/28/2022]
Abstract
Adverse environmental stress exposure at critical perinatal stages can alter cardiovascular development, which could persist into adulthood and develop a cardiovascular dysfunctional phenotype late in life. However, the underlying molecular mechanisms remain largely unknown. The present study provided a direct evidence that DNA methylation is a key epigenetic mechanism contributing to the developmental origins of adult cardiovascular disease. We hypothesized that DNA hypomethylation at neonatal stage alters gene expression patterns in the heart, leading to development of a cardiac ischemia-sensitive phenotype late in life. To test this hypothesis, a DNA methylation inhibitor 5-Aza-2-deoxycytidine (5-Aza) was administered in newborn rats from postnatal day 1-3. Cardiac function and related key genes were measured in 2-week- and 2-month-old animals, respectively. 5-Aza treatment induced an age- and sex-dependent inhibition of global and gene-specific DNA methylation levels in left ventricles, resulting in a long-lasting growth restriction but an asymmetry increase in the heart-to-body weight ratio. In addition, treatment with 5-Aza enhanced ischemia and reperfusion-induced cardiac dysfunction and injury in adults as compared with the saline controls, which was associated with up-regulations of miRNA-181a and angiotensin II receptor type 1 & 2 gene expressions, but down-regulations of PKCε, Atg5, and GSK3β gene expressions in left ventricles. In conclusion, our results provide compelling evidence that neonatal DNA methylation deficiency is a key mechanism contributing to differentially reprogram cardiac gene expression patterns, leading to development of a heart ischemia-sensitive phenotype late in life.
Collapse
Affiliation(s)
- Yanyan Zhang
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Meizi Yang
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States; Department of Pharmacology, Binzhou Medical University, Yantai, Shandong, China
| | - Yong Li
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Bailin Liu
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Lubo Zhang
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Daliao Xiao
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States.
| |
Collapse
|
4
|
Zhang MQ, Macala KF, Fox-Robichaud A, Mendelson AA, Lalu MM. Sex- and Gender-Dependent Differences in Clinical and Preclinical Sepsis. Shock 2021; 56:178-187. [PMID: 33399356 DOI: 10.1097/shk.0000000000001717] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT In this mini-review we provide an overview of sex- and gender-dependent issues in both clinical and preclinical sepsis. The increasing recognition for the need to account for sex and gender in biomedical research brings a unique set of challenges and requires researchers to adopt best practices when conducting and communicating sex- and gender-based research. This may be of particular importance in sepsis, given the potential contribution of sex bias in the failures of translational sepsis research in adults and neonates. Clinical evidence of sex-dependent differences in sepsis is equivocal. Since clinical studies are limited to observational data and confounded by a multitude of factors, preclinical studies provide a unique opportunity to investigate sex differences in a controlled, experimental environment. Numerous preclinical studies have suggested that females may experience favorable outcomes in comparison with males. The underlying mechanistic evidence for sex-dependent differences in sepsis and other models of shock (e.g., trauma-hemorrhage) largely centers around the beneficial effects of estrogen. Other mechanisms such as the immunosuppressive role of testosterone and X-linked mosaicism are also thought to contribute to observed sex- and gender-dependent differences in sepsis. Significant knowledge gaps still exist in this field. Future investigations can address these gaps through careful consideration of sex and gender in clinical studies, and the use of clinically accurate preclinical models that reflect sex differences. A better understanding of sex-and gender-dependent differences may serve to increase translational research success.
Collapse
Affiliation(s)
- Meng Qi Zhang
- Clinical Epidemiology Program, Blueprint Translational Group, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada K1H 8M5
| | - Kimberly F Macala
- Departments of Critical Care Medicine and Anesthesiology and Pain Medicine, Royal Alexandra Hospital, University of Alberta, Edmonton, AB, Canada
| | - Alison Fox-Robichaud
- Department of Medicine and Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
| | - Asher A Mendelson
- Section of Critical Care Medicine, Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Manoj M Lalu
- Clinical Epidemiology Program, Blueprint Translational Group, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Anesthesiology and Pain Medicine, The Ottawa Hospital, Ottawa, ON, Canada
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| |
Collapse
|
5
|
Jian J, Zhang P, Li Y, Liu B, Zhang Y, Zhang L, Shao XM, Zhuang J, Xiao D. Reprogramming of miR-181a/DNA methylation patterns contribute to the maternal nicotine exposure-induced fetal programming of cardiac ischemia-sensitive phenotype in postnatal life. Theranostics 2020; 10:11820-11836. [PMID: 33052248 PMCID: PMC7546014 DOI: 10.7150/thno.48297] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Background: E-cigarette and other novel electronic nicotine delivery systems (ENDS) have recently entered the market at a rapid pace. The community desperately needs answers about the health effects of ENDS. The present study tested the hypothesis that perinatal nicotine exposure (PNE) causes a gender-dependent increase in vulnerability of the heart to ischemia-reperfusion (I/R) injury and cardiac dysfunction in male rat offspring via reprogramming of the miRNA-181a (miR-181a)-mediated signaling pathway and that miR-181a antisense could rescue this phenotype. Methods: Nicotine or saline was administered to pregnant rats via subcutaneous osmotic minipumps from gestational day 4 until postnatal day 10. Cardiac function and molecular biological experiments were conducted in ~3- month-old offspring. Results: PNE enhanced I/R-induced cardiac dysfunction and infarction in adult male but not in female offspring, which was associated with miR-181a over-expression in left ventricle tissues. In addition, PNE enhanced offspring cardiac angiotensin receptor (ATR) expressions via specific CpG hypomethylation of AT1R/AT2R promoter. Furthermore, PNE attenuated cardiac lncRNA H19 levels, but up-regulated cardiac TGF-β/Smads family proteins and consequently up-regulated autophagy-related protein (Atg-5, beclin-1, LC3 II, p62) expression in the male offspring. Of importance, treatment with miR-181a antisense eliminated the PNE's effect on miR-181a expression/H19 levels and reversed PNE-mediated I/R-induced cardiac infarction and dysfunction in male offspring. Furthermore, miR-181a antisense also attenuated the effect of PNE on AT1R/AT2R/TGF-β/Smads/autophagy-related biomarkers in the male offspring. Conclusion: Our data suggest that PNE could induce a reprogramming of cardiac miR-181a expression/DNA methylation pattern, which epigenetically modulates ATR/TGF-β/autophagy signaling pathways, leading to gender-dependent development of ischemia-sensitive phenotype in postnatal life. Furthermore, miR-181a could severe as a potential therapeutic target for rescuing this phenotype.
Collapse
|
6
|
Zhang P, Li Y, Fu Y, Huang L, Liu B, Zhang L, Shao XM, Xiao D. Inhibition of Autophagy Signaling via 3-methyladenine Rescued Nicotine-Mediated Cardiac Pathological Effects and Heart Dysfunctions. Int J Biol Sci 2020; 16:1349-1362. [PMID: 32210724 PMCID: PMC7085229 DOI: 10.7150/ijbs.41275] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/31/2020] [Indexed: 12/15/2022] Open
Abstract
Rationale: Cigarette smoking is a well-established risk factor for myocardial infarction and sudden cardiac death. The deleterious effects are mainly due to nicotine, but the mechanisms involved and theranostics remain unclear. Thus, we tested the hypothesis that nicotine exposure increases the heart sensitivity to ischemia/reperfusion injury and dysfunction, which can be rescued by autophagy inhibitor. Methods: Nicotine or saline was administered to adult rats via subcutaneous osmotic minipumps in the absence or presence of an autophagy inhibitor, 3-methyladenine (3-MA). After 30 days of nicotine treatment, the rats underwent the cardiac ischemia/reperfusion (I/R) procedure and echocardiography analysis, and the heart tissues were isolated for molecular biological studies. Results: Nicotine exposure increased I/R-induced cardiac injury and cardiac dysfunction as compared to the control. The levels of autophagy-related proteins including LC3 II, P62, Beclin1, and Atg5 were upregulated in the reperfused hearts isolated from nicotine-treated group. In addition, nicotine enhanced cardiac and plasma ROS production, and increased the phosphorylation of GSK3β (ser9) in the left ventricle tissues. Treatment with 3-MA abolished nicotine-mediated increase in the levels of autophagy-related proteins and phosphorylation of GSK3β, but had no effect on ROS production. Of importance, 3-MA ameliorated the augmented I/R-induced cardiac injury and dysfunction in the nicotine-treated group as compared to the control. Conclusion: Our results demonstrate that nicotine exposure enhances autophagy signaling pathway, resulting in development of ischemic-sensitive phenotype of heart. It suggests a potentially novel therapeutic strategy of autophagy inhibition for the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Peng Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA.,Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yong Li
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Yingjie Fu
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Lei Huang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Bailin Liu
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Xuesi M Shao
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, California, USA
| | - Daliao Xiao
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| |
Collapse
|
7
|
Christoforidou Z, Mora Ortiz M, Poveda C, Abbas M, Walton G, Bailey M, Lewis MC. Sexual Dimorphism in Immune Development and in Response to Nutritional Intervention in Neonatal Piglets. Front Immunol 2019; 10:2705. [PMID: 31921096 PMCID: PMC6911813 DOI: 10.3389/fimmu.2019.02705] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022] Open
Abstract
Although sex disparity in immunological function and susceptibility to various inflammatory and infectious disease is recognized in adults, far less is known about the situation in young infants during immune development. We have used an outbred piglet model to explore potential early sex disparity underlying both mucosal immune development and systemic responses to novel antigen. Despite similarities in intestinal barrier function and therefore, presumably, antigen exposure, females had less CD172+ (Sirp-α) antigen presenting cells and expression of MHCIIDR at 28 days old compared to males, along with greater regulatory T-cell numbers. This suggests that, during infancy, females may have greater potential for local immune regulation than their male counterparts. However, females also presented with significantly greater systemic antibody responses to injected ovalbumin and dietary soya. Females also synthesized significantly more IgA in mesenteric lymph nodes, whereas males synthesized more in caecal mucosa, suggesting that plasma cells were retained within the MLN in females, but increased numbers of plasma cells circulated through to the mucosal tissue in males. Significant effects of inulin and Bifidobacterium lactis NCC2818 on the developing immune system were also sex-dependent. Our results may start to explain inconsistencies in outcomes of trials of functional foods in infants, as distinction between males and females is seldom made. Since later functionality of the immune system is highly dependent on appropriate development during infancy, stratifying nutritional interventions by sex may present a novel means of optimizing treatments and preventative strategies to reduce the risk of the development of immunological disorders in later life.
Collapse
Affiliation(s)
- Zoe Christoforidou
- Infection and Immunity, School of Veterinary Science, University of Bristol, Bristol, United Kingdom
| | - Marina Mora Ortiz
- Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading, United Kingdom
| | - Carlos Poveda
- Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading, United Kingdom
| | - Munawar Abbas
- Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading, United Kingdom
| | - Gemma Walton
- Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading, United Kingdom
| | - Michael Bailey
- Infection and Immunity, School of Veterinary Science, University of Bristol, Bristol, United Kingdom
| | - Marie C Lewis
- Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading, United Kingdom
| |
Collapse
|
8
|
Effects of polarized macrophages on the in vitro gene expression after Co-Culture of human pluripotent stem cell-derived cardiomyocytes. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.regen.2019.100018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|